ADDENDUM TO THE PAPER
AFFINELY INFINITELY DIVISIBLE DISTRIBUTIONS AND
THE EMBEDDING PROBLEM

S.G. Dani and Klaus Schmidt

Abstract. In our paper [5], in proving the general case of our theorem, a result from [3] on embedding of infinitely divisible measures on certain Lie groups with compact center was used. An error has been found in the proof in [3]. In this context we show in this note that the proof of the theorem in [5] can be completed without recourse to the result from [3].

1. Introduction

Let A be a locally compact abelian group and let $P(A)$ denote the semigroup of probability measures on A, with the convolution product. Given $\mu \in P(A)$, a $\lambda \in P(A)$ is said to be an affine k-th root of μ (where k is any natural number) if there exists a continuous automorphism ρ of A such that $\rho^k = I$ (the identity transformation) and $\lambda \ast \rho(\lambda) \ast \rho^2(\lambda) \ast \cdots \ast \rho^{k-1}(\lambda) = \mu$, and μ is said to be affinely infinitely divisible (on A) if it has affine k-th roots for all k. We recall also that $\mu \in P(A)$ is said to be infinitely divisible if, for every natural number k, μ admits a k-th (convolution) root. The following is the main theorem from [5]:

Theorem 1.1. Every affinely infinitely divisible probability measure on a connected abelian Lie group A is infinitely divisible on A.

In [5], after various preparatory results, the theorem is first proved for $A = \mathbb{R}^n$ for any n, and then for a general A as above, namely $A = \mathbb{T}^m \times \mathbb{R}^n$ for some m and n. In the proof of the general case a theorem from [3] on the embeddability of infinitely divisible probability measures on a class of Lie groups with compact (nontrivial) center is used. It turns out that the proof in [3] has an error; see [4] for details. In this context we describe here a modified proof of Theorem 1.1 as above.

2. Proof of the theorem

As in [5] let S be the maximal torus in A, B the subgroup of A containing S and such that B/S is the vector subspace of A/S spanned by $(\text{supp}\mu)S/S$, and V a vector subgroup of B such that B is the direct product of S and V.

Received by the editors June 17, 2005.
Let Γ be the group of automorphisms of B acting trivially on S, Θ the subgroup of Γ consisting of automorphisms whose factor action on B/S is trivial, and Δ the subgroup of Γ consisting of automorphisms leaving V invariant. Then the arguments in [5], until the penultimate paragraph of the proof show that there exists a compact subgroup K of Δ such that μ is infinitely divisible on $B\Theta K$. From this point the next step is to prove that there exists a periodic one-parameter subgroup ϕ of ΘK such that μ is infinitely divisible on $B\phi$; this would enable, together with Corollary 4.2 of [5] to conclude that μ is infinitely divisible on B. To achieve this, in [5] we had appealed to a result from [3] on the embeddability of infinitely divisible measures on groups of the form $B\Theta K$ as above, but the proof of that result is found to have an error.

We shall therefore now proceed as follows. Let M be a minimal closed subgroup of ΘK of the form UC with U a vector subspace of Θ, and C a compact subgroup of ΘK (not necessarily contained in K), such that μ is infinitely divisible on $BM = BUC$; such a subgroup exists, by considerations of dimension and the number of connected components. If M^0 is the connected component of the identity in M then BM^0 is a subgroup of finite index in BM, and an argument as in the penultimate paragraph of [5] shows that μ, which is infinitely divisible on BM, would also be infinitely divisible on BM^0. The minimality condition on M therefore shows that $M^0 = M$, namely M is connected. Hence C is also connected.

Now let H be the subgroup of M consisting of all elements whose action on B leaves μ invariant. Then H is a closed subgroup, and by Lemma 2.2 of [5] μ is infinitely divisible on BH. A priori one does not know at this stage whether H is a semidirect product of a subspace of Θ with a compact subgroup, so one can not conclude immediately that $H = M$. We shall however show that H is compact, and hence $H = M = C$.

We note firstly that if Q is a closed subgroup of M such that every element x of M which is of finite order can be expressed as hyh^{-1} for some $h \in H$ and $y \in Q$, then μ is infinitely divisible on BQ. This may be seen as follows: Let k be any natural number, and ν be a k-th root of μ on BM. Then it has the form $\nu = \lambda x$ where λ is a probability measure on B and $x \in M$ is such that $x^k = e$, the identity element; see [5]. Now let x be expressed as hyh^{-1}, with $h \in H$ and $y \in Q$ as above. Then $(h^{-1}\nu h)^k = h^{-1}\mu h = \mu$, since μ is h-invariant. Thus $h^{-1}\nu h$ is a k-th root of μ. On the other hand, $h^{-1}\nu h = (h^{-1}\lambda h)(h^{-1}xh) = (h^{-1}\lambda h)y$, so its support is contained in BQ. This shows that μ is infinitely divisible on BQ, as claimed.

We now return to the subgroup $M = UC$ as above. The vector subspace U can be decomposed under the conjugation action of C as $U_0 \oplus U_1$ such that U_0 is pointwise fixed and U_1 contains no nonzero fixed points. Then M is a direct product of $M_1 = U_1 C$ and U_0. Since supp$\mu \subset B \subset BM_1$ and BM_1/BM_1 is a vector group, it follows that for every root λ of μ on BM, suppλ is contained in BM_1, and hence that μ is infinitely divisible on BM_1. By the minimality of M
we get therefore that \(M_1 = M \); thus \(U_0 \) is trivial and the action of \(C \) on \(U \) has no nonzero fixed point.

