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CHERN CLASSES OF THE MODULI STACK OF CURVES

Gilberto Bini

Abstract. Here we calculate the Chern classes of Mg,n, the moduli stack of
stable n-pointed genus g curves. In particular, we prove that such classes lie in
the tautological ring.

1. Introduction

Let g and n be non-negative integers such that n > 2 − 2g. We denote by
Mg,n the Deligne-Mumford stack of stable genus g curves with n marked points.
More generally, if P is a set with n elements, it will be technically convenient
to work with Mg,P , i.e., the stack of genus g stable curves whose marked points
are labelled by P . The natural projection ϕ from the stack Mg,P to the coarse
moduli space Mg,P induces an isomorphism ϕ∗ at the level of Chow rings -
hereafter we shall only deal with rational coefficients. Following [6], we denote
by R∗(Mg,P ) the tautological ring of Mg,P . By abuse of notation, we shall
denote the image of R∗(Mg,P ) under (ϕ∗)−1 by the same symbol.

Tautological classes have been intensely studied in the last few years: see
[18] for a synoptic survey on the most recent developments in this area. In
particular, it is not at all clear which classes lie in the tautological ring. In
fact, constructions of tautological or non-tautological classes can be very diverse
in nature: combinatorial - as conjectured by Kontsevich and proved in, e.g.,
[12] - or purely algebro-geometric (e.g., [9]). As shown by Mumford in [14],
the Grothendieck-Riemman-Roch Theorem allows one to express Chow classes
in terms of tautological ones. Incidentally, this is done for the canonical class
of Mg,P in [13]. That calculation can be rephrased in terms of stacks. For
foundational material on stacks we refer the reader to [19] and, especially for
Chern classes, to [11].

In the present paper, we extend Mumford’s work and calculate all Chern
classes of the (smooth) moduli stack of curves, i.e., of the tangent bundle TMg,P

to Mg,P . In spite of their geometric significance, these classes have not been
hitherto computed. As above, we apply the Grothendieck-Riemann-Roch The-
orem. In fact, we refine combinatorial arguments, and manage to get explicit
formulae. This shows in particular that such classes are tautological, thus yield-
ing new elements in R∗(Mg,P ).
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Our presentation is rather concise since most of the theoretic material has
been explored by several authors. We briefly recall the needed preliminaries in
Section 2 and prove the main result in Section 3. Finally, we give some examples
and compare our formulae with previous results.

Throughout, we shall work over the field of complex numbers.

2. Preliminaries

Let Mg,P be the moduli stack of P -pointed stable curves of genus g. As
usual, π : C → Mg,P will denote the universal curve with sections σp for p ∈ P .
Set, further, D :=

∑
p∈P σp∗(1). The universal cotangent classes on Mg,P are

defined as ψp = c1(σ∗
p(ωπ)) for p ∈ P , where ωπ is the relative dualizing sheaf

of π. The collection of all moduli stacks Mg,P is equipped with some natural
morphisms, namely:

ξG :
∏
v∈V

Mg(v),l(v) → Mg,P ,(1)

where G is a stable graph - see, e.g., [3]. For example, it is well known that the
boundary ∂Mg,P can be described in terms of the following morphisms:

ξirr : Mg−1,P∪{q1,q2} → Mg,P ,(2)

ξh,A : Mh,A∪{r1} ×Mg−h,Ac∪{r2} → Mg,P ,(3)

where 0 ≤ h ≤ g, A ⊆ P , and both 2h − 1 + |A| and 2(g − h) − 1 + |Ac| are
positive. Finally, let δ be the boundary class defined as

δ =
1
2
ξirr ∗(1) +

1
2

∑
h

∑
A⊆P

ξh,A ∗(1).(4)

Let K = c1 (ωπ(D)). Following [2], the Mumford classes on Mg,P are defined
as κm = π∗(Km+1). For P = ∅ their analogue was first introduced by Mumford
in [14]. Another generalization of Mumford’s κm’s to the case of P -pointed curves
is given by the classes κ̃m = π∗(c1(ωπ)m+1). As proved in [2], the following
relationship holds:

κm = κ̃m +
∑
p∈P

ψm
p .(5)

The Hodge bundle E on Mg,P is defined as π∗ωπ. From [5] and [14] we have

ch(E) = g +
1
2

∑
m≥1

B2m

(2m)!

