ON THE BRAUER GROUP OF ENRIQUES SURFACES

Arnaud Beauville

Abstract. Let S be a complex Enriques surface (quotient of a K3 surface X by a fixed-point-free involution). The Brauer group $\text{Br}(S)$ has a unique nonzero element. We describe its pull-back in $\text{Br}(X)$, and show that the surfaces S for which it is trivial form a countable union of hypersurfaces in the moduli space of Enriques surfaces.

1. Introduction

Let S be a complex Enriques surface, and $\pi : X \to S$ its 2-to-1 cover by a K3 surface. Poincaré duality provides an isomorphism $H^3(S, \mathbb{Z}) \cong H_1(S, \mathbb{Z}) = \mathbb{Z}/2$, so that there is a unique nontrivial element b_S in the Brauer group $\text{Br}(S)$. What is the pull-back of this element in $\text{Br}(X)$? Is it nonzero?\footnote{Received by the editors May 19, 2009.}

The answer to the first question is easy in terms of the canonical isomorphism $\text{Br}(X) \xrightarrow{\sim} \text{Hom}(T_X, \mathbb{Q}/\mathbb{Z})$ (see \S 2): $\pi^* b_S$ corresponds to the linear form $\tau \mapsto (\beta \cdot \pi^* \tau)$, where β is any element of $H^2(S, \mathbb{Z}/2)$ which does not come from $H^2(S, \mathbb{Z})$. The second question turns out to be more subtle: the answer depends on the surface. We will characterize the surfaces S for which $\pi^* b_S = 0$ (Corollary 5.7), and show that they form a countable union of hypersurfaces in the moduli space of Enriques surfaces (Corollary 6.5).

Part of our results hold over any algebraically closed field, and also in a more general set-up (see Proposition 4.1 below); for the last part, however, we need in a crucial way Horikawa’s description of the moduli space by transcendental methods.

2. The Brauer group of a surface

Let S be a smooth projective variety over a field; we define the Brauer group $\text{Br}(S)$ as the étale cohomology group $H^2_{\text{ét}}(S, \mathbb{G}_m)$. For surfaces this definition coincides with that of Grothendieck [G] by [G], II, Cor. 2.2; this holds in fact in any dimension by a result of Gabber, which we will not need here (see [dJ]).

In this section we assume that S is a complex surface; we recall the description of $\text{Br}(S)$ in that case – this is classical but not so easy to find in the literature. The Kummer exact sequence

$$0 \to \mathbb{Z}/n \to \mathbb{G}_m \to \mathbb{G}_m \to 0$$

gives rise to an exact sequence

$$0 \to \text{Pic}(S) \otimes \mathbb{Z}/n \to H^2(S, \mathbb{Z}/n) \xrightarrow{\mu} \text{Br}(S)[n] \to 0$$

(2.a)

(we denote by $M[n]$ the kernel of the multiplication by n in a \mathbb{Z}-module M).

\footnote{The question is mentioned in [H-S], where the authors construct an Enriques surface S over \mathbb{Q} for which $\pi^* b_S \neq 0$ (see Cor. 2.8).}
3. Algebraic topology of Enriques surfaces

3.1. Let S be an Enriques surface (over \(\mathbb{C} \)). We first recall some elementary facts on the topology of \(S \). A general reference is [BHPV], ch. VIII.

The torsion subgroup of \(H^2(S, \mathbb{Z}) \) is isomorphic to \(\mathbb{Z}/2 \); its nonzero element is the canonical class \(K_S \). Let \(k_S \) denote the image of \(K_S \) in \(H^2(S, \mathbb{Z}/2) \). The universal coefficient theorem together with Poincaré duality gives an exact sequence

\[
0 \to \mathbb{Z}/2 \to H^2(S, \mathbb{Z}/2) \to \text{Hom}(H^2(S, \mathbb{Z}), \mathbb{Z}/2) \to 0
\]

(3.a)

where \(v_S \) is deduced from the cup-product.

