THE ALGEBRAIC FUNCTIONAL EQUATION OF AN ELLIPTIC CURVE AT SUPERSINGULAR PRIMES

Byoung Du (B.D.) Kim

ABSTRACT. Since the analytic functional equation holds for the \pm -p-adic L-functions constructed in [7], the algebraic functional equation for the \pm -Selmer groups is expected to hold as well. In this paper, we show it following the ideas of [1] and [4].

1. Introduction

We let E be an elliptic curve defined over \mathbb{Q} and let p > 3 be a prime at which E has good supersingular reduction. We let K be an abelian extension of \mathbb{Q} such that $[K : \mathbb{Q}]$ is prime to p and p is unramified over K/\mathbb{Q} .

Let K_{∞} be the cyclotomic \mathbb{Z}_p -extension of K. We define $Sel_p^-(E/K_{\infty})$ following [5], [2], and [4]. We will explain this construction in the following sections.

Throughout this paper we use the following notation: Let $g = [K:\mathbb{Q}], O = \mathbb{Z}_p[\mu_g]$, and $F = \mathbb{Q}_p(\mu_g)$. Let $\Gamma = \operatorname{Gal}(K_\infty/K), \Lambda = \mathbb{Z}_p[[\Gamma]]$, and $\Lambda_O = \Lambda \otimes O$ (the reason for tensoring with O will be explained later in this introduction). We identify Λ_O with the integral power series ring O[[X]] by identifying a topological generator γ of Γ with 1 + X. When M is a O-module, we let M^\vee denote the O-Pontryagin dual $\operatorname{Hom}_O(M, F/O)$ where Hom_O is the set of continuous O-homomorphisms.

Using Kato's and Rohrlich's work we will show $Sel_p^-(E/K_\infty)$ is Λ -cotorsion, and following Greenberg's idea we will show

(1)
$$\left(Sel_p^-(E/K_\infty) \otimes O \right)^{\vee} \sim \left(Sel_p^-(E/K_\infty)^{\iota} \otimes O \right)^{\vee}$$

where \sim is a $O[[\operatorname{Gal}(K_{\infty}/\mathbb{Q})]]$ -pseudo-isomorphism (a homomorphism with finite kernel and cokernel) and ι is the standard involution given by $g \to g^{-1}$ for any $g \in \operatorname{Gal}(K_{\infty}/\mathbb{Q})$.

This implies that the characteristic ideal $(a) \subset \Lambda$ of the Pontryagin dual of $Sel_p^-(E/K_\infty)$ is nonzero and satisfies the algebraic functional equation $(a) = (a^{\iota})$. Pollack showed the analytic counterpart of this result, the analytic functional equation of minus-p-adic L-functions. (See [7] Theorem 5.13. He also proved that of plus-p-adic L-functions.) The main conjecture of Iwasawa theory of \pm -Selmer groups (see [5]) implies the analytic functional equation is equivalent to the algebraic functional equation.

Furthermore it is possible to formulate and prove one divisibility of the main conjecture of Iwasawa theory for $Sel_p^-(E/K_\infty)$ similar to [5], in which one divisibility of that conjecture for $Sel_p^{\pm}(E/\mathbb{Q}(\mu_{p^\infty}))$ was proven. (The proof is very similar to [5], and we will omit it.)

Received by the editors September 28, 2006. Revision received March 27, 2007.

Applying our technique to the plus Selmer groups might be a little difficult. The construction of plus norm subgroups in [4] does not seem to always work unlike minus norm subgroups. However, when $K = \mathbb{Q}(\mu_p)$ or p splits completely over K/\mathbb{Q} , we have the plus norm subgroups as constructed in [5] and [2], and we can prove the algebraic functional equation for the plus Selmer groups without modifying our technique.

This paper uses the idea of [1] which we now recall.

We let $\Delta = \operatorname{Gal}(K/\mathbb{Q})$ and $\mathbb{Q}_{\infty} = K_{\infty}^{\Delta}$. We let \mathbb{Q}_n denote the subfield of \mathbb{Q}_{∞} with $\operatorname{Gal}(\mathbb{Q}_n/\mathbb{Q}) \cong \mathbb{Z}/p^n\mathbb{Z}$ (similarly K_n denotes the subfield of K_{∞} with $\operatorname{Gal}(K_n/K) \cong \mathbb{Z}/p^n\mathbb{Z}$), and Γ_n denote $\operatorname{Gal}(K_{\infty}/K_n)$.

We let A denote $E[p^{\infty}] \otimes O$. For a character η of Δ we let $\epsilon_{\eta} = \sum_{\sigma \in \Delta} \eta(\sigma^{-1})\sigma$ and A_{η} be A with action twisted by η . (As you might have noticed, to twist the action of Δ by η , we need to tensor $E[p^{\infty}]$ with O.)

The group Δ acts naturally on $Sel_p^-(E/K_\infty)$. Since $[K:\mathbb{Q}]$ is prime to p, we have the decomposition $Sel_p^-(E/K_\infty)\otimes O\cong \oplus_{\eta}\epsilon_{\eta}(Sel_p^-(E/K_\infty)\otimes O)$ where η runs over all characters of Δ . Thus to show

$$Sel_p^-(E/K_\infty) \otimes O \sim Sel_p^-(E/K_\infty)^{\iota} \otimes O$$

as $O[[\operatorname{Gal}(K_{\infty}/\mathbb{Q})]]$ -modules, it is enough to show

$$\epsilon_{\eta}(Sel_{n}^{-}(E/K_{\infty})\otimes O)\sim\epsilon_{\bar{\eta}}(Sel_{n}^{-}(E/K_{\infty})^{\iota}\otimes O)$$

as Λ_O -modules for each character η of Δ .

To do so, we will define a local condition $H^1_{\mathcal{F}}(\mathbb{Q}_{\infty,v},A_{\eta})$ for every place v of \mathbb{Q}_{∞} such that the group $S_{\eta}=H^1_{\mathcal{F}}(\mathbb{Q}_{\infty},A_{\eta})$ associated to this local condition is isomorphic to $(Sel^-_p(E/K_{\infty})\otimes O)^{\bar{\eta}}$. By Iwasawa theory (see proposition 3.6), to show $S_{\eta}\sim S^\iota_{\bar{\eta}}$, it is sufficient to show that $\operatorname{corank}_O(S_{\eta}\otimes\Lambda_O/(f))^{\Gamma}=\operatorname{corank}_O(S_{\bar{\eta}}\otimes\Lambda_O/(f^\iota))^{\Gamma}$ for every monic polynomial $f\in\Lambda_O$ and that $|S^{\Gamma_m}_{\eta}[p^n]|/|S^{\Gamma_m}_{\bar{\eta}}[p^n]|$ is bounded as m and n vary. The critical part in establishing this is to show the local conditions satisfy duality with respect to the local pairings (proposition 2.5).

