POSITIVE QUATERNIONIC KÄHLER MANIFOLDS AND
SYMMETRY RANK: II

FUQUAN FANG

Abstract. Let M be a positive quaternionic Kähler manifold of dimension $4m$. If the isometry group $\text{Isom}(M)$ has rank at least $\frac{m}{2} + 3$, then M is isometric to $\mathbb{H}P^m$ or $\text{Gr}_2(\mathbb{C}^{m+2})$. The lower bound for the rank is optimal if m is even.

1. Introduction

A quaternionic Kähler manifold M is an oriented Riemannian $4n$-manifold, $n \geq 2$, whose holonomy group is contained in $Sp(n)Sp(1) \subset SO(4n)$. If $n = 1$ we add the condition that M is Einstein and self-dual. Equivalently, there exists a 3-dimensional subbundle S of the endmorphism bundle, $\text{End}(TM, TM)$, locally generated by three anti-commuting almost complex structures $I, J, K = IJ$ so that the Levi-Civita connection preserves S. It is well-known [3] that a quaternionic Kähler manifold M is always Einstein, and is necessarily locally hyperkähler if its Ricci tensor vanishes. A quaternionic Kähler manifold M is called positive if it has positive scalar curvature. By [13] (for $n = 1$) and [20] (for $n \geq 2$, compare [16] [17]) a positive quaternionic Kähler manifold M has a twistor space a complex Fano manifold. Hitchin [13] proved a positive quaternionic Kähler 4-manifold M must be isometric to $\mathbb{C}P^2$ or S^4. Hitchin’s work was extended by Poon-Salamon [19] to dimension 8, which proves that a positive quaternionic Kähler 8-manifold M must be isometric to $\mathbb{H}P^2$, $\text{Gr}_2(\mathbb{C}^4)$ or $G_2/\text{SO}(4)$.

This leads to the Salamon-Lebrun conjecture:

Every positive quaternionic Kähler manifold is a quaternionic symmetric space.

Very recently, the conjecture was further verified for $n = 3$ in [12], using the approach initiated in [20] [19] (compare [17]). For a positive quaternionic Kähler manifold M, Salamon [20] proved that the dimension of its isometry group is equal to the index of certain twisted Dirac operator, by the Atiyah-Singer index theorem, which is a characteristic number of M coupled with the Kraines 4-form Ω (in analog with the Kähler form), and it was applied to prove that the isometry group of M is large in lower dimensions (up to dimension 16).

By [17] a positive quaternionic Kähler 4n-manifold M is simply connected and the second homotopy group $\pi_2(M)$ is a finite group or \mathbb{Z}, and M is isometric to $\mathbb{H}P^n$ or $\text{Gr}_2(\mathbb{C}^{n+2})$ according to $\pi_3(M) = 0$ or \mathbb{Z}.

An interesting question is to study positive quaternionic Kähler manifold in terms of its isometry group. This approach dates back to the work [19] for $n = 2$ [12] for
$n = 3$ to proving the action is transitive, and [5] [18] for cohomogeneity one actions (and hence the isometry group must be very large). [4] classified positive quaternionic Kähler $4n$-manifolds with isometry rank $n + 1$, using an approach on hyper-Kähler quantizations. [6] establishes a connectedness theorem and using this tool the author proved that, a positive quaternionic Kähler $4n$-manifolds of symmetry rank $\geq n - 2$ must be either isometric to $\mathbb{H}P^m$ or $Gr_2(\mathbb{C}^{m+2})$, if $n \geq 10$.

In this paper we will combine Morse theory of the momentum map on quaternionic Kähler manifold [2] and the connectedness theorem in [6] to prove the following

Theorem 1.1. Let M be a positive quaternionic Kähler manifold of dimension $4m$. Then the isometry group $\text{Isom}(M)$ has rank (denoted by $\text{rank}(M)$) at most $(m + 1)$, and M is isometric to $\mathbb{H}P^m$ or $Gr_2(\mathbb{C}^{m+2})$ if $\text{rank}(M) \geq \frac{m}{2} + 3$.

Notice that the fixed point set of an isometric circle action on a quaternionic Kähler manifold of dimension $4m$ is either a quaternionic Kähler submanifold or a Kähler manifold. In the latter case the fixed point set has dimension at most $2m$ (the middle dimension of the manifold). Moreover, if a fixed point component is contained in $\mu^{-1}(0)$ then it must be a quaternionic Kähler submanifold, and if it is in the complement $M - \mu^{-1}(0)$ then it is Kähler (see [2]).

