NAVIER-STOKES EQUATIONS IN ARBITRARY DOMAINS :
THE FUJITA-KATO SCHEME

SYLVIE MONNIAUX

Abstract. Navier-Stokes equations are investigated in a functional setting in 3D open sets \(\Omega \), bounded or not, without assuming any regularity of the boundary \(\partial \Omega \). The main idea is to find a correct definition of the Stokes operator in a suitable Hilbert space of divergence-free vectors and apply the Fujita-Kato method, a fixed point procedure, to get a local strong solution.

1. Introduction

Since the pioneering work by Leray [3] in 1934, there have been several studies on solutions of Navier-Stokes equations

\[
\begin{aligned}
\frac{\partial u}{\partial t} - \Delta u + \nabla \pi + (u \cdot \nabla)u &= 0 \quad \text{in} \quad [0,T] \times \Omega, \\
\text{div } u &= 0 \quad \text{in} \quad [0,T] \times \Omega, \\
u &= 0 \quad \text{on} \quad [0,T] \times \partial \Omega, \\
u(0) &= u_0 \quad \text{in} \quad \Omega.
\end{aligned}
\]

Fujita and Kato [2] in 1964 gave a method to construct so called mild solutions in smooth domains \(\Omega \), producing local (in time) smooth solutions of (NS) in a Hilbert space setting. These solutions are global in time if the initial value \(u_0 \) is small enough in a certain sense. The case of non smooth domains has been studied by Deuring and von Wahl [1] in 1995 where they considered domains \(\Omega \subset \mathbb{R}^3 \) with Lipschitz boundary \(\partial \Omega \). They found local smooth solutions using results contained in Shen’s PhD thesis [4]. Their method does not cover the critical space case as in [2]. One of the difficulty there was to understand the Stokes operator, and in particular its domain of definition.

In Section 2, we give a “universal” definition of the Stokes operator, for any domain \(\Omega \subset \mathbb{R}^3 \) (Definition 2.4). In Section 3, we construct a mild solution of (NS) with a method similar to Fujita-Kato’s [2] (Theorem 3.5) for initial values \(u_0 \) in the critical space \(D(A^{\frac{1}{2}}) \). We show in Section 4 that this mild solution is a strong solution, i.e. (NS) is satisfied almost everywhere.

2. The Stokes operator

Let \(\Omega \) be an open set in \(\mathbb{R}^3 \). The space

\[
L^2(\Omega)^3 = \{ u = (u_1, u_2, u_3); u_i \in L^2(\Omega), \ i = 1, 2, 3 \}
\]

Received by the editors November 15, 2005.
2000 Mathematics Subject Classification. Primary 35Q10, 76D05 ; Secondary 35A15.

455
endowed with the scalar product
\[\langle u, v \rangle = \int_{\Omega} u \cdot \overline{v} = \sum_{i=1}^{3} \int_{\Omega} u_i \overline{v_i} \]
is a Hilbert space. Define
\[G = \{ \nabla p; p \in L^2_{loc}(\Omega) \text{ with } \nabla p \in L^2(\Omega)^3 \}; \]
the set \(G \) is a closed subspace of \(L^2(\Omega)^3 \). Let
\[H = G^\perp = \{ u \in L^2(\Omega)^3; \langle u, \nabla p \rangle = 0, \forall p \in L^2_{loc}(\Omega) \text{ with } \nabla p \in L^2(\Omega)^3 \}. \]
The space \(H \), endowed with the scalar product \(\langle \cdot, \cdot \rangle \) is a Hilbert space. We have the following Hodge decomposition
\[L^2(\Omega)^3 = H^\perp \oplus G. \]
We denote by \(\mathbb{P} \) the projection from \(L^2(\Omega)^3 \) onto \(H : \mathbb{P} \) is the usual Helmholtz projection. We denote by \(J \) the canonical injection \(H \hookrightarrow L^2(\Omega)^3 : J' = \mathbb{P} \) (\(J' \) being the adjoint of \(J \)) and \(\mathbb{P} J \) is the identity on \(H \). Let now \(\mathcal{D}(\Omega)^3 = \mathcal{C}_c^\infty(\Omega)^3 \) and
\[D = \{ u \in \mathcal{D}(\Omega)^3; \text{div} u = 0 \}. \]
It is clear that \(D \) is a closed subspace of \(\mathcal{D}(\Omega)^3 \). We denote by \(J_0 : D \hookrightarrow \mathcal{D}(\Omega)^3 \) the canonical injection : \(J_0 \subset J \). Let \(\mathbb{P}_1 \) be the adjoint of \(J_0 : \mathbb{P}_1 = J_0' : \mathcal{D}'(\Omega)^3 \rightarrow \mathcal{D}' \). We have \(\mathbb{P} \subset \mathbb{P}_1 \). The following theorem characterizes the elements in \(\ker \mathbb{P}_1 \).

