ASYMPTOTIC LINEARITY OF REGULARITY AND a*-INARIANT OF POWERS OF IDEALS

HUY TÀI HÀ

Abstract. Let \(X = \text{Proj} R \) be a projective scheme over a field \(k \), and let \(I \subseteq R \) be an ideal generated by forms of the same degree \(d \). Let \(\pi : \tilde{X} \to X \) be the blowing up of \(X \) along the subscheme defined by \(I \), and let \(\phi : \tilde{X} \to \bar{X} \) be the projection given by the divisor \(dE_0 - E \), where \(E \) is the exceptional divisor of \(\pi \) and \(E_0 \) is the pullback of a general hyperplane in \(X \). We investigate how the asymptotic linearity of the regularity and the \(a*-\)invariant of \(I^q \) (for \(q \gg 0 \)) is related to invariants of fibers of \(\phi \).

1. Introduction

Let \(k \) be a field and let \(X = \text{Proj} R \subseteq \mathbb{P}^n \) be a projective scheme over \(k \). Let \(I \subseteq R \) be a homogeneous ideal. It is well known (cf. [1, 4, 6, 7, 9, 12, 18, 20]) that \(\text{reg}(I^q) = aq + b \), a linear function in \(q \), for \(q \gg 0 \). While the linear constant \(a \) is quite well understood from reduction theory (see [20]), the free constant \(b \) remains mysterious (see [10, 19] for partial results). Recently, Eisenbud and Harris [10] showed that when \(I \) is generated by general forms of the same degree, whose zeros set is empty in \(X \), \(b \) can be related to a set of local data, namely, the regularity of fibers of the projection map defined by the generators of \(I \). The aim of this paper is to exhibit a similar phenomenon in a more general situation, when \(I \) is generated by arbitrary forms of the same degree. In this case, the generators of \(I \) do not necessarily give a morphism. The projection map that we will examine is the map from the blowup of \(X \) along the subscheme defined by \(I \), considered as a bi-projective scheme, to its second coordinate.

Let \(I = (F_0, \ldots, F_m) \), where \(F_0, \ldots, F_m \) are homogeneous elements of degree \(d \) in \(R \). Let \(\pi : \tilde{X} \to X \) be the blowing up of \(X \) along the subscheme defined by \(I \). Let \(R = R[It] \) be the Rees algebra of \(I \). By letting \(\deg F_i t = (d, 1) \), the Rees algebra \(R \) is naturally bi-graded with \(R = \bigoplus_{p,q \in \mathbb{Z}} R_{(p,q)} \), where \(R_{(p,q)} = (I^q)_{p+qd} t^q \). Under this bi-gradation of \(R \), we can identify \(\tilde{X} \) with \(\text{Proj} R \subseteq \mathbb{P}^n \times \mathbb{P}^m \) (cf. [8, 15, 16]). Also, the projection \(\phi : \text{Proj} R \to \mathbb{P}^m \) is in fact the morphism given by the divisor \(D = dE_0 - E \), where \(E \) is the exceptional divisor of \(\pi \) and \(E_0 \) is the pullback of a general hyperplane in \(X \). For a close point \(\varphi \in \tilde{X} = \text{image}(\phi) \), let \(\tilde{X}_\varphi = \tilde{X} \times \text{Spec} \mathcal{O}_{\tilde{X}_\varphi} \) be the fiber of \(\phi \) over the affine neighborhood \(\text{Spec} \mathcal{O}_{\tilde{X}_\varphi} \) of \(\varphi \). Then \(\tilde{X}_\varphi = \text{Proj} R_{(\varphi)} \), where \(R_{(\varphi)} \) is the homogeneous localization of \(R \) at \(\varphi \). We define the regularity of \(\tilde{X}_\varphi \), denoted by \(\text{reg}(\tilde{X}_\varphi) \), to be that of \(R_{(\varphi)} \). Inspired by the work of Eisenbud and Harris [10], we propose the following conjecture.

Received by the editors April 8, 2010.
2000 Mathematics Subject Classification. 13D45, 13D02, 14B15, 14F05.
Key words and phrases. regularity, a-invariant, asymptotic linearity, fibers of projection maps.
Conjecture 1.1. Let $X = \text{Proj } R \subseteq \mathbb{P}^n$ be a projective scheme, and let $I \subseteq R$ be a homogeneous ideal generated by forms of degree d. Let $\text{reg}(\phi) = \max\{\text{reg}(\tilde{X}_\varphi) \mid \varphi \in \tilde{X}\}$. Then for $q \gg 0$, $$\text{reg}(I^q) = qd + \text{reg}(\phi).$$

We provide a strong evidence\(^1\) for Conjecture 1.1. More precisely, we prove a similar statement to Conjecture 1.1 for the a^\ast-invariant, a closely related variant of the regularity. For a closed point $\varphi \in \bar{X}$, we define the a^\ast-invariant of \tilde{X}_φ, denoted by $a^\ast(\tilde{X}_\varphi)$, to be the a^\ast-invariant of its homogeneous coordinate ring $\mathcal{R}_{(\varphi)}$. Our first main result is stated as follows.