Theorem 1.2. Let M be a positive quaternionic Kähler manifold of dimension $4m$ with an isometric S^1-action. Assume $m \geq 3$. If N is a fixed point component of codimension 4, then M is isometric to $\mathbb{H}P^m$ or $Gr_2(\mathbb{C}^{m+2})$.

The idea of proving Theorem 1.2 is as follows: by the assumption we know that the fixed point component $N \subset \mu^{-1}(0)$ since $4m - 4 \geq 2m + 1$ (cf. [2] Remark 3.2). Furthermore, by [8] the reduction $\mu^{-1}(0)/S^1$ has dimension at most $4m - 4$ (cf. [5]). We will prove in section 3 that $N = \mu^{-1}(0)$. This together with the equivariant Morse equality implies that $M = \mathbb{H}P^m$ if $b_2(M) = 0$ (cf. Lemma 4.1) and so Theorem 1.2 follows by [17].

With Theorem 1.2 in hand, the proof of Theorem 1.1 follows by induction on m and Theorems 2.1 and 2.4.

Theorem 1.1 is optimal if m is even since the rank of $\widetilde{Gr}_4(\mathbb{R}^{m+4})$ is $\frac{m}{2} + 2$. We conjecture that when m is odd, the lower bound for the rank in Theorem 1.1 may be improved by 1, that is

Conjecture 1.3. Let M be a positive quaternionic Kähler manifold of dimension $8m + 4$. Then M is isometric to $\mathbb{H}P^{2m+1}$ or $Gr_2(\mathbb{C}^{2m+3})$ if $\text{rank}(M) \geq m + 3$.

Acknowledgements

The author is very grateful to F. Battagalia for many invaluable discussions through emails, who pointed out a gap in a previous version. Thanks should also go to the referee for correcting a number of typesetting errors.
2. Preliminaries

In this section we recall some results on quaternionic Kähler manifolds needed in later sections.

Let \((M, g)\) be a quaternionic Kähler manifold of dimension \(4m\). Let \(F \to M\) be the principal \(Sp(m)\times Sp(1)\)-bundle over \(M\). Locally, \(F \to M\) can be lifted to a principal \(Sp(m)\times Sp(1)\)-bundle, i.e., the fiberwise double cover of \(F\). Let \(E, H\) be the locally defined bundles associated to the standard complex representation of \(Sp(m)\) and \(Sp(1)\) respectively. The complexified cotangent bundle \(T^*M_C\) is isomorphic to \(E \otimes C H\). The adjoint representations of \(Sp(m)\) and \(Sp(1)\) give two bundles \(S^2E\) and \(S^2H\) over \(M\), respectively. Given the inclusion of the holonomy algebra \(sp(m)\oplus sp(1)\) into \(so(4m)\), the bundle \(S^2E \oplus S^2H\) can be regarded as a subbundle of the bundle of 2-forms \(\Lambda^2T^*M_C\). The bundle \(S^2H\) has fiber the Lie algebra \(sp(1)\) and the local basis \(\{I, J, K\}\) corresponding to \(i, j, k \in sp(1)\) which are almost complex structures satisfying that \(IJ = -JI = K\).

The Kraines 4-form, \(\Omega\), associated to a quaternionic Kähler manifold \(M\), is a non-degenerate closed form which is defined by

\[
\Omega = \omega_1 \wedge \omega_1 + \omega_2 \wedge \omega_2 + \omega_3 \wedge \omega_3
\]

where \(\omega_1, \omega_2\) and \(\omega_3\) are the locally defined 2-forms associated to the almost complex structures \(I, J\) and \(K\). The form \(\Omega\) is globally defined and non-degenerate, namely \(\Omega^m\) is a constant non-zero multiple of the volume form. It is well-known that \(\Omega\) is parallel if and only if \(M\) has holonomy in \(Sp(m)Sp(1)\), if \(m \geq 2\). Moreover, by \([22]\), \(M\) has holonomy in \(Sp(m)Sp(1)\) if and only if \(\Omega\) is closed, provided \(m \geq 3\).

A quaternionic Kähler manifold may not have a global almost complex structure, e.g., the quaternionic projective space \(\mathbb{H}P^m\). If \(I, J, K\) are integrable and covariantly constant with respect to the metric, the holonomy group reduces to \(Sp(m)\), quaternionic Kähler manifold is hyperkähler. Wolf \([23]\) classified quaternionic symmetric spaces of compact type, they are \(\mathbb{H}P^m\), the complex Grassmannian \(Gr_2(\mathbb{C}^{m+2})\), and the oriented real Grassmannian \(Gr_4(\mathbb{R}^{m+4})\), and exactly one quaternionic symmetric space for each compact simple Lie algebra, \(G_2/\text{SO}(4), \ F_4/\text{Sp}(3)\text{Sp}(1), \ E_6/\text{SU}(6)\text{Sp}(1), \ E_7/\text{Spin}(12)\text{Sp}(1), \ E_8/E_7\text{Sp}(1)\).