Remark 1.1. For an O-module M with Δ -action and a character η of Δ , we let M^{η} denote the submodule of M where every $\sigma \in \Delta$ acts as multiplication by $\eta(\sigma)$. In fact, we can identify $M^{\eta} = \epsilon_{\eta} M$ and will use them interchangeably.

2. The minus decomposition of a formal group

As we mentioned earlier, let K_{∞} be the cyclotomic \mathbb{Z}_p -extension of K. In other words K_{∞} is $K(\mu_{p^{\infty}})^{\Delta'}$ where $\operatorname{Gal}(K(\mu_{p^{\infty}})/K) \cong \Gamma \times \Delta'$ with $\Gamma \cong \mathbb{Z}_p$ and a torsion subgroup Δ' . We let K_n denote the subfield of K_{∞} with $\operatorname{Gal}(K_n/K) \cong \mathbb{Z}/p^n\mathbb{Z}$.

Suppose P is a prime of K lying above p. Let k be K_P , k_n be $K_{n,q}$ where q denotes the unique prime of K_n lying above P, and k_{∞} be $\bigcup_{n=0}^{\infty} k_n$ (also let $k_{-1} = k$).

For an extension L of \mathbb{Q}_p we let O_L denote the ring of integers of L, and m_L denote the unique maximal ideal of O_L . Let \hat{E} be the formal group over \mathbb{Z}_p associated to E. We let $\hat{E}(L)$ denote $\hat{E}(m_L)$.

Definition 2.1. We define

$$\hat{E}^{-}(k_n) := \{ x \in \hat{E}(k_n) | Tr_{n/m+1} x \in \hat{E}(k_m) \text{ for all } -1 \leq m < n, m \text{ odd} \},$$

$$\mathbb{H} = \bigcup_{n=0}^{\infty} \hat{E}^{-}(k_n) \otimes \mathbb{Q}_p / \mathbb{Z}_p,$$

$$\mathbb{H}_n = \mathbb{H}^{\Gamma_n}.$$

From [4] we have the following.

Proposition 2.2. (1) Let Λ_P denote $\mathbb{Z}_p[[\operatorname{Gal}(k_\infty/k)]]$. We have $\operatorname{Hom}(\mathbb{H}, \mathbb{Q}_p/\mathbb{Z}_p) \cong \Lambda_P^{[K_P:\mathbb{Q}_p]}$.

(2) For any integer m, $\mathbb{H}_n[p^m]$ is the exact annihilator of itself with respect to the Tate local pairing

$$H^1(k_n, E[p^m]) \times H^1(k_n, E[p^m]) \to \mathbb{Z}/p^m\mathbb{Z}.$$

Proof. This is precisely [4] propositions 3.13 and 3.15 since k_{∞}/k is a totally ramified extension. You can also see [4] propositions 3.17 and 3.18.

Let f(X) be a monic distinguished polynomial of Λ_O (i.e. $f(X) = X^k + a_1 X^{k-1} + \cdots + a_k$ where $p|a_i$ for every i).

Let Y_f denote $\Lambda_O/(f(X))$ and Λ_O act on $\operatorname{Hom}_O(Y_f,O)$ as follows: for $\sigma \in \Gamma$ and $\phi \in \operatorname{Hom}_O(Y_f,O)$, $(\sigma \circ \phi)(x) = \phi(\sigma^{-1}x)$. Then $\operatorname{Hom}_O(Y_f,O)$ is isomorphic to $Y_{f^{\iota}} = \Lambda_O/f^{\iota}(X)$ as a Λ_O -module.

We recall $A = E[p^{\infty}] \otimes O$ and for a character η of Δ , A_{η} is A with action twisted by η . We let A_f denote $A \otimes_O Y_f$ and $A_{f,\eta}$ denote $A_{\eta} \otimes_O Y_f$. The following is essentially from [5] proposition 8.7.

Lemma 2.3. We have $A^{G_{k_{\infty}}} = 0$.

Proof. Let F be the unramified quadratic extension of \mathbb{Q}_p and x be any nontrivial p-torsion of \hat{E} . [5] proposition 8.6 shows \hat{E} is isomorphic over O_F to a Lubin-Tate group of height 2, thus F(x) is a totally ramified extension of F of degree $p^2 - 1$. Since we assume k is an unramified extension of \mathbb{Q}_p , kF is also unramified over \mathbb{Q}_p . Therefore $\hat{E}(kF)$ does not contain x. In other words, $\hat{E}(kF)[p] = 0$.

On the other hand, $\hat{E}(k_n)[p]$ can be written as a union of disjoint orbits $\cup_i[x_i]$ where $[x_i]$ denotes an orbit $\{x_i^{\sigma}|\sigma\in\operatorname{Gal}(k_n/k)\}$. If $\operatorname{Gal}(k_n/k)$ does not act trivially on x_i , the order of $[x_i]$ is divisible by p. Since $\hat{E}(k)[p] = 0$, the only point on which $\operatorname{Gal}(k_n/k)$ acts trivially is 0. Therefore the order of $\hat{E}(k_n)[p]$ is not divisible by p. Hence $\hat{E}(k_n)[p] = 0$.

Since E has good supersingular reduction at p, we have $E[p] = \hat{E}[p]$; therefore we have $E(k_n)[p] = 0$. Since G_{k_∞} acts trivially on O of $A = E[p^\infty] \otimes O$, we have $A^{G_{k_\infty}} = 0$.

Since $G_{k_{\infty}}$ acts trivially on Y_f , we have $A_f^{G_{k_{\infty}}} = 0$ and $A_{f,\eta}^{G_{k_{\infty}}} = 0$. Thus from the Serre-Hochschild spectral sequence we have

$$H^1(k_n, A_f) \xrightarrow{\sim} H^1(k_\infty, A_f)^{\Gamma_n}$$
.

For any integer m, we have a short exact sequence

$$0 \to A_f[p^m] \to A_f \stackrel{p^m}{\to} A_f \to 0.$$

This sequence induces a long exact sequence of cohomology groups. Combined with $A_f^{G_{k_n}}=0$, this long exact sequence induces

$$H^1(k_n, A_f[p^m]) \xrightarrow{\sim} H^1(k_n, A_f)[p^m].$$

We identify $H^1(k_n, A_f)$ with $H^1(k_\infty, A_f)^{\Gamma_n}$ and $H^1(k_n, A_f[p^m])$ with $H^1(k_n, A_f)[p^m]$. We define the following.