Theorem 1.2 (Theorems 2.6). Let $X = \text{Proj } R \subseteq \mathbb{P}^n$ be a projective scheme, and let $I \subseteq R$ be a homogeneous ideal generated by forms of degree d. Let $a^\ast(\phi) = \max\{a^\ast(\tilde{X}_\varphi) \mid \varphi \in \tilde{X}\}$. Then for $q \gg 0$, we have $$a^\ast(I^q) = qd + a^\ast(\phi).$$

As a consequence of Theorem 1.2, we obtain in Theorem 3.1 an upper and a lower bounds for the asymptotic linear function $\text{reg}(I^q)$. We prove that for $q \gg 0$, $$qd + a^\ast(\phi) \leq \text{reg}(I^q) \leq qd + a^\ast(\phi) + \dim R.$$ This, in particular, allows us to settle Conjecture 1.1 in an important case. A fiber \tilde{X}_φ is said to be arithmetically Cohen-Macaulay if its homogeneous coordinate ring \mathcal{R}_{φ} is Cohen-Macaulay. Our next result shows that Conjecture 1.1 holds under the additional condition that each fiber \tilde{X}_φ is arithmetically Cohen-Macaulay. This hypothesis is satisfied, for instance, when the Rees algebra \mathcal{R} is a Cohen-Macaulay ring.

Theorem 1.3 (Theorem 3.2). Let $X = \text{Proj } R \subseteq \mathbb{P}^n$ be an irreducible projective scheme of dimension at least 1, and let $I \subseteq R$ be a homogeneous ideal generated by forms of degree d. Let $\text{reg}(\phi) = \max\{\text{reg}(\tilde{X}_\varphi) \mid \varphi \in \tilde{X}\}$. Assume that each fiber \tilde{X}_φ is an arithmetically Cohen-Macaulay scheme. Then for $q \gg 0$, we have $$\text{reg}(I^q) = qd + \text{reg}(\phi).$$

Our method in proving Theorem 1.2, and subsequently Theorem 1.3, is based upon investigating different graded structures of the Rees algebra \mathcal{R}. More precisely, beside the natural bi-graded structure mentioned above, \mathcal{R} possesses two other \mathbb{N}-graded structures; namely

$$\mathcal{R} = \bigoplus_{q \in \mathbb{Z}} \mathcal{R}^1_q,$$ where $\mathcal{R}^1_q = \bigoplus_{p \in \mathbb{Z}} \mathcal{R}_{(p,q)}$, and

$$\mathcal{R} = \bigoplus_{p \in \mathbb{Z}} \mathcal{R}^2_p,$$ where $\mathcal{R}^2_p = \bigoplus_{q \in \mathbb{Z}} \mathcal{R}_{(p,q)}$.

Under these \mathbb{N}-graded structures, it can be seen that $R = \mathcal{R}^1_0 \hookrightarrow \mathcal{R}$, \mathcal{R}^1_q is a graded R-modules for any $q \in \mathbb{Z}$, $S = \mathcal{R}^2_0 \hookrightarrow \mathcal{R}$, and \mathcal{R}^2_p is a graded S-modules for any $p \in \mathbb{Z}$.

Let \mathcal{R}^1_q be the coherent sheaf associated to \mathcal{R}^1_q on X, and let \mathcal{R}^2_p be the coherent sheaf.

\(1\)Marc Chardin in a recent preprint [5] has proved that Conjecture 1.1 holds in general.
sheaf associated to R_p on \tilde{X}. Observe further that $R_p^q = \bigoplus_{p+q \in \mathbb{Z}} [I_p^q]$, the module I^q shifted by qd. As a consequence, for any $p, q \in \mathbb{Z}$ we have

$$\widetilde{R_p^q}(p) = \tilde{I}(p+qd).$$

Thus, to study the regularity of I^q, we examine sheaf cohomology groups of $\widetilde{R_p^q}(p)$. Our results are obtained by investigating how these sheaf cohomology groups behave by pulling back via the blowup map π and pushing forward through the projection map ϕ.

