AN ENDPOINT \((1, \infty)\) BALIAN-LOW THEOREM

JOHN J. Benedetto, Wojciech Czaja, Alexander M. Powell, and Jacob Sterbenz

Abstract. It is shown that a \((1, \infty)\) version of the Balian-Low Theorem holds. If \(g \in L^2(\mathbb{R})\), \(\Delta_1(g) < \infty\) and \(\Delta_\infty(\widehat{g}) < \infty\), then the Gabor system \(\mathcal{G}(g, 1, 1)\) is not a Riesz basis for \(L^2(\mathbb{R})\). Here, \(\Delta_1(g) = \int |t|^2 |g(t)|^2 dt\) and \(\Delta_\infty(\widehat{g}) = \sup_{N>0} \int |\gamma|^N |\widehat{g}(\gamma)|^2 d\gamma\).

1. Introduction

Given a square integrable function \(g \in L^2(\mathbb{R})\), and constants \(a, b > 0\), the associated Gabor system, \(\mathcal{G}(g, a, b) = \{g_{m,n}\}_{m,n \in \mathbb{Z}}\), is defined by
\[
g_{m,n}(t) = e^{2\pi iam t} g(t - bn).
\]
Gabor systems provide effective signal decompositions in a variety of settings ranging from eigenvalue problems to applications in communications engineering. Background on the theory and applications of Gabor systems can be found in [16], [12], [13], [3].

We shall use the Fourier transform defined by \(\hat{g}(\gamma) = \int g(t) e^{-2\pi i \gamma t} dt\), where the integral is over \(\mathbb{R}\). Depending on the context, \(|\cdot|\) will denote either the Lebesgue measure of a set, or the modulus of a function or complex number.

The Balian-Low Theorem is a classical manifestation of the uncertainty principle for Gabor systems.

Theorem 1.1 (Balian-Low). Let \(g \in L^2(\mathbb{R})\). If
\[
\int |t|^2 |g(t)|^2 dt < \infty \quad \text{and} \quad \int |\gamma|^2 |\hat{g}(\gamma)|^2 d\gamma < \infty,
\]
then \(\mathcal{G}(g, 1, 1)\) is not an orthonormal basis for \(L^2(\mathbb{R})\).

The Balian-Low Theorem has a long history and some of the original references include [1], [19], [2]. The theorem still holds if “orthonormal basis” is replaced by “Riesz basis”. For this and other generalizations of the Balian-Low Theorem, we refer the reader to the survey articles [6], [9], as well as [4], [5], [7], [8], [10], [14], [17]. The issue of sharpness in the Balian-Low Theorem was investigated in [5], where the following was shown.

Received by the editors March 3, 2005.

Key words and phrases. Gabor analysis, Balian-Low Theorem, time-frequency analysis.

2000 Mathematics Subject Classification. Primary 42C15, 42C25; Secondary 46C15.

The first author was supported in part by NSF DMS Grant 0139759, ONR Grant N000140210398.

The second author was supported by European Commision Grant MEIF-CT-2003-500685.

The third author was supported in part by NSF DMS Grant 0219233.
Theorem 1.2. If $\frac{1}{p} + \frac{1}{q} = 1$, where $1 < p, q < \infty$, and $d > 2$, then there exists a function $g \in L^2(\mathbb{R})$ such that $G(g, 1, 1)$ is an orthonormal basis for $L^2(\mathbb{R})$ and

$$\int \frac{1 + |t|^p}{\log^d(2 + |t|)} |g(t)|^2 dt < \infty \quad \text{and} \quad \int \frac{1 + |\gamma|^q}{\log^d(2 + |\gamma|)} |\hat{g}(\gamma)|^2 d\gamma < \infty.$$

When $(p, q) = (2, 2)$, this says that the Balian-Low Theorem no longer holds if the weights (t^2, γ^2) are weakened by appropriate logarithmic terms. In view of Theorem 1.2, it is also natural to ask if there exist versions of the Balian-Low Theorem for the general (p, q) case corresponding to the weights (t^p, γ^q). The best that is known is the following.