Theorem 2.1 ([17]). (i) (Finiteness) For any \(m \in \mathbb{Z}_+\), there are, modulo isometries and rescalings, only finitely many positive quaternionic Kähler manifolds of dimension \(4m\).

(ii) (Strong rigidity) Let \((M, g)\) be a positive quaternionic Kähler manifold of dimension \(4m\). Then \(M\) is simply connected and

\[
\pi_2(M) = \begin{cases}
0, & (M, g) = \mathbb{H}P^m \\
\mathbb{Z}, & (M, g) = Gr_2(\mathbb{C}^{m+2}) \\
\text{finite with 2-torsion}, & \text{otherwise}
\end{cases}
\]

A submanifold \(N\) in a quaternionic Kähler manifold is called a quaternionic submanifold if the locally defined almost complex structures \(I, J, K\) preserve the tangent bundle of \(N\).
Proposition 2.2 (9). Any quaternionic submanifold in a quaternionic Kähler manifold is totally geodesic and quaternionic Kählerian.

Theorem 2.3 (6). Let M be a positive quaternionic Kähler manifold of dimension $4m$. Assume $f = (f_1, f_2) : N \to M \times M$, where $N = N_1 \times N_2$ and $f_i : N_i \to M$ are quaternionic immersions of compact quaternionic Kähler manifolds of dimensions $4n_i$, $i = 1, 2$. Let Δ be the diagonal of $M \times M$. Set $n = n_1 + n_2$. Then:

(2.3.1) If $n \geq m$, then $f^{-1}(\Delta)$ is nonempty.
(2.3.2) If $n \geq m + 1$, then $f^{-1}(\Delta)$ is connected.
(2.3.3) If f is an embedding, then for $i \leq n - m$ there is a natural isomorphism, $\pi_i(N_1, N_1 \cap N_2) \to \pi_i(M, N_2)$ and a surjection for $i = n - m + 1$.

As a direct corollary of (2.3.3) we have

Theorem 2.4 (6). Let M be a positive quaternionic Kähler manifold of dimension $4m$. If $N \subset M$ is a quaternionic Kähler submanifold of dimension $4n$, then the inclusion $N \to M$ is $(2n - m + 1)$-connected.

3. Hyperkähler quotient and Quaternionic Kähler quotient

a. Hyperkähler quotient

Let M be a hyperkähler manifold having a metric g and covariantly constant complex structures I, J, K which behave algebraically like quaternions:

$I^2 = J^2 = K^2 = -1; IJ = -JI = K$

Let G be a compact Lie group acting on M by isometries preserving the structures I, J, K. The group G preserves the three Kähler forms $\omega_1, \omega_2, \omega_3$ corresponding to the complex structures I, J, K, so we may define moment maps μ_1, μ_2, μ_3, respectively. These may be written as a single map

$\mu : M \to g^* \otimes \mathbb{R}^3$

Let

$\mu_+ = \mu_2 + i\mu_3 : M \to g^* \otimes \mathbb{C}$

where g^* is the dual space of the Lie algebra of G.

By [14] μ_+ is holomorphic, and so $N = \mu_+^{-1}(0)$ is a complex subvariety of M, with respect to the complex structure I. By definition, $\mu^{-1}(0) = N \cap \mu_1^{-1}(0)$. The hyperkähler quotient is the quotient space $\mu^{-1}(0)/G$, denoted by $M//G$. In particular, if $\mu_+^{-1}(0)$ is a manifold and the induced G-action is free, then the hyperkähler quotient $M//G$ is also a hyperKähler manifold. More generally, Dancer-Swann [5] proved that the hyperkähler quotient $M//G$ may be decomposed into the union of hyperkähler manifolds, according to the isotropy decomposition of the G-action on M. However, it is wide open if the decomposition of $M//G$ is a stratified topological space, as in the sympletic quotient case [21].
In this section we will consider the structure of this decomposition in the special case that $G = S^1$ and the action is semi-free, i.e., free outside the fixed point set.