Our paper is outlined as follows. In the next section, we consider \tilde{X} as a biprojective scheme and prove a similar statement to Conjecture 1.1 for the a^*-invariant. In the last section, we prove an important case of Conjectures 1.1.

2. Bi-projective schemes and a^*-invariants

The goal of this section is to give a similar statement to Conjecture 1.1 for the a^*-invariant of powers of an ideal. We first recall the definition of regularity and a^*-invariant.

Definition 2.1. For any \mathbb{N}-graded algebra T, let T_+ denote its irrelevant ideal. For $i \geq 0$, let $a^i(T) = \max \{l \mid [H^i_{T_+}(T)]_l \neq 0 \}$ (if $H^i_{T_+}(T) = 0$ then take $a^i(T) = -\infty$).

The a^*-**invariant** and the **regularity** of T are defined to be

$$a^*(T) = \max_{i \geq 0} \{a^i(T)\} \text{ and } \text{reg}(T) = \max_{i \geq 0} \{a^i(T) + i\}.$$

Note that $H^i_{T_+}(T) = 0$ for $i > \dim T$, so $a^*(T)$ and $\text{reg}(T)$ are well-defined and finite invariants.

Let S denote the homogeneous coordinate ring of $\tilde{X} \subseteq \mathbb{P}^m$. For each closed point $\varphi \in \tilde{X}$, i.e., φ is a homogeneous prime ideal in S, let R_φ be the localization of R at φ; that is, $R_\varphi = R \otimes_S S_\varphi$. The homogeneous localization of R at φ, denoted by R_φ, is the collection of all element of degree 0 (in t) of R_φ. Observe that homogeneous localization at φ annihilates the grading with respect to powers of t. Thus, inheriting from the bi-graded structure of R, the homogeneous localization R_φ is a \mathbb{N}-graded ring. The regularity and a^*-invariant of R_φ are therefore defined as usual.

Associated to $\phi : \tilde{X} \to \tilde{X}$, let

$$a^i(\phi) = \max \{a^i(R_{\varphi}) \mid \varphi \in \tilde{X} \} \text{ for } i \geq 0,$$

$$a^*(\phi) = \max \{a^*(R_{\varphi}) \mid \varphi \in \tilde{X}) \},$$

and

$$\text{reg}(\phi) = \max \{\text{reg}(R_{\varphi}) \mid \varphi \in \tilde{X}\}.$$

Remark 2.2. By definition, $a^*(\phi) = \max_{i \geq 0} \{a^i(\phi)\}$ and $\text{reg}(\phi) = \max_{i \geq 0} \{a^i(\phi) + i\}$. Note that $H^i_{R_{\varphi}}(R_{\varphi}) = [H^i_{\widetilde{R_{\varphi}}}][R_{\varphi}]$, where on the right hand side we view R under its \mathbb{N}-graded structure $\tilde{R} = \bigoplus_{p \in \mathbb{Z}} R_p$, which induces the embedding $S \hookrightarrow R$. Thus, $a^i(\phi)$ is a well-defined and finite invariant for any $i \geq 0$. As a consequence, $a^*(\phi)$ and $\text{reg}(\phi)$ are well-defined and finite invariants. These invariants are defined in a similar fashion to the projective a^*-**invariant** that was introduced in [16]. We shall also let r_ϕ denote the smallest integer r such that

$$a^*(\phi) = a^r(\phi).$$
Recall further that the Rees algebra $R = R[It]$ of I is naturally bi-graded with $R_{(p,q)} = (I^t)^{p+qd}t^q$, and we identify \tilde{X} with $\text{Proj} R \subseteq \mathbb{P}^n \times \mathbb{P}^m$. It can also be seen that \tilde{X} and X can be realized as the (closure of the) graph and the (closure of the) image of the rational map $\varphi : X \dashrightarrow \mathbb{P}^m$ given by $P \mapsto [F_0(P) : \cdots : F_m(P)]$ (cf. [8, 15, 16]). Under this identification, π and ϕ are restrictions on \tilde{X} of natural projections $\mathbb{P}^n \times \mathbb{P}^m \rightarrow \mathbb{P}^n$ and $\mathbb{P}^n \times \mathbb{P}^m \rightarrow \mathbb{P}^m$. We have the following diagram:

\[
\begin{array}{ccc}
\pi & \nearrow & \phi \\
X & \rightarrow & \tilde{X} \\
\end{array}
\]

Let I be the ideal sheaf of I, and let $L = IO_{\tilde{X}} = O_{\tilde{X}}(0,1)$.

Lemma 2.3. With notations as above.