3.2. The linear form \(\alpha \mapsto (k_S \cdot \alpha) \) on \(H^2(S, \mathbb{Z}/2) \) vanishes on the image of \(H^2(S, \mathbb{Z}) \), hence coincides with the map \(H^2(S, \mathbb{Z}/2) \to H^3(S, \mathbb{Z}) = \mathbb{Z}/2 \) from the exact sequence (2.b). Note that \(k_S \) is the second Stiefel-Whitney class \(w_2(S) \); in particular, we have \((k_S \cdot \alpha) = \alpha^2 \) for all \(\alpha \in H^2(S, \mathbb{Z}/2) \) (Wu formula, see [M-S]).

3.3. The map \(c_1 : \text{Pic}(S) \to H^2(S, \mathbb{Z}) \) is an isomorphism, hence (2.e) provides an isomorphism \(\text{Br}(S) \cong \text{Tors} H^3(S, \mathbb{Z}) \cong \mathbb{Z}/2 \). We will denote by \(b_S \) the nonzero element of \(\text{Br}(S) \).

Let \(\pi : X \to S \) be the 2-to-1 cover of \(S \) by a K3 surface. The aim of this note is to study the pull-back \(\pi^* b_S \) in \(\text{Br}(X) \).

Proposition 3.4. The class \(\pi^* b_S \) is represented, through the isomorphism \(\text{Br}(X) \cong \text{Hom}(T_X, \mathbb{Q}/\mathbb{Z}) \), by the linear form \(\tau \mapsto (\beta \cdot \pi_* \bar{\tau}) \), where \(\tau \) is the image of \(\tau \) in \(H^2(X, \mathbb{Z}/2) \) and \(\beta \) any element of \(H^2(S, \mathbb{Z}/2) \) which does not come from \(H^2(S, \mathbb{Z}) \).
Proof. Let \(\beta \) be an element of \(H^2(S, \mathbb{Z}/2) \) which does not come from \(H^2(S, \mathbb{Z}) \), so that \(p(\beta) = b_S \) \((2.a)\). The pull-back \(\pi^* b_S \in \text{Br}(X) \) is represented by \(\pi^* \beta \in H^2(X, \mathbb{Z}/2) \cong H^2(X, \mathbb{Z}) \otimes \mathbb{Z}/2 \); its image in \(\text{Hom}(T_X, \mathbb{Z}/2) \) is the linear form \(\tau \mapsto (\pi^* \beta \cdot \tau) \). Since \((\pi^* \beta \cdot \tau) = (\beta \cdot \pi_* \tau) \), the Proposition follows.

Part \((i)\) of the following Proposition shows that the class \(\pi^* \beta \in H^2(X, \mathbb{Z}/2) \) which appears above is nonzero. This does not say that \(\pi^* b_S \) is nonzero, as \(\pi^* \beta \) could come from a class in \(\text{Pic}(X) \) – see \S6.

Proposition 3.5.

\((i)\) The kernel of \(\pi^* : H^2(S, \mathbb{Z}/2) \to H^2(X, \mathbb{Z}/2) \) is \(\{0, k_S\} \).

\((ii)\) The Gysin map \(\pi_* : H^2(X, \mathbb{Z}) \to H^2(S, \mathbb{Z}) \) is surjective.

Proof. To prove \((i)\) we use the Hochschild-Serre spectral sequence:

\[
E_2^{p,q} = H^p(\mathbb{Z}/2, H^q(X, \mathbb{Z}/2)) \Rightarrow H^{p+q}(S, \mathbb{Z}/2).
\]

We have \(E_2^{1,1} = 0 \), and \(E_2^{2,0} = E_2^{3,0} = H^2(\mathbb{Z}/2, \mathbb{Z}/2) = \mathbb{Z}/2 \). Thus the kernel of \(\pi^* : H^2(S, \mathbb{Z}/2) \to H^2(X, \mathbb{Z}/2) \) is isomorphic to \(\mathbb{Z}/2 \). Since it contains \(k_S \), it is equal to \(\{0, k_S\} \).

