TILTING INVARIANCE OF THE AUSLANDER-REITEN
CONJECTURE

JIAQUN WEI

Abstract. Let R be an artin algebra and T be a tilting or cotilting R-module with $S = \text{End}_RT$. We show that R satisfies the Auslander-Reiten conjecture if and only if so does S.

1. Introduction

Throughout this paper, we consider artin algebras and finitely generated left modules over them. Let R be an artin algebra, we denote by $\text{mod}R$ the category of finitely generated left R-modules. For an $X \in \text{mod}R$, we denote by pd_RX (resp., id_RX) the projective (resp., injective) dimension of X.

In studying the Nakayama conjecture, Auslander and Reiten [2] proposed the following conjecture, which is also listed as the 10th conjecture in the book [4].

Auslander-Reiten Conjecture: Let R be an artin algebra and X be an R-module. If $\text{Ext}_R^i(X, X \oplus R) = 0$ for all $i \geq 1$, then X is projective.

Auslander and Reiten [2] proved the conjecture over artin algebras such that every module M has an ultimately closed projective resolution, that is, there is some syzygy N of M such that all indecomposable direct summands of N already appear in earlier syzygies. This includes algebras of finite representation type, algebras with radical square zero and all torsionless-finite algebras. Hoshino [9] proved if R is a self-injective artinian local ring with radical cube zero, then $\text{Ext}_R^1(M, M) = 0$ implies that M is free.

We note that the Auslander-Reiten Conjecture actually makes sense for any ring. In fact, there are already some results in the study of the Auslander-Reiten Conjecture for commutative algebras, see for instance [1, 5, 11, 12] etc.. Recently, Christensen and Holm proved that every left noetherian ring satisfy the Auslander-Reiten Conjecture if it satisfies the Auslander’s condition on vanishing of cohomology [6]. Such rings contain group algebras of finite groups and artin algebras such that every module M has an ultimately closed projective resolution [6, 16].

The Auslander-Reiten Conjecture is related to the Finitistic Dimension Conjecture which reads as follows.

Finitistic Dimension Conjecture: Let R be an artin algebra. Then $\text{fdim}R =$
Indeed, if the Finitistic Dimension Conjecture holds for all artin algebras then the Auslander-Reiten Conjecture holds for all artin algebras. However, for an artin algebra satisfying the Finitistic Dimension Conjecture, we don’t know if it also satisfies the Auslander-Reiten Conjecture. For instance, it is still a question if the Auslander-Reiten Conjecture holds for all self-injective artin algebras and in this case, it is just the Tachikawa conjecture [15]. However, there is a counterexample over QF-rings [14].

Our aim in this paper is to show that the Auslander-Reiten conjecture is in fact a tilting invariance. More precisely, we prove the following result.

Main Theorem Let R be an artin algebra and $T \in \text{mod } R$ be a tilting module with $S = \text{End}_R T$. Then R satisfies the Auslander-Reiten conjecture if and only if so does S.

Similar results for Finitistic Dimension Conjecture had been proved by Happel [7] using the techniques of derived categories. More recently, it was proved that the Finitistic Dimension Conjecture is stable under derived equivalences. It would be interesting to consider whether the Auslander-Reiten conjecture is also stable under derived equivalences.

2. Preliminaries

Let R be an artin algebra and $M \in \text{mod } R$. We denote by R° the opposite algebra and an R°-module M means the right R-module M_R.

Let C be a subcategory of $\text{mod } R$, we denote by \hat{C} the category of all R-modules M such that there is an exact sequence $0 \to M \to C_0 \to \cdots \to C_m \to 0$ for some integer m with each $C_i \in C$. Let $M \in C$, we denote by $\text{codim}_C(M)$ the minimal non-negative integer m such that there is an exact sequence $0 \to M \to C_0 \to \cdots \to C_m \to 0$ with each $C_i \in C$. We also denote by $(C)_n$ the category of all $M \in C$ with $\text{codim}_C(M) \leq n$.

Dually, the notion \hat{C} denotes the category of all R-modules M such that there is an exact sequence $0 \to C_m \to \cdots \to C_0 \to M \to 0$ for some integer m with each $C_i \in \hat{C}$, and the notion $\text{dim}_C(M)$ denotes the minimal non-negative integer m such that there is an exact sequence $0 \to C_m \to \cdots \to C_0 \to M \to 0$ with each $C_i \in C$. Similarly, the notion $(\hat{C})_n$ is the category of all $M \in \hat{C}$ with $\text{dim}_C(M) \leq n$.