1. The homogeneous coordinate ring of \tilde{X} is $S \cong k[F_0, \ldots, F_m]$.
2. $\phi^* O_X(q) = L^q \otimes \pi^* O_X(qd)$ $\forall q \in \mathbb{Z}$.
3. $O_{\tilde{X}}(p,q) = \pi^* O_X(p) \otimes \phi^* O_X(q) \cong L^q \otimes \pi^* O_X(p + qd)$ $\forall p, q \in \mathbb{Z}$.

Proof. (1) follows from the construction of φ. (2) and (3) follow from the graded structures of R, R and S. \qed

The next few lemmas exhibit how the α^*-invariant of fibers of ϕ governs sheaf cohomology groups via a push forward along ϕ.

Lemma 2.4. Let $p > \alpha^*(\phi)$. Then

1. $\phi_* O_{\tilde{X}}(p,q) = \widetilde{R^2 p}(q)$ and $R^j \phi_* O_{\tilde{X}}(p,q) = 0$ for any $j > 0$ and any $q \in \mathbb{Z}$,
2. $H^i(\tilde{X}, O_{\tilde{X}}(p,q)) = 0$ for $i > 0$ and $q \gg 0$.

Proof. By Lemma 2.3 and the projection formula we have

$\phi_* O_{\tilde{X}}(p,q) = \phi_* O_X(p,0) \otimes O_{\tilde{X}}(q)$ and $R^j \phi_* O_{\tilde{X}}(p,q) = R^j \phi_* O_X(p,0) \otimes O_{\tilde{X}}(q)$.

Thus, to show (1) it suffices to prove the assertion for $q = 0$.

Let \wp be any closed point of \tilde{X}, and consider the restriction $\phi_{\wp} : \tilde{X}_{\wp} = \text{Proj} R_{(\wp)} \rightarrow \text{Spec} O_{X,\wp}$ of ϕ over an open affine neighborhood $\text{Spec} O_{X,\wp}$ of \wp. We have

\[(2.1) \quad R^j \phi_{\wp} O_{\tilde{X}}(p,0) \mid_{\text{Spec} O_{X,\wp}} = R^j \phi_{\wp} \left(\widetilde{R^2 \wp} (p) \right) = H^j(\tilde{X}_{\wp}, \widetilde{R^2 \wp}(p)) \quad \forall j \geq 0.\]

For any $j \geq 0$ and any $\wp \in \tilde{X}$, we have $p > \alpha^*(\phi) \geq \alpha^j(R_{(\wp)})$; and thus, $[H^j_{R_{(\wp)}}, (R_{(\wp)})]_p = 0$. Moreover, the Serre-Grothendieck correspondence give us an exact sequence

\[
0 \rightarrow [H^{j+1}_{R_{(\wp)}}, (R_{(\wp)})]_p \rightarrow [R_{(\wp)}]_p = (R^2_{(\wp)})_p \\
\rightarrow H^0(\tilde{X}_{\wp}, \widetilde{R^2 \wp}(p)) \rightarrow [H^j_{R_{(\wp)}}, (R_{(\wp)})]_p \rightarrow 0
\]

and isomorphisms

$H^1(\tilde{X}_{\wp}, \widetilde{R^2 \wp}(p)) \cong [H^{j+1}_{R_{(\wp)}}, (R_{(\wp)})]_p$ for $i > 0$.

Therefore, for any \(j \geq 0 \) and any \(\varphi \in \bar{X} \),
\[
R^j \phi_* \mathcal{O}_{\bar{X}}(p, 0) \big|_{\text{Spec} \mathcal{O}_{\bar{X}, \varphi}} = H^j(\bar{X}_\varphi, \mathcal{R}_q(p)) = \begin{cases}
(\mathcal{R}_q^2)_{(\varphi)} & \text{for } j = 0 \\
0 & \text{for } j > 0.
\end{cases}
\]

This is true for any \(\varphi \in \bar{X} \), and so (1) is proved.

Now, it follows from (1) that the Leray spectral sequence \(H^i(\bar{X}, R^j \phi_* \mathcal{O}_{\bar{X}}(p, q)) \Rightarrow H^{i+j}(\bar{X}, \mathcal{O}_{\bar{X}}(p, q)) \) degenerates. Thus, for any \(j \geq 0 \),
\[
H^j(\bar{X}, \mathcal{O}_{\bar{X}}(p, q)) = H^j(\bar{X}, \mathcal{R}_p^2(q)).
\]

Moreover, since \(\mathcal{O}_{\bar{X}}(1) \) is a very ample divisor, we have \(H^j(\bar{X}, \mathcal{R}_p^2(q)) = 0 \) for all \(q \gg 0 \), and (2) is proved.

Lemma 2.5. Let \(r_\phi \) be defined as above.