Let us prove \((ii)\). Because of the formula \(\pi_* \pi^* \alpha = 2\alpha \), the cokernel of \(\pi_* : H^2(X, \mathbb{Z}) \to H^2(S, \mathbb{Z}) \) is a \((\mathbb{Z}/2) \)-vector space; therefore it suffices to prove that the transpose map

\[
^t \pi_* : \text{Hom}(H^2(S, \mathbb{Z}), \mathbb{Z}/2) \to \text{Hom}(H^2(X, \mathbb{Z}), \mathbb{Z}/2)
\]

is injective. This is implied by the commutative diagram

\[
\begin{array}{ccc}
H^2(S, \mathbb{Z}/2) & \xrightarrow{v_S} & \text{Hom}(H^2(S, \mathbb{Z}), \mathbb{Z}/2) \\
\downarrow^* & & \downarrow^t \pi_* \\
H^2(X, \mathbb{Z}/2) & \xrightarrow{v_X} & \text{Hom}(H^2(X, \mathbb{Z}), \mathbb{Z}/2)
\end{array}
\]

plus the fact that \(\text{Ker} \pi^* = \text{Ker} v_S = \{0, k_S\} \) by \((i)\) and \((3.a)\). \(\square \)

4. Brauer groups and cyclic coverings

Proposition 4.1. Let \(\pi : X \to S \) be an étale, cyclic covering of smooth projective varieties over an algebraically closed field \(k \). Let \(\sigma \) be a generator of the Galois group \(G \) of \(\pi \), and let \(\text{Nm} : \text{Pic}(X) \to \text{Pic}(S) \) be the norm homomorphism. The kernel of \(\pi^* : \text{Br}(S) \to \text{Br}(X) \) is canonically isomorphic to \(\text{Ker} \text{Nm} / (1 - \sigma^*)(\text{Pic}(X)) \).

Proof. We consider the Hochschild-Serre spectral sequence

\[
E_2^{p,q} = H^p(G, H^q(X, \mathbb{G}_m)) \Rightarrow H^{p+q}(S, \mathbb{G}_m).
\]

Since \(E_2^{2,0} = H^2(G, k^*) = 0 \), the kernel of \(\pi^* : \text{Br}(S) \to \text{Br}(X) \) is identified with \(E_\infty^{1,1} = \text{Ker}(d_2 : E_2^{1,1} \to E_2^{3,0}) \). We have \(E_2^{3,0} = H^3(G, k^*) \); by periodicity of the cohomology of \(G \), this group is canonically isomorphic to \(H^1(G, k^*) = \text{Hom}(G, k^*) \), the character group of \(G \), which we denote by \(G \). So we view \(d_2 \) as a map from \(H^1(G, \text{Pic}(X)) \) to \(\hat{G} \).
Let S be the endomorphism $L \mapsto \bigotimes_{g \in G} g^* L$ of $\text{Pic}(X)$; recall that $H^1(G, \text{Pic}(X))$ is isomorphic to $\text{Ker} S / \text{Im}(1 - \sigma^*)$. We have $\pi^* \text{Nm}(L) = S(L)$ for $L \in \text{Pic}(X)$, hence Nm maps $\text{Ker} S$ into $\text{Ker} \pi^* \subset \text{Pic}(S)$. Now recall that $\text{Ker} \pi^*$ is canonically isomorphic to \hat{G}: to $\chi \in \hat{G}$ corresponds the subsheaf L_χ of $\pi_* O_X$ where G acts through the character χ. Since $\text{Nm} \circ (1 - \sigma^*) = 0$, the norm induces a homomorphism $H^1(G, \text{Pic}(X)) \to \text{Ker} \pi^* \cong \hat{G}$. The Proposition will follow from:

Lemma 4.2. The map $d_2 : H^1(G, \text{Pic}(X)) \to \hat{G}$ coincides with the homomorphism induced by the norm.

