LOCAL GAGLIARDO–NIRENBERG ESTIMATES FOR ELLIPTIC SYSTEMS OF VECTOR FIELDS

J. HOUNIE AND T. PICON

Abstract. We extend the global L^1 estimates proved by Bourgain and Brezis and Lanzani and Stein for the de Rham complex on \mathbb{R}^N to the setup of local L^1 estimates for the differential complex associated to an involutive elliptic structure spanned by a family of linearly independent smooth complex vector fields.

1. Introduction

A standard a priori estimate in the classical Hodge theory is, for $1 < p < \infty$,

$$\|\nabla u\|_{L^p} \leq C_p (\|du\|_{L^p} + \|d^*u\|_{L^p}), \quad u \in C_\infty^\infty (\mathbb{R}^N; \Lambda^k \mathbb{R}^N),$$

where d is the exterior differential, d^* its dual operator and ∇u denotes the component-wise gradient of u. This estimate is known to be false when $p = 1, \infty$. By the Sobolev embedding theorem, (1.1) implies

$$\|u\|_{L^{p^*}} \leq C_p (\|du\|_{L^p} + \|d^*u\|_{L^p}), \quad u \in C_\infty^\infty (\mathbb{R}^N; \Lambda^k \mathbb{R}^N),$$

with $p^* = pN/(N - p)$. The limiting case as $p \searrow 1$ of (1.2) is

$$\|u\|_{L^{N/(N - 1)}} \leq C (\|du\|_{L^1} + \|d^*u\|_{L^1}), \quad u \in C_\infty^\infty (\mathbb{R}^N; \Lambda^k \mathbb{R}^N),$$

which, however, cannot be obtained by combining the Gagliardo–Nirenberg inequality with (1.1), since $C_p \to \infty$ as $p \searrow 1$. Nevertheless, Bourgain and Brezis [2, 3] and Lanzani and Stein [9] have shown that (1.3) still holds for k-forms, as long as $k \neq 1$, $N - 1$ (for $k = 1$ and $N - 1$ appropriate substitute a priori estimates are also known).

Estimates of this type have been extended in several directions, mainly within the framework of the de Rham complex and constant vector fields [10–12, 17–19], although related inequalities in the setup of nilpotent groups [4] and CR complexes [20] also have been considered quite recently.

Notice that if u is a zero-form, i.e., a function, (1.3) may be written as $\|u\|_{L^{N/(N - 1)}} \leq C \|\nabla u\|_{L^1}$ so we may regard (1.3) as a generalization of the Sobolev–Gagliardo–Nirenberg inequality

$$\|u\|_{L^{N/(N - 1)}} \leq C \sum_{j=1}^n \|L_j u\|_{L^1}, \quad u \in C_\infty^\infty (\mathbb{R}^N),$$

where $L_j = \partial_{x_j}$ and $n = N$. In this paper, we address the following question. Suppose that L_1, \ldots, L_n is a system of linearly independent vector fields with smooth complex
coefficients defined on an open set \(\Omega \subset \mathbb{R}^N \): for which systems estimates like (1.4) are valid, at least locally? The answer is given by

Theorem 1.1. If the system of vector fields \(L_1, \ldots, L_n, n \geq 2 \), is elliptic then every point \(x_0 \in \Omega \) is contained in an open neighborhood \(U \subset \Omega \) such that for some \(C > 0 \)

\[
(1.5) \quad \|u\|_{L^{N/(N-1)}} \leq C \sum_{j=1}^{n} \|L_j u\|_{L^1}, \quad u \in C^\infty_c(U),
\]

holds. Conversely, if (1.5) holds, the system must be elliptic on \(U \).

We recall that the ellipticity of the system \(\{L_1, \ldots, L_n\} \) means that, for any real 1-form \(\omega \) (i.e., any section of \(T^*(\Omega) \)): \(\langle \omega, L_j \rangle = 0 \), \(j = 1, \ldots, n \), \(\implies \omega = 0 \).

When the system \(\mathcal{L} = \{L_1, \ldots, L_n\} \) is involutive, i.e., each commutator \([L_j, L_k]\), \(1 \leq j, k \leq n \), is a linear combination of \(L_1, \ldots, L_n \), the subbundle of \(\mathbb{C} T(\Omega) \) spanned by \(\mathcal{L} \) is denoted by \((\Omega, \mathcal{L}) \) and called an involutive (or formally integrable) structure. Examples of involutive structures include integrable distributions in the sense of Frobenius, complex structures and CR structures. If the system \(\{L_1, \ldots, L_n\} \) is, in addition, elliptic, an appropriate version of the Newlander–Nirenberg states that the structure \(\mathcal{L} \) is locally integrable (on the subject of locally integrable structures we refer to [1, 16]). In particular, there is a natural complex of differential operators \(d_\mathcal{L} \) (which is precisely the de Rham complex when \(L_j = \partial_{x_j}, j = 1, \ldots, N \)) and it is natural to ask whether estimates analog to (1.3) hold with \(d_\mathcal{L} \) and \(d^*_\mathcal{L} \) in the place of \(d \) and \(d^* \). Suppose \(\mathcal{L} = \{L_1, \ldots, L_n\} \) is a locally integrable system on \(\Omega \) and denote by \(E^k(\Omega) \) the space of \(k \)-forms, \(0 \leq k \leq N \), with complex coefficients, i.e., the smooth sections of the vector bundle \(\wedge^k \mathbb{C} T^*(\Omega) \) and let \(\mathcal{L}^\perp(\Omega) \) be the subbundle of \(\mathbb{C} T^*(\Omega) \) of all \(\omega \in E^1(\Omega) \) such that \(\langle \omega, L \rangle = 0 \) for all sections of \(\mathcal{L} \). Denote by \(\mathcal{I} \) the ideal generated by \(\mathcal{L}^\perp(\Omega) \) in \(\bigotimes_{k=0}^N \wedge^k \mathbb{C} T^*(\Omega) \). Hence, if \(\omega_1, \ldots, \omega_m, n + m = N \), is a set of local generators of \(\mathcal{L}^\perp(\Omega) \), then \(\mathcal{I}^k(\Omega) = \mathcal{I} \cap \wedge^k \mathbb{C} T^*(\Omega), 1 \leq k \leq n \) is spanned by the \(k \)-forms

\[
\omega_j \wedge \omega', \quad j = 1, \ldots, m, \quad \omega' \in E^{k-1}(\Omega).
\]

