MODULAR INVARIANT D-MODULES

TAKASHI ICHIKAWA

ABSTRACT. We study D-modules over the modular curve of level 1 defined as an orbifold, and show that if such D-modules are of rank 1, these monodromy representations map the S-action to the identity. This means that in the orbifold case, there are linear representations of the fundamental groups which do not come from D-modules.

1. Introduction

It is well known that any linear representation of the fundamental group of a complex manifold is obtained as the monodromy of a certain D-module over this manifold. The aim of this paper is to show that the modular curve of level 1 defined as an orbifold does not satisfy this property. Our method is motivated by a result of Nakamura and Schneps (cf. [N, Section 4] and [NS, Section 7]) which concerns the Galois actions on the algebraic fundamental groups of the modular curves X_i of level $i = 1, 2$. We study D-modules over X_1, called modular invariant D-modules, using the natural covering map

$$X_2 \cong \mathbb{P}^1 - \{0, 1, \infty\} \to X_1,$$

and show that if a D-module over X_1 has rank 1, then this monodromy representation maps the modular transformation by $S : \tau \mapsto -1/\tau$ to the identity. This implies that there are linear representations of $\pi_1(X_1)$ which are not obtained as the monodromy representations of modular invariant D-modules.

2. D-modules over modular curves

2.1. D-modules over orbifolds. A complex orbifold has an open covering $\{[U_\lambda/G_\lambda]\}_\lambda$, where G_λ is a finite group acting on a complex manifold U_λ. Denote by $p_\lambda : U_\lambda \to U_\lambda/G_\lambda$ the natural projection to the geometric quotient of U_λ by the action of G_λ. Then M is called a D-module (of finite rank) over a complex orbifold X if there exists an open covering $\{[U_\lambda/G_\lambda]\}_\lambda$ of X such that M is a compatible system $(F_\lambda, \nabla_\lambda)$ of vector bundles with meromorphic connection over U_λ/G_λ such that $p_\lambda^*(F_\lambda, \nabla_\lambda)$ is isomorphic to a vector bundle with holomorphic connection over U_λ. For each D-module over X, one can associate naturally its monodromy which is a linear representation of $\pi_1(X)$.

2.2. Modular curves. Let $\zeta_n = \exp(2\pi i/n)$ be an nth root of 1, and for $a, \tau \in \mathbb{C}$ with $\text{Im}(\tau) > 0$, put $q^a = \exp(2\pi i a \tau)$. Let $H = \{\tau \in \mathbb{C} \mid \text{Im}(\tau) > 0\}$ denote the Poincaré upper-half plane with natural action of $\text{PSL}_2(\mathbb{Z}) = \text{SL}_2(\mathbb{Z})/\{\pm 1\}$. The principal congruence subgroup of $\text{SL}_2(\mathbb{Z})$ of level 2 is $\Gamma(2) = \text{Ker}(\text{SL}_2(\mathbb{Z}) \to \text{SL}_2(\mathbb{Z}/2\mathbb{Z}))$, and $\text{PGL}(2)$ is defined as $\Gamma(2)/\{\pm 1\}$. Then $X_1 = H/\text{PSL}_2(\mathbb{Z})$ and $X_2 = H/\text{PGL}(2)$ are

Received by the editors April 12, 2010.
Let \(\pi \) be a trivial bundle over \(\mathbb{P}^1 \) with meromorphic connection of the form \((A_0/z + A_1/(z - 1)) \, dz \), where \(z \) is the natural coordinate of \(\mathbb{P}^1 \). Then this connection matrix \(\Phi(A_0, A_1) \) is defined as \(G_1(z)^{-1} \cdot G_0(z) \), where \(G_i(z) \) (for \(i = 0, 1 \)) be the solutions of

\[
G'(z) = \left(\frac{A_0}{z} + \frac{A_1}{z - 1} \right) \cdot G(z),
\]

called the modular curves of level 1 and 2, respectively. We consider \(X_1 \) as a complex orbifold with fundamental group

\[
\pi_1(X_1) = \pi_1(X_1; \overline{01}) \cong PSL_2(\mathbb{Z}),
\]

(\(\overline{01} \) : the tangential base point for the \(q \)-coordinate) which has generators

\[
T = \begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}, \quad S = \begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}
\]

with relations \(S^2 = (TS)^3 = 1 \). Then the generators \(S, TS \) of \(PSL_2(\mathbb{Z}) \) stabilize \(\zeta_4 = i, \zeta_6 \in H \) respectively, and \(X_1 \) is expressed locally as orbifolds:

\[
\begin{cases}
[U/\{\pm1\}], & \text{around the image of } i, \\
[U/\langle\zeta_3\rangle], & \text{around the image of } \zeta_6, \\
[U] = U, & \text{otherwise},
\end{cases}
\]

where \(U = \{z \in \mathbb{C} \mid |z| < 1\} \). Let \(\tilde{X}_1 = X_1 \cup \{i\infty\} \) and \(\tilde{X}_2 = X_2 \cup \{0, 1, i\infty\} \) be the completion of \(X_1 \) and \(X_2 \) obtained by adding their cusps.