Proof. We apply the formalism of [S], Proposition 1.1, where a very close situation is considered. This Proposition, together with property (1) which follows it, tells us that d_2 is given by cup-product with the extension class in $\text{Ext}_G^2(\text{Pic}(X), k^*)$ of the exact sequence of G-modules

$$1 \to k^* \to R_X^* \to \text{Div}(X) \to \text{Pic}(X) \to 0,$$

where R_X is the field of rational functions on X. This means that d_2 is the composition

$$H^1(G, \text{Pic}(X)) \xrightarrow{\partial} H^2(G, R_X^*/k^*) \xrightarrow{\partial'} H^3(G, k^*)$$

where ∂ and ∂' are the coboundary maps associated to the short exact sequences

$$0 \to R_X^*/k^* \to \text{Div}(X) \to \text{Pic}(X) \to 0$$

and

$$0 \to k^* \to R_X^* \to R_X^*/k^* \to 0.$$

Let $\lambda \in H^1(G, \text{Pic}(X))$, represented by $L \in \text{Pic}(X)$ with $\bigoplus_{g \in G} g^* L \cong O_X$. Let $D \in \text{Div}(X)$ such that $L = O_X(D)$. Then $\sum_g g^* D$ is the divisor of a rational function $\psi \in R_X^*$, whose class in R_X^*/k^* is well-defined. This class is invariant under G, and defines the element $\partial(\lambda) \in H^2(G, R_X^*/k^*)$. Since $\text{div} \psi$ is invariant under G, there exists a character $\chi \in \hat{G}$ such that $g^* \psi = \chi(g) \psi$ for each $g \in G$. Then $d_2^1(\lambda) = \chi$ viewed as an element of $H^3(G, k^*) = \hat{G}$.

It remains to prove that $O_S(\pi_* D) = L_\chi$. Since $\text{div} (\psi) = \pi^* \pi_* D$, multiplication by ψ induces a global isomorphism $u : \pi^* O_S(\pi_* D) \xrightarrow{\sim} O_X$. Let $\varphi \in R_X$ be a generator of $O_X(D)$ on an open G-invariant subset U of X. Then $\text{Nm}(\varphi)$ is a generator of $O_S(\pi_* D)$ on $\pi(U)$, and $\pi^* \text{Nm}(\varphi)$ is a generator of $\pi^* O_S(\pi_* D)$ on U; the function $h := \psi \pi^* \text{Nm}(\varphi)$ on U satisfies $g^* h = \chi(g) h$ for all $g \in G$. This proves that the homomorphism $u^* : O_S(\pi_* D) \to \pi_* O_X$ deduced from u maps $O_S(\pi_* D)$ onto the subsheaf L_χ of $\pi_* O_X$, hence our assertion. \hfill \Box

We will need a complement of the Proposition in the complex case:

Corollary 4.3. Assume $k = \mathbb{C}$, and $H^1(X, O_X) = H^2(S, O_S) = 0$. The following conditions are equivalent:

(i) The map $\pi^* : \text{Br}(S) \to \text{Br}(X)$ is not injective;

(ii) there exists $L \in \text{Pic}(X)$ whose class $\lambda = c_1(L)$ in $H^2(X, \mathbb{Z})$ satisfies $\pi_* \lambda = 0$ and $\lambda \notin (1 - \sigma^*)(H^2(X, \mathbb{Z}))$.

Observe that the hypotheses of the Corollary are satisfied when S is a complex Enriques surface and $\pi : X \to S$ its universal cover.
Proof. By Proposition 4.1 (i) is equivalent to the existence of a line bundle \(L \) on \(X \) with \(\text{Nm}(L) = \mathcal{O}_S \) and \([L] \neq 0 \) in \(H^1(G, \text{Pic}(X)) \), while (ii) means that there exists such \(L \) with \([c_1(L)] \neq 0 \) in \(H^1(G, H^2(X, \mathbb{Z})) \). Therefore it suffices to prove that the map

\[
H^1(c_1) : H^1(G, \text{Pic}(X)) \to H^1(G, H^2(X, \mathbb{Z}))
\]

is injective.