Consider now the subgroup \(\overline{UH} \) (the closure of \(UH \)). It is of the form \(UC' \) for some compact subgroup \(C' \) of \(C \), and so by the minimality condition on \(M \) we get that \(M = \overline{UH} \). We note that \(H \cap U \) is normalised by \(H \) and \(U \), and hence the preceding conclusion implies that it is a normal subgroup of \(M \). Let \(W = H \cap U \). Then \(W \) can be expressed as a direct product of its identity component \(W^0 \) with a discrete subgroup \(D \) which is invariant under the action of \(C \). Since \(C \) is connected and its action on \(U \) has no nontrivial fixed point, it follows that \(D \) is trivial, and hence \(W \) is a vector subspace of \(U \). We can now express \(U \) as \(U = W \oplus W' \) where \(W' \) is a \(C \)-invariant subspace of \(U \). It can be verified, using elementary linear algebra, that if \(\tau \) is an affine automorphism of \(W' \) of the form \(w \mapsto \sigma(w) + w_0 \) for all \(w \in W' \), where \(\sigma \) is an automorphism of \(W \) and \(w_0 \in W \), and if \(\tau \) is of finite order then \(\tau \) and \(\sigma \) are conjugate as affine automorphisms, by a translation from \(W \). Using this we see that every element \(x \) of \(UC \) which has finite order can be expressed as \(h y h^{-1} \), with \(h \in W \subset H \) and \(y \in W'C \). Therefore by the remark above \(\mu \) is infinitely divisible on \(BW'C \), and hence by the minimality condition on \(M \) we have \(M = W'C \). Thus, in the notation as above, \(H \cap U \) is trivial.

Let \(R \) be the (solvable) radical of (the connected Lie group) \(M \) and \(H^0 \) be the connected component of the identity in \(H \). Since \(R \) contains \(U \), \(H^0 R \) is normalised by \(U \). It is also normalised by \(H \), and since \(UH \) is dense in \(M \) it follows that \(H^0 R \) is a normal Lie subgroup of \(M \). Since \(M/R \) is a semisimple Lie group this implies that \(H^0 R/R \) is closed, and furthermore \(M/R \) can be expressed as \(M_1(H^0 R/R) \), where \(M_1 \) is a compact connected normal subgroup of \(M/R \) such that \(M_1 \cap (H^0 R/R) \) is finite. Let \(T \) be a maximal torus in the compact group \(H^0 R/R \) and let \(M' \) be the closed subgroup of \(M \) containing \(R \) and such that \(M'/R = M_1T \). By the conjugacy of maximal tori (see [6], Chapter 5, Theorem 15) in \(H^0 R/R \) we get that every \(x \) in \(M \) can be expressed as \(h y h^{-1} \) for some \(h \in H^0 \), and \(y \in M' \). Therefore, by our observation above, \(\mu \) is infinitely divisible on \(BM' \), and hence by the minimality condition on \(M \) we have \(M' = M \). Thus \(M/R = M'/R = M_1T \), and since \(M/R \) is semisimple we see that \(T \) must be trivial. Therefore \(H^0 \) is a solvable Lie group.

Let \(P \) be the connected component of the identity in \(H^0 R \). Since \(H^0 \) is solvable, by a theorem of L. Auslander (see [7], Theorem 8.2.4) \(P \) is solvable. As the subgroup \(P \) is normalised by \(UH \) and as the latter is dense in \(M \), it follows that \(P \) is normal in \(M \). As \(M/R \) is a semisimple Lie group and \(P/R \) is a connected solvable normal subgroup, it follows that \(P = R \). This implies that \(HR \) is closed and \(R \) is open in \(HR \). Also, as \(R \) contains \(U \), \(HR \) has the form \(UC' \) for some compact subgroup \(C' \) of \(C \). Since \(\mu \) is infinitely divisible on \(BH \subset BHHR \), the minimality condition on \(M \) now implies that \(M = HR \). Also, since \(M \) is connected and \(R \) is open in \(HR \) we further get that \(M = R \). Thus \(M \) is solvable, and hence the compact connected subgroup \(C \) is abelian. Since \(H \cap U \) is trivial this further implies that \(H \) is abelian.
Now let $p : M \to C$ be the canonical projection homomorphism, and $H' = p(H)$. Then H' is a dense subgroup of C. Since C is an abelian group and its action on U has no nonzero fixed point, it follows that the set of elements of C whose action on U admits a nonzero fixed point is a proper closed subset of C. Therefore there exists $h' \in H'$ whose action on U has no nonzero fixed point. Let $h \in H$ be such that $p(h) = h'$. Then there exists a $u \in U$ such that $uhu^{-1} = h'$. The centraliser of h' in M is compact and hence the preceding conclusion implies that the centraliser of h in M is compact. As H is abelian this shows that H is compact. As μ is infinitely divisible on BH the minimality condition on M now implies that $H = M = C$.

Since C is compact there exists a vector subgroup V of B such that V is invariant under the action of C and $B = SV$, a direct product. Hence BC is a direct product of S and VC, which shows in particular that it is a linear Lie group, namely a Lie group with a faithful finite-dimensional representation. Therefore by the general embedding theorem in [2] we get that μ, which is infinitely divisible on BC, is embeddable on BC; the group involved here being a direct product of a group of rigid motions and a compact abelian group, embeddability in this case can also be obtained along the lines of the (simpler) proof in [1] for measures on the group of affine automorphisms of \mathbb{R}^n, $n \geq 1$.

As in the argument in [5] for the vector group case we now deduce, from the embeddability of μ on BC, that there exists a periodic one-parameter subgroup ϕ of C such that μ is infinitely divisible (in fact embeddable) on $B\phi$. Then by Corollary 4.2 of [5] μ is infinitely divisible on B; this proves the theorem.

References