Definition 2.4. We define

$$\mathbb{H}_f := \mathbb{H} \otimes Y_f \subset H^1(k_\infty, E[p^\infty]) \otimes Y_f = H^1(k_\infty, A_f),$$
$$\mathbb{H}_f^n[p^m] := \mathbb{H}_f[p^m]^{\Gamma_n} \subset H^1(k_n, A_f[p^m]).$$

Since $Y_{f^{\iota}}$ is isomorphic to $\operatorname{Hom}_O(Y_f,O)$, there is a natural pairing $Y_f \times Y_{f^{\iota}} \to O$. When we let G_K act on Y_f through the canonical map $G_K \to \Gamma \to \Lambda$ and act on O trivially, we can check that this pairing is an O-linear G_K -equivariant perfect pairing. Combined with the Weil pairing $E[p^m] \times E[p^m] \to \mathbb{Z}/p^m\mathbb{Z}(1)$, we have an O-linear G_K -equivariant perfect pairing $A_f[p^m] \times A_{f^{\iota}}[p^m] \to O/p^mO(1)$. By the cup product this induces a local pairing

$$(,)_n: H^1(k_n, A_f[p^m]) \times H^1(k_n, A_{f^{\perp}}[p^m]) \to H^2(k_n, O/p^mO(1)) \stackrel{inv}{\to} O/p^mO.$$

We will prove the following proposition.

Proposition 2.5. For any integer $n \geq 0$, $\mathbb{H}_f^n[p^m]$ is the exact annihilator of $\mathbb{H}_{f^{\iota}}^n[p^m]$ with respect to the pairing above.

Proof. We let M_n be the exact annihilator of $\mathbb{H}^n_f[p^m]$ with respect to $(\ ,\)_n$ for every integer $n\geq 0$. We consider the maps $\mathrm{Res}_n^{n+1}: H^1(k_n,A_f[p^m])\to H^1(k_{n+1},A_f[p^m])$ and $\mathrm{Cor}_n^{n+1}: H^1(k_{n+1},A_f[p^m])\to H^1(k_n,A_f[p^m])$. Similar to the discussion before definition 2.4 we can identify $H^1(k_n,A_f[p^m])$ with its image under Res_n^{n+1} because Res_n^{n+1} is injective. From [4] proposition 2.1 we have $\mathrm{Res}_n^{n+1}\circ\mathrm{Cor}_n^{n+1}=N_{n+1/n}$. Thus we have

$$\operatorname{Res}_{n}^{n+1} \circ \operatorname{Cor}_{n}^{n+1}(\mathbb{H}_{f}^{n+1}[p^{m}]) \subset \mathbb{H}_{f}^{n+1}[p^{m}]^{\operatorname{Gal}(k_{n+1}/k_{n})} = \mathbb{H}_{f}^{n}[p^{m}].$$

Inductively we have $\operatorname{Cor}_n^{n'} \mathbb{H}_f^{n'}[p^m] \subset \mathbb{H}_f^n[p^m]$ for any integer n' > n.

Let j > n be an integer large enough so that G_{k_j} acts trivially on Y_f/p^mY_f . Combined with proposition 2.2.(2), it implies $M_j = \mathbb{H}^j_{f^{\perp}}[p^m]$. For $i \leq j$, by the

property of cup product we have $(\operatorname{Cor}_i^j x, y)_i = (x, \operatorname{Res}_i^j y)_j$ for any $x \in H^1(k_j, A_f[p^m])$ and $y \in H^1(k_i, A_{f^\iota}[p^m])$. Assume $(\mathbb{H}_f^n[p^m], y)_n = 0$ (equivalently $y \in M_n$). Then we have $(\mathbb{H}_f^j[p^m], \operatorname{Res}_n^j y)_j = 0$ because $\operatorname{Cor}_n^j \mathbb{H}_f^j[p^m] \subset \mathbb{H}_f^n[p^m]$. Thus $\operatorname{Res}_n^j y \in M_j$, i.e., $M_n \subset M_j$ when we consider $H^1(k_n, A_{f^\iota}[p^m])$ as a subgroup of $H^1(k_j, A_{f^\iota}[p^m])$. More precisely we have $M_n \subset M_j^{\operatorname{Gal}(k_j/k_n)}$. Since we have $M_j = \mathbb{H}_{f^\iota}^j[p^m]$, we have $M_n \subset \mathbb{H}_{f^\iota}^n[p^m]$.

We can check

$$|M_n| = |H^1(k_n, A_f[p^m])| / |\mathbb{H}_f^n[p^m]|$$

= $|\mathbb{H}_{f_L}^n[p^m]|$.

Thus we have $M_n = \mathbb{H}^n_{f^i}[p^m]$.

3. The algebraic functional equation

We fix a finite set Σ of places of $\mathbb Q$ which includes p, all primes of bad reduction of E, all primes ramified over $K/\mathbb Q$, and infinite places. For a number field L and a set Ω of places of $\mathbb Q$ we let L_{Ω} denote the maximal extension of L unramified outside the primes lying above Ω . For any prime P of K_n $(n \leq \infty)$ lying above p, by the Serre-Hochschild sequence we have

$$\begin{split} H^{1}(K_{n,P}/\mathbb{Q}_{n,p},A_{f,\eta}^{G_{K_{n,P}}}) &\to H^{1}(\mathbb{Q}_{n,p},A_{f,\eta}) \\ &\to H^{1}(K_{n,P},A_{f,\eta})^{\mathrm{Gal}(K_{n,P}/\mathbb{Q}_{n,p})} &\to H^{2}(K_{n,P}/\mathbb{Q}_{n,p},A_{f,\eta}^{G_{K_{n,P}}}). \end{split}$$

In the previous section we saw $A_f^{G_{K_{\infty,P}}} = 0$, thus the first and last groups are trivial. Thus we can deduce

$$H^1(\mathbb{Q}_{n,p}, A_{f,\eta}) \xrightarrow{\sim} \left(\prod_{P|p} H^1(K_{n,P}, A_{f,\eta}) \right)^{\Delta} = \epsilon_{\bar{\eta}} \prod_{P|p} H^1(K_{n,P}, A_f).$$

Proposition 3.1. Let \mathbb{H}_P denote the group \mathbb{H} in definition 2.1 for each P|p. We have an isomorphism of Λ_O -modules

$$(\epsilon_{\eta} \cdot \prod_{P|p} \mathbb{H}_P \otimes O)^{\vee} \cong \Lambda_O.$$

Proof. Since $\mathbb{H}_P^{\Gamma} \cong \hat{E}(K_P) \otimes \mathbb{Q}_p/\mathbb{Z}_p \cong K_P/O_{K_P}$, we have $\epsilon_{\eta} \prod_{P|p} (\mathbb{H}_P \otimes O)^{\Gamma} \cong \epsilon_{\eta} \prod_{P|p} K_P/O_{K_P} \otimes O \cong F/O$. Therefore by Nakayama's lemma the *O*-Pontryagin dual of $\epsilon_{\eta} \cdot \prod_{P|p} \mathbb{H}_P \otimes O$ is a Λ_O -module generated by one element, and our claim follows.