Let us start with the standard example of isometric S^1-action on quaternionic linear space \mathbb{H}^n defined by

$$\varphi_t(u) = e^{2\pi it}u; \quad t \in [0, 1)$$

where i is one of the quaternionic units. With global quaternionic coordinates $\{u^\alpha\}$, $\alpha = 1, \ldots, n$, the standard flat metric on \mathbb{H}^n may be written as:

$$ds^2 = \sum_\alpha d\bar{u}^\alpha \otimes du^\alpha$$

where \bar{u}^α is the quaternionic conjugate of u^α.

The Killing vector field X of the above action is \mathbb{H}-valued:

$$X^\alpha(u) = iu^\alpha$$

which is triholomorphic.

Consider the \mathbb{H}-valued 2-form

$$\omega = \sum_\alpha d\bar{u}^\alpha \wedge du^\alpha$$

Observe that ω is purely imaginary since $\omega + \bar{\omega} = 0$. Note that $\omega = \omega_1i + \omega_2j + \omega_3k$, where ω_1 is as above.

It is easy to see that the moment map (cf. [7])

$$\mu^X = \sum_\alpha \bar{u}^\alpha iu^\alpha : \mathbb{H}^n \to i\mathbb{R}^3$$

Write $\mathbb{H}^n = \mathbb{C}^n \oplus j\mathbb{C}^n$. The zero set of the holomorphic moment map $\mu^{-1}_+(0)$ is the complex algebraic variety of complex dimension $(2n - 1)$:

$$\{(a, b) \in \mathbb{C}^n \oplus j\mathbb{C}^n : \langle a, \bar{b} \rangle = \sum_\alpha a^\alpha \bar{b}^\alpha = 0\}$$

In particular, if $n = 1$, then $\mu^{-1}_+(0)$ is a reducible algebraic curve with two irreducible components the standard complex lines.

The hyperkähler quotient $\mathbb{H}^n//S^1$ is an open cone over a $(4n - 5)$-dimensional manifold W:

$$W = \{(a, b) \in \mathbb{C}^n \oplus \mathbb{C}^n : |a|^2 = |b|^2 = 1, \langle a, \bar{b} \rangle = \sum_\alpha a^\alpha \bar{b}^\alpha = 0\}/S^1$$

In particular, $\mathbb{H}^n//S^1 = \{0\}$, a single point.

Theorem 3.1. Let M^{4n} be a hyperkähler manifold with an isometric effective S^1-action preserving the hyperkähler structure. Let μ be the hyperkähler moment map. If $Y \subset M^{S^1} \cap \mu^{-1}(0)$ is a connected fixed point component of dimension $4m - 4$, then $Y \subset M//S^1$ is a connected component.

Before we start the proof, let us give the analog of the classical Darboux-Weinstein theorem for complex symplectic manifolds. Recall that a complex symplectic manifold W is a complex manifold with a complex value symplectic form $\omega^c = \omega_2 + i\omega_3$, where ω_2, ω_3 are two real value symplectic forms.
Lemma 3.2 (Relative equivariant Darboux theorem). Let G be a compact Lie group acting on a complex symplectic manifold W. Let ω_0^c and ω_1^c be two G-equivariant complex symplectic forms on W. Assume they coincide on a closed G-invariant complex symplectic submanifold V. Then there exists a G-invariant neighborhood U_0 of V in W and a G-equivariant map

$$\psi : U_0 \to W$$

such that

$$\psi|_V = \text{Id}_V \text{ and } \psi^* \omega_1 = \omega_0$$

Proof. We apply the path method due to Moser. Consider the form $\omega_t^c = \omega_0^c + t(\omega_1^c - \omega_0^c)$. This is a closed complex value 2-form which is non-degenerate on V and thus on a small G-invariant tubular neighborhood U of V.

Since ω_0^c and ω_1^c are closed, and so is $\omega_0^c - \omega_1^c$, and thus we may find a complex value 1-form β on a neighborhood of V such that $d\beta = \omega_0^c - \omega_1^c$. Indeed, U is G-equivariant diffeomorphic to an open neighborhood of the zero section of a G-equivariant vector bundle on V, hence retracts on V. By applying the Poincaré lemma to $\omega_0^c - \omega_1^c$ we get the G-invariant 1-form β, that can be chosen so that $\beta_x = 0$ for all $x \in V$.

The complex value closed 2-form ω_t^c being non-degenerate, it defines a time dependent G-invariant vector field X_t such that the contraction $i_{X_t}\omega_t^c = \beta$. Note that $X_t = 0$ on V. Its flow φ_t keeps V fixed, and thus one can find a G-invariant neighborhood U_0 of V where φ_t is defined and such that $\varphi_1(U_0) \subset U$.