Write \(\mathfrak{R}^k(\Omega) = \wedge^k \mathbb{C} T^*(\Omega)/\mathcal{I}^k(\Omega), 0 \leq k \leq n \), and denote by \(\tilde{E}^k(\Omega) \) the space of smooth sections of the vector bundle \(\mathfrak{R}^k(\Omega) \). The de Rham complex [5] \(d: E^k(\Omega) \to E^{k+1}(\Omega) \), given by the exterior derivative on complex-valued forms, gives rise to a new complex \(d_\mathcal{L} \) associated to the structure \(\mathcal{L} \),

\[
d_{\mathcal{L}, k}: \tilde{E}^k(\Omega) \to \tilde{E}^{k+1}(\Omega), \quad 0 \leq k \leq n.
\]

We have

Theorem 1.2. Assume that the system of vector fields \(L_1, \ldots, L_n, n \geq 2 \), is elliptic and involutive and that \(0 \leq \ell \leq n \) is neither 1 nor \(n-1 \). Then every point \(x_0 \in \Omega \) is contained in an open neighborhood \(U \subset \Omega \) such that for some \(C > 0 \)

\[
\|u\|_{L^{N/(N-1)}} \leq C \left(\|d_{\mathcal{L}, \ell} u\|_{L^1} + \|d^*_{\mathcal{L}, \ell-1} u\|_{L^1} \right), \quad u \in \tilde{E}^\ell_c(U).
\]

For the special values \(\ell = 1, n-1 \) we have estimates involving the norm of the localizable Hardy space \(h^1(\mathbb{R}^N) \) of Goldberg [6].
Theorem 1.3. Assume that the system of vector fields L_1, \ldots, L_n, $n \geq 2$, is elliptic and involutive. Then every point $x_0 \in \Omega$ is contained in an open neighborhood $U \subset \Omega$ such that for some $C > 0$

$$
\|u\|_{L^{N/(N-1)}} \leq C \left(\|d\bar{L}_0 \|_{H^1} + \|dL_1 u\|_{L^1} \right), \quad u \in \tilde{E}_c^1(U),
$$

$$
\|u\|_{L^{N/(N-1)}} \leq C \left(\|d\bar{L}_{n-2} \|_{L^1} + \|dL_n u\|_{H^1} \right), \quad u \in \tilde{E}_c^{n-1}(U).
$$

The organization of the paper is as follows. In Section 2, we prove the converse part of Theorem 1.1 (Proposition 2.1) and a variation of a lemma of Van Schaftingen (Lemma 2.1) that will be instrumental in the proof of Theorem 2.1. The latter implies the other part of Theorem 1.1. The proof of Theorem 2.1 is given in Section 3 while Section 4 is devoted to the proof of Theorem 4.1, which implies Theorem 1.2. The special cases $\ell = 1$ and $n - 1$ are also dealt with in Theorem 4.2.

2. A Sobolev–Gagliardo–Nirenberg inequality

Consider n complex vector fields L_1, \ldots, L_n, $n \geq 1$, with smooth coefficients defined on a neighborhood Ω of the origin $0 \in \mathbb{R}^N$, $N \geq 2$, that may be viewed as sections of the vector bundle $\mathbb{C}T(\Omega)$ as well as first-order differential operators. We will always assume that

(a) L_1, \ldots, L_n are everywhere linearly independent.

Most of the time, we will also assume that

(b) the system $\{L_1, \ldots, L_n\}$ is elliptic.

This means that, for any real 1-form ω (i.e., any section of $T^*(\Omega)$)

$$
\langle \omega, L_j \rangle = 0, \quad j = 1, \ldots, n, \quad \Rightarrow \quad \omega = 0.
$$

This implies that the number n of vector fields must satisfy

$$
\frac{N}{2} \leq n \leq N.
$$

Alternatively, (b) is equivalent to saying that the second-order operator

$$
L_1^t \bar{L}_1 + \cdots + L_n^t \bar{L}_n
$$

is elliptic. Here, $\bar{L}_j, \ j = 1, \ldots, n$, denotes the vector field obtained from L_j by conjugating its coefficients and L_j^t is the formal transpose of L_j.

We are interested in the following question: characterize the systems of complex vector fields for which there exist local a priori estimates

(2.1) $$
\|u\|_{L^{N/(N-1)}} \leq C \sum_{j=1}^{n} \|L_j u\|_{L^1}, \quad u \in C^\infty_c(U),
$$

for some neighborhood U of the origin and some $C > 0$.

Due to the local nature of the estimates, if (2.1) is valid, similar estimates replacing $N/(N-1)$ by any $p \in [1, N/(N-1)]$ will also hold true. Notice that in the case $n = N$, $L_k = \partial/\partial x_k, \ 1 \leq k \leq N$, (2.1) is just the well known Sobolev–Gagliardo–Nirenberg inequality that holds without any restriction on the size of the support of the test functions.

Proposition 2.1. If (2.1) holds the system $\{L_1, \ldots, L_n\}$ is elliptic.
Proof. Write \(p = N/(N - 1) \), \(L_j = \sum_{k=1}^{N} a_{jk}(x) \partial_k \), \(\partial_k = \partial/\partial x_k \), choose a bump function \(\phi(x) \in C_0^\infty(U) \) and set \(\phi_\varepsilon(x) = \phi(x/\varepsilon) \), so \(\phi_\varepsilon \in C_0^\infty(U) \) for small \(\varepsilon > 0 \). Applying (2.1) to \(\phi_\varepsilon \) we obtain

\[
\|\phi\|_{L^p} \leq C \sum_{j=1}^{n} \|L_j^\varepsilon \phi\|_{L^1}
\]

with \(L_j^\varepsilon = \sum_{k=1}^{N} a_{jk}(\varepsilon x) \partial_k \). Letting \(\varepsilon \to 0 \) we see that

(2.2) \[
\|\phi\|_{L^p} \leq C \sum_{j=1}^{n} \|L_j^0 \phi\|_{L^1}.
\]