Definition 3.2. We let $\mathbb{H}_{P,f}$ denote $\mathbb{H}_P \otimes Y_f$. For every $m, n \leq \infty$ we let $H^1_{\mathcal{F}}(\mathbb{Q}_{n,p}, A_{f,\eta}[p^m])$ be the inverse image of $\epsilon_{\bar{\eta}} \prod_{P|p} \mathbb{H}_{P,f}[p^m]^{\Gamma_n}$ under the isomorphism

$$H^1(\mathbb{Q}_{n,p}, A_{f,\eta}[p^m]) \to \epsilon_{\bar{\eta}} \prod_{P|p} H^1(K_{n,P}, A_f[p^m]).$$

For a local field L and a G_L -module B, we let $H^1_{ur}(L,B)$ denote $H^1(L^{ur}/L,B^{L^{ur}})$ where L^{ur} is the maximal unramified extension of L. For a prime w not lying above p we let $H^1_{\mathcal{F}}(\mathbb{Q}_{n,w},A_{f,\eta}[p^m])=H^1_{ur}(\mathbb{Q}_{n,w},A_{f,\eta}[p^m])$. We define

$$H^1_{\mathcal{F}}(\mathbb{Q}_n, A_{f,\eta}[p^m]) = \ker\left(H^1(\mathbb{Q}_{\Sigma}/\mathbb{Q}_n, A_{f,\eta}[p^m]) \to \prod \frac{H^1(\mathbb{Q}_{n,v}, A_{f,\eta}[p^m])}{H^1_{\mathcal{F}}(\mathbb{Q}_{n,v}, A_{f,\eta}[p^m])}\right)$$

where v runs over all the primes of \mathbb{Q}_n lying above Σ .

When f = (X), we let $H^1_{\mathcal{F}}(\mathbb{Q}_n, A_{\eta}[p^m])$ denote $H^1_{\mathcal{F}}(\mathbb{Q}_n, A_{f,\eta}[p^m])$. We note that when w is not lying above p, we have $H^1_{ur}(\mathbb{Q}_{\infty,w}, A_{\eta}) = 0$ because $\mathbb{Q}_{\infty,w}/\mathbb{Q}_v$ is a \mathbb{Z}_p -extension.

Since $A_{f,\eta}^{G_{K_{\infty,P}}} = 0$ for any prime P of K with P|p, we have $H^1(\mathbb{Q}_{n,p}, A_{f,\eta}[p^m]) = H^1(\mathbb{Q}_{n,p}, A_{f,\eta})[p^m]$, and we can check that under this identification we have

$$H^1_{\mathcal{F}}(\mathbb{Q}_{n,p}, A_{f,n}[p^m]) = H^1_{\mathcal{F}}(\mathbb{Q}_{n,p}, A_{f,n})[p^m].$$

The following commutative diagram is given by the property of cup product.

$$\begin{array}{cccc} H^1(\mathbb{Q}_{n,p},A_{f,\eta}[p^m]) & \times & H^1(\mathbb{Q}_{n,p},A_{f^\iota,\bar{\eta}}[p^m]) & \to & O/p^mO \\ \downarrow \operatorname{Res} & \uparrow \operatorname{Cor} & \downarrow \\ \epsilon_{\bar{\eta}} \prod_{P|p} H^1(K_{n,P},A_f[p^m]) & \times & \epsilon_{\eta} \prod_{P|p} H^1(K_{n,P},A_{f^\iota}[p^m]) & \to & O/p^mO. \end{array}$$

(Commutativity means we have $(\operatorname{Res} x, y) = (x, \operatorname{Cor} y)$.) Here Res is an isomorphism as discussed before proposition 3.1. Since $\operatorname{Cor} \circ \operatorname{Res}$ is multiplication by $[K : \mathbb{Q}]$ and $[K : \mathbb{Q}]$ is prime to p, we have

$$\operatorname{Cor}(\epsilon_{\eta}\prod_{P|p}\mathbb{H}_{P,f^{\iota}}[p^{m}]^{\Gamma_{n}})=\operatorname{Cor}\circ\operatorname{Res}\left(H^{1}_{\mathcal{F}}(\mathbb{Q}_{n,p},A_{f^{\iota},\bar{\eta}}[p^{m}])\right)=H^{1}_{\mathcal{F}}(\mathbb{Q}_{n,p},A_{f^{\iota},\bar{\eta}}[p^{m}]).$$

Thus $H^1_{\mathcal{F}}(\mathbb{Q}_{n,p}, A_{f,\eta}[p^m])$ is the exact annihilator of $H^1_{\mathcal{F}}(\mathbb{Q}_{n,p}, A_{f^{\iota},\bar{\eta}}[p^m])$. From [1] chapter 8 we have the following.

Lemma 3.3. For
$$m, n < \infty$$
 we have $\left| H^1_{\mathcal{F}}(\mathbb{Q}_n, A_{f,\eta}[p^m]) \right| = \left| H^1_{\mathcal{F}}(\mathbb{Q}_n, A_{f^i,\bar{\eta}}[p^m]) \right|$.

Proof. For a totally real field F and a finite G_F -module M let $\chi_F(M)$ denote the Euler characteristic $|H^0(F,M)| \cdot |H^2(F,M)|/|H^1(F,M)|$. Assume that the order of M is prime to 2. Then it is known that $\chi_F(M) = 1/|M^-|^{[F:\mathbb{Q}]}$ where M^- is the maximal subgroup of M where the complex conjugation acts by multiplication by -1.

Let $F = \mathbb{Q}_n$, $M = A_{f,\eta}[p^m]$, and $M^* = A_{f^{\iota},\bar{\eta}}[p^m]$. We can easily check $M^* = \operatorname{Hom}_O(M,O/p^mO(1))$.