{
κ̃2m−1 +

ξirr ∗(ψ2m−2
q1

− ψ2m−3
q1

ψq2 + . . .+ ψ2m−2
q2

) +

g∑
h=0

∑
A⊆P

ξGh,A ∗(ψ2m−2
r1

⊗ 1 − ψ2m−3
r1

⊗ ψr2 + . . .+ 1 ⊗ ψ2m−2
r2

)
}
,
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where B2m are the Bernoulli numbers1. Note in particular that

ch1(E) = c1(E) := λ =
1
12


κ1 −

∑
p∈P

ψp


 + δ.(6)

As first shown by Mumford in [14], the Grothendieck-Riemann-Roch Theorem
(the G-R-R Theorem for short) can be applied to the universal curve π : C →
Mg,P . Alternatively, one can use the G-R-R Theorem stated in [17]. For the
sake of completeness, we report the statement below.

Theorem 1. (G-R-R Theorem) Let E be a locally free sheaf on C. Then

ch(π!E) = π∗ (ch(E)Td∨(Ωπ)) ,

where Ωπ is the sheaf of relative Kähler differentials.

In Proposition 1, ch(E) and Td(E) denote the Chern character and the dual
Todd class of E , respectively. Some formulas for these classes can be found, for
instance, in [1]. Here, we just remark two basic facts. First, notice that

ch(E∗) = rk(E) +
∑
j≥1

(−1)jchj(E).(7)

Second, let µ = (1m12m2 . . . imi . . . ) be a partition of weight j, where j is a
positive integer. Define chµ(E) to be the product chm1

1 (E)chm2
2 (E) . . . chmi

i (E) . . .
As proved in [10], (2.14’), the following holds:

cj(E) =
∑
µ�j

(−1)j−l(µ)
∏
r≥1

((r − 1)!)mr

mr!
chµ(E), j ≥ 1,(8)

where the sum ranges over all partitions µ of j, and l(µ) is the length of µ.
Finally, we recall some properties of Z, the singular locus of π. For more

details the reader is referred to [7]. Z is a closed substack of codimension 2 in C.
Moreover, there exists a double ètale covering ε : Z̃ → Z obtained from the choice
of the branches incident at the nodes corresponding to points in Z. Let ι : Z̃ → C
be the natural composition. Denote by L and L′ the line bundles corresponding
to the cotangent directions along the branches. Thus ε∗(NZ) = L ⊕ L′, where
NZ is the normal bundle of Z in C. Moreover, note that π ◦ ι maps Z̃ onto
∂Mg,P . In other words, we have

π ◦ ι = ξirr +
∑

h

∑
A⊆P

ξh,A,(9)

where both 2h− 1 + |A| and 2(g − h) − 1 + |Ac| are positive.

1We recall that Bernoulli numbers are defined as follows:

x

ex − 1
= 1− 1

2
x +

∑
m≥1

B2m

(2m)!
x2m.
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3. The Chern character of Mg,P

In this section we apply the G-R-R Theorem to the sheaf Ωπ(D) ⊗ ωπ. By
standard duality theorems and deformation theory [13], π∗ (Ωπ(D) ⊗ ωπ) is the
cotangent bundle on Mg,P . In the sequel, we closely follow [14], p. 302 ff.

We recall that

ch (Ωπ(D)) = ch (ωπ(D)) − ch (OZ) ,(10)

and

Td∨(Ωπ) = Td∨(ωπ) (Td∨(OZ))−1
,(11)

where OZ is viewed as a sheaf on C. For the purpose of what follows, we
need to determine the power series ch(OZ)Td∨(OZ)−1. Since Td∨(OZ)−1 is
a polynomial in the Chern characters chk(OZ), the G-R-R Theorem applied
to ι yields a universal power series Θ. For all ν : Y → X, an inclusion of a
smooth codimension two subvariety in a smooth variety, the series Θ satisfies
the following identity:

ch(OY )Td∨(OY )−1 = ν∗ (Θ (c1 (NY ) , c2 (NY ))) .(12)