If the system with constant coefficients \(\{L^1_0, \ldots, L^n_0\} \) is not elliptic, we may assume after a linear change of variables that \(a_{j1}(0) = 0 \), \(j = 1, \ldots, n \). Taking now \(\phi_\varepsilon(x) = \phi_1(x_1/\varepsilon)\phi_2(x') \), \(x' = (x_2, \ldots, x_N) \) in (2.2) we get, with \(\phi = \phi_1\phi_2 \)

\[
\|\phi\|_{L^p} \leq C\varepsilon^{1-1/p} \sum_{j=1}^{n} \|L_j^0 \phi\|_{L^1} = C\varepsilon^{1/N} \sum_{j=1}^{n} \|L_j^0 \phi\|_{L^1},
\]

which leads to a contradiction as \(\varepsilon \searrow 0 \). Hence, \(\{L^1_0, \ldots, L^n_0\} \) is elliptic and therefore the system \(\{L_1, \ldots, L_n\} \) is elliptic at \(x = 0 \). The same argument can be applied to a generic point of \(\Omega \). \(\square\)

Theorem 2.1. Let \(L_1, \ldots, L_n, n \geq 2 \), satisfy (a) and (b). There exists a neighborhood \(U \) of the origin and \(C > 0 \) such that

(2.3) \[
\|u\|_{L^{N/(N-1)}} \leq C \sum_{j=1}^{n} \|L_j u\|_{L^1}, \quad u \in C_0^\infty(U).
\]

Note that the assumption \(n \geq 2 \) in Theorem 2.1 cannot be dropped. Indeed, (2.3) fails for the elliptic vector field \(L = \partial_1 + i\partial_2 \) in any neighborhood of the origin \(U \subseteq \mathbb{R}^2 \) as can be seen by taking \(u \) of the form

\[
\psi^\delta(x)(\phi_\varepsilon \ast E)(x), \quad E(x) = \frac{1}{\pi(x_1 + ix_2)}, \quad \phi_\varepsilon(x) = \varepsilon^{-2} \phi(x/\varepsilon), \quad \psi^\delta(x) = \psi(x/\delta),
\]

where \(\phi(x) \) and \(\psi(x) \) are bump functions. Recalling that \(E \) is a fundamental solution of the Cauchy–Riemann operator and letting \(\varepsilon \searrow 0 \), it is easy to blow up the estimate \(\|u\|_{L^2} \leq C\|Lu\|_{L^1} \).

Since the vector fields

\[
L_j = \sum_{k=1}^{N} a_{jk}(x) \frac{\partial}{\partial x_k}, \quad j = 1, \ldots, n
\]

are linearly independent, after shrinking \(\Omega \) and relabeling of the indices we may assume that the matrix \((a_{jk})_{1 \leq j, k \leq n} \) is invertible in a neighborhood of \(\overline{\Omega} \). Let \((b_{jk})_{1 \leq j, k \leq n} \) be the inverse matrix and set

\[
L^\#_j = \sum_{k=1}^{N} b_{jk}(x)L_k, \quad j = 1, \ldots, n.
\]
As the coefficients b_{jk} are bounded in Ω it will be enough to prove (2.3) with the vectors fields L_j replaced by the vectors fields $L^\#_j$. Furthermore, we have

$$L^\#_j = \frac{\partial}{\partial x_j} + \sum_{k=1}^m c_{jk}(x) \frac{\partial}{\partial x_{n+k}}, \quad j = 1, \ldots, n,$$

where the coefficients c_{jk} are smooth and $m = N - n$. Moreover, by modifying the functions $c_{jk}(x)$ outside a neighborhood of Ω and extending them to \mathbb{R}^N we may assume that $L^\#_1, \ldots, L^\#_n$ are globally defined on \mathbb{R}^N and that the functions $c_{jk}(x)$ have bounded derivatives of all orders. In other words, we may have assumed from the start that the vector fields of the system $\{L_1, \ldots, L_n\}$ have the form

$$(a') \quad L_j = \frac{\partial}{\partial x_j} + \sum_{k=1}^m c_{jk}(x) \frac{\partial}{\partial x_{n+k}}, \quad j = 1, \ldots, n,$$

with smooth coefficients globally defined on \mathbb{R}^N that possess bounded derivatives of all orders. Similarly, hypothesis (b) could have been replaced by the uniform ellipticity of L_j.

If, in addition, the vector fields of the system $\{L_1, \ldots, L_n\}$ are bounded derivatives of all orders, we may have assumed from the start that the vector fields of the system $\{L_1, \ldots, L_n\}$ have the form

$$(b') \quad \Delta L = L^*_1 \bar{L}_1 + \cdots + L^*_n \bar{L}_n,$$

where L^*_j is the formal transpose of L_j and \bar{L}_j is its conjugate vector field, i.e., for some constant $c > 0$ and all $x, \xi \in \mathbb{R}^N$

$$\sum_{j=1}^n \xi_j + \sum_{k=1}^m c_{jk} \xi_{n+k} \geq c|\xi|^2.$$

From now on, we will work in this global setup. The following lemma, that does not require ellipticity, is one of the ingredients in the proof of Theorem 2.1.

Lemma 2.1. Assume that $n \geq 2$ and the system $\{L_1, \ldots, L_n\}$ satisfies (a'). For any $u \in C^\infty_c(\mathbb{R}^N)$ write $f_j = L_j u$. Then, there exist $C > 0$ such that for any $u, \phi \in C^\infty_c(\mathbb{R}^N)$ and $1 \leq j \leq n$

$$\left(2.4\right) \quad \left| \int f_j(x) \phi(x) \, dx \right| \leq C \left(\sum_{j=1}^n \|f_j\|_{L^1} + \|u\|_{L^1} \right) \|\phi\|_{W^{1, N}}.$$

If, in addition, the vector fields L_1, \ldots, L_n have constant coefficients then

$$\left(2.4'\right) \quad \left| \int f_j(x) \phi(x) \, dx \right| \leq C \left(\sum_{j=1}^n \|f_j\|_{L^1} \right) \|\nabla \phi\|_{L^N}.$$

Note that taking the sup on the right-hand side (2.4) with ϕ in the unit ball of $W^{1, N}$ we obtain the equivalent estimate

$$\left(2.5\right) \quad \sum_{j=1}^n \|f_j\|_{W^{-1, N/(N-1)}} \leq C \left(\sum_{j=1}^n \|f_j\|_{L^1} + \|u\|_{L^1} \right).$$

The proof of Lemma 2.1 adapts the arguments of Van Schaftingen in [17], in particular, we recall a useful decomposition of a test function $\phi(x) \in C^\infty_c(\mathbb{R}^\mu)$, depending on a parameter $\varepsilon > 0$. Choose a bump function $\eta(x) \in C^\infty_c(\mathbb{R}^\mu)$ with $\int \eta(x) \, dx = 1$, write $\eta_\varepsilon(x) = \varepsilon^{-\mu} \eta(x/\varepsilon)$ and set $\phi_1 = \phi - \eta_\varepsilon * \phi$, $\phi_2 = \eta_\varepsilon * \phi$. Then, for any $p > \mu$ there...
exists a positive constant \(C = C(\mu, p) \) such that the decomposition \(\phi = \phi_1 + \phi_2 \) satisfies for any \(\varepsilon > 0 \) and \(\gamma = 1 - \mu/p \)

\[
\begin{align*}
\|\phi_1\|_{L^\infty} & \leq C\varepsilon\gamma \|\nabla \phi\|_{L^p}, \\
\|\phi_2\|_{L^\infty} & \leq C\varepsilon^{\gamma - 1} \|\phi\|_{L^p}, \\
\|\nabla \phi_2\|_{L^\infty} & \leq C\varepsilon^{\gamma - 1} \|\nabla \phi\|_{L^p}.
\end{align*}
\]

We may now prove Lemma 2.1.