1. If \(r_\phi \leq 1 \) then \(H^0(\bar{X}, \mathcal{O}_{\bar{X}}(a^*(\phi), q)) \neq \mathcal{R}_{(a^*(\phi), q)} \) for \(q \gg 0 \).
2. If \(r_\phi \geq 2 \) then \(H^{s-1}(\bar{X}, \mathcal{O}_{\bar{X}}(a^*(\phi), q)) \neq 0 \) for \(q \gg 0 \).

Proof. For simplicity, let \(a = a^*(\phi) \). By the definition of \(r_\phi \), we have
\[
(2.2) \begin{cases}
[H_{\mathcal{R}_1(\phi)}(\mathcal{R}_q(q))]_a = 0 & \text{for } i < r_\phi \text{ and any } \varphi \in \bar{X} \\
[H_{\mathcal{R}_1(\phi)}(\mathcal{R}_q(q))]_a \neq 0 & \text{for some } q \in \bar{X}.
\end{cases}
\]

1. If \(r_\phi \leq 1 \) then it follows from (2.2) and the Serre-Grothendieck correspondence that \(H^0(\bar{X}_q, \mathcal{R}(q)(a)) \neq \mathcal{R}(q)(a) \). This and (2.1) imply that \(\phi_* \mathcal{O}_{\bar{X}}(a, 0) \neq \mathcal{R}_a^2(q) \), and so \(\phi_* \mathcal{O}_{\bar{X}}(a, q) \neq \mathcal{R}_a^2(q) \) for any \(q \in \mathbb{Z} \).

Since both \(\phi_* \mathcal{O}_{\bar{X}}(a, q) = \phi_* \mathcal{O}_{\bar{X}}(a, 0) \otimes \mathcal{O}_{\bar{X}}(q) \) (by Lemma 2.3 and the projection formula) and \(\mathcal{R}_a^2(q) \) are generated by global sections for \(q \gg 0 \), we must have
\[
H^0(\bar{X}, \phi_* \mathcal{O}_{\bar{X}}(a, q)) \neq H^0(\bar{X}, \mathcal{R}_a^2(q)) \forall q \gg 0.
\]

Moreover, \(H^0(\bar{X}, \mathcal{O}_{\bar{X}}(a, q)) = H^0(\bar{X}, \phi_* \mathcal{O}_{\bar{X}}(a, q)) \). Thus,
\[
H^0(\bar{X}, \mathcal{O}_{\bar{X}}(a, q)) \neq \mathcal{R}_{(a, q)} \text{ for } q \gg 0.
\]

2. If \(r_\phi \geq 2 \), then it follows from (2.2) and (2.1) that
\[
(2.3) \begin{cases}
R^j \phi_* \mathcal{O}_{\bar{X}}(a, q) = 0 & \text{for } 0 < j < r_\phi - 1, \\
R^{s-1} \phi_* \mathcal{O}_{\bar{X}}(a, q) \neq 0.
\end{cases}
\]

By Lemma 2.3 and the projection formula, \(\phi_* \mathcal{O}_{\bar{X}}(a, q) = \phi_* \mathcal{O}_{\bar{X}}(a, 0) \otimes \mathcal{O}_{\bar{X}}(q) \). Thus, for \(q \gg 0 \) we have \(H^{s-1}(\bar{X}, \phi_* \mathcal{O}_{\bar{X}}(a, q)) = 0 \). From this, together with (2.3) and the Leray spectral sequence \(H^i(\bar{X}, R^j \phi_* \mathcal{O}_{\bar{X}}(a, q)) \Rightarrow H^{i+j}(\bar{X}, \mathcal{O}_{\bar{X}}(a, q)) \), we can deduce that
\[
H^{s-1}(\bar{X}, \mathcal{O}_{\bar{X}}(a, q)) = 0 \Rightarrow H^{s-1}(\bar{X}, \phi_* \mathcal{O}_{\bar{X}}(a, q)) \neq 0 \text{ for } q \gg 0.
\]

It then follows, since \(R^{s-1} \phi_* \mathcal{O}_{\bar{X}}(a, q) = R^{s-1} \phi_* \mathcal{O}_{\bar{X}}(a, 0) \otimes \mathcal{O}_{\bar{X}}(q) \) is globally generated for \(q \gg 0 \), that
\[
H^{s-1}(\bar{X}, \mathcal{O}_{\bar{X}}(a, q)) \neq 0 \text{ for } q \gg 0.
\]
Our first main result is a similar statement to Conjecture 1.1 for the a^*-invariant.