Theorem 1.3. Suppose $\frac{1}{p} + \frac{1}{q} = 1$ with $1 < p < \infty$ and let $\epsilon > 0$. If

$$\int |t|^{(p+\epsilon)} |g(t)|^2 dt < \infty \quad \text{and} \quad \int |\gamma|^{(q+\epsilon)} |\hat{g}(\gamma)|^2 d\gamma < \infty$$

then $G(g, 1, 1)$ is not an orthonormal basis for $L^2(\mathbb{R})$.

The above theorem follows by combining Theorem 4.4 of [11] and Theorem 1 in [15]. The $\epsilon > 0$ can, of course, be removed in the case $(p, q) = (2, 2)$, by the Balian-Low Theorem.

This note shows the existence of a Balian-Low Theorem in the case $(p, q) = (1, \infty)$, and thus extends Theorems 1.1 and 1.3. To define what this means, let $g \in L^2(\mathbb{R})$ and $1 \leq p < \infty$ and set

$$\Delta_p(g) = \int |t|^p |g(t)|^2 dt \quad \text{and} \quad \Delta_\infty(g) = \sup_{N > 0} \int |t|^N |g(t)|^2 dt.$$

With this notation, the classical Balian-Low Theorem says that if $\Delta_2(g) < \infty$ and $\Delta_2(\hat{g}) < \infty$ then $G(g, 1, 1)$ is not an orthonormal basis for $L^2(\mathbb{R})$.

Our main result of this note is the following theorem.

Theorem 1.4. Let $g \in L^2(\mathbb{R})$ and suppose that $G(g, 1, 1)$ is a Riesz basis for $L^2(\mathbb{R})$. Then

$$\Delta_1(g) = \infty \quad \text{or} \quad \Delta_\infty(\hat{g}) = \infty.$$

This yields the following $(1, \infty)$ version of the classical Balian-Low Theorem.

Corollary 1.5. Let $g \in L^2(\mathbb{R})$ and suppose

$$\Delta_1(g) < \infty \quad \text{and} \quad \Delta_\infty(\hat{g}) < \infty.$$

Then $G(g, 1, 1)$ is not an orthonormal basis for $L^2(\mathbb{R})$.

2. Background

A collection $\{e_n\}_{n \in \mathbb{Z}} \subseteq L^2(\mathbb{R})$ is a frame for $L^2(\mathbb{R})$ if there exist constants $0 < A \leq B < \infty$ such that

$$\forall f \in L^2(\mathbb{R}), \quad A\|f\|_{L^2(\mathbb{R})}^2 \leq \sum_{n \in \mathbb{Z}} |\langle f, e_n \rangle|^2 \leq B\|f\|_{L^2(\mathbb{R})}^2.$$

A and B are the frame constants associated to the frame. If $\{e_n\}_{n \in \mathbb{Z}}$ is a frame for $L^2(\mathbb{R})$, but is no longer a frame if any element is removed, then we say that $\{e_n\}_{n \in \mathbb{Z}}$ is a Riesz basis for $L^2(\mathbb{R})$. Riesz bases are also known as exact frames or bounded
unconditional bases, e.g., see [3]. The Zak transform is an important tool for studying
Riesz bases given by Gabor systems.

Given \(g \in L^2(\mathbb{R}) \), the Zak transform is formally defined by
\[
\forall (t, \gamma) \in Q = \{0, 1\}^2, \quad Zg(t, \gamma) = \sum_{n \in \mathbb{Z}} g(t - n)e^{2\pi im\gamma}.
\]
This defines a unitary operator from \(L^2(\mathbb{R}) \) to \(L^2(Q) \). Further background on the Zak
transform, as well as the next theorem, can be found in [3], [16].

Theorem 2.1. Let \(g \in L^2(\mathbb{R}) \). \(G(g, 1, 1) \) is a Riesz basis for \(L^2(\mathbb{R}) \) with frame
constants \(0 < A \leq B < \infty \) if and only if \(A \leq |Zg(t, \gamma)|^2 \leq B \) for a.e. \((t, \gamma) \in Q\).