Let $M \in \text{mod } R$. We denote by $\text{add}_R M$ the category of modules isomorphic to direct summands of finite direct sums of M. The notion M^\perp denotes the category of all modules $N \in \text{mod } R$ such that $\text{Ext}_R^{i}(M, N) = 0$. Dually, the notion $^\perp M$ denotes the category of all modules N such that $\text{Ext}_R^{i}(N, M) = 0$.

We denote by D the usual duality functor between $\text{mod } R$ and $\text{mod } R^\circ$. For an $M \in \text{mod } R$ and a positive integer t, the notion $\Omega^t_R M$ denote the t-th syzygy of M.

We recall now some necessary basic tilting theory. The readers are suggested to refer to [3, 8, 13] for more details.

Let R be an artin algebra and n a non-negative integer. Recall that $T \in \text{mod } R$ is called a tilting module of projective dimension at most n if it satisfies the following three conditions:

(T1) $\text{pd} T \leq n$, i.e., there is an exact sequence $0 \to R_n \to \cdots \to R_0 \to T \to 0$ with each R_i projective.

(T2) $\text{Ext}^i_R(T, T) = 0$ for all $i > 0$, and
(T3) there is an exact sequence $0 \to R \to T_0 \to \cdots \to T_n \to 0$ for some n, where each $T_i \in \text{add} T$.

The notion of tilting modules is left-right symmetric in the sense that if $R T$ is a tilting module of projective dimension at most n, then $T S$, where $S = \text{End}_R T$, is also a tilting module of projective dimension at most n.

Dually, $C \in \text{mod} R$ is a cotilting module of injective dimension at most n if it satisfies

(C1) $\text{id} T \leq n$,
(C2) $\text{Ext}^i_R(T, T) = 0$ for all $i > 0$, and
(C3) there is an exact sequence $0 \to C_n \to \cdots \to C_0 \to D(R_R) \to 0$ with each $C_i \in \text{add} R C$.

Note that $T \in \text{mod} R$ is a tilting module of projective dimension at most n if and only if $D(R T) \in \text{mod} R^o$ is a cotilting module of injective dimension at most n.

Lemma 2.1. Let R be an artin algebra and $T \in \text{mod} R$ be a tilting module of projective dimension at most n. Then for any $M \in \text{mod} R$, there is an exact sequence $0 \to M \to U_M \to V_M \to 0$ with $U_M \in \text{add}_R T$ and $V_M \in (\text{add}_R T)_{n-1}$. In particular, V_M has the projective dimension at most n.

Proof. The claimed exact sequence exists by for instance [3, Section 5]. □

The following is the well-known Brenner-Butler Theorem in the tilting theory, see for instance [8, 13].

Lemma 2.2. Let R be an artin algebra and $T \in \text{mod} R$ be a tilting module with $S = \text{End}_R T$. Denote $C = D(T S)$. Then there is an equivalence between $T^⊥$ and $C^⊥$, given by the functor $\text{Hom}_R(T, -)$. Moreover, for any $U, W \in T^⊥$ and any $i \geq 0$, we have that $\text{Ext}^i_R(U, W) \simeq \text{Ext}^i_S(\text{Hom}_R(T, U), \text{Hom}_R(T, W))$ canonically.

3. The proof of Main Theorem

Throughout this section, we fix an artin algebra R and a tilting R-module T with $S = \text{End}_R T$. We set $n = \text{pd}_R T$.

To prove the Main Theorem, we need some lemmas.

Lemma 3.1. Assume that $M \in \text{mod} R$ satisfies that $M \in T^⊥$. Then $\Omega^n_R M \in T^⊥$.

Proof. Consider the exact sequence $0 \to \Omega^n M \to R_{n-1} \to \cdots \to R_0 \to M \to 0$ with each R_i projective. By applying functors $\text{Hom}_R(-, R)$, $\text{Hom}_R(-, \Omega^n M)$ and $\text{Hom}_R(M, -)$ in turn, we obtain for all $i \geq 1$ that first

$$\text{Ext}^i_R(\Omega^n M, R) \simeq \text{Ext}^{i+n}_R(M, R) = 0,$$

secondly

$$\text{Ext}^i_R(\Omega^n M, \Omega^n M) \simeq \text{Ext}^{i+n}_R(M, \Omega^n M),$$