To compute Θ, take Y = D1D2. Then the exact sequence

0 → OX(−D1 −D2) → OX(−D1) ⊕OX(−D2) → OX → OY → 0

yields

ch(OY ) = (1 − e−D1)(1 − e−D2).(13)

By [14], p. 303, we have

Td∨(OY )−1 =
D1D2

D1 +D2

1 − e−D1−D2

(1 − e−D1)(1 − e−D2)
.(14)

Therefore, we get

ch(OY )Td∨(OY )−1 = D1D2

∑
j≥1

(−1)j−1 (D1 +D2)j−1

j!
.(15)

Thus, the following holds:

Θ(D1 +D2, D1D2) =
∑
j≥1

(−1)j−1 (D1 +D2)j−1

j!
.(16)

As noted in [7], (13) can be applied to the morphism ι : Z̃ → C as well. In
this case, we need to replace the Chern classes of NZ with those of ε∗NZ .

We now state the main result of this section.
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Theorem 2. The Chern character of the cotangent bundle on Mg,P is given by

ch
(
T ∗
Mg,P

)
=

∑
j≥1

κj−1

j!
+

1
2

∑
t≥1

κt

t!
−

∑
m≥3

amκm−1 +(17)

ch(E) − 1 − 1
2
ξirr ∗

(
Ξ(1)

)
− 1

2

g∑
h=0

∑
A⊆P

ξGh,A ∗
(
Ξ(2)

)
,

where

am =

m−1

2 �∑
h=1

B2h

(2h)!(m− 2h)!
,(18)

Ξ(1) =
∑
k≥1

(−1)k−1 (ψq1 + ψq2)
k−1

k!
(19)

and

Ξ(2) =
∑
k≥1

(−1)k−1 (ψr1 ⊗ 1 + 1 ⊗ ψr2)
k−1

k!
(20)

Proof. By (10) and (11), we have

ch
((

Ωπ(D) ⊗ ωπ

)
Td∨(Ωπ)

)
= ch(ωπ)Td∨(ωπ)Td∨(OZ)−1ch(ωπ(D))(21)

− ch(ωπ)Td∨(ωπ)Td∨(OZ)−1ch(OZ).

As proved in [2], the first Chern class of ωπ(D) is equal to ψq. Here ψq denotes
the universal cotangent class on Mg,P∪{q} corresponding to the marked point q.
Since OZ is supported on Z and the marked points are non-singular, we get

ch(ωπ)Td∨(ωπ)Td∨(OZ)−1ch(ωπ(D)) = ch(ωπ)Td∨(ωπ)ch(ωπ(D))(22)
+ Td∨(OZ)−1 − 1,

and

ch(ωπ)Td∨(ωπ)Td∨(OZ)−1ch(OZ) = Td∨(OZ)−1ch(OZ).(23)

In particular, it is easy to check that (22) is equal to

ch(ωπ)Td∨(ωπ) [ch(ωπ(D)) − 1] + ch(ωπ)Td∨(Ωπ).(24)

By definition, we have

ch(ωπ(D)) = eψq ,

ch(ωπ)Td∨(ωπ) = e(ψq−D) ψq −D

e(ψq−D) − 1
=

D − ψq

eD−ψq − 1
.

(25)
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We recall that the formal expansion of the second power series in (25) is given
by

1 +
1
2

(ψq −D) +
∑
j≥1

B2j

(2j)!
(−ψq +D)2j ,(26)

where B2j is the (2j)-th Bernoulli number. Since ψq · D = 0, the first term of
(24) is given by

∑
j≥1

ψj
q

j!
+

1
2

∑
t≥1

ψt+1
q

t!
−

∑
m≥3

amψ
m
q ,(27)

where am is defined in (18).
Let us apply π∗ to (21). The contribution in (24) yields

∑
j≥1

κj−1

j!
+

1
2

∑
t≥1

κt

t!
−

∑
m≥3

amκm−1 + ch(E) − 1.(28)

On the other hand, the contribution in (23) is given by
1
2

(π ◦ ι)∗ (Θ (c1 (ε∗NZ) , c2 (ε∗NZ))) .(29)

By (9), this is equivalent to

1
2
ξirr ∗

(
Ξ(1)

)
+

1
2

g∑
h=0

∑
A⊆P

ξGh,A ∗
(
Ξ(2)

)
,

where Ξ(1) and Ξ(2) are defined in (19) and (20), respectively.