Since \(H^1(X, \mathcal{O}_X) = 0 \) we have an exact sequence

\[
0 \to \text{Pic}(X) \overset{\cdot c_1}{\to} H^2(X, \mathbb{Z}) \to Q \to 0 \quad \text{with } Q \subset H^2(X, \mathcal{O}_X).
\]

Since \(H^2(S, \mathcal{O}_S) = 0 \), there is no nonzero invariant vector in \(H^2(X, \mathcal{O}_X) \), hence in \(Q \). Then the associated long exact sequence implies that \(H^1(c_1) \) is injective. \(\square \)

5. More algebraic topology

5.1. As in §3, we denote by \(S \) a complex Enriques surface, by \(\pi : X \to S \) its universal cover and by \(\sigma \) the corresponding involution of \(X \). We will need some more precise results on the topology of the surfaces \(X \) and \(S \). We refer again to [BHPV], ch. VIII.

Let \(E \) be the lattice \((-E_8) \oplus H\), where \(H \) is the rank 2 hyperbolic lattice. Let \(H^2(S, \mathbb{Z})_{\text{ff}} \) be the quotient of \(H^2(S, \mathbb{Z}) \) by its torsion subgroup \{0, \(K_S \)\}. We have isomorphisms

\[
H^2(S, \mathbb{Z})_{\text{ff}} \cong E \quad H^2(X, \mathbb{Z}) \cong E \oplus E \oplus H
\]

such that \(\pi^* : H^2(S, \mathbb{Z})_{\text{ff}} \to H^2(X, \mathbb{Z}) \) is identified with the diagonal embedding \(\delta : E \hookrightarrow E \oplus E \), and \(\sigma^* \) is identified with the involution

\[
\rho : (\alpha, \alpha', \beta) \mapsto (\alpha', \alpha, -\beta) \quad \text{of } E \oplus E \oplus H.
\]

5.2. We consider now the cohomology with values in \(\mathbb{Z}/2 \). For a lattice \(M \), we will write \(M_2 := M/2M \). The scalar product of \(M \) induces a product \(M_2 \otimes M_2 \to \mathbb{Z}/2 \); if moreover \(M \) is even, there is a natural quadratic form \(q : M_2 \to \mathbb{Z}/2 \) associated with that product, defined by \(q(m) = \frac{1}{2} \tilde{m}^2 \), where \(\tilde{m} \in M \) is any lift of \(m \in M_2 \). In particular, \(H_2 \) contains a unique element \(\varepsilon \) with \(q(\varepsilon) = 1 \): it is the class of \(e + f \) where \((e, f) \) is a hyperbolic basis of \(H \).

Using the previous isomorphism we identify \(H^2(X, \mathbb{Z}/2) \) with \(E_2 \oplus E_2 \oplus H_2 \).

Proposition 5.3. The image of \(\pi^* : H^2(S, \mathbb{Z}/2) \to H^2(X, \mathbb{Z}/2) \) is \(\delta(E_2) \oplus (\mathbb{Z}/2)\varepsilon \).

Proof. This image is invariant under \(\sigma^* \), hence is contained in \(\delta(E_2) \oplus H_2 \); by Proposition 3.6 (i) it is 11-dimensional, hence a hyperplane in \(\delta(E_2) \oplus H_2 \), containing \(\delta(E_2) \) (which is spanned by the classes coming from \(H^2(S, \mathbb{Z}) \)). So \(\pi^*H^2(S, \mathbb{Z}/2) \) is spanned by \(\delta(E_2) \) and a nonzero element of \(H_2 \); it suffices to prove that this element is \(\varepsilon \). Since the elements of \(H^2(S, \mathbb{Z}/2) \) which do not come from \(H^2(S, \mathbb{Z}) \) have square 1 (3.2), this is a consequence of the following lemma. \(\square \)