Therefore,

$$\frac{d}{dt}[\varphi_t^*\omega_t^c] = \varphi_t^*[d\omega_t^c + \mathfrak{L}_{X_t}\omega_t^c] = \varphi_t^*[\omega_1^c - \omega_0^c + \omega_0^c - \omega_1^c] = 0$$

because $\mathfrak{L}_{X_t}\omega_t^c = di_{X_t}\omega_t^c + i_{X_t}d\omega_t^c = d\beta$ using the Cartan formula and the definition of φ_t. The form $\varphi_t^*\omega_t^c$ does not depend on t, and it equals ω_0^c for $t = 0$. Put $\psi = \varphi_1$ the desired result follows.

Now we are ready to prove

Proof of Theorem 3.1. Recall that $\omega^c = \omega_2 + i\omega_3$ defines a complex symplectic structure on M. Choose an open ball V in Y with restricted complex symplectic structure. The complex normal bundle of V in M is a trivial complex vector bundle $V \times \mathbb{C}^2$. The S^1-action on the bundle is the product action of a trivial action on V and an effective complex linear action on \mathbb{C}^2, saying, $t \cdot (z_1, z_2) = (t^p z_1, t^q z_2)$ for some $p, q \in \mathbb{Z}$. Since the hyperkähler metric is S^1-invariant, the normal exponential map $\varphi = \exp_{\omega^c} : V \times \mathbb{C}^2 \to M$ defines an S^1-equivariant diffeomorphism from an S^1-invariant tubular neighborhood U_0 of $V \times \{0\}$ in $V \times \mathbb{C}^2$ to an S^1-invariant tubular neighborhood U_0 of V in M. Note that $pq = -1$ since the action is effective and preserves the hyperkähler structure.

Consider the S^1-invariant complex symplectic form $\omega_0^c = \omega^c|_V \times (dz_1 \wedge dz_2)$ on $V \times \mathbb{C}^2$. The pullback form $(\varphi^{-1})^*\omega_0^c$ and $\omega^c|_{U_0}$ are both S^1-invariant complex symplectic forms on U_0 which coincide on V. By Lemma 3.2 there exists an S^1-equivariant diffeomorphism ψ such that $\psi^*\omega^c|_{U_0} = (\varphi^{-1})^*\omega_0^c$. Therefore, $(\psi \circ \varphi)^*\omega^c|_{U_0} = \omega_0^c$.

The moment map $\mu^+|_{U_0}$ of (U_0, ω^c) with the restricted S^1-action may be identified with the moment map of (V_0, ω_0^c) with the product action. Thus,

$$\mu^+_V(0) \cap U_0 \cong (V \times \{0\}) \times L \cap V_0$$
where $L \subset \mathbb{C}^2$ is the zero locus of the moment map of $(\mathbb{C}^2, dz_1 \wedge dz_2)$ with the above mentioned S^1-action. By the paragraph before Theorem 3.1 we already knew that L is the reducible curve given by $z_1z_2 = 0$. Therefore, $\mu_+^{-1}(0) \cap U_0$ is the union of two S^1-invariant complex submanifolds, $N_1, N_2 \subset M$ (with respect to the complex structure I), and the S^1-action on N_1 (resp. N_2) has a real codimension 2 fixed point set (e.g., $N_1 \cong (V \times \{0\}) \times \{(z_1, 0) : z_1 \in \mathbb{C}\} \cap V_0$). Obviously, both N_1 and N_2 have induced Kähler structures (w.r.t. I), and the restriction of μ_1 on N_1 (resp. N_2) equals the moment map of the restricted S^1-action on N_1 (resp. N_2) with the induced Kähler structure.

By definition, $\mu_1^{-1}(0) \cap U_0 = \mu_2^{-1}(0) \cap U_0 \cap \mu_3^{-1}(0) = (\mu_1|_{N_1})^{-1}(0) \cup (\mu_1|_{N_2})^{-1}(0)$. Consider the moment map μ_1 of the Kähler manifold (N_1, ω_1) with the restricted S^1-action. In a small tubular neighborhood W_1 of the fixed point component $V \subset N_1$ of codimension 2, by $[10]$ $(\mu_1|_{N_1})^{-1}(0)$ is a conic bundle over the fixed point set V. Since $(\mu_1|_{N_1})^{-1}(0)$ has dimension $4m - 4$, where $\dim(N_1) = 4m - 2$, thus, $(\mu_1|_{N_1})^{-1}(0) \cap W_1 = V$. Similarly, $(\mu_1|_{N_2})^{-1}(0) \cap W_2 = V$, where W_2 is a small tubular neighborhood of V in N_2. Therefore, $\mu^{-1}(0) \cap U_0 \cap V$ for a possibly smaller tubular neighborhood U_0 of V in M. By definition of \mathcal{M} / S^1 we conclude the desired result.