Proof. For \(j = 2 \), the left-hand side of (2.4) may be written as

\[
\int_\mathbb{R} J(x_1) \, dx_1, \quad J(x_1) = \int_{\mathbb{R}^{N-1}} f_2^{x_1}(x') \phi^{x_1}(x') \, dx',
\]

with \(x' = (x_2, \ldots, x_N) \), \(f_2^{x_1}(x') = f_2(x_1, x') \) and \(\phi^{x_1}(x') = \phi(x_1, x') \). Using the above decomposition for \(\phi^{x_1} \in C_c^\infty(\mathbb{R}^{N-1}) \) we write \(J(x_1) = J_1(x_1) + J_2(x_1) \) with

\[
J_k(x_1) = \int_{\mathbb{R}^{N-1}} f_2^{x_1}(x') \phi_k^{x_1}(x') \, dx', \quad k = 1, 2.
\]

Then

\[
|J_1(x_1)| \leq \|f_2^{x_1}\|_{L^1(\mathbb{R}^{N-1})} \|\phi_k^{x_1}\|_{L^\infty}
\]

and

\[
J_2(x_1) = \int_{-\infty}^{x_1} \int_{\mathbb{R}^{N-1}} \frac{\partial f_2}{\partial s}(s, x') \phi_k^{x_1}(x') \, dx' \, ds.
\]

Next we write \(L_1 f_2 = L_2 f_1 + [L_1, L_2] u \) as

\[
\frac{\partial f_2}{\partial x_1} = - \sum_{k=n+1}^{N} a_{1k} \frac{\partial f_2}{\partial x_k} + [L_1, L_2] u + L_2 f_1.
\]

Note that, \((a') \) shows that no term on the right-hand side of (2.11) involves derivatives with respect to \(x_1 \). Plugging (2.11) in the integrand of (2.10) and integrating by parts in the integral over \(\mathbb{R}^{N-1} \) to switch the derivatives of \(f_1, f_2 \) and \(u \) over \(\phi_k^{x_1} \) we obtain

\[
|J_2(x_1)| \leq C(\|f\|_{L^1} + \|u\|_{L^1})(\|\nabla \Phi_2^{x_1}\|_{L^\infty} + \|\Phi_2^{x_1}\|_{L^\infty})
\]

with the notation \(\|f\|_{L^1} = \sum_{j=1}^{n} \|f_j\|_{L^1}. \) To estimate \(\|\nabla \Phi_2^{x_1}\|_{L^\infty} + \|\Phi_2^{x_1}\|_{L^\infty} \) we will apply estimates (2.7) and (2.8) with \(p = N, \mu = N - 1, \gamma = 1/N, \) with an appropriate choice of \(\varepsilon = \varepsilon(x_1). \) If \(J(x_1) \neq 0 \) note that \(\|f_2^{x_1}\|_{L^1} > 0. \) In this case, we set

\[
\varepsilon(x_1) = \frac{b}{a(x_1)}, \quad a(x_1) = \|f_2^{x_1}\|_{L^1}, \quad b = \|f\|_{L^1} + \|u\|_{L^1}.
\]

If follows from (2.6)–(2.9) and (2.12) that

\[
|J(x_1)| \leq C(a(x_1)|\phi_k^{x_1}|_{L^\infty} + b \|\nabla \Phi_2^{x_1}\|_{L^\infty} + b \|\Phi_2^{x_1}\|_{L^\infty})
\]

\[
\leq C(a \varepsilon^{1/N}|\phi^{x_1}|_{L^N} + b \varepsilon^{(1-N)/N}(\|\phi^{x_1}\|_{L^N} + \|\nabla \phi^{x_1}\|_{L^N}))
\]

\[
\leq C(\|f\|_{L^1} + \|u\|_{L^1})^{1/N} f_2^{x_1}\|_{L^1}^{(N-1)/N}(\|\phi^{x_1}\|_{L^N} + \|\nabla \phi^{x_1}\|_{L^N}).
\]
If \(J(x_1) = 0 \) the inequality is trivially true. Integrating on \(\mathbb{R} \) the latter estimate and using Hölder inequality with exponents \(N \) and \(N/(N-1) \) we obtain
\[
\int_\mathbb{R} |J(x_1)| \leq C b^{1/N} \| f_2 \|_{L_{\infty}^1}^{1-1/N}\|\phi\|_{W^{1,N}} \leq C(2\|f\|_{L^1} + \|u\|_{L^1})\|\phi\|_{W^{1,N}}.
\]
This proves (2.4) for \(j = 2 \) and a similar argument can be given for any \(1 \leq j \leq n \).

When the \(L_j \)'s have constant coefficients we have \([L_j, L_k] = 0\) and \(L_j^* = -L_j \), so the same calculations give the better estimate (2.4').