Theorem 2.6. Let $X = \text{Proj } R \subseteq \mathbb{P}^n$ be a projective scheme, and let $I \subseteq R$ be a homogeneous ideal generated by forms of degree d. Let $a^*(\phi) = \max\{a^*(\tilde{X}, p) \mid \phi \in \tilde{X}\}$. Then for $q \gg 0$, we have

$$a^*(I^q) = qd + a^*(\phi).$$

Proof. By a similar argument as in Lemma 2.4, considering π_* instead of ϕ_*, we can show that for $q \gg 0$,

$$(2.4) \quad \pi_* \mathcal{O}_{\tilde{X}}(p, q) = \tilde{R}^1_q(p) = \tilde{I}^q(p + qd) \text{ and } R^j \pi_* \mathcal{O}_{\tilde{X}}(p, q) = 0 \text{ for } j > 0.$$

This implies that for $q \gg 0$, the Leray spectral sequence $H^i(X, R^j \pi_* \mathcal{O}_{\tilde{X}}(p, q)) \Rightarrow H^{i+j}(\tilde{X}, \mathcal{O}_{\tilde{X}}(p, q))$ degenerates and we have

$$H^j(\tilde{X}, \mathcal{O}_{\tilde{X}}(p, q)) = H^j(X, \tilde{I}^q(p + qd)) \gg j \geq 0.$$

Therefore, for $j > 0$, $q \gg 0$ and $p > a^*(\phi)$, it follows from Lemma 2.4 that $H^j(X, \tilde{I}^q(p + qd)) = 0$. That is,

$$(2.5) \quad \left[H^{j+1}(I^q)\right]_{p+qd} = 0.$$

Furthermore, for $j = 0$ and $q \gg 0$, we have $H^0(X, \tilde{R}^2_q(q)) = H^0(\tilde{X}, \mathcal{O}_{\tilde{X}}(p, q)) = H^0(\tilde{X}, \tilde{I}^q(p + qd))$, where the first equality follows from Lemma 2.4. On the other hand, for $q \gg 0$, $H^0(\tilde{X}, \tilde{R}^2_q(q)) = (\tilde{R}^2_q)_q = \mathcal{R}_q = [I^q]_{p+qd}$. Thus, for $q \gg 0$, $H^0(X, \tilde{I}^q(p + qd)) = [I^q]_{p+qd}$. This and (2.5) imply that for $q \gg 0$,

$$a^*(I^q) \leq qd + a^*(\phi).$$

To prove the other inequality, let r_ϕ be defined as in Remark 2.2. We consider two cases: $r_\phi \leq 1$ and $r_\phi \geq 2$. If $r_\phi \leq 1$ then by Lemma 2.5, $H^0(X, \pi_* \mathcal{O}_{\tilde{X}}(a^*(\phi), q)) \neq \mathcal{R}_{a^*(\phi), q}$ for all $q \gg 0$. This implies that $H^0(X, \pi_* \mathcal{O}_{\tilde{X}}(a^*(\phi), q)) \neq \mathcal{R}_{a^*(\phi), q}$ for $q \gg 0$. That is,

$$H^0(X, \tilde{I}^q(a^*(\phi) + qd)) \neq [I^q]_{a^*(\phi)} \gg q \gg 0.$$

By the Serre-Grothendieck correspondence, for $q \gg 0$, we have either

$$\left[H^0_{R^+}(I^q)\right]_{a^*(\phi) + qd} \neq 0 \text{ or } \left[H^1_{R^+}(I^q)\right]_{a^*(\phi) + qd} \neq 0.$$

It then follows that $a^*(I^q) \geq qd + a^*(\phi)$ for $q \gg 0$.

If $r_\phi \geq 2$, then by Lemma 2.5, $H^{a-1}(X, \mathcal{O}_{\tilde{X}}(a^*(\phi), q)) \neq 0$ for $q \gg 0$. Moreover, for $q \gg 0$, it follows from (2.4) that the Leray spectral sequence

$$H^i(X, R^j \pi_* \mathcal{O}_{\tilde{X}}(p, q)) \Rightarrow H^{i+j}(\tilde{X}, \mathcal{O}_{\tilde{X}}(p, q))$$