Following Greenberg ([1]) we use the following notation: we let

$$S := H^{1}_{\mathcal{F}}(F, M), \qquad S^{*} := H^{1}_{\mathcal{F}}(F, M^{*}),$$

$$P^{i}_{\Sigma} := \prod_{i} H^{i}(F_{v}, M), \qquad P^{i,*}_{\Sigma} := \prod_{i} H^{i}(F_{v}, M^{*}),$$

(every product in this proof runs over all places v of F lying above Σ unless mentioned otherwise),

$$L_v := H^1_{\mathcal{F}}(F_v, M), \qquad L_v^* := H^1_{\mathcal{F}}(F_v, M^*),$$

$$L := \prod_i L_v, \qquad L^* := \prod_i L_v^*,$$

$$\lambda^i : H^i(F_{\Sigma}/F, M) \to P_{\Sigma}^i,$$

$$G^i := \operatorname{im} \lambda^i, \qquad K^i = \ker \lambda^i,$$

(and define $\lambda^{i,*}$, $G^{i,*}$, and $K^{i,*}$ similarly).

Then we have

$$|S| = |K^1| \cdot |G^1 \cap L| = |K^1| \cdot |G^1| \cdot |L| \cdot |G^1 \cdot L|^{-1}.$$

We have $|K^1| \cdot |G^1| = |H^1(F_{\Sigma}/F, M)|$. By global duality G^1 is the exact annihilator of $G^{1,*}$ with respect to the local pairing between P^1_{Σ} and $P^{1,*}_{\Sigma}$ (for a statement of global duality or Poitou-Tate duality see [6] Theorem I.4.10 or [10] Theorem 3.1).

If v|p, L_v is the exact annihilator of L_v^* by our previous discussion. If $v \nmid p$, it follows from the definition that L_v is the exact annihilator of L_v^* . Hence we have $|G^1 \cdot L| = |P_{\Sigma}^1|/|G^{1,*} \cap L^*|$. Therefore we have

$$|S| = |H^1(F_{\Sigma}/F, M)| \cdot |L| \cdot \frac{|G^{1,*} \cap L^*|}{|P_{\Sigma}^1|}.$$

From the definition of the global Euler characteristic we have

$$|H^{1}(F_{\Sigma}/F, M)| = \chi_{F}(M)^{-1}|H^{0}(F_{\Sigma}/F, M)| \cdot |H^{2}(F_{\Sigma}/F, M)|$$

= $\chi_{F}(M)^{-1}|H^{2}(F_{\Sigma}/F, M)|.$

By global duality we have $|K^{1,*}| = |K^2|$, and thus we have

$$|G^{1,*} \cap L^*| = |S^*|/|K^{1,*}| = |S^*|/|K^2|.$$

On the other hand, by global duality we have $|\operatorname{coker} \lambda^2| = |H^0(F_{\Sigma}/F, M^*)|$; thus we have

$$\frac{|H^2(F_{\Sigma}/F,M)|}{|K^2|} = |G^2| = \frac{|P_{\Sigma}^2|}{|\operatorname{coker} \lambda^2|} = \frac{|P_{\Sigma}^2|}{|H^0(F_{\Sigma}/F,M^*)|} = |P_{\Sigma}^2|.$$

Then we check

$$\begin{array}{lcl} \frac{|L|}{|P^1_{\Sigma}|} & = & \frac{\prod_{v\nmid p} |H^1(F^{ur}_v/F_v,M^{I_v})|}{\prod_{v\nmid p} |H^1(F_v,M)|} \prod_{P\mid p} \frac{|L_P|}{|H^1(F_P,M)|} \\ & = & \prod_{v\nmid p} \frac{|H^0(F_v,M)|}{|H^1(F_v,M)|} \cdot \frac{1}{|M|^{p^n[K:\mathbb{Q}]}}. \end{array}$$

Since we have $\chi_F(M)^{-1} = |M|^{p^n[K:\mathbb{Q}]}$ and $|H^1(F_v, M)| = |H^0(F_v, M)| \cdot |H^2(F_v, M)|$ when $v \nmid p$, we obtain $|S| = |S^*|$.

Lemma 3.4. The kernel and cokernel of

$$H^1_{\mathcal{F}}(\mathbb{Q}_n, A_{f,\eta}[p^m]) \to H^1_{\mathcal{F}}(\mathbb{Q}_n, A_{f,\eta})[p^m]$$

are finite and bounded as m, n vary.

Proof. We consider the following diagram.

$$\begin{array}{cccc} 0 \to & H^1_{\mathcal{F}}(\mathbb{Q}_n,A_{f,\eta}[p^m]) & \to H^1(\mathbb{Q}_{\Sigma}/\mathbb{Q}_n,A_{f,\eta}[p^m]) \to & \prod_v \frac{H^1(\mathbb{Q}_{n,v},A_{f,\eta}[p^m])}{H^1_{\mathcal{F}}(\mathbb{Q}_{n,v},A_{f,\eta}[p^m])} \\ & \downarrow & & \downarrow & & \downarrow \\ 0 \to & H^1_{\mathcal{F}}(\mathbb{Q}_n,A_{f,\eta})[p^m] & \to H^1(\mathbb{Q}_{\Sigma}/\mathbb{Q}_n,A_{f,\eta})[p^m] \to & \prod_v \frac{H^1(\mathbb{Q}_{n,v},A_{f,\eta})}{H^1_{\mathcal{F}}(\mathbb{Q}_{n,v},A_{f,\eta})}. \end{array}$$

(every product in this proof runs over all primes lying above Σ unless mentioned otherwise). The center vertical map is naturally surjective, and its kernel is $A_{f,\eta}^{G_{\mathbb{Q}_n}}/p^m A_{f,\eta}^{G_{\mathbb{Q}_n}}=0$.