3. Proof of Theorem 2.1

Proof. To estimate the right-hand side of (2.3) we must look at
\[
\langle u, \phi \rangle = \int u(x)\phi(x) \, dx
\]
with \(\phi \in C_c^\infty(U) \) and \(\|\phi\|_{L^N} \leq 1 \). Here \(U \) is a ball \(B(0, \rho) \) centered at the origin with small radius \(\rho < 1/2 \) to be chosen later. We assume that the vector fields \(L_1, \ldots, L_n \) satisfy (a') and (b'), in particular, the second-order partial differential operator
\[
\Delta_L(x, D) = L_1^1L_1 + \cdots + L_n^1L_n,
\]
may be regarded as an elliptic pseudo-differential operator with symbol in the Hörmander class \(S^2 = S^2_{1,0}(\mathbb{R}^N) \) (since we will only work with symbols of type (1,0), the type will be omitted in the notation; on the subject of pseudo-differential operators we refer, for instance, to [8, Chapter 3, 15]). Then, there exist symbols \(q(x, \xi) \in S^{-2} \) and \(r(x, \xi) \in S^{-\infty} \), such that
\[
\phi = \Delta_L(x, D)q(x, D)\phi + r(x, D)\phi, \quad \phi \in C_c^\infty(R^N).
\]

Then
\[
\langle u, \phi \rangle = \sum_{j=1}^N \langle L_j u, \bar{L}_j(x, D)q(x, D)\phi \rangle + \langle u, r(x, D)\phi \rangle
\]
\[
= \sum_{j=1}^N \langle L_j u, \bar{L}_j(x, D)\chi(x)q(x, D)\phi \rangle + \langle u, r(x, D)\phi \rangle,
\]
where \(\chi(x) \in C_c^\infty(U^*) \) is identically equal to 1 on a neighborhood of \(\bar{U} \) and \(U^* = B(0, 1) \). Set \(\psi_j = L_j(x, D)\chi(x)q(x, D)\phi, f_j = L_ju \) and apply (2.4) to obtain
\[
|\langle f_j, \psi_j \rangle| \leq C \left(\sum_{j=1}^n \|f_j\|_{L^1} + \|u\|_{L^1} \right) \left(\|\nabla\psi_j\|_{L^N} + \|\psi_j\|_{L^N} \right)
\]
\[
\leq C \left(\sum_{j=1}^n \|f_j\|_{L^1} + \|u\|_{L^1} \right) \|\nabla\psi_j\|_{L^N}
\]
\[
\leq C \left(\sum_{j=1}^n \|f_j\|_{L^1} + \|u\|_{L^1} \right) \|\phi\|_{L^N}.
\]
Here we have used that $\psi_j \in C_c^\infty(U^*)$ and the fact that the pseudodifferential operator $\nabla L_j(x,D)\chi(x)q(x,D)$ of order zero is bounded in $L^N(\mathbb{R}^N)$. Furthermore, since $r(x,\xi) \in S^{-\infty}$ we may write $r(x,D)\phi = \int k(x,y)\phi(y)\,dy$ with a continuous kernel $k(x,y)$ that decreases rapidly as $y \to \infty$ uniformly for $x \in U$. Hence, for $x \in U$,$$
abla \overline{L}_j(x,D)\chi(x)q(x,D) of order zero is bounded in L^N and it follows that

$$|r(x,D)\phi| \leq \sup_{x \in U} \left(\int |k(x,y)|^{N/(N-1)}\,dy \right)^{(N-1)/N} \|\phi\|_{L^N} \leq C\|\phi\|_{L^N}$$

Thus, (3.1)–(3.3) give

$$|\langle u, r(x,D)\phi \rangle| \leq C\|u\|_{L^1}\|\phi\|_{L^N}.$$

which implies

$$\|u\|_{L^{N/(N-1)}} \leq C\sum_{j=1}^n \|f_j\|_{L^1} + C\|u\|_{L^1}, \quad u \in C_c^\infty(U).$$

Since $\|u\|_{L^1} \leq C\rho^{1/N}\|u\|_{L^N/(N-1)}$, the term $C\|u\|_{L^1}$ may be absorbed for small ρ and this proves (2.3).

Since $L_j = -L_j^t + c_j(x)$, $c_j \in C^\infty(\mathbb{R}^N)$, $j = 1, \ldots, n$, we easily get from (2.3) after shrinking U if necessary

$$\sum_{j=1}^n \|L_j^t u\|_{L^1} \leq C\sum_{j=1}^n \|f_j\|_{L^1} + C\|u\|_{L^1}, \quad u \in C_c^\infty(U).$$

A standard duality consequence of estimate (3.4) is the following local solvability result

Corollary 3.1. Let L_1, \ldots, L_n, $n \geq 2$ satisfy (a) and (b). There exists a neighborhood U of the origin such that for every $f \in L^N(U)$, the underdetermined equation

$$L_1 u_1 + \cdots + L_n u_n = f$$

can be solved in U with $(u_1, \ldots, u_n) \in L^\infty(U)^N$.

Note that the result is false in general when $n = 1$.

4. Involutive systems

Let L_1, \ldots, L_n be defined on a neighborhood Ω of the origin $0 \in \mathbb{R}^N$, $N \geq 2$, and assume they are linearly independent. The system $\{L_1, \ldots, L_n\}$ is said to be involutive if the vector fields L_j, $j = 1, \ldots, n$, satisfy the Frobenius condition

$$[L_j, L_k] = \sum_{\ell=1}^n c_{jk\ell}(x)L_\ell, \quad 1 \leq j, k, \leq n$$

for some complex–valued functions $c_{jk\ell}(x) \in C^\infty(\Omega)$.

Note that this is a property of the subbundle $\mathcal{L} \subset \mathcal{CT}(\Omega)$ generated by L_1, \ldots, L_n, i.e., every other set of generators of \mathcal{L} will satisfy (c). After a local change of generators and extension to \mathbb{R}^N preserving involutivity, we may assume that the vector fields L_j are of the form

\begin{equation}
(a') \quad L_j = \frac{\partial}{\partial x_j} + \sum_{k=1}^{m} c_{jk}(x) \frac{\partial}{\partial x_{n+k}}, \quad j = 1, \ldots, n,
\end{equation}

with globally defined smooth coefficients possessing bounded derivatives of all orders. The special form of L_1, \ldots, L_n shows that (c) reduces to

\begin{equation}
(c') \quad [L_j, L_k] = 0, \quad 1 \leq j, k \leq n.
\end{equation}

Now the proof of Lemma 2.1 gives a strengthened form of (2.4), namely

\begin{equation}
(4.1) \quad \left| \int L_j u(x) \phi(x) \, dx \right| \leq C \|\phi\|_{W^{1,N}} \sum_{j=1}^{n} \|L_j u\|_{L^1}, \quad u, \phi \in C_\infty^\infty(\mathbb{R}^N),
\end{equation}

since the term $\|u\|_{L^1}$ in (2.4) was due to the presence of the commutators $[L_j, L_k]$. We then have

\begin{equation}
(4.2) \quad \sum_{j=1}^{n} \|L_j u\|_{W^{-1,N/(N-1)}} \leq C \sum_{j=1}^{n} \|L_j u\|_{L^1}, \quad u \in C_\infty^\infty(\mathbb{R}^N).
\end{equation}

We now consider elliptic involutive systems.