A function \(g \in L^2(\mathbb{R}) \) is said to be in the homogeneous Sobolev space of order \(s > 0 \),
denoted \(\dot{H}^s(\mathbb{R}) \), if \(||g||^2_{\dot{H}^s(\mathbb{R})} \equiv \int |\gamma|^s |\hat{g}(\gamma)|^2 d\gamma < \infty \). Since the condition \(\Delta_1(g) < \infty \)
in Theorem 1.5 is equivalent to \(\hat{g} \in \dot{H}^{1/2}(\mathbb{R}) \), we shall need some results on \(\dot{H}^{1/2}(\mathbb{R}) \).
The following alternate characterization of \(\dot{H}^{1/2}(\mathbb{R}) \) will be useful, e.g., [18].

Theorem 2.2. If \(f \in \dot{H}^{1/2}(\mathbb{R}) \) then
\[
||f||^2_{\dot{H}^{1/2}(\mathbb{R})} = \frac{1}{4\pi^2} \iint |f(x) - f(y)|^2 \frac{dxdy}{|x - y|^2}.
\]

We let \(1_S(t) \) denote the characteristic function of a set \(S \subseteq \mathbb{R} \), and let \(S^c \) denote
the complement of \(S \subseteq \mathbb{R} \). Given \(f \in L^2(\mathbb{R}) \), the symmetric-decreasing rearrangement
\(f^* \) of \(f \) is defined by
\[
f^*(t) = \int_0^\infty 1_{S_x}(t) dx,
\]
where \(S_x = (-s_x/2, s_x/2) \) and \(s_x = |\{t : |f(t)| > x\}|. An important property of a
symmetric-decreasing rearrangement is that it decreases the \(\dot{H}^{1/2}(\mathbb{R}) \) norm of functions, [18].

Theorem 2.3. If \(f \in \dot{H}^{1/2}(\mathbb{R}) \) then
\[
||f||_{\dot{H}^{1/2}(\mathbb{R})} \geq ||f^*||_{\dot{H}^{1/2}(\mathbb{R})}.
\]

This has the following useful corollary, [18].

Corollary 2.4. If \(S \subset \mathbb{R} \) is a measurable set of positive and finite measure then
\(||1_S||_{\dot{H}^{1/2}(\mathbb{R})} = \infty \).

3. Proof of the \((1, \infty)\) Balian-Low Theorem

The proof of Theorem 1.4 requires the following preliminary technical theorem.

Theorem 3.1. Let \(f \) be a non-negative measurable function supported in the interval
\([-1, 1]\) and suppose that there exist constants \(0 < A \leq B < \infty \) such that
\[
(3.1) \quad A \leq |f(x) \pm f(x - 1)| \leq B, \quad \text{a.e. } x \in [-1, 1].
\]

Then \(||f||_{\dot{H}^{1/2}(\mathbb{R})} = \infty \).
Proof. We begin by defining the measurable sets

\[S = \{ x \in [0, 1] : f(x - 1) \leq f(x) \}, \]

\[T = S^c \cap [0, 1] = \{ y \in [0, 1] : f(y) < f(y - 1) \}, \]

and note that (3.1) implies

\[A \leq f(x) - f(x - 1), \quad \text{a.e. } x \in S, \]

\[A \leq f(y) - f(y - 1), \quad \text{a.e. } y \in T. \]

We break up the proof into two cases depending on whether or not \(S \) is a proper non-trivial subset of \([0, 1]\).

Case I. We shall first consider the case where

\[0 < |S| < 1, \]

and hence that \(0 < |T| < 1. \)

Define the following capacity type integral over the product set \(S \times T. \)

\[I = \int_S \int_T \frac{1}{|x - y|^2} dy dx. \]

Conditions (3.2) and (3.3) allow one to bound \(I \) in terms of the \(\dot{H}^{1/2}(\mathbb{R}) \) norm of \(f \) as follows.

\[I \leq \frac{1}{4A^2} \int_S \int_T \frac{|f(x) - f(x - 1) + f(y - 1) - f(y)|^2}{|x - y|^2} dy dx \]
\[\leq \frac{1}{2A^2} \left(\int_S \int_T \frac{|f(x) - f(y)|^2}{|x - y|^2} dy dx + \int_S \int_T \frac{|f(y - 1) - f(x - 1)|^2}{|x - y|^2} dy dx \right) \]
\[\leq \frac{1}{A^2} \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{|f(x) - f(y)|^2}{|x - y|^2} dy dx \]
\[= \frac{4\pi^2}{A^2} \|f\|_{\dot{H}^{1/2}}^2. \]