We let $f_{v,m}$ denote the map $\frac{H^1(\mathbb{Q}_{n,v},A_{f,\eta}[p^m])}{H^1_{\mathcal{F}}(\mathbb{Q}_{n,v},A_{f,\eta}[p^m])} \to \frac{H^1(\mathbb{Q}_{n,v},A_{f,\eta})}{H^1_{\mathcal{F}}(\mathbb{Q}_{n,v},A_{f,\eta})}$ for each v. As mentioned after definition 3.2 we have $H^1_{\mathcal{F}}(\mathbb{Q}_{n,p},A_{f,\eta}[p^m]) = H^1_{\mathcal{F}}(\mathbb{Q}_{n,p},A_{f,\eta})[p^m]$, thus $f_{p,m}$ is injective. Let v be a prime not lying above p. From the Serre-Hochschild spectral sequence we can see that $\frac{H^1(\mathbb{Q}_{n,v},A_{f,\eta}[p^m])}{H^1_{\mathcal{F}}(\mathbb{Q}_{n,v},A_{f,\eta}[p^m])}$ and $\frac{H^1(\mathbb{Q}_{n,v},A_{f,\eta})}{H^1_{\mathcal{F}}(\mathbb{Q}_{n,v},A_{f,\eta})}$ are subgroups of $H^1(\mathbb{Q}^{ur}_{n,v},A_{f,\eta}[p^m])$ and $H^1(\mathbb{Q}^{ur}_{n,v},A_{f,\eta})$ respectively. From the long exact sequence induced from $A_{f,\eta}[p^m] \to A_{f,\eta} \stackrel{p^m}{\to} A_{f,\eta}$ we have

$$A_{f,\eta}^{I_v}/p^mA_{f,\eta}^{I_v}=\ker\left(H^1(\mathbb{Q}_{n,v}^{ur},A_{f,\eta}[p^m])\to H^1(\mathbb{Q}_{n,v}^{ur},A_{f,\eta})\right).$$

Let l be the residue characteristic of v and fix an embedding $\overline{\mathbb{Q}} \to \mathbb{C}_l$ such that v is the prime of \mathbb{Q}_n corresponding to this embedding. Let n' be any integer bigger than n and w be the prime of $\mathbb{Q}_{n'}$ corresponding to the embedding. Since $I_v = I_w$, we have $A_{f,\eta}^{I_v}/p^m A_{f,\eta}^{I_v} = A_{f,\eta}^{I_w}/p^m A_{f,\eta}^{I_w}$. In other words, $A_{f,\eta}^{I_v}/p^m A_{f,\eta}^{I_v}$ does not depend on n.

Furthermore, the size of $A_{f,\eta}^{I_v}/p^m A_{f,\eta}^{I_v}$ is bounded by the size of $A_{f,\eta}^{I_v}/(A_{f,\eta}^{I_v})_{div}$. Since no prime splits completely over $\mathbb{Q}_{\infty}/\mathbb{Q}$, the kernel of $\prod_v f_{v,m}$ is bounded as m, n vary. By the Snake Lemma our claim follows.

From lemmas 3.3 and 3.4 we have the following corollary.

Corollary 3.5. We have corank_O $H^1_{\mathcal{F}}(\mathbb{Q}_n, A_{f,\eta}) = \operatorname{corank}_O H^1_{\mathcal{F}}(\mathbb{Q}_n, A_{f^{\iota},\bar{\eta}})$ for every n. Also $|H^1_{\mathcal{F}}(\mathbb{Q}_n, A_{\eta})[p^m]| / |H^1_{\mathcal{F}}(\mathbb{Q}_n, A_{\bar{\eta}})[p^m]|$ is bounded as m, n vary.

We note the following proposition.

Proposition 3.6 ([1] chapter 3). Let X and Y be co-finitely generated Λ_O -modules. Assume that X, Y satisfy

1. $\operatorname{corank}_O(X \otimes_O \Lambda_O/(f^e))^{\Gamma} = \operatorname{corank}_O(Y \otimes_O \Lambda_O/(f^e))^{\Gamma}$ for every monic irreducible distinguished polynomial $f(X) \in \Lambda_O$ and every $e < \infty$,

2. for every $e < \infty$, $|X^{\Gamma_n}[p^e]|/|Y^{\Gamma_n}[p^e]|$ is bounded as n varies.

Then X^{\vee} is pseudo-isomorphic to Y^{\vee} .

Using proposition 3.6 we prove the following.

Proposition 3.7. Let X_{η} be $H^1_{\mathcal{F}}(\mathbb{Q}_{\infty}, A_{\eta})^{\vee}$. Then we have $X_{\eta} \sim X_{\bar{\eta}}^{\iota}$ as Λ_O -modules. Proof. Since $G_{\mathbb{Q}_{\infty}}$ acts trivially on Y_f and Y_f is a free O-module, we have

$$H^{1}_{\mathcal{F}}(\mathbb{Q}_{\infty}, A_{\eta}) \otimes Y_{f} = \ker \left(H^{1}(\mathbb{Q}_{\Sigma}/\mathbb{Q}_{\infty}, A_{\eta}) \otimes Y_{f} \to \prod_{w} \frac{H^{1}(\mathbb{Q}_{\infty, w}, A_{\eta}) \otimes Y_{f}}{H^{1}_{\mathcal{F}}(\mathbb{Q}_{\infty, w}, A_{\eta}) \otimes Y_{f}} \right)$$

$$= \ker \left(H^{1}(\mathbb{Q}_{\Sigma}/\mathbb{Q}_{\infty}, A_{f, \eta}) \to \prod_{w} \frac{H^{1}(\mathbb{Q}_{\infty, w}, A_{f, \eta})}{H^{1}_{\mathcal{F}}(\mathbb{Q}_{\infty, w}, A_{\eta}) \otimes Y_{f}} \right)$$

where w runs over all the primes lying above Σ .

Using the Serre-Hochschild spectral sequence one can easily check

(2)
$$H^{1}(\mathbb{Q}, A_{f,n}) \xrightarrow{\sim} H^{1}(\mathbb{Q}_{\infty}, A_{f,n})^{\Gamma}.$$

From the definition we have

$$(H^1_{\mathcal{F}}(\mathbb{Q}_{\infty,p},A_{\eta})\otimes Y_f)^{\Gamma}=(\epsilon_{\bar{\eta}}\cdot\prod_{P\mid p}\mathbb{H}_P\otimes Y_f)^{\Gamma}=H^1_{\mathcal{F}}(\mathbb{Q}_p,A_{f,\eta}),$$

thus we have an injection

(3)
$$0 \to \frac{H^1(\mathbb{Q}_p, A_{f,\eta})}{H^1_{\mathcal{T}}(\mathbb{Q}_p, A_{f,\eta})} \to \frac{H^1(\mathbb{Q}_{\infty,p}, A_{f,\eta})}{H^1_{\mathcal{T}}(\mathbb{Q}_{\infty,p}, A_{\eta}) \otimes Y_f}.$$