4.1. Elliptic involutive systems. Let L_1, \ldots, L_n be a set of linearly independent smooth complex vector fields defined on a neighborhood $\Omega \subset \mathbb{R}^N$ of the origin and assume that the system $\{L_1, \ldots, L_n\}$ is elliptic and involutive, so they are generators of an involutive subbundle \mathcal{L} of $\mathcal{CT}(\Omega)$. Denote by $E^k(\Omega)$ the space of k-forms, $0 \leq k \leq N$, with complex coefficients, i.e., the smooth sections of the vector bundle $\wedge^k \mathcal{CT}^*(\Omega)$ and let $\mathcal{L}^\perp(\Omega)$ be the subbundle of $\mathcal{CT}^*(\Omega)$ of all $\omega \in E^1(\Omega)$ such that $\langle\omega, L \rangle = 0$ for all sections of \mathcal{L}. Denote by \mathcal{I} the ideal generated by $\mathcal{L}^\perp(\Omega)$ in $\bigotimes_{k=0}^{N} \wedge^k \mathcal{CT}^*(\Omega)$. Hence, if $\omega_1, \ldots, \omega_m$, $n + m = N$, is a set of local generators of $\mathcal{L}^\perp(\Omega)$, then $\mathcal{I}^k(\Omega) = \mathcal{I} \cap \wedge^k \mathcal{CT}^*(\Omega)$, $1 \leq k \leq n$ is spanned by the k-forms

$$\omega_j \wedge \omega', \quad j = 1, \ldots, m, \quad \omega' \in E^{k-1}(\Omega).$$

Write $\mathfrak{N}^k(\Omega) = \wedge^k \mathcal{CT}^*(\Omega)/\mathcal{I}^k(\Omega)$, $0 \leq k \leq n$, and denote by $\tilde{E}^k(\Omega)$ the space of smooth sections of the vector bundle $\mathfrak{N}^k(\Omega)$. The de Rham complex [5] $d : E^k(\Omega) \to E^{k+1}(\Omega)$, given by the exterior derivative on complex-valued forms, gives rise to a new complex $d_\mathcal{L}$ associated to the structure \mathcal{L},

$$d_\mathcal{L} : \tilde{E}^k(\Omega) \to \tilde{E}^{k+1}(\Omega), \quad 0 \leq k \leq n,$$

defined as follows: if $u \in E^k(\Omega)$ then $d_\mathcal{L} u$ is the image of $d_\mathcal{L} \tilde{u}$ under the projection $\tilde{E}^k(\Omega) \to \mathfrak{N}^k(\Omega)$. This is well defined because the involutivity of \mathcal{L} implies that $d_\mathcal{L} \mathcal{I}^k \subset \mathcal{I}^{k+1}$. In particular, we have the basic complex property $d_\mathcal{L} \mathcal{I}^{k+1} = 0$.

By an elegant combination due to Treves of the Newlander–Nirenberg theorem [13] and the Frobenius theorem on real integrable distributions (see, e.g., [1, Theorem I.12.1; [16]]), there exist local coordinates

$$x_1, \ldots, x_r, y_1, \ldots, y_r, t_1, \ldots, t_s, \quad r + s = n,$$
defined on a neighborhood \(\Omega' \) of the origin such that \(\mathcal{L} \) is generated over \(\Omega' \) by the \(n \) vector fields

\[
D_j = \frac{1}{2} \left(\frac{\partial}{\partial x_j} + i \frac{\partial}{\partial y_j} \right), \quad j = 1, \ldots, r,
\]

\[
T_k = \frac{\partial}{\partial t_k}, \quad k = 1, \ldots, s.
\]

In this case, \(\mathcal{L}^\perp \) is generated over \(\Omega' \) by \(d\bar{z}_j = dx_j + idy_j, \ 1 \le j \le r, \) and \(dt_k, \ 1 \le k \le s. \) Then \(\tilde{E}_k^k(\Omega') \) may be identified with the subspace of \(E^k(\Omega') \) generated by the monomials

\[
dt_{k_1} \wedge \cdots \wedge dt_{k_s} \wedge d\bar{z}_{j_1} \wedge \cdots \wedge d\bar{z}_{j_r}, \quad k_p \in \{1, \ldots, s\}, \ j_q \in \{1, \ldots, r\}, \quad \ell + \mu = k
\]

and for \(u \in \tilde{E}^1(\Omega') = C^\infty(\Omega') \) we have

\[
d_{\mathcal{L},0}u = \sum_{k=1}^s T_k u dt_k + \sum_{j=1}^r D_j u d\bar{z}_j.
\]

Note that when \(r = 0, \) the complex \(d_{\mathcal{L}} \) is just the de Rham complex while when \(s = 0 \) it is the Dolbeault complex \([7]\); this justifies the notation \(d_{\mathcal{L}} = d + \partial \) in the general case. In other words, in appropriate local coordinates, the elliptic complex \(d_{\mathcal{L}} \) has constant coefficients and

\[
\Delta_L = \sum_{k=1}^s T_k^2 + \sum_{j=1}^r \bar{D}_j D_j
\]

is a slight variation of the Laplace operator in \(\mathbb{R}^N = \mathbb{R}^{s+2r}. \) Applying (2.4') to the system \(\{T_1, \ldots, T_s, D_1, \ldots, D_r\} \) gives, for \(N = s + 2r \geq 2 \) and setting \(f_k = T_k u, \ g_j = D_j u \)

\begin{align}
(4.3) \quad \left| \int f_k(x)\phi(x) \, dx \right| & \leq C \left(\sum_{k=1}^s \| f_k \|_{L^1} + \sum_{j=1}^r \| g_j \|_{L^1} \right) \| \nabla \phi \|_{L^N}, \\
(4.3a) \quad \left| \int g_j(x)\phi(x) \, dx \right| & \leq C \left(\sum_{k=1}^s \| f_k \|_{L^1} + \sum_{j=1}^r \| g_j \|_{L^1} \right) \| \nabla \phi \|_{L^N}
\end{align}

for any \(u, \phi \in C^\infty_c(\mathbb{R}^N), \ 1 \leq k \leq s, \ 1 \leq j \leq r. \) Consider the norm

\[
\| u \|_{\tilde{W}^{-1, N/(N-1)}_c} = \sup_{\| \nabla \phi \|_{L^N} \leq 1} \left| \langle u, \phi \rangle \right| \asymp \| u \|_{L^N/(N-1)}, \ u \in C^\infty_c(\mathbb{R}^N),
\]

where \(I \) denotes the Riesz operator

\[
Iu(x) = \int \frac{u(y)}{|x-y|^{n-1}} \, dy.
\]