b. Quaternionic Kähler quotient

Let M be a quaternionic Kähler manifold with non-zero scalar curvature. If G acts on M by isometries, there is a well-defined moment map, which is a section $\mu \in \Gamma(S^2H \otimes g^*)$ solving the equation

$$\langle \nabla \mu, X \rangle = \sum_{i=1}^{3} I_i \bar{X} \otimes I_i$$

for each $X \in g$; where $\bar{X} = g(X, \cdot)$ denote the 1-form dual to X with respect to the Riemannian metric. Equivalently, the above equation may be written in the following form similar to the symplectic case

$$d\mu(X) = i_X \Omega$$

A nontrivial feature for quaternionic quotient is, the section μ is uniquely determined if the scalar curvature is nonzero. Moreover, only the preimage of the zero section of the moment map, $\mu^{-1}(0)$, is well-defined.

Theorem 3.3 ([8]). Let M^{4n} be a quaternionic Kähler manifold with nonzero scalar curvature acted on isometrically by S^1. If S^1 acts freely on $\mu^{-1}(0)$ then $\mu^{-1}(0)/S^1$ is a quaternionic Kähler manifold of dimension $4(n - 1)$.

Since the proof of the Galicki-Lawson’s theorem is local, so if the circle action is free on a piece of the manifold, the same result applies to the moment map on this piece.

Let $f = ||\mu||^2$. By [2] the critical set of f is the union of the zero set $f^{-1}(0) = \mu^{-1}(0)$ and the fixed point set of the circle action. Moreover, the zero set $\mu^{-1}(0)$ is connected, and a fixed point component is either contained in $\mu^{-1}(0)$ or does not intersect with
\[\mu^{-1}(0). \] Following [2] the Morse function \(f \) is called equivariantly perfect over \(\mathbb{Q} \) if the equivariant Morse equalities hold, that is if
\[\hat{P}_t(M) = \hat{P}_t(\mu^{-1}(0)) + \sum t^{\lambda_F} \hat{P}_t(F) \]
where the sum ranges over the set of connected components outside \(\mu^{-1}(0) \) of the fixed point set, \(\lambda_F \) is the index of \(F \), and \(\hat{P}_t \) is the equivariant Poincaré polynomial for the equivariant cohomology with coefficients in \(\mathbb{Q} \).

Theorem 3.4 ([2]). Let \(M^{4n} \) be a quaternionic Kähler manifold acted on isometrically by \(S^1 \). Then the Morse function \(\|\mu\|^2 \) is equivariantly perfect over \(\mathbb{Q} \).

Proposition 3.5 ([2]). Let \(M^{4n} \) be a positive quaternionic Kähler manifold acted on isometrically by \(S^1 \). Then every connected component of the fixed point set, not contained in \(\mu^{-1}(0) \), is a Kähler submanifold of \(M - \mu^{-1}(0) \) of real dimension less than or equal to \(2n \) whose Morse index is at least \(2n \), with respect to the function \(f \).

For each quaternionic Kähler manifold \(M \) with non-zero scalar curvature, following [22], let \(u(M) \) denote the \(H^*/\{\pm 1\} \)-bundle over \(M \):
\[u(M) = F \times_{Sp(n)Sp(1)} (H^*/\{\pm 1\}) \]
where \(F \) is the principal \(Sp(n)Sp(1) \)-bundle over \(M \). Let \(\pi : u(M) \to M \) denote the bundle projection. Obviously, if \(G \) is acts on \(M \) by isometries, \(G \) can be lifted to a \(G \)-action on \(u(M) \). It is proved in [22] that, if the scalar curvature is positive, \(u(M) \) has a hyperkähler structure which is preserved by the lifted \(G \)-action. Let \(\hat{\mu} \) denote the moment map of the lifted \(G \)-action on \(u(M) \). By [22] Lemma 4.4 \(\hat{\mu} = \mu \circ \pi \).

Lemma 3.6. Let \(M \) be a positive quaternionic Kähler manifold of dimension \(4n \). Assume that \(S^1 \) acts on \(M \) effectively by isometries. Let \(\mu \in \Gamma(S^2H) \) be its moment map. If \(N \subset \mu^{-1}(0) \) is a fixed point component of codimension 4, then \(N = \mu^{-1}(0) \).