Theorem 2.1 (de Rham). Let \(T \in \mathcal{D}'(\Omega)^3 \) such that \(\mathbb{P}_1 T = 0 \) in \(\mathcal{D}' \). Then there exists \(S \in (\mathcal{C}_c^\infty(\Omega))^3 \) such that \(T = \nabla S \). Conversely, if \(T = \nabla S \) with \(S \in (\mathcal{C}_c^\infty(\Omega))^3 \), then \(\mathbb{P}_1 T = 0 \) in \(\mathcal{D}' \).

We denote by \(H^1_0(\Omega)^3 \) the closure of \(\mathcal{D}(\Omega)^3 \) with respect to the scalar product \(\langle u, v \rangle_1 = \langle u, v \rangle + \sum_{i=1}^{3} \langle \partial_i u, \partial_i v \rangle \). By Sobolev embeddings, we have \(H^1_0(\Omega)^3 \hookrightarrow L^6(\Omega)^3 \). Define
\[V = H \cap H^1_0(\Omega)^3. \]
The space \(V \) is a closed subspace of \(H^1_0(\Omega)^3 \); endowed with the scalar product \(\langle \cdot, \cdot \rangle_1 \), \(V \) is a Hilbert space.

Proposition 2.2. The space \(V \) is dense in \(H \).

Proof. Let \(u \in H \) be in the orthogonal of \(V \) with respect to \(H \), i.e.
\[\langle u, v \rangle = 0 \quad \text{for all } v \in V. \]
(2.1)
Since \(D \subset V \), (2.1) implies also
\[\langle u, v \rangle = 0 \quad \text{for all } v \in D. \]
It means that \(u \), viewed as an element of \(\mathcal{D}' \), is 0. By Theorem 2.1, there exists a distribution \(S \in \mathcal{D}(\Omega)^3 \) such that \(J u = \nabla S \). Since \(J u \in L^2(\Omega)^3 \), so is \(\nabla S \) and therefore, \(u = \mathbb{P} J u = \mathbb{P} \nabla S = 0 \). \(\square \)
The canonical injection \(J : \mathcal{V} \hookrightarrow H^1_0(\Omega)^3 \) is the restriction of \(J \) to \(\mathcal{V} \). We denote by \(\tilde{P} \) the adjoint of \(\tilde{J} \) : since \(\tilde{J} \) is the restriction of \(J \) to \(\mathcal{V} \), \(\tilde{P} \) is an extension of \(P \) to \(\mathcal{V}' \). On \(\mathcal{V} \times \mathcal{V} \) we define now the form \(a \) by \(a(u,v) = \sum_{i=1}^3 \langle \partial_i \tilde{J}u, \partial_i \tilde{J}v \rangle : a \) is a bilinear, symmetric, \(\delta + a \) is a coercive form on \(\mathcal{V} \times \mathcal{V} \) for all \(\delta > 0 \), then defines a bounded self-adjoint operator \(A_0 : \mathcal{V} \to \mathcal{V}' \) by \((A_0u)(v) = a(u,v) \) with \(\delta + A_0 \) invertible for all \(\delta > 0 \).