Lemma 5.4. For every \(\alpha \in H^2(S, \mathbb{Z}/2) \), \(q(\pi^*\alpha) = \alpha^2 \).
Proof. This proof has been shown to me by J. Lannes. The key ingredient is the Pontryagin square, a cohomological operation
\[\mathcal{P} : H^{2m}(M, \mathbb{Z}/2) \longrightarrow H^{4m}(M, \mathbb{Z}/4) \]
defined for any reasonable topological space \(M \) and satisfying a number of interesting properties (see [M-T], ch. 2, exerc. 1). We will state only those we need in the case of interest for us, namely \(m = 2 \) and \(M \) is a compact oriented 4-manifold. We identify \(H^4(M, \mathbb{Z}/4) \) with \(\mathbb{Z}/4 \); then \(\mathcal{P} : H^2(M, \mathbb{Z}) \to \mathbb{Z}/4 \) satisfies:

a) For \(\alpha \in H^2(M, \mathbb{Z}/2) \), the class of \(\mathcal{P}(\alpha) \) in \(\mathbb{Z}/2 \) is \(\alpha^2 \);

b) If \(\alpha \in H^2(M, \mathbb{Z}/2) \) comes from \(\tilde{\alpha} \in H^2(M, \mathbb{Z}) \), then \(\mathcal{P}(\alpha) = \tilde{\alpha}^2 \) (mod. 4). In particular, if \(M \) is a K3 surface, we have \(\mathcal{P}(\alpha) = 2q(\alpha) \) in \(\mathbb{Z}/4 \).

Coming back to our situation, let \(\alpha \in H^2(S, \mathbb{Z}/2) \). We have in \(\mathbb{Z}/4 \):

\[
\mathcal{P}(\pi^*\alpha) = 2\mathcal{P}(\alpha) \quad \text{by functoriality}
\]

\[
= 2\alpha^2 \quad \text{by a), and}
\]

\[
\mathcal{P}(\pi^*\alpha) = 2q(\pi^*\alpha) \quad \text{by b).}
\]

Comparing the two last lines gives the lemma. \(\square \)

Corollary 5.5. The kernel of \(\pi_* : H_2 \to \{0, k_S\} \) is \(\{0, \varepsilon\} \).

Proof. By Proposition 5.3 \(\varepsilon \) belongs to \(\text{Im} \pi^* \), hence \(\pi_*\varepsilon = 0 \). It remains to check that \(\pi_* \) is nonzero on \(H^1(\mathbb{Z}/2, H^2(X, \mathbb{Z})) \cong H_2 \). We know that there is an element \(\alpha \in H^2(X, \mathbb{Z}) \) with \(\pi_*\alpha = K_S \) (Prop. 3.6 (ii)); it belongs to \(\text{Ker}(1 + \pi^*) \), hence defines an element \(\bar{\alpha} \) of \(H^1(\mathbb{Z}/2, H^2(X, \mathbb{Z})) \) with \(\pi_*\bar{\alpha} \neq 0 \). \(\square \)

Corollary 5.6. Let \(\lambda \in H^2(X, \mathbb{Z}) \). The following conditions are equivalent:

(i) \(\pi_*\lambda = 0 \) and \(\lambda \notin (1 - \sigma^*)(H^2(X, \mathbb{Z})) \);

(ii) \(\sigma^*\lambda = -\lambda \) and \(\lambda^2 \equiv 2 \) (mod. 4).

Proof. Write \(\lambda = (\alpha, \alpha', \beta) \in E \oplus E \oplus H \); let \(\bar{\beta} \) be the class of \(\beta \) in \(H_2 \). Both conditions imply \(\sigma^*\lambda = -\lambda \), hence \(\alpha' = -\alpha \). Since \((\alpha, -\alpha) = (1 - \sigma^*)(\alpha, 0) \) and \(2\beta = (1 - \sigma^*)(\beta) \), the conditions of (i) are equivalent to \(\pi_*\bar{\beta} = 0 \) and \(\bar{\beta} \neq 0 \), that is, \(\beta = \varepsilon \) (Corollary 5.5). On the other hand we have \(\lambda^2 = 2\alpha^2 + \beta^2 \equiv 2q(\beta) \) (mod. 4), hence (ii) is also equivalent to \(\bar{\beta} = \varepsilon \). \(\square \)