For any prime w of \mathbb{Q}_{∞} lying above a prime $v \neq p$ of \mathbb{Q} , we have $H^1(\mathbb{Q}_v^{ur}, A_{f,\eta}) = H^1(\mathbb{Q}_{\infty,w}, A_{f,\eta})$ because $\mathbb{Q}_{\infty,w}/\mathbb{Q}_v$ is a \mathbb{Z}_p -extension (in fact, the only \mathbb{Z}_p -extension and the only unramified \mathbb{Z}_p -extension). For the same reason we have

$$H^1(\mathbb{Q}^{ur}_{\infty,w}/\mathbb{Q}_{\infty,w},A_{\eta}^{G_{\mathbb{Q}^{ur}_{\infty,w}}})=H^1_{\mathcal{F}}(\mathbb{Q}_{\infty,w},A_{\eta})=0.$$

Thus we have

$$\frac{H^1(\mathbb{Q}_{\infty,w},A_{\eta})\otimes Y_f}{H^1_{\mathcal{T}}(\mathbb{Q}_{\infty,w},A_{\eta})\otimes Y_f} = \frac{H^1(\mathbb{Q}_{\infty,w},A_{\eta})\otimes Y_f}{H^1_{ur}(\mathbb{Q}_{\infty,w},A_{\eta})\otimes Y_f} = H^1(\mathbb{Q}_{\infty,w},A_{f,\eta}) = H^1(\mathbb{Q}_v^{ur},A_{f,\eta}).$$

Since $\frac{H^1(\mathbb{Q}_v,A_{f,\eta})}{H^1_{\mathcal{F}}(\mathbb{Q}_v,A_{f,\eta})} \to H^1(\mathbb{Q}_v^{ur},A_{f,\eta})$ is an injection by the definition of $H^1_{\mathcal{F}}$, we have an injection

$$(4) 0 \to \frac{H^1(\mathbb{Q}_v, A_{f,\eta})}{H^1_{\mathcal{F}}(\mathbb{Q}_v, A_{f,\eta})} \to \frac{H^1(\mathbb{Q}_{\infty,w}, A_{\eta}) \otimes Y_f}{H^1_{\mathcal{F}}(\mathbb{Q}_{\infty,w}, A_{\eta}) \otimes Y_f}.$$

From (2), (3), (4), and the snake lemma we can see $H^1_{\mathcal{F}}(\mathbb{Q}, A_{f,\eta}) = (H^1_{\mathcal{F}}(\mathbb{Q}_{\infty}, A_{\eta}) \otimes Y_f)^{\Gamma}$.

Combined with corollary 3.5 we have

$$\operatorname{corank}_O(H^1_{\mathcal{F}}(\mathbb{Q}_{\infty}, A_{\eta}) \otimes Y_f)^{\Gamma} = \operatorname{corank}_O(H^1_{\mathcal{F}}(\mathbb{Q}_{\infty}, A_{\bar{\eta}}) \otimes Y_{f^{\iota}})^{\Gamma}.$$

Similarly we can check $H^1_{\mathcal{F}}(\mathbb{Q}_n, A_{\eta}) = H^1_{\mathcal{F}}(\mathbb{Q}_{\infty}, A_{\eta})^{\Gamma_n}$. By corollary 3.5 we can see $|H^1_{\mathcal{F}}(\mathbb{Q}_{\infty}, A_{\eta})^{\Gamma_n}[p^m]|/|H^1_{\mathcal{F}}(\mathbb{Q}_{\infty}, A_{\bar{\eta}})^{\Gamma_n}[p^m]|$ is bounded as m and n vary.

We let $H^1_{\mathcal{F}}(K_{\infty,P},A) := \mathbb{H}_P \otimes O$ and $H^1_{\mathcal{F}}(K_{\infty,P},E[p^{\infty}]) := \mathbb{H}_P$ for P|p, and let $H^1_{\mathcal{F}}(K_{\infty,w},A) := H^1_{ur}(K_{\infty,w},A)$ and $H^1_{\mathcal{F}}(K_{\infty,w},E[p^{\infty}]) := H^1_{ur}(K_{\infty,w},E[p^{\infty}])$ for primes w not lying above p. We define a group

$$S_p^-(A/K_\infty) := \ker \left(H^1(K_\Sigma/K_\infty, A) \to \prod_w \frac{H^1(K_{\infty,w}, A)}{H^1_{\mathcal{F}}(K_{\infty,w}, A)} \right),$$

and the minus Selmer group

$$Sel_p^-(E/K_\infty) := \ker \left(H^1(K_\Sigma/K_\infty, E[p^\infty]) \to \prod_w \frac{H^1(K_{\infty,w}, E[p^\infty])}{H^1_{\mathcal{F}}(K_{\infty,w}, E[p^\infty])} \right)$$

where w runs over all the places lying above Σ . We can easily check $S_p^-(A/K_\infty) = Sel_p^-(E/K_\infty) \otimes O$ (compare this definition with that of [5], [2], and [4]).

We note that the definitions of $H^1_{\mathcal{F}}(\mathbb{Q}_{\infty}, A_{\eta})$ and $S^-_p(A/K_{\infty})$ do not depend on the choice of Σ . Indeed when we take all places of \mathbb{Q} for Σ , we still have the same $H^1_{\mathcal{F}}(\mathbb{Q}_{\infty}, A_{\eta})$ and $S^-_p(A/K_{\infty})$. We consider the following diagram:

$$0 \to H^1_{\mathcal{F}}(\mathbb{Q}_{\infty}, A_{\eta}) \to H^1(\mathbb{Q}_{\infty}, A_{\eta}) \to \prod_{v} \frac{H^1(\mathbb{Q}_{\infty, v}, A_{\eta})}{H^1_{\mathcal{F}}(\mathbb{Q}_{\infty, v}, A_{\eta})}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \prod_{v} f_v$$

$$0 \to S_p^-(A/K_{\infty})^{\bar{\eta}} \to H^1(K_{\infty}, A)^{\bar{\eta}} \to \prod_{w} \frac{H^1(K_{\infty, w}, A)}{H^1_{\mathcal{F}}(K_{\infty, w}, A)}$$

where v and w run over all places of \mathbb{Q}_{∞} and K_{∞} respectively.

Since $A^{G_{K_{\infty,P}}}=0$ for any prime P lying above p, we have $A^{G_{K_{\infty}}}=0$. Using that, we have $H^1(K_{\infty},A)^{\bar{\eta}}=H^1(K_{\infty},A_{\eta})^{\mathrm{Gal}(K/\mathbb{Q})}=H^1(\mathbb{Q}_{\infty},A_{\eta})$ by the Serre-Hochschild spectral sequence. From the definition of $H^1_{\mathcal{F}}(\mathbb{Q}_{\infty,p},A_{\eta})$ we can see f_p is an injection. Recall that when v and w are not lying above p, we have $H^1_{\mathcal{F}}(\mathbb{Q}_{\infty,v},A_{\eta})=H^1_{\mathcal{F}}(K_{\infty,w},A)=0$. Since the order of $\mathrm{Gal}(K_{\infty,w}/\mathbb{Q}_{\infty,v})$ is prime to p, we have

$$\ker \left(H^1(\mathbb{Q}_{\infty,v},A_\eta) \to H^1(K_{\infty,w},A_\eta)\right) = H^1(K_{\infty,w}/\mathbb{Q}_{\infty,v},A_\eta^{G_{K_{\infty,w}}}) = 0.$$

Thus we have the following.