Then (4.3) and (4.3a) could be written as

\begin{align}
(4.4) \quad \| d_{\mathcal{L},0} u \|_{\tilde{W}^{-1, N/(N-1)}_c} & \leq C \| d_{\mathcal{L},0} u \|_{L^1}, \quad u \in C^\infty_c(\mathbb{R}^N), \\
(4.5) \quad \| d_{\mathcal{L},k} u \|_{\tilde{W}^{-1, N/(N-1)}_c} & \leq C \| d_{\mathcal{L},k} u \|_{L^1}, \quad u \in \tilde{E}^k_c(\mathbb{R}^N), \ 0 \leq k \leq n-2,
\end{align}

More generally, for \(k \)-forms we have

(4.6) \quad \| d_{\mathcal{L},k} u \|_{\tilde{W}^{-1, N/(N-1)}_c} \leq C \| d_{\mathcal{L},k} u \|_{L^1}, \quad u \in \tilde{E}^k_c(\mathbb{R}^N), \ 0 \leq k \leq n-2,
where $\tilde{E}_c^k(\mathbb{R}^N)$ denotes the compactly supported elements of $\tilde{E}_c^k(\mathbb{R}^N)$. Similarly, if d^*_L denotes the dual complex

$$d^*_{L,k} : \tilde{E}^{k+1}(\mathbb{R}^N) \longrightarrow \tilde{E}^k(\mathbb{R}^N), \quad 0 \leq k \leq n-1,$$

determined by

$$\int d^*_{L,k} u \cdot \bar{v} \, dx = \int u \cdot \overline{d^*_{L,k} v} \, dx, \quad u \in \tilde{E}_c^k(\mathbb{R}^N), \ v \in \tilde{E}_c^{k+1}(\mathbb{R}^N),$$

where the dot indicates the standard pairing on forms of the same degree, we have

$$(4.6) \quad \|d^*_{L,k} u\|_{W^{-1,N/(N-1)}} \leq C \|d^*_{L,k} u\|_{L^1}, \ u \in \tilde{E}_c^{k+1}(\mathbb{R}^N), \ 1 \leq k \leq n-1.$$

Estimates (4.5) and (4.6) follow from an application of the next lemma which extends estimate (2.4) (the proof is similar and will be omitted).

Lemma 4.1. Let $L_1, \ldots, L_n, n \geq 2$, be linearly independent vector fields with complex constant coefficients defined on \mathbb{R}^N. Consider test functions $f_1, \ldots, f_\nu \in C_c^\infty(\mathbb{R}^N)$ and suppose that for any $1 \leq k \leq \nu$ there exists $1 \leq j \leq n$ such that

$$L_j f_k = \sum_{j' \neq j} \sum_{\ell=1}^\nu c_{kj'\ell} L_{j'} f_\ell,$$

with $c_{kj'\ell} \in \mathbb{C}$. Then

$$\sum_{k=1}^\nu \|f_k\|_{W^{-1,N/(N-1)}} \leq C \sum_{k=1}^\nu \|f_k\|_{L^1}. \quad (4.7)$$

Observe that

$$\Delta_k \doteq d^*_{L,k} d_{L,k} + d_{L,k-1} d^*_{L,k-1}, \quad 0 \leq k \leq n$$

is just a tiny variation of the standard Laplace–Beltrami operator on k-forms defined on \mathbb{R}^N. Note also that for $k = 0$ and $k = n$ the operators $d_{L,n}, d^*_{L,-1}$ should be understood as zero. If $\phi \in \tilde{E}_c^k(\mathbb{R}^N)$ we have $\phi = \Delta_k G_k \phi$, where G_k is the canonic fundamental solution of Δ_k (cf. [1, p. 339] for explicit formulas). Assume that $2 \leq \ell \leq n-2$. Thus, the arguments of Theorem 2.1 with (3.1) simplified to

$$\int u \cdot \bar{\phi} = \int u \cdot \overline{\Delta_{\ell} G_{\ell} \phi} = \int d_{L,\ell} u \cdot \overline{d_{L,\ell} G_{\ell} \phi} + \int d^*_{L,\ell-1} u \cdot \overline{d^*_{L,\ell-1} G_{\ell} \phi}$$

yield, taking account of (4.5)–(4.7) and invoking the Calderón–Zygmund theory,

$$\left| \int u \cdot \overline{\phi} \right| \leq \|d_{L,\ell} u\|_{L^1} \|\nabla d_{L,\ell} G_{\ell} \phi\|_{L^N} + \|d^*_{L,\ell-1} u\|_{L^1} \|\nabla d^*_{L,\ell-1} G_{\ell} \phi\|_{L^N} \leq C(\|d_{L,\ell} u\|_{L^1} + \|d^*_{L,\ell-1} u\|_{L^1}) \|\phi\|_{L^N}.$$

This implies by duality that

$$\|u\|_{L^{N/(N-1)}} \leq C(\|d_{L,\ell} u\|_{L^1} + \|d^*_{L,\ell-1} u\|_{L^1}), \quad u \in \tilde{E}_c^\ell(\mathbb{R}^N). \quad (4.8)$$

Note that the argument breaks down for $\ell = 1, n-1$ because (4.6) fails for $k = 1$ and (4.5) fails for $k = n-1$. Nevertheless, (4.8) holds for $\ell = 0$ and for $\ell = n$ by an application of (2.4'). This proves
Theorem 4.1. Let \(u \in \tilde{E}_c^{1}(\mathbb{R}^N) \) and assume that \(0 \leq \ell \leq n \) is neither 1 nor \(n-1 \). Then

\[
\|u\|_{L^{N/(N-1)}} \leq C\bigl(\| (d+\bar{\partial})u \|_{L^1} + \| (d+\bar{\partial})^*u \|_{L^1}\bigr), \quad u \in \tilde{E}_c^{1}(\mathbb{R}^N).
\]

For \(\ell = 1 \) and \(n-1 \) the a priori estimates (4.9) fail. There are two alternatives, either we replace the \(L^1 \) norm on the right-hand side by a stronger norm or we may impose an additional differential condition on \(u \). Suppose that \(\ell = 1, u \in \tilde{E}_c^{1}(\mathbb{R}^N) \) and

\[
(d+\bar{\partial})^*u = 0.
\]