Proposition 2.3. For all \(u \in \mathcal{V} \), \(A_0u = \tilde{P}(-\Delta^\Omega_D)\tilde{J}u \), where \(\Delta^\Omega_D \) denotes the Dirichlet-Laplacian on \(H^1_0(\Omega)^3 \).

Proof. For all \(u, v \in \mathcal{V} \), we have

\[
(A_0u)(v) = \sum_{i=1}^3 \langle \partial_i \tilde{J}u, \partial_i \tilde{J}v \rangle = \langle (-\Delta^\Omega_D)\tilde{J}u, \tilde{J}v \rangle_{H^{-1},H^1_0}
\]

The first two equalities come from the definition of \(A_0 \) and \(a \). The third equality comes from the definition of the Dirichlet-Laplacian on \(H^1_0(\Omega)^3 \) and the fact that for \(v \in \mathcal{V} \), \(\tilde{J}v = v \). The last equality is due to \(\tilde{J}'\varphi = \tilde{P}\varphi \) in \(\mathcal{V}' \) for all \(\varphi \in H^{-1}(\Omega)^3 \). This shows that \(A_0u \) and \(\tilde{P}(-\Delta^\Omega_D)\tilde{J}u \) are two continuous linear forms on \(\mathcal{V} \) which coincide on \(\mathcal{V} \), they are then equal. \(\square \)

Definition 2.4. The operator \(A \) defined on its domain \(D(A) = \{ u \in \mathcal{V} ; A_0u \in \mathcal{H} \} \) by \(Au = A_0u \) is called the Stokes operator.

Theorem 2.5. The Stokes operator is self-adjoint in \(\mathcal{H} \), generates an analytic semigroup \((e^{-tA})_{t \geq 0} \), \(D(A^{\frac{1}{2}}) = \mathcal{V} \) and satisfies

\[
D(A) = \{ u \in \mathcal{V} ; \exists \pi \in (C_c^\infty(\Omega))' : \nabla \pi \in H^{-1}(\Omega) \text{ and } -\Delta u + \nabla \pi \in \mathcal{H} \}
\]

\[
Au = -\Delta u + \nabla \pi.
\]

Remark 2.6. Since \(H^1_0(\Omega)^3 \hookrightarrow L^3(\Omega)^3 \), it is clear by interpolation and dualization that \(\tilde{P} \) maps \(L^p(\Omega)^3 \) to \(D(A')' \) for \(\frac{3}{2} \leq p \leq 2 \), \(0 \leq s \leq \frac{1}{2} \) and \(s = -\frac{3}{4} + \frac{3}{2p} \). Since \(A \) is self-adjoint, one has \((\delta + A_0)^{-s}D(A')' = \{(\delta + A_0)^{-s}u ; u \in D(A')' = \mathcal{H} \). In particular, \((\delta + A_0)^{-\frac{1}{4}}\mathcal{P}_1 \) maps \(L^3(\Omega)^3 \) into \(\mathcal{H} \).

3. Mild solution to the Navier-Stokes system

Let \(T > 0 \).

Define the following Banach space

\[
\mathcal{E}_T = \left\{ u \in C([0,T]; D(A^{\frac{1}{2}})) \cap C^1([0,T]; D(A^{\frac{1}{2}})) \right\}
\]

such that \(\sup_{0 < s < T} \| s^{\frac{1}{2}} A^{\frac{1}{2}} u(s) \|_{\mathcal{H}} + \sup_{0 < s < T} \| s A^{\frac{1}{2}} u'(s) \|_{\mathcal{H}} < \infty \)
endowed with the norm
\[\|u\|_{\mathcal{E}_T} = \sup_{0 < s < T} \|A^{\frac{1}{2}}u(s)\|_{\mathcal{H}} + \sup_{0 < s < T} \|s^{\frac{1}{2}}A^{\frac{3}{2}}u(s)\|_{\mathcal{H}} + \sup_{0 < s < T} \|sA^{\frac{1}{2}}u(s)\|_{\mathcal{H}}. \]