degenerates. Thus, for $q \gg 0$, we have $H^{a-1}(X, \tilde{I}^q(a^*(\phi) + qd)) \neq 0$. By the Serre-Grothendieck correspondence, we have $\left[H^i_{R^+}(I^q)\right]_{a^*(\phi) + qd} \neq 0$ for $q \gg 0$. This implies that $a^*(I^q) \geq qd + a^*(\phi)$ for $q \gg 0$. \qed
Example 2.7. Let $R = \bigoplus_{n \geq 0} R_n$ be a Cohen-Macaulay standard graded domain, and let $A = (a_{ij})_{1 \leq i \leq r, 1 \leq j \leq s}$ be an $r \times s$ matrix ($r \leq s$) of entries in R_1. Let $I_t(A)$ denote the ideal generated by $t \times t$ minors of A, and let $I = I_r(A)$. Assume that for any $1 \leq t \leq r$, $\text{ht} I_t(A) \geq (r - t + 1)(s - r) + 1$. Let $t(\omega_R)$ be the least generating degree of ω_R, the canonical module of R. Then for $q \gg 0$,

$$a^*(I^q) = qr - t(\omega_R).$$

Indeed, let $S = k[I_t]$ denote the homogeneous coordinate ring of \tilde{X}, let φ be any point in \tilde{X}, and let $T = R_{(\varphi)}$. By [11, Theorem 3.5], the Rees algebra R is Cohen-Macaulay. Thus, $R_{(\varphi)}$ is Cohen-Macaulay. This implies that

$$a^*(T) = a^\dim T(T) = -\min\{s \mid [\omega_T]_s \neq 0\}.$$

Furthermore, by [17, Example 3.8],

$$\omega_R = \omega_R(1, t)g^{-2} = \omega_R \oplus \omega_R t \oplus \cdots \oplus \omega_R t^{g-2} \oplus \omega_R t^{g-1} \oplus \cdots,$$

where $g = \text{ht} I$. Hence, by localizing at φ, we obtain

$$\omega_T = (\omega_R)_{(\varphi)} = (\omega_R(1, t)g^{-2})_{(\varphi)}.$$

Observe that the homogeneous localization at φ annihilates the grading inherited from powers of t, so it follows that the degrees of ω_T arise from the degrees of ω_R. That is, $t(\omega_T) = t(\omega_R)$, and the conclusion follows from Theorem 2.6.

3. Regularity of powers of ideals

In this section, we investigate the asymptotic linearity of regularity and prove a special case of Conjecture 1.1.

We start by giving an upper and a lower bound for the free constant of $\text{reg}(I^q)$ in terms of $a^*(\varphi)$.

Theorem 3.1. Let $X = \text{Proj} R \subseteq \mathbb{P}^n$ be a projective scheme, and let $I \subseteq R$ be a homogeneous ideal generated by forms of degree d. Let $a^*(\varphi) = \max\{a^*(\tilde{X}_\varphi) \mid \varphi \in \tilde{X}\}$. Then there exists an integer $0 \leq r \leq \dim R$ such that for $q \gg 0$, we have $\text{reg}(I^q) =qd + a^*(\varphi) + r$. In particular, for $q \gg 0$,

$$qd + a^*(\varphi) \leq \text{reg}(I^q) \leq qd + a^*(\varphi) + \dim R.$$

Proof. Suppose $\text{reg}(I^q) =aq + b$ for $q \gg 0$. It can be easily seen from the definition of the regularity and a^*-invariant of graded R-modules that $a^*(I^q) \leq \text{reg}(I^q) \leq a^*(I^q) + \dim R$ for any q. This and Theorem 2.6 imply that $a = d$; that is, $\text{reg}(I^q) = qd + b$ for $q \gg 0$. Let $r = b - a^*(\varphi)$. Then $\text{reg}(I^q) = qd + a^*(\varphi) + r$, and since $a^*(I^q) \leq \text{reg}(I^q) \leq a^*(I^q) + \dim R$, we have $0 \leq r \leq \dim R$.

Our next result shows that Conjecture 1.1 holds under an extra condition that each fiber \tilde{X}_φ is an arithmetically Cohen-Macaulay scheme.

Theorem 3.2. Let $X = \text{Proj} R \subseteq \mathbb{P}^n$ be an irreducible projective scheme of dimension at least 1, and let $I \subseteq R$ be a homogeneous ideal generated by forms of degree d. Let $\text{reg}(\varphi) = \max\{\text{reg}(\tilde{X}_\varphi) \mid \varphi \in \tilde{X}\}$. Assume that each fiber \tilde{X}_φ is an arithmetically Cohen-Macaulay scheme. Then for $q \gg 0$, we have

$$\text{reg}(I^q) = qd + \text{reg}(\varphi).$$
Proof. Let \(l = \dim X \geq 1 \). Since \(X \) is irreducible, \(\tilde{X} \) is also irreducible. Moreover, for any point \(\wp \in \tilde{X} \), \(\text{Spec} \mathcal{O}_{\tilde{X}, \wp} \) is an open neighborhood of \(\wp \), and so \(\tilde{X}_\wp = \phi^{-1}(\text{Spec} \mathcal{O}_{X, \wp}) \) is an open subset in \(\tilde{X} \). Thus, \(\dim \tilde{X}_\wp = \dim \tilde{X} = \dim X \).