and lastly

$$\text{Ext}^{i+n}_R(M, \Omega^n M) \simeq \text{Ext}^i_R(M, M) = 0,$$

by the dimension shift and the assumption. Hence the conclusion follows. □

Lemma 3.2. Assume that $M \in T^⊥$. Then $\Omega^n_R M \in T^⊥$.
Consider the exact sequence $0 \to R \to T_0 \to \cdots \to T_n \to 0$ in the definition of tilting modules. Applying the functor $\text{Hom}_R(M, -)$, we obtain that $\text{Ext}^i_R(M, R) \simeq \text{Ext}^i_R(M, T_i)$ for all $i \geq 1$ by the dimension shift, since $M \in \perp T$. It follows that $\text{Ext}^i_R(\Omega^n_R M, R) \simeq \text{Ext}^{i+n}_R(M, R) = 0$ for all $i \geq 1$, i.e., $\Omega^n_R M \in \perp R$.

The following lemma is important for the proof.

Lemma 3.3. For any $M \in \text{mod} R$, there is an exact sequence

$$0 \to M \to V \to U \to 0$$

such that $U \in \text{add}_R T$ and V satisfies an exact sequence

$$0 \to \Omega^n_R M \to T_{n-1} \to \cdots \to T_0 \to V \to 0$$

with each $T_i \in \text{add}_R T$.

Proof. Clearly we have the exact sequence $0 \to \Omega^n_R M \to R_{n-1} \to \cdots \to R_0 \to M \to 0$ with each R_i projective. Since $R \in (\text{add}_R T)_n$, the conclusion then follows from [17, Lemma 2.3].

Lemma 3.4. Assume that $M \in \perp (T \oplus M) \cap T^\perp$. Then $\Omega^n_R M \in \perp \Omega^n_R M$.

Proof. We consider the two exact sequences in Lemma 3.3. Since $\text{pd}_R T \leq n$ and $\text{Ext}^i_R(T, T) = 0$ for all $i \geq 1$, we easily obtain that $V \in T^\perp$ from the exact sequence (\ddagger). It follows that $U \in T^\perp$ from the exact sequence (\ddagger), since $M \in T^\perp$ too. Hence we obtain that $U \in T^\perp \cap \text{add}_R T = \text{add}_R T$. It turns out that the sequence (\ddagger) splits, and consequently $V \simeq M \oplus U \in \text{add}_R (T \oplus M)$. Since $M \in \perp (T \oplus M)$ by assumption, $M \in \perp V$ too. Hence, applying the functor $\text{Hom}_R(M, -)$ to the exact sequence (\ddagger), we obtain that $\text{Ext}^{i+n}_R(M, \Omega^n_R M) \simeq \text{Ext}^i_R(M, V) = 0$ for all $i \geq 1$ by the dimension shift. It follows that $\text{Ext}^i_R(\Omega^n_R M, \Omega^n_R M) \simeq \text{Ext}^{i+n}_R(M, \Omega^n_R M) = 0$ for all $i \geq 1$, i.e., $\Omega^n_R M \in \perp \Omega^n_R M$.

Lemma 3.5. Assume that $M \in \perp (T \oplus M) \cap T^\perp$. If R satisfies the Auslander-Reiten conjecture, then $M \in \text{add}_R T$.

Proof. Since $M \in \perp (T \oplus M) \cap T^\perp$, we obtain that $\Omega^n_R M \in \perp (\Omega^n_R M \oplus R)$ by Lemmas 3.2 and 3.4. If R satisfies the Auslander-Reiten conjecture, then $\Omega^n_R M$ must be projective. It follows that $\text{pd}_R M < \infty$. Combining with the assumption $M \in T^\perp$, we have that $M \in \text{add}_R T$. Combining with the assumption $M \in \perp T$, we easily obtain that $M \in \text{add}_R T$.

We can now prove the one-part of the Main Theorem.

Proposition 3.6. If R satisfies the Auslander-Reiten conjecture, then so does S.

Proof. Take any $N \in \text{mod} S$ such that $N \in \perp (N \oplus S)$. Then $\Omega^n_S N \in \perp (\Omega^n_S N \oplus S)$ by Lemma 3.1. Note that $\Omega^n_S N \in \mathbb{D}(T_S)$, so $\Omega^n_S N = \text{Hom}_R(T, M)$ for some $M \in T^\perp$ by the tilting equivalence in Lemma 2.2. Since $S = \text{Hom}_R(T, T)$ and $M \oplus T \in T^\perp$, we obtain that $\text{Ext}^i_R(M, M \oplus T) \simeq \text{Ext}^i_S(\text{Hom}_R(T, M), \text{Hom}_R(T, M) \oplus \text{Hom}_R(T, T)) \simeq \text{Ext}^i_S(\Omega^n_S N, \Omega^n_S N \oplus S) = 0$ for all $i \geq 1$ by assumption and Lemma 2.2 again. Hence we have that $M \in \perp (T \oplus M) \cap T^\perp$. Since R satisfies the Auslander-Reiten conjecture, we obtain from Lemma 3.5 that $M \in \text{add}_R T$. It follows that $\Omega^n_S N(= \text{Hom}_R(T, M))$ is projective. Consequently, $\text{pd}_S N < \infty$. Since $N \in \perp S$ too, it is easy to see that N is projective. It follows that S satisfies the Auslander-Reiten conjecture.
Proof of the Main Theorem:

By the previous proposition, we need only to show that if S satisfies the Auslander-Reiten conjecture, then so does R. To this end, let us take any $M \in \mod R$ such that $M \in M T$. Then we need to show that M is projective.

By Lemma 2.1, there is exact sequence

$$0 \rightarrow M \rightarrow U_M \rightarrow V_M \rightarrow 0$$

with $U_M \in T^\perp$ and $V_M \in (\add R T)$, N. Note that for any $N \in \mod R$ with $\pd R N < \infty$, we have that $\Ext_R^i(M, N) = 0$ for all $i \geq 1$ since $M \in M T$. It follows that $M \in M T$ and $M \in M V_M$. Since clearly $V_M \in M T$ too, we obtain that $U_M \in M T$ from the sequence (\sharp). By assumption, $\Ext_R^i(M, M) = 0$ for all $i \geq 1$. It follows that $\Ext_R^i(M, U_M) = 0$ for all $i \geq 1$ by applying the functor $\Hom_R(M, -)$ to the sequence (\sharp). Note also that $\Ext_R^i(V_M, U_M) = 0$ for all $i \geq 1$ since $U_M \in M T$ and $V_M \in \add R T$, so applying the functor $\Hom_R(-, U_M)$ to the exact sequence (\sharp), we further obtain that $\Ext_R^i(U_M, U_M) = 0$ for all $i \geq 1$. It amounts to that $U_M \in M (T \oplus U_M) \cap T^\perp$.

Denote $N = \Hom_R(T, U_M)$. Then by Lemma 2.2 and the above arguments, we obtain that $\Ext_S^i(N, N + S) = \Ext_S^i(\Hom_R(T, U_M), \Hom_R(T, U_M) \oplus \Hom_R(T, T)) \simeq \Ext_R^i(U_M, U_M \oplus T) = 0$ for all $i \geq 1$. Hence if S satisfies the Auslander-Reiten conjecture, then N is projective. Consequently $U_M \in \add R T$ by the tilting equivalence in Lemma 2.2. Thus from the exact sequence (\sharp) we obtain that $M \in \add R T$. It follows that $\pd R M < \infty$, and hence M is projective. Thus R satisfies the Auslander-Reiten conjecture.

Corollary 3.7. Let R be an artin algebra and $T \in \mod R$ with $S = \End R T$.

(1) If T is a tilting module, then T^o satisfies the Auslander-Reiten conjecture if and only if so does S^o.

(2) If T is a cotilting module, then R (resp., R^o) satisfies the Auslander-Reiten conjecture if and only if so does S (resp., S^o).

Proof. (1) Note that T is also a tilting S^o-module with $T^o \simeq \End S^o T$, so the conclusion follows from the Main Theorem.

(2) Denote $C = D(T_S)$. Then C is a tilting S-module. Now the conclusion follows from the Main Theorem and the first part. \qed

Let A, B be two artin algebras. We say that A is tilting-cotilting equivalent to B, provided that there are some artin algebras A_i, $0 \leq i \leq n$, and some tilting or cotilting A_i-modules T_i such that $A = A_0$, $B = A_n$, and $A_{i+1} \simeq \End A_i T_i$ for $0 \leq i \leq n - 1$. Clearly the tilting-cotilting equivalence is a kind of derived equivalences. Results in this paper show that if two artin algebras A and B are tilting-cotilting equivalent, then A satisfies the Auslander-Reiten conjecture if and only if so does B.

Acknowledgements

The author also thanks Professor Steffen König for his support through the network “Representation theory of algebras and algebraic Lie theory” funded by Rheinenergie-Stiftung.
References

Department of Mathematics, Nanjing Normal University, Nanjing 210097, P.R.China
E-mail address: weijiaqun@njnu.edu.cn

Current address: Mathematisches Institut, Universitaet zu Koeln, Weyertal 86-90, D-50931 Koeln, Germany