Remark 3. By Theorem 2 and (6), we get

ch0

(
T ∗
Mg,P

)
= rk(T ∗

Mg,P
) = 3g − 3 + n,

ch1

(
T ∗
Mg,P

)
= KMg,P

= 13λ+
∑
p∈P

ψp − 2δ,

where KMg,P
is the canonical class of the stack Mg,P and δ is defined in (4).

These formulas agree with previous known results: see, e.g., [4], [13].

Remark 4. Note that Theorem 2 and Formula (7) give the Chern character of
TMg,P

.

By Formula (8), we obtain an expression for the Chern classes of Mg,P .

Corollary 5. For j ≥ 1, we have

cj(Mg,P ) =
∑
µ�j

(−1)j−l(µ)
∏
r≥1

((r − 1)!)mr

mr!
chµ(Mg,P ).(30)
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Example. We give some examples for low j’s. In higher degrees, one can use
John Stembridge’s symmetric function package SF for maple [16]. For the sake
of simplicity, we denote

∑
p ψp by ψ. As noted in Remark 3, we have

c1(Mg,P ) = −13λ− ψ + 2δ.

¿From Corollary 5, we get

ch2(Mg,P ) =
κ2

3
+

1
4
ξirr ∗ (ψq1 + ψq2) +

1
4

∑
h,A

ξh,A ∗ (ψr1 ⊗ 1 + 1 ⊗ ψr2) .

hence

c2(Mg,P ) =
1
2

(−13λ− ψ + 2δ)2 − 1
3
κ2 −

1
4
ξirr ∗ (ψq1 + ψq2) −

1
4

∑
h,A

ξh,A ∗ (ψr1 ⊗ 1 + 1 ⊗ ψr2) .

Finally, the degree 3 Chern character is equal to

ch3(Mg,P ) = −κ3

12
− ch3(E) +

1
12
ξirr ∗

(
ψ2

q1
+ ψq1ψq2 + ψ2

q2

)
+

1
12

∑
h,A

ξh,A ∗
(
ψ2

r1
⊗ 1 + (ψr1 ⊗ ψr2) + 1 ⊗ ψ2

r2

)
.

Thus, we get

c3(Mg,P ) = [+13λ+ ψ − 2δ]
[

1
3
κ2 +

1
4
ξirr ∗ (ψq1 + ψq2)

+
1
4

∑
h,A

ξh,A ∗ (ψr1 ⊗ 1 + 1 ⊗ ψr2)


 −

1
6

[−13λ− ψ + 2δ]3 + 2ch3(Mg,P ).

As a result of Theorem 2 and the definition of tautological classes, we get new
elements in the tautological ring of Mg,P . Precisely, the following holds.

Corollary 6. The Chern classes of Mg,P are tautological.

Acknowledgements

I wish to express my gratitude to Enrico Arbarello for introducing me to an
enumerative geometry of moduli of curves along the lines of seminal work by
David Mumford [14]. I would also like to thank the referee for helpful remarks.



766 GILBERTO BINI

References

[1] E. Arbarello, M.D.T. Cornalba, P. Griffiths, J. Harris,, Geometry of algebraic curves, I,
Grundleheren der math. Wissenschaften, vol. 267, Springer-Verlag, New York, 1985.

[2] , Combinatorial and algebro-geometric cohomology classes on the moduli spaces
of curves, J. Algebraic Geom., 5 (1996) 705–749.

[3] , Calculating cohomology groups of moduli spaces of curves via algebraic geometry,

Inst. Hautes Études Sci. Publ. Math., 88 (1998) 97–127.
[4] G.Bini, C. Fontanari, Moduli of curves and spin structures via algebraic geometry. To

appear in Trans. Amer. Math. Soc. (2004).
[5] G. Bini, Generalized Hodge classes on moduli spaces of curves, Beiträge Algebra Geom.,
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