Let \(\alpha \) be defined by \(\alpha(t) = e^{-tA}u_0 \) where \(u_0 \in D(A^{\frac{1}{2}}) \). Then \(\alpha \in \mathcal{E}_T \). Indeed, it is clear that \(\alpha \in \mathcal{C}([0, T]; D(A^{\frac{1}{2}})) \). We also have that \(t^\frac{1}{2}A^{\frac{3}{2}}\alpha(t) = t^\frac{1}{2}A^{\frac{3}{2}}e^{-tA}A^{\frac{1}{2}}u_0 \) is bounded on \((0, T)\) since \((e^{-tA})_{t \geq 0}\) is an analytic semigroup. Moreover, one has \(\alpha'(t) = -Ae^{-tA}u_0 \) which yields \(tA^{\frac{1}{2}}\alpha'(t) = -tAe^{-tA}A^{\frac{1}{2}}u_0 \) continuous on \([0, T]\), bounded in \(\mathcal{H} \). For \(u, v \in \mathcal{E}_T \), we define now
\[\Phi(u, v)(t) = \int_0^t e^{-(t-s)A}(-\frac{1}{2}\overline{P})(u(s) \cdot \nabla)v(s) + (v(s) \cdot \nabla)u(s))ds, \quad 0 < t < T. \]

Notation 3.1. Let \(X, Y \) be Banach spaces. For a bounded linear operator \(S : X \to Y \), we denote by \(\|S\|_{\mathcal{L}(X; Y)} \) the norm of \(S \), i.e.
\[\|S\|_{\mathcal{L}(X; Y)} = \sup\{\|Sx\|_Y : \forall x \in X \text{ with } \|x\|_X \leq 1\}. \]

If \(X = Y \), we adopt the notation \(\|S\|_{\mathcal{L}(X)} \) instead of \(\|S\|_{\mathcal{L}(X; Y)} \). For a bilinear operator \(B : X \times X \to Y \), we denote by \(\|B\|_{\mathcal{L}(X \times X; Y)} \) the norm of \(B \), i.e.
\[\|B\|_{\mathcal{L}(X \times X; Y)} = \sup\{\|B(x, x')\|_Y : \forall x, x' \in X \text{ with } \|x\|_X \leq 1 \text{ and } \|x'\|_X \leq 1\}. \]

Notation 3.2. For \(u, v \in L^2(\Omega)^3 \), we denote by \(u \otimes v \) the matrix defined by
\[(u \otimes v)_{i,j} = u_i v_j, \quad 1 \leq i, j \leq 3. \]

Remark 3.3. If \(u, v \) are sufficiently smooth vector fields such that \(\text{div}u = 0 \), then
\[\text{div}(u \otimes v) := \sum_{i=1}^3 \partial_i (u, v) = \sum_{i=1}^3 u_i \partial_i v = (u \cdot \nabla)v. \]

Proposition 3.4. The transform \(\Phi \) is bilinear, symmetric, continuous from \(\mathcal{E}_T \times \mathcal{E}_T \) to \(\mathcal{E}_T \) and the norm of \(\Phi \) is independent of \(T \).

Proof. The fact that \(\Phi \) is bilinear and symmetric is clear. Moreover, \(\Phi(u, v) = e^{-A} * f \), where \(f \) is defined by
\[f(s) = (-\frac{1}{2}\overline{P})(u(s) \cdot \nabla)v(s) + (v(s) \cdot \nabla)u(s)), \quad s \in [0, T]. \]