Proposition 3.8. We have $H^1_{\mathcal{F}}(\mathbb{Q}_{\infty}, A_{\eta}) \cong S^-_p(A/K_{\infty})^{\bar{\eta}}$.

The next proposition is a simple consequence of Rohrlich and Kato's work.

Proposition 3.9. $Sel_p^-(E/K_\infty)$ is Λ -cotorsion.

Proof. For a finite group G, a character χ of G, and a $\mathbb{Z}_p[G]$ -module M we let M^{χ} be the χ -part of $M \otimes \mathbb{Z}_p[\chi]$. By [4] lemma 4.20 there is an integer N such that for any n > N with odd n - N and a primitive character χ of $Gal(K_n/K_N)$ we have

$$\operatorname{corank}_{\mathbb{Z}_p[\chi]} \operatorname{Sel}_p(E/K_n)^{\chi} = \operatorname{rank}_{\mathbb{Z}_p[\chi]} \left(\operatorname{Sel}_p^-(E/K_\infty)^{\Gamma_n} \right)^{\chi}.$$

By Rohrlich ([8], [9]) $L(E/\mathbb{Q}, \chi, 1) \neq 0$ for all but finitely many Dirichlet characters χ of $Gal(K_n/\mathbb{Q})$ as n varies. By Kato ([3]), if $L(E/\mathbb{Q}, \chi, 1) \neq 0$, we have $\operatorname{corank}_{\mathbb{Z}_p[\chi]} Sel_p(E/K_n)^{\chi} = 0$. Therefore there are infinitely many integers n such that $\operatorname{corank}_{\mathbb{Z}_p[\chi]} \left(Sel_p^-(E/K_\infty)^{\Gamma_n} \right)^{\chi} = 0$ for any primitive character χ of $Gal(K_n/K_N)$. Thus $Sel_p^-(E/K_\infty)$ is Λ -cotorsion.

Combined with propositions 3.7 and 3.8 we have the following.

Theorem 3.10. Let $X = (Sel_p^-(E/K_\infty) \otimes O)^\vee$. For each character η of Δ we have $X^\eta \sim X^{\iota,\bar{\eta}}$ as Λ_O -modules, or equivalently $X \sim X^\iota$ as $O[[Gal(K_\infty/\mathbb{Q})]]$ -modules. Consequently we have the following: let $(a) \subset \Lambda$ be the characteristic ideal of $Sel_p^-(E/K_\infty)^\vee$. We have $(a) = (a^\iota)$.

It is more tricky to deal with $Sel_p^+(E/K_\infty)$. Although it is not explained in [4], it is not clear that the plus norm subgroup in [4] always has the property the minus norm subgroup has. More specifically (using the notation of [4] propositions 3.12 and 3.13) it is not clear that the set $\{c_{0,i}\}_{0,1,\cdots,d-1}$ linearly generates $\hat{E}(m)$. Consequently it is not clear that we have $(\bigcup_{n=1}^{\infty} \hat{E}^+(m_{k_n}) \otimes \mathbb{Q}_p/\mathbb{Z}_p)^{\vee} \cong \Lambda^d$. However, Kobayashi's plus/minus norm subgroups for $\mathbb{Q}(\mu_{p^\infty})$ have this property. We can apply our technique to both \pm -Selmer groups with little difficulty to obtain the following.

Theorem 3.11. We have

$$Sel_p^{\pm}(E/\mathbb{Q}(\mu_{p^{\infty}}))^{\vee} \sim Sel_p^{\pm}(E/\mathbb{Q}(\mu_{p^{\infty}}))^{\vee,\iota}$$

where \sim is a pseudoisomorphism for $\mathbb{Z}_p[[\operatorname{Gal}(\mathbb{Q}(\mu_{p^{\infty}})/\mathbb{Q})]]$ -modules.

Iovita and Pollack's plus/minus norm subgroups also work well under the following condition: The prime p splits completely over K/\mathbb{Q} . Note that any prime of K lying above p is totally ramified in the cyclotomic \mathbb{Z}_p -extension K_{∞} . Assuming this condition we can prove a similar result.

Theorem 3.12. We have

$$\left(Sel_p^{\pm}(E/K_{\infty})\otimes O\right)^{\vee}\sim \left(Sel_p^{\pm}(E/K_{\infty})^{\iota}\otimes O\right)^{\vee}.$$

Acknowledgements

The author is grateful to Karl Rubin, Ralph Greenberg, and Robert Pollack for many insightful conversations. He is also grateful to the anonymous referee for many good suggestions.

References

- R. Greenberg, Iwasawa theory for p-adic representations, Adv. Stud. Pure Math. (1989), no. 17, 97–137.
- [2] A. Iovita and R. Pollack, Iwasawa theory of elliptic curves at supersingular primes over Z_p-extensions of number fields, to appear in Crelle.
- [3] K. Kato, p-adic Hodge theory and values of zeta functions of modular forms (2004), no. 295, 117-290.
- [4] B. Kim, The parity conjecture for elliptic curves at supersingular reduction primes, Compositio Math. (2007), no. 143, 47–72.
- [5] S. Kobayashi, Iwasawa theory for elliptic curves at supersingular primes, Invent. Math. (2003, no. 1), no. 152, 1–36.
- [6] J. Milne, Arithmetic duality theorems, Perspectives in Math, 1 (1986)
- [7] R. Pollack, On the p-adic L-function of a modular form at a supersingular prime, Duke Math. Journal (2003 no. 3), no. 118, 523–558.
- [8] D. Rohrlich, On L-functions of elliptic curves and cyclotomic towers, Invent. Math. (1984), no. 75, 404–423.
- [9] ———, L-functions and division towers, Math. Ann. (1988), no. 281, 611–632.
- [10] J. Tate, Duality theorems in Galois cohomology over number fields, Proc. Intern. Cong. Math. (1962)

Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL, 60208 U.S.A.

 $E ext{-}mail\ address: bdkim@math.northwestern.edu}$