By the hypothesis, for each \(\wp \in \tilde{X} \), \(\mathcal{R}(\wp) \) is a Cohen-Macaulay ring of dimension \(\dim \tilde{X}_\wp + 1 = l + 1 \). This implies that \(a^*(\mathcal{R}(\wp)) = a^{l+1}(\mathcal{R}(\wp)) \) and \(\text{reg}(\mathcal{R}(\wp)) = a^{l+1}(\mathcal{R}(\wp)) + (l + 1) \). Therefore,

\[
\begin{align*}
(3.1) & \quad a^*(\wp) = a^{l+1}(\wp), \\
(3.2) & \quad \text{reg}(\wp) = a^*(\wp) + l + 1.
\end{align*}
\]

It follows from (3.1) that \(r_\wp = l + 1 \geq 2 \). By the same arguments as the last part of the proof of Theorem 2.6, we have that for \(q \gg 0 \), \(\text{reg}(I^q) \geq qd + a^*(\wp) + r_\wp = qd + a^*(\wp) + \dim R \). This, together with Theorem 3.1, implies that for \(q \gg 0 \), \(\text{reg}(I^q) = qd + a^*(\wp) + \dim R \). The conclusion now follows from (3.2). \(\square \)

Corollary 3.3. Let \(X = \text{Proj} R \subseteq \mathbb{P}^n \) be an irreducible projective scheme of dimension at least 1, and let \(I \subseteq R \) be a homogeneous ideal generated by forms of degree \(d \). Assume that \(\mathcal{R} \) is a Cohen-Macaulay ring. Then for \(q \gg 0 \),

\[
\text{reg}(I^q) = qd + \text{reg}(\wp).
\]

Proof. Since \(\mathcal{R} \) is Cohen-Macaulay, so is \(\mathcal{R}(\wp) \) for any \(\wp \in \tilde{X} \). Thus, each fiber \(\tilde{X}_\wp \) is arithmetically Cohen-Macaulay. The conclusion follows from Theorem 3.2. \(\square \)

We shall end the paper with a number of examples in which the hypotheses of Corollary 3.3 are satisfied.

Example 3.4. Let \(R \) and \(I \) be as in Example 2.7. In this case, \(I \) is generated in degree \(r \). As noted before, the Rees algebra \(\mathcal{R} \) is Cohen-Macaulay. Notice further that \(X = \text{Proj} R \) is an irreducible projective scheme. Thus, by Corollary 3.3, we have

\[
\text{reg}(I^q) = qr + \text{reg}(\wp) \quad \forall \ q \gg 0.
\]

Example 3.5. Let \(R = k[x_{ij}]_{1 \leq i \leq r, 1 \leq j \leq s} \) and let \(I \) be the ideal generated by \(t \times t \) minors of \(M = (x_{ij})_{1 \leq i \leq r, 1 \leq j \leq s} \) for some \(1 \leq t \leq \min\{r, s\} \). By [11, Theorem 3.5] and [3, Corollary 3.3], the Rees algebra \(\mathcal{R} \) of \(I \) is Cohen-Macaulay. Also, \(X = \text{Proj} R \) is an irreducible projective scheme. It follows from Corollary 3.3 that

\[
\text{reg}(I^q) = qt + \text{reg}(\wp) \quad \forall \ q \gg 0.
\]

Example 3.6. Let \(R \) be a Cohen-Macaulay graded domain of dimension at least 2. Let \(I \) be either a complete intersection, or an almost complete intersection that is also generically a complete intersection. Assume that \(I \) is generated in degree \(d \). Then the Rees algebra \(\mathcal{R} \) of \(I \) is Cohen-Macaulay (cf. [2, 21]). By Corollary 3.3, we have

\[
\text{reg}(I^q) = qd + \text{reg}(\wp) \quad \forall \ q \gg 0.
\]

Acknowledgement

The author thanks M. Chardin, C. Polini and B. Ulrich for stimulating discussions on the topic, and thanks D. Eisenbud for explaining their results in [10]. The author is partially supported by Board of Regents Grant LEQSF(2007-10)-RD-A-30 and Tulane’s Research Enhancement Fund.
References

TULANE UNIVERSITY, DEPARTMENT OF MATHEMATICS, 6823 ST. CHARLES AVE., NEW ORLEANS, LA 70118, USA
E-mail address: tai@math.tulane.edu
URL: http://www.math.tulane.edu/~tai/