For \(u, v \in \mathcal{E}_T \), it is clear that \((u(s) \cdot \nabla)v(s) + (v(s) \cdot \nabla)u(s) \in L^2(\Omega)^3 \) and therefore \((\delta + A_0)^{-\frac{3}{2}} f(s) \in \mathcal{H} \) with \(\sup_{0 < s < T} s^{\frac{1}{2}} \|(\delta + A_0)^{-\frac{3}{2}} f(s)\|_{\mathcal{H}} \leq c \|u\|_{\mathcal{E}_T} \|v\|_{\mathcal{E}_T} \). We have then
\[\Phi(u, v) = e^{-A} * f = (\delta + A)^{\frac{3}{2}} e^{-A} * ((\delta + A_0)^{-\frac{3}{2}} f) \]
and therefore
\[\|A^{\frac{1}{2}}\Phi(u, v)(t)\|_{\mathcal{H}} \leq \int_0^t \|A^{\frac{1}{2}}(\delta + A)^{\frac{3}{2}} e^{-(t-s)A} \|_{\mathcal{L}(\mathcal{H})} \|((\delta + A_0)^{-\frac{3}{2}} f)\|_{\mathcal{H}} ds \]
\[\leq c \left(\int_0^t \frac{1}{\sqrt{t-s}} \frac{1}{\sqrt{s}} ds \right) \|u\|_{\mathcal{E}_T} \|v\|_{\mathcal{E}_T} \]
\[\leq c \left(\int_0^1 \frac{1}{\sqrt{1-s}} \frac{1}{\sqrt{s}} ds \right) \|u\|_{\mathcal{E}_T} \|v\|_{\mathcal{E}_T} \]
\[\leq c \|u\|_{\mathcal{E}_T} \|v\|_{\mathcal{E}_T}. \]
Continuity with respect to \(t \in [0, T] \) of \(t \mapsto A^{\frac{1}{2}} \Phi(u, v)(t) \) is clear once we have proved the boundedness. We also have

\[
\|A^{\frac{1}{2}} \Phi(u, v)(t)\|_{\mathcal{H}} \leq \int_0^t \|A^{\frac{1}{2}}(\delta + A)^{\frac{1}{2}} e^{-((t-s)A)}\|_{L^2(\mathcal{H})} \|((\delta + A_0)^{-\frac{1}{2}} f(s))\|_{\mathcal{H}} ds \\
\leq c \left(\int_0^t \frac{1}{(t-s)^{\frac{1}{2}}} \frac{1}{\sqrt{\sigma}} ds \right) \|u\|_{\mathcal{E}_T} \|v\|_{\mathcal{E}_T} \\
\leq ct^{-\frac{1}{4}} \left(\int_0^1 \frac{1}{(1-\sigma)^{\frac{1}{2}}} \frac{1}{\sqrt{\sigma}} d\sigma \right) \|u\|_{\mathcal{E}_T} \|v\|_{\mathcal{E}_T} \\
\leq ct^{-\frac{1}{4}} \|u\|_{\mathcal{E}_T} \|v\|_{\mathcal{E}_T}.
\]

Continuity with respect to \(t \in [0, T] \) is clear once we have proved the boundedness. To prove the last part of the norm of \(\Phi(u, v) \) in \(\mathcal{E}_T \), we first write \(f \), using Notation 3.2 and Remark 3.3, in the following form

\[
f(s) = (-\frac{1}{2} \mathbb{P}) \text{ div } (u(s) \otimes v(s) + v(s) \otimes u(s)), \quad s \in [0, T].
\]

We have then for \(s \in [0, T] \)

\[
f'(s) = (-\frac{1}{2} \mathbb{P}) \text{ div } (u'(s) \otimes v(s) + u(s) \otimes v'(s) + v'(s) \otimes u(s) + v(s) \otimes u'(s)).
\]