It therefore suffices to show that \(I = \infty. \)

Since by the Lebesgue differentiation theorem almost every point of \(T \) is a point of density, it follows from (3.4) that we may chose \(a \in (0, 1) \) such that \(a \) is point of density of \(T \) which satisfies either

\[0 < |S \cap [0, a]| < a \]

or

\[0 < |S \cap [a, 1]| < 1 - a. \]

Without loss of generality, we assume (3.6). If (3.7) holds then our arguments proceed analogously; for example in the first subcase below we would symmetrize about \(x = 1 \) instead of \(x = 0. \)

To estimate \(I \), we shall proceed separately depending on whether \(\int_0^a \frac{1_{S(x)}}{|x-a|} dx \) is finite or infinite.
Subcase i. Suppose \(\int_0^a \frac{1_{S(x)}}{|x-a|} \, dx < \infty \). It will be convenient to work with the following set

\[\tilde{S} = (S \cup (-S)) \cap [-a, a]. \]

By (3.6) we have \(|\tilde{S}| = 2|S \cap [0, a]| \neq 0\). It follows from Corollary 2.4 and the definition of \(\tilde{S} \) that

\[
\tilde{I} \equiv \int_{-a}^{a} \int_{-\infty}^{\infty} \frac{1_{\tilde{S}(x)}1_{(\tilde{S})^{c}(y)}}{|x-y|^2} \, dy \, dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1_{\tilde{S}}(x)1_{(\tilde{S})^{c}}(y)}{|x-y|^2} \, dy \, dx
\]

\[
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{|1_{\tilde{S}}(x) - 1_{\tilde{S}}(y)|^2}{|x-y|^2} \, dx \, dy
\]

\[
= 4\pi^2 ||1_{\tilde{S}}||^2_{H^s(\mathbb{R})} = \infty.
\]

The symmetric definition of \(\tilde{S} \) implies that

\[
\tilde{I} = 2 \int_{0}^{a} \int_{-\infty}^{\infty} \frac{1_{\tilde{S}}(x)1_{(\tilde{S})^{c}}(y)}{|x-y|^2} \, dy \, dx = 2(I_1 + I_2 + I_3),
\]

where

\[
I_1 \equiv \int_{0}^{a} \int_{-\infty}^{0} \frac{1_{\tilde{S}}(x)1_{(\tilde{S})^{c}}(y)}{|x-y|^2} \, dy \, dx \leq \int_{0}^{a} \int_{-\infty}^{0} \frac{1}{|y|^2} \, dy \, dx < \infty,
\]

\[
I_2 \equiv \int_{0}^{a} \int_{a}^{\infty} \frac{1_{\tilde{S}}(x)1_{(\tilde{S})^{c}}(y)}{|x-y|^2} \, dy \, dx \leq \int_{0}^{a} \frac{1_{\tilde{S}}(x)}{|x-a|} \, dx < \infty,
\]

\[
I_3 \equiv \int_{0}^{a} \int_{-a}^{0} \frac{1_{\tilde{S}}(x)1_{(\tilde{S})^{c}}(y)}{|x-y|^2} \, dy \, dx.
\]

A simple calculation for \(I_3 \) shows that

\[
I_3 = \int_{0}^{a} \int_{-a}^{0} \frac{1_{\tilde{S}}(x)1_{(\tilde{S})^{c}}(y)}{|x-y|^2} \, dy \, dx + \int_{0}^{a} \int_{0}^{a} \frac{1_{\tilde{S}}(x)1_{(\tilde{S})^{c}}(y)}{|x+y|^2} \, dy \, dx \leq 2I,
\]

where the inequality for the second term in the middle of (3.9) follows from the fact that \(|x-y| \leq |x+y|\) in the square \([0, a] \times [0, a]\).

It follows from (3.8) and (3.9) that

\[\infty = \tilde{I} \leq 2I_1 + 2I_2 + 4I. \]

Since \(I_1 \) and \(I_2 \) are finite, we have \(I = \infty \), as desired.