Proof. Let \(u(M) \) be as above. By Proposition 4.2 of [5], at the fixed point \(x \in N \), the isotropy representation of \(S^1 \) in \(SO(3) \cong \text{Aut}(u(M)_x) \) factors through a finite group and hence the representation is trivial, where \(\text{Aut}(u(M)_x) \) is the isomorphism group of the fiber at \(x \) preserving the quaternionic structure, and \(u(M)_x = \pi^{-1}(x) \) is the fiber of the bundle at \(x \). Therefore, \(\pi^{-1}(N) \) is also a fixed point component of the lifted \(S^1 \)-action on \(u(M) \) of codimension 4.

By [22] Lemma 4.4 we see that \(\pi^{-1}(N) \subset \hat{\mu}^{-1}(0) \), where \(\hat{\mu} \) is the moment map for the lifted \(S^1 \)-action on \(u(M) \). Now \(S^1 \) acts on the normal slice of \(\pi^{-1}(N) \) in \(u(M) \) through a representation in \(Sp(1) \). For dimension reasoning, this representation is faithful, otherwise, a finite order subgroup of \(S^1 \) acts trivially on the whole manifold \(u(M) \) and so on \(M \), a contradiction to the effectiveness of the action from our assumption. Therefore, \(S^1 \) acts semi-freely on a neighborhood of \(\pi^{-1}(N) \) in \(u(M) \). By now we may apply Theorem 3.1 to show that \(\pi^{-1}(N) \) is a connected component of \(\hat{\mu}^{-1}(0) \). Since the moment map \(\hat{\mu} \) projects to the moment map \(\mu \), we conclude \(N \) is also a connected component of \(\mu^{-1}(0) \). By [2] \(\mu^{-1}(0) \) is connected, thus \(N = \mu^{-1}(0) \), the desired result follows. \(\square \)
4. Proof of Theorem 1.2

Theorem 1.2 follows readily from the following Lemma and Theorem 2.1, where the dimension bound \(m \geq 3 \) implies that the fixed point component of codimension 4 has to be contained in \(\mu^{-1}(0) \), by Proposition 3.5.

Lemma 4.1. Let \(M \) be a positive quaternionic Kähler \(4n \)-manifold with an isometric \(S^1 \)-action where \(m \geq 3 \). Let \(\mu \) be the moment map. Assuming \(b_2(M) = 0 \). If \(N \subset \mu^{-1}(0) \) is a fixed point component of dimension \(4m - 4 \) of the circle action, then \(M \) is isometric to \(\mathbb{H}^{Pm} \).

Proof. By Lemma 3.5 \(\mu^{-1}(0) = N \), therefore \(S^1 \) acts trivially on \(\mu^{-1}(0) \).

By Theorem 3.4

\[
\hat{P}_t(M) = \hat{P}_t(N) + \sum_F t^{\lambda_F} \hat{P}_t(F)
\]

where \(F \) runs over fixed point components outside \(N \), and \(\lambda_F \) the Morse index of \(F \). By Proposition 3.5 the Morse index \(\lambda_F \geq 2n \) and are all even numbers. Thus the inclusion \(N \to M \) is a \((2n - 1)\)-equivalence.

By [2] Lemma 2.2 \(\hat{P}_t(M) = P_t(M)P_t(BS^1) \). Since \(S^1 \) acts trivially on \(F \) and \(N \), we get that \(\hat{P}_t(F) = P_t(F)P_t(BS^1) \) and \(\hat{P}_t(N) = P_t(N)P_t(BS^1) \). The above identity reduces to

\[
P_t(M) - P_t(N) = \sum_F t^{\lambda_F} P_t(F)
\]

Observe that the last two terms of the left hand side, according to increasing degree in \(t \), is \(b_2(M)t^{4m-2} + t^{4m} \) by Poincaré duality.

If \(F \) is a fixed point component outside \(\mu^{-1}(0) \) such that \(\dim R F > 0 \), we claim that \(\dim R F + \lambda_F \leq 4m - 4 \). Otherwise, by the above identity \(\dim R F + \lambda_F = 4m - 2 \) is impossible, and if the even integer \(\dim R F + \lambda_F = 4m \), we conclude that the coefficients of \(t^{4m-2} \) of the right hand side is also non-zero, since \(F \) must be a compact Kähler manifold (by Proposition 3.4) and so \(P_t(F) \) has nonzero coefficient at every even degree not larger than the dimension. A contradiction.

By the above, the identity also implies that there is no isolated fixed point outside \(\mu^{-1}(0) \) with Morse index \(4m - 2 \), and there is an isolated fixed point with Morse index \(4m \).