For all \(s \in [0, T] \) we have

\[
s^{\frac{1}{2}} \|u'(s) \otimes v(s)\|_2 \leq (1) \|su'(s)\|_3 \|s^{\frac{1}{2}}v(s)\|_6 \\
\leq (2) \|sA^{\frac{1}{2}}u'(s)\|_{\mathcal{H}} \|s^{\frac{1}{2}}A^{\frac{1}{2}}v(s)\|_{\mathcal{H}} \\
\leq (3) \|u\|_{\mathcal{E}_T} \|v\|_{\mathcal{E}_T},
\]

where the first inequality comes from the fact that \(L^3 \cdot L^6 \hookrightarrow L^2 \), the second comes from the inclusions \(D(A^{\frac{1}{2}}) \hookrightarrow L^3(\Omega)^3 \) and \(D(A^{\frac{1}{2}}) \hookrightarrow L^6(\Omega)^3 \) and the third inequality follows directly from the definition of the space \(\mathcal{E}_T \). Of course the same occurs for the other three terms \(u(s) \otimes v'(s) \), \(v'(s) \otimes u(s) \) and \(v(s) \otimes u'(s) \). Therefore, since \(A_0^{-\frac{1}{2}} \) maps \(\mathcal{V} \) to \(\mathcal{H} \), we obtain

\[
\sup_{0 < s < T} \|s^{\frac{1}{2}}(\delta + A_0)^{-\frac{1}{2}} f'(s)\|_{\mathcal{H}} \leq c \|u\|_{\mathcal{E}_T} \|v\|_{\mathcal{E}_T}.
\]

We have

\[
\Phi(u, v)(t) = \int_0^t e^{-sA} f(t-s) ds + \int_0^t e^{-(t-s)A} f(s) ds \quad t \in [0, T],
\]

and therefore

\[
\Phi(u, v)'(t) = e^{-\frac{1}{2}A} f(\frac{1}{2}) + \int_0^\frac{1}{2} (\delta + A)^{\frac{1}{2}} e^{-sA} (\delta + A_0)^{-\frac{1}{2}} f'(t-s) ds \\
+ \int_0^\frac{1}{2} -A(\delta + A)^{\frac{1}{2}} e^{-(t-s)A} (\delta + A_0)^{-\frac{1}{2}} f(s) ds,
\]
which yields
\[
\|A^{\frac{1}{4}}\Phi(u, v)'(t)\|_{\mathcal{H}} \leq \frac{c}{\sqrt{t}} \left\| (\delta + A_0)^{-\frac{1}{2}} f\left(\frac{t}{2}\right) \right\|_{\mathcal{H}} + c \left(\int_0^{\frac{t}{2}} \frac{1}{s^\frac{3}{2}} \left(\frac{1}{s^\frac{1}{2}} \|u\|_{\mathcal{E}_T} \right) ds \right) \|u\|_{\mathcal{E}_T} \|v\|_{\mathcal{E}_T} \\
+ c \left(\int_0^{\frac{t}{2}} \frac{1}{(t-s)^\frac{1}{2}} \frac{1}{s^\frac{3}{2}} ds \right) \|u\|_{\mathcal{E}_T} \|v\|_{\mathcal{E}_T} \\
\leq \frac{c}{t} \left(\int_0^{\frac{t}{2}} \frac{d\sigma}{\left(1-\sigma\right)^{\frac{3}{2}}\sigma^\frac{1}{2}} \right) \|u\|_{\mathcal{E}_T} \|v\|_{\mathcal{E}_T}.
\]

This last inequality ensures that \(\Phi(u, v)\) is the mild solution to the Navier-Stokes system.

Theorem 3.5. For all \(u_0 \in D(A^{\frac{1}{4}})\), there exists \(T > 0\) such that there exists a unique \(u \in \mathcal{E}_T\) solution of \(u = \alpha + \Phi(u, u)\) on \([0, T]\). This function \(u\) is called the mild solution to the Navier-Stokes system.