Then, for any \(\phi \in \tilde{E}_c^{1}(\mathbb{R}^N), \)

\[
\int u \cdot \bar{\phi} = \int u \cdot \Delta_1 G_1 \phi = \int (d+\bar{\partial})u \cdot (d+\bar{\partial})G_1 \phi
\]

so

\[
\left| \int u \cdot \bar{\phi} \right| \leq \| (d+\bar{\partial})u \|_{L^1} \| \nabla (d+\bar{\partial})G_1 \phi \|_{L^N} \leq C \| (d+\bar{\partial})u \|_{L^1} \| \phi \|_{L^N},
\]

which implies for

\[
\|u\|_{L^{N/(N-1)}} \leq C\| (d+\bar{\partial})u \|_{L^1} \quad \text{if } (d+\bar{\partial})^*u = 0, \quad u \in \tilde{E}_c^{1}(\mathbb{R}^N).
\]

Similarly,

\[
\|u\|_{L^{N/(N-1)}} \leq C\| (d+\bar{\partial})^*u \|_{L^1} \quad \text{if } (d+\bar{\partial})u = 0, \quad u \in \tilde{E}_c^{n-1}(\mathbb{R}^N).
\]

Next we discuss the other possible strategy, namely, to replace at the appropriate place the \(L^1 \) norm by a stronger one, rather that imposing additional conditions on \(u \). In the case of the de Rahm complex, Lanzani and Stein showed that when \(\ell = 1 \), an estimate analogous to (1.3) holds as soon as \(\|d^*u\|_{H^1} \) in replaced by \(\|d^*u\|_{L^1} \).

Similarly, for \(\ell = N-1 \), one has to replace \(\|du\|_{L^1} \) by \(\|du\|_{H^1} \). Here, \(H^1(\mathbb{R}^N) \) is the Hardy real space (on the subject of Hardy spaces we refer to [14]). Since we are dealing with local estimates, and we would like them to be invariant under coordinate changes, the natural replacement is Goldberg’s localizable Hardy space \(h^1(\mathbb{R}^N) \) introduced in [6]. We have

Theorem 4.2. If the diameter of \(\Omega \) is sufficiently small, the following local estimates hold:

\[
\|u\|_{L^{N/(N-1)}} \leq C\bigl(\| d^*_\mathcal{L},0 u \|_{h^1} + \| d^*_\mathcal{L},1 u \|_{L^1}\bigr), \quad u \in \tilde{E}_c^{1}(\Omega),
\]

\[
\|u\|_{L^{N/(N-1)}} \leq C\bigl(\| d^*_\mathcal{L},n-2 u \|_{L^1} + \| d^*_\mathcal{L},n u \|_{h^1}\bigr), \quad u \in \tilde{E}_c^{n-1}(\Omega).
\]

Proof. Here we proceed as in Theorem 2.1. Let \(\ell = 1 \) and consider the identity

\[
\phi = \Delta_1 q(x,D)\phi + r(x,D)\phi, \quad \phi \in \tilde{E}_c^{1}(\Omega),
\]

for \(q(x,\xi) \in S^{-2} \) and \(r(x,\xi) \in S^{-\infty} \). Then

\[
\langle u, \phi \rangle = \langle u, \Delta_1 (x,D)q(x,D)\phi \rangle + \langle u, r(x,D)\phi \rangle = \langle d^*_{\mathcal{L},0} u, d^*_{\mathcal{L},0} q(x,D)\phi \rangle + \langle d^*_{\mathcal{L},1} u, d^*_{\mathcal{L},1} q(x,D)\phi \rangle + \langle u, r(x,D)\phi \rangle.
\]
The second and third terms of the right-hand side may be majorized by \(\|d_{L^1} u\|_{L^1} + \|u\|_{L^1}\) as in the proof of estimates (3.2) and (3.3). This approach cannot be used to handle the first term so we write instead

\[
(d_{L^0}^* u, d_{L^0}^* q(x, D)\phi) = (q(x, D) d_{L^0}^* u, d_{L^0}^* \phi)
\]

\[
= (j(x, D) q(x, D) d_{L^0}^* u, j^{-1}(x, D) d_{L^0}^* \phi)
\]

with \(j(x, \xi) = (1 + |\xi|^2)^{1/2}, \quad j^{-1}(x, \xi) = (1 + |\xi|^2)^{-1/2} \). Thus

\[
|\langle d_{L^0}^* u, d_{L^0}^* q(x, D)\phi \rangle | \leq C \|j(x, D) q(x, D) d_{L^0}^* u\|_{L^\infty} \|j^{-1}(x, D) d_{L^0}^* \phi\|_{L^N}.
\]

Since \(j^{-1}(x, D) d_{L^0}^* \in S^0 \) we have \(\|j^{-1}(x, D) d_{L^0}^* \phi\|_{L^N} \leq C \|\phi\|_{L^N} \) and by Gagliardo–Nirenberg’s inequality

\[
\|j(x, D) q(x, D) d_{L^0}^* u\|_{L^\infty} \leq C \|\nabla j(x, D) q(x, D) d_{L^0}^* u\|_{L^1}.
\]

Since \(\nabla j(x, D) q(x, D) \in S^0 \), it takes continuously \(L^1 \subset h^1 \) into \(h^1 \) \[6\] so

\[
\|\nabla j(x, D) q(x, D) d_{L^0}^* u\|_{L^1} \leq C \|d_{L^0}^* u\|_{h^1}.
\]

Hence,

\[
|\langle d_{L^0}^* u, d_{L^0}^* q(x, D)\phi \rangle | \leq \|d_{L^0}^* u\|_{h^1} \|\phi\|_{L^N}.
\]

This shows that \(|\langle u, \phi \rangle | \leq C(\|d_{L^0}^* u\|_{h^1} + \|d_{L^1} u\|_{L^1} + \|u\|_{L^1}) \|\phi\|_{L^N} \) and proves (4.10) after taking the sup on \(\{|\|\phi\|_{L^N} \leq 1\} \) and shrinking \(\Omega \) if necessary. The proof of (4.11) is similar.

\[\square\]

Acknowledgment

This work was supported in part by CAPES, CNPq and FAPESP (Brazil).

References

DEPARTAMENTO DE Matemática, UNIVERSIDADE FEDERAL DE SÃO CARLOS, SÃO CARLOS, SP, 13565-905, Brasil

E-mail address: hounie@dm.ufscar.br, picon@dm.ufscar.br