This allows us to rephrase Corollary 4.3 in a simpler way:

Corollary 5.7. We have \(\pi^*b_S = 0 \) if and only if there exists a line bundle \(L \) on \(X \) with \(\sigma^*L = L^{-1} \) and \(c_1(L)^2 \equiv 2 \) (mod. 4). \(\square \)

Remark.—My original proof of (5.3-5) was less direct and less general, but still perhaps of some interest. The key point is to show that on \(H_2 q \) takes the value 1 exactly on the nonzero element of \(\text{Ker} \pi_* \), or equivalently that an element \(\alpha \in H_2 \) with \(\pi_*\alpha = k_S \) satisfies \(q(\alpha) = 0 \). Using deformation theory (see (6.1) below), one can assume that \(\alpha \) comes from a class in \(\text{Pic}(X) \). To conclude I applied the following lemma:

Lemma 5.8. Let \(L \) be a line bundle on \(X \) with \(\text{Nm}(L) = K_S \). Then \(c_1(L)^2 \) is divisible by 4.
6.1. We briefly recall the theory of the period map for Enriques surfaces, due to Horikawa (see [BHPV], ch. VIII, or [N]). We keep the notations of (5.1). We denote ϕ by σ, and we let L be a primitive element of L.

Let $H^1(S, E) \otimes H^1(S, E) \to H^2(S, K_S) \cong \mathbb{C}$ which is skew-symmetric and non-degenerate. Thus $h^1(E)$ is even; since $h^0(E) = h^2(E)$ by Serre duality, $\chi(E)$ is even, and so is $\chi(L) = \chi(E)$. By Riemann-Roch this implies that $\frac{1}{2}c_1(L)^2$ is even. \hfill \Box

6. The vanishing of π^*b_S on the moduli space

6.1. We briefly recall the theory of the period map for Enriques surfaces, due to Horikawa (see [BHPV], ch. VIII, or [N]). We keep the notations of (5.1). We denote by L the lattice $E \oplus E \oplus H$, and by L^- the (-1)-eigenspace of the involution $\rho : (\alpha, \alpha', \beta) \mapsto (\alpha', -\alpha, -\beta)$, that is, the submodule of elements $(\alpha, -\alpha, \beta)$.

A marking of the Enriques surface S is an isometry $\varphi : H^2(X, \mathbb{Z}) \to L$ which conjugates σ^* to ρ. The line $H^{2,0}$ is anti-invariant under σ^*, so its image by $\varphi_C : H^2(X, \mathbb{C}) \to L_C$ lies in L^-. The corresponding point $[\omega]$ of $\mathbb{P}(L^-_C)$ is the period $\varphi(S, \varphi)$. It belongs to the domain $\Omega \subset \mathbb{P}(L^-_C)$ defined by the equations

$$(\omega \cdot \omega) = 0 \quad (\omega \cdot \bar{\omega}) > 0 \quad (\omega \cdot \lambda) \neq 0 \quad \text{for all } \lambda \in L^- \text{ with } \lambda^2 = -2.$$

This is an analytic manifold, which is the moduli space for marked Enriques surfaces. To each class $\lambda \in L^-$ we associate the hypersurface H_λ of Ω defined by $(\lambda \cdot \omega) = 0$.

Proposition 6.2. We have $\pi^*b_S = 0$ if and only if $\varphi(S, \varphi)$ belongs to one of the hypersurfaces H_λ for some vector $\lambda \in L^-$ with $\lambda^2 \equiv 2 \pmod{4}$.