Proof. Let \(T > 0\). Since \(\Phi : \mathcal{E}_T \times \mathcal{E}_T \to \mathcal{E}_T\) is bilinear continuous, it suffices to apply Picard fixed point theorem, as in [2]. The sequence in \(\mathcal{E}_T\) \((v_n)_{n \in \mathbb{N}}\) defined by \(v_0 = \alpha\) as first term and

\[v_{n+1} = \alpha + \Phi(v_n, v_n), \quad n \in \mathbb{N}\]

converges to the unique solution \(u \in \mathcal{E}_T\) of \(u = \alpha + \Phi(u, u)\) provided \(\|A^{\frac{1}{4}}u_0\|_{\mathcal{H}}\) is small enough \((\|\alpha\|_{\mathcal{E}_T} < \frac{1}{4\|\Phi\|_{\mathcal{E}_T \times \mathcal{E}_T}^\frac{1}{2}})\). In the case where \(\|A^{\frac{1}{4}}u_0\|_{\mathcal{H}}\) is not small (that is, if \(\|\alpha\|_{\mathcal{E}_T} \geq \frac{1}{4\|\Phi\|_{\mathcal{E}_T \times \mathcal{E}_T}^\frac{1}{2}}\)) then for \(\varepsilon > 0\), there exists \(u_{0, \varepsilon} \in D(A)\) such that \(\|A^{\frac{1}{4}}(u_0 - u_{0, \varepsilon})\|_{\mathcal{H}} \leq \varepsilon\). If we take as initial value \(u_{0, \varepsilon} \in D(A)\), we have

\[\|\alpha\|_{\mathcal{E}_T} \leq cT^\frac{1}{2} \|Au_{0, \varepsilon}\|_{\mathcal{H}} \xrightarrow{T \to 0} 0.\]

Therefore, we can find \(T > 0\) such that \(\|\alpha\|_{\mathcal{E}_T} < \frac{1}{4\|\Phi\|_{\mathcal{E}_T \times \mathcal{E}_T}^\frac{1}{2}}\).

4. Strong solutions

Let \(u\) be the mild solution to the Navier-Stokes system. We show in this section that \(u\) in fact satisfies the equations of the Navier-Stokes system in an \(L^p\)-sense (for a suitable \(p\)). To begin with, we know that \(u \in \mathcal{E}_T\) and satisfies

\[u = \alpha + \Phi(u, u) = \alpha + e^{-A} \varphi(u),\]

where \(\varphi(u) = -\tilde{P}((u \cdot \nabla)u)\) and we have \(\|t^\frac{1}{2} (u(t) \cdot \nabla)u(t)\|_{\frac{3}{2}} \leq c\|u\|_{\mathcal{E}_T}^2\). Therefore, we get

\[(4.1) \quad u(0) = \alpha(0) = u_0,\]

\[(4.2) \quad \text{div}u(t) = 0 \ \text{in} \ \mathcal{L}^2, \ \text{for} \ t \in [0, T],\]

and

\[u' + Au = f \ \text{in} \ \mathcal{C}([0, T]; \mathcal{V}'),\]

which means that for all \(t \in [0, T]\),

\[\tilde{F}(u'(t) - \Delta_D^\Omega u(t) + (u(t) \cdot \nabla)u(t)) = 0.\]
Then, by Theorem 2.1, there exists \((-\pi)(t) \in (\mathcal{C}^\infty_c(\Omega))'\) such that \(\nabla \pi(t) \in H^{-1}(\Omega)^3\) and
\[
\nabla(-\pi)(t) = u'(t) - \Delta_D u(t) + (u(t) \cdot \nabla)u(t)
\]
and we have for \(0 < t < T\)
\[
-\Delta_D^2 u(t) + \nabla \pi(t) = -u'(t) - (u(t) \cdot \nabla)u(t) \in L^3(\Omega)^3 + L^2(\Omega)^3.
\]

The equation (4.3), together with (4.1) and (4.2), give the usual Navier-Stokes equations which are fulfilled in a strong sense \((a.e.)\) where we consider the expression \(-\Delta u + \nabla \pi\) undecoupled.

References

LATP UMR 6632, Case cour A, Faculté des sciences de Saint-Jérôme, Université Paul Cézanne (Aix-Marseille 3), 13397 Marseille Cédex 20, France
E-mail address: sylvie.monniaux@univ.u-3mrs.fr