Subcase ii. Suppose \(\int_{0}^{a} \frac{1_{S(x)}}{|x-a|} \, dx = \infty \). Define

\[
I_D = \int_{0}^{a} \int_{0}^{a} \frac{1_{S}(x)1_{T}(y)}{|x-y|^2} \, dy \, dx \leq I,
\]

where \(D = \{(x, y) \in \mathbb{R}^2 : x < y\} \). To compute a lower bound for \(I_D \) first note that since \(a \) is a point of density of \(T \), there exists a sufficiently large constant \(0 < C < \infty \) such that

\[|a-x| \leq C \, |T \cap [x, a]|, \quad a.e. \, x \in [0, 1]. \]
Therefore for $a.e. \ x \in [0, a)$
\[
\frac{1}{|a-x|} \leq \frac{C|T \cap [x,a]|}{|a-x|^2} = C \frac{T \cap [x,a]}{|a-x|^2} \cdot \min_{y \in [x,a]} \left\{ \frac{1}{|x-y|^2} \right\} \\
\leq C \int_x^a \frac{1}{|x-y|^2} dy.
\]
This implies that
\[
\infty = \int_0^a \frac{1}{|a-x|} dx \leq C \int_0^a \int_x^a \frac{1}{|x-y|^2} dy dx = C I_D,
\]
and it follows that $I_D = \infty$, and hence $I = \infty$, as desired.

Case II. We conclude by addressing the cases where $|S| = 0$ or $|S| = 1$. Without loss of generality we only consider $|S| = 1$, and hence assume that $S = [0,1]$ up to a set of measure zero. It follows from (3.2) and the positivity of f that
\[
A \leq f(x), \ a.e. \ x \in [0,1].
\]
This, together with the fact that f is supported in $[-1,1]$, implies that
\[
\infty = \int_1^{\infty} \int_0^1 \frac{1}{|x-y|^2} dxdy \\
\leq \frac{1}{A^2} \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{|f(x) - f(y)|^2}{|x-y|^2} dxdy \\
= \frac{4\pi^2}{A^2} \|f\|_{H^{1/2}(\mathbb{R})}^2,
\]
as desired. This completes the proof.

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. We proceed by contradiction. Assume that $g \in L^2(\mathbb{R})$, that $\mathcal{G}(g,1,1)$ is a Riesz basis for $L^2(\mathbb{R})$ with frame constants $0 < A \leq B < \infty$, and that $\Delta_1(g) < \infty$ and $\Delta_\infty(\mathcal{G}) < C < \infty$, for some constant C.

By Theorem 2.1,
\[
\sqrt{A} \leq |Z g(x,w)| \leq \sqrt{B} \ a.e. \text{ on } [0,1)^2.
\]
Since $Z \mathcal{G}(x,w) = e^{2\pi i x w} Z g(-w,x)$ we have
\[
\sqrt{A} \leq |Z \mathcal{G}(x,w)| \leq \sqrt{B} \ a.e. \text{ on } [0,1)^2.
\]
Next, the assumption $\int |\gamma|^N |\mathcal{G}(\gamma)|^2 d\gamma < C$ for all $N > 0$ implies that
\[
\text{supp} \ \hat{\mathcal{G}} \subseteq [-1,1].
\]
Thus, for $(x,w) \in [0,1)^2$, we have
\[
Z \mathcal{G}(x,w) = \sum_{n \in \mathbb{Z}} \hat{\mathcal{G}}(x-n)e^{2\pi i n w} = \hat{\mathcal{G}}(x) + \hat{\mathcal{G}}(x-1)e^{2\pi i w},
\]
so that we have
\[
(3.10) \quad \sqrt{A} \leq |\hat{\mathcal{G}}(x) + \hat{\mathcal{G}}(x-1)e^{2\pi i w}| \leq \sqrt{B} \ a.e. \ (x,w) \in [0,1)^2.
\]
In particular, it follows that
\[\sqrt{A} \leq ||\hat{g}(x)|| + ||\hat{g}(x-1)|| \leq \sqrt{B}, \quad \text{for a.e. } x \in [0,1]. \]
It now follows from Theorem 3.1 that \(|\hat{g}| \notin \dot{H}^{1/2}(\mathbb{R}) \), which implies that \(\hat{g} \notin \dot{H}^{1/2}(\mathbb{R}) \).
In other words, \(\Delta_1(g) = ||\hat{g}||^2_{\dot{H}^{1/2}(\mathbb{R})} = \infty \). This contradiction completes the proof.