Proof. The period point $\varphi(S, \varphi)$ belongs to H_λ if and only if λ belongs to $c_1(\text{Pic}(X))$; by Corollary 5.7, this is equivalent to $\pi^*b_S = 0$. \hfill \Box

To get a complete picture we want to know which of the H_λ are really needed:

Lemma 6.3. Let λ be a primitive element of L^-. Then H_λ is non-empty if and only if $\lambda^2 < -2$. If μ is another primitive element of L^- with $H_\mu = H_\lambda \neq \emptyset$, then $\mu = \pm \lambda$.

Proof. Let W be the subset of L^-_C defined by the conditions $\omega^2 = 0$, $\omega \cdot \bar{\omega} > 0$. If we write $\omega = \alpha + i \beta$ with $\alpha, \beta \in L^-_R$, these conditions translate as $\alpha^2 = \beta^2 > 0$, $\alpha \cdot \beta = 0$. Thus $W \cap \lambda^\perp \neq \emptyset$ is equivalent to the existence of a positive 2-plane in L^-_R orthogonal to λ. Since L^- has signature $(2, 10)$, this is also equivalent to $\lambda^2 < 0$.

If $W \cap \lambda^\perp$ is non-empty, λ^\perp is the only hyperplane containing it, and $C \lambda$ is the orthogonal of λ^\perp in L^-. Then λ and $-\lambda$ are the only primitive vectors of L^- contained in $C \lambda$. In particular λ is determined up to sign by H_λ, which proves (ii).

Let us prove (i). We have seen that H_λ is empty for $\lambda^2 \geq 0$, and also for $\lambda^2 = -2$ by definition of Ω. Assume $\lambda^2 < -2$ and $H_\lambda = \emptyset$; then H_λ must be contained in one of the hyperplanes H_μ with $\mu^2 = -2$; by (ii) this implies $\lambda = \pm \mu$, a contradiction. \hfill \Box
Let \(\Gamma \) be the group of isometries of \(L^- \). The group \(\Gamma \) acts properly discontinuously on \(\Omega \), and the quotient \(\mathcal{M} = \Omega / \Gamma \) is a quasi-projective variety. The image in \(\mathcal{M} \) of the period \(\wp(S, \varphi) \) does not depend on the choice of \(\varphi \); let us denote it by \(\wp(S) \). The map \(S \mapsto \wp(S) \) induces a bijection between isomorphism classes of Enriques surfaces and \(\mathcal{M} \); the variety \(\mathcal{M} \) is a (coarse) moduli space for Enriques surfaces.

Corollary 6.5. The surfaces \(S \) for which \(\pi^* b_S = 0 \) form an infinite, countable union of (non-empty) hypersurfaces in the moduli space \(\mathcal{M} \).

Proof. Let \(\Lambda \) be the set of primitive elements \(\lambda \) in \(L^- \) with \(\lambda^2 < -2 \) and \(\lambda^2 \equiv 2 \, (\text{mod } 4) \). For \(\lambda \in \Lambda \), let \(H_\lambda \) be the image of \(H_\lambda \) in \(\mathcal{M} \); the argument of [BHPV], ch. VIII, Cor. 20.7 shows that \(H_\lambda \) is an algebraic hypersurface in \(\mathcal{M} \). By Proposition 6.2 and Lemma 6.3 the surfaces \(S \) with \(\pi^*(b_S) = 0 \) form the subset \(\bigcup_{\lambda \in \Lambda} H_\lambda \). By Lemma 6.3 (ii) we have \(H_\lambda = H_\mu \) if and only if \(\mu = \pm g\lambda \) for some element \(g \) of \(\Gamma \). This implies \(\lambda^2 = \mu^2 \); but \(\lambda^2 \) can be any number of the form \(-2k\) with \(k \) odd \(> 1 \) (take for instance \(\lambda = e - kf \), where \((e, f)\) is a hyperbolic basis of \(H \)), so there are infinitely many distinct hypersurfaces among the \(H_\lambda \). \(\square \)

Acknowledgements

I am indebted to J.-L. Colliot-Thélène for explaining the problem to me, and for very useful discussions and comments. I am grateful to J. Lannes for providing the topological proof of Lemma 5.4.

References