Put all together, by Morse theory, up to homotopy equivalence,

\[
M \simeq N \cup_i e^{\lambda_i} \cup e^{4m}
\]

where \(2m \leq \lambda_i \leq \dim R F + \lambda_F \leq 4m - 4 \), and \(e^i \) denotes cell of dimension \(i \). Therefore \(H^{4m-2}(M, N) = 0 \). By duality \(H_2(M - N) \cong H^{4m-2}(M, N) = 0 \). Since the codimension of \(N \) is 4, it follows that \(H_2(M) \cong H_2(M - N) = 0 \). Therefore by Theorem 2.1 \(M = \mathbb{H}^{Pm} \). The desired result follows. \(\square \)
5. Proof of Theorem 1.1

Let M be a positive quaternionic Kähler manifold of dimension $4m$. We call the rank of the isometry group $\text{Isom}(M)$ the symmetry rank of M, denoted by $\text{rank}(M)$. By [6] we know that $\text{rank}(M) \leq m + 1$.

Proof of Theorem 1.1. Let $r = \text{rank}(M)$. Consider the isometric T^r-action on M. Note that the T^r-action on M must have non-empty fixed point set since the Euler characteristic $\chi(M) > 0$ by [20]. Consider the isotropy representation of T^r at a fixed point $x \in M$, which must be a representation through the local linear holonomy $Sp(m)Sp(1)$ representation at $T_xM \cong \mathbb{H}^m$. If there is a stratum (a fixed point set of an isotropy group of rank ≥ 1) of codimension 4, then it must be contained in $\mu^{-1}(0)$ if $m \geq 3$ (by [2] or Proposition 3.6). By Theorem 2.1 and Lemma 4.1 the desired result follows. Thus we can assume that at x, the isotropy representation does not have any codimension 4 linear subspace fixed by some rank 1 subgroup of T^r. Let N be a maximal dimensional submanifold of M passing through x fixed by a circle subgroup of T^r.

Case (i): If $m \equiv 0 \pmod{2}$.

By the above assumption $4m - 8 \geq \dim N \geq 2m + 4$ since $\text{rank}(N) = r - 1 \geq \frac{m}{2} + 2$, by Lemma 2.1 of [6]. Note that N is a quaternionic Kähler manifold since $N \subset \mu^{-1}(0)$. By Theorem 2.4 we see that $\pi_2(N) \cong \pi_2(M)$. By Theorem 2.1 it suffices to prove $\pi_2(N) = 0$ or \mathbb{Z}. By induction we may consider T^r-action on N, and applying Lemma 4.1 once again. Finally it suffices to consider the case where a 16-dimensional quaternionic Kähler submanifold of M, M^{16}, with an effective isometric action by torus of rank ≥ 5. In this case there is a quaternionic Kähler submanifold $M^{12} \subset M^{16}$ and fixed by a circle group (cf. [6]). By Lemma 4.1, Theorem 2.1 and Theorem 2.4 $M^{16} = \mathbb{H}P^4$ or $\text{Gr}_2(\mathbb{C}^6)$, the desired result follows.

Case (ii): If $m \equiv 1 \pmod{2}$.

Similar to the above $\dim N \geq 2m + 6$ for the same reasoning. By Theorem 2.4 $\pi_2(N) \cong \pi_2(M)$. The same argument by induction reduces the problem to the case of a quaternionic Kähler submanifold of dimension 20, M^{20}, with an effective isometric torus action of rank ≥ 6. Once again the argument in [6] shows that M^{20} has a quaternionic submanifold M^{16} of rank ≥ 5. By (i) we see that $M^{16} = \mathbb{H}P^4$ or $\text{Gr}_2(\mathbb{C}^6)$. By Theorem 2.1 and Theorem 2.4 again we complete the proof. □

References

A. Gray, A note on manifolds whose holonomy is a subgroup of Sp(n)Sp(1) Mich. Math. J., 16 (1965), 125-128

V. Guillemin, Moment maps and combinatorial invariants of Hamiltonian T^n-spaces, Progress in Mathematics, 122, Birkhäuser, 1994

H. Herrera and R. Herrera, Ā-genus on non-spin manifolds with S^1 actions and the classification of positive quaternionic Kähler 12-manifolds, J. Diff. Geom., 61 (2002), 341-364

C. Lebrun, Fano manifolds, contact structures and quaternionic geometry, Inter. J. Math., 6 (1995), 419-437

S. Salamon, Quaternionic Kähler manifolds, Invent. Math., 67 (1982), 143-171

A. Swann, Singular moment maps and quaternionic geometry, Banach Center Publ. 39 (1997), 143-153

Department of Mathematics, Capital Normal University, Beijing, P.R.China
E-mail address: fuquan_fang@yahoo.com