Since orthonormal bases are Riesz bases with frame constants \(A = B = 1 \), Corollary 1.5 follows from Theorem 1.4.

4. Further Comments

1. Theorem 1.5 is sharp in the sense investigated in Theorem 1.2, see [5]. In fact, Theorem 1.5 no longer holds if one weakens the \(\Delta_1 \) decay hypotheses by a certain logarithmic amount. For example, if \(d>1 \) and \(\hat{g}(\gamma) = 1 \) then \(\mathcal{G}(g,1,1) \) is an orthonormal basis for \(L^2(\mathbb{R}) \), and
\[
\int \frac{|t|}{\log^2(|t|+2)}|g(t)|^2dt < \infty \quad \text{and} \quad \sup_{N>0} \int |\gamma|^N|\hat{g}(\gamma)|^2d\gamma < \infty.
\]

2. There are two noteworthy cases in which the proof of Theorem 1.4 can be significantly simplified. If one assumes that \(\mathcal{G}(g,1,1) \) is an orthonormal basis for \(L^2(\mathbb{R}) \) then the frame constants satisfy \(A = B = 1 \) and it follows from (3.10) that \(|\hat{g}(x)| = 1_R(x) \) for some set \(R \subset \mathbb{R} \) of positive and finite measure. Corollary 2.4 completes the proof in this case. Likewise, if \(\mathcal{G}(g,1,1) \) is a Riesz basis for \(L^2(\mathbb{R}) \) whose frame bounds \(A \) and \(B \) are sufficiently close to one another, e.g., \(\sqrt{B} < 3\sqrt{A} \), then a direct argument involving Theorem 2.2 and Theorem 2.3 completes the proof. The main difficulty in Theorem 1.4 and Theorem 3.1 arises when the frame constants \(A \) and \(B \) are far apart.

3. We conclude by noting that if one strengthens the hypotheses in Theorem 1.4 to \(\Delta_\infty(\hat{g}) < \infty \) and \(\Delta_{1+\epsilon}(g) < \infty \), for some \(\epsilon > 0 \), then the result is a simple consequence of the Amalgam Balian-Low Theorem. The Amalgam Balian-Low Theorem, e.g., [6], states that if \(\mathcal{G}(g,1,1) \) is a Riesz basis for \(L^2(\mathbb{R}) \) then
\[g \notin W(C_0, l^1) \quad \text{and} \quad \hat{g} \notin W(C_0, l^1), \]
where
\[W(C_0, l^1) = \{ f : f \text{ is continuous and } \sum_{k \in \mathbb{Z}} ||f1_{[k,k+1]}||_{L^\infty(\mathbb{R})} < \infty \}. \]
The assumptions \(\Delta_{1+\epsilon}(g) < \infty \) and \(\Delta_\infty(\hat{g}) < \infty \) imply that \(\hat{g} \) is continuous and supported in \([-1,1]\), which, in turn, implies that \(\hat{g} \in W(C_0, l^1) \).

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MARYLAND, COLLEGE PARK, MD 20742

E-mail address: jjb@math.umd.edu

INSTITUTE OF MATHEMATICS, UNIVERSITY OF WROCŁAW, PL. GRUNWALDZKI 2/4, 50-384 WROCŁAW, POLAND

Current address: Department of Mathematics, University of Vienna, Nordbergstrasse 15, 1090 Vienna, Austria

E-mail address: czaja@math.uni.wroc.pl

DEPARTMENT OF MATHEMATICS, VANDERBILT UNIVERSITY, NASHVILLE, TN 37240

E-mail address: apowell@math.vanderbilt.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SAN DIEGO, 9500 GILMAN DRIVE, LA JOLLA, CA 92039

E-mail address: jsterbenz@math.ucsd.edu