We describe natural models of \(\tilde{X}_1 \) which are examples of the canonical models in Shimura’s theory when these are considered as defined over \(\mathbb{Q} \). First, the Legendre \(\lambda \)-function gives an isomorphism \(\lambda : X_2 \cong \mathbb{P}^1 - \{0, 1, \infty\} \), and this extends to an isomorphism \(\tilde{\lambda} : \tilde{X}_2 \cong \mathbb{P}^1 \) mapping the cusps \(i\infty, 0 \) to \(0, 1, \infty \), respectively. Then \(\lambda(\tau) = 16q^{1/2} + \cdots \) at \(\tau = i\infty \), and one can see that

\[
\lambda(T(\tau)) = \frac{\lambda(\tau)}{\lambda(\tau) - 1}, \quad \lambda(S(\tau)) = 1 - \lambda(\tau)
\]

by seeing the changes of the \(\tilde{\lambda} \)-values of the cusps under \(\tau \mapsto T(\tau), S(\tau) \). Second, the \(j \)-function gives a surjective holomorphic map \(j : X_1 \to \mathbb{C} \), and this extends to \(\tilde{j} : \tilde{X}_1 \to \mathbb{P}^1 \) mapping \(\zeta_6, i \in H \) and the cusp \(i\infty \) to \(0, 1 \) and \(\infty \), respectively. Since

\[
j = \frac{4}{27} \frac{(\lambda^2 - \lambda + 1)^3}{\lambda^2(\lambda - 1)^2},
\]

\(j = 1 \) has double roots at

\[
\lambda \in R_2 = \{\lambda(i) = 1/2, \lambda(T(i)) = 2, \lambda(S(T(i))) = -1\},
\]

and \(j = 0 \) has triple roots at

\[
\lambda \in R_3 = \{\lambda(\zeta_6) = \zeta_6, \lambda(\zeta_3) = \zeta_6^{-1}\}.
\]

Let \(\pi : X_2 \to X_1 \) and \(\tilde{\pi} : \tilde{X}_2 \to \tilde{X}_1 \) be the natural projections of degree 6. Then \(\tilde{j} \circ \tilde{\pi} \circ (\tilde{\lambda})^{-1} : \mathbb{P}^1 \to \mathbb{P}^1 \) is ramified in \(\{0, 1, \infty\} \cup R_2 \) with ramification index 2, and is ramified in \(R_3 \) with ramification index 3.

2.3. Connection matrices

We recall the definition of connection matrices. Let \(F \) be a trivial bundle over \(\mathbb{P}^1 \) with meromorphic connection of the form \((A_0/z + A_1/(z - 1)) \, dz \), where \(z \) is the natural coordinate of \(\mathbb{P}^1 \). Then this connection matrix \(\Phi(A_0, A_1) \) is defined as \(G_1(z)^{-1} \cdot G_0(z) \), where \(G_i(z) \) (for \(i = 0, 1 \)) be the solutions of

\[
G'(z) = \left(\frac{A_0}{z} + \frac{A_1}{z - 1} \right) \cdot G(z),
\]
such that \(\lim_{z \to 0} G_0(z)/z^{A_0} = \lim_{z \to 1} G_1(z)/(1-z)^{A_1} = 1 \), where \(z \) runs in \((0,1)\) and \(\varepsilon^A = \exp(\log(\varepsilon) \cdot A) \) for \(\varepsilon > 0 \).

Theorem 2.1. Let \(M \) be a \(D \)-module over \(X_1 \) of finite rank \(r \).

1. Assume that there exist an extension \(\bar{M} \) of \(M \) to \(\bar{X}_1 \) as a vector bundle with meromorphic connection having logarithmic pole at \(q = 0 \), and a trivial bundle \(F \) over \(\mathbb{P}^1 \) with meromorphic connection \(\nabla \) such that \(\bar{\lambda}^*(F, \nabla) \cong \pi^*(\bar{M}) \) and that \(\nabla \) is holomorphic except \(0, 1, \infty \) at which \(\nabla \) has logarithmic poles. Denote by

\[
\omega = \left(\frac{A_0}{z} + \frac{A_1}{z - 1} \right) dz
\]

the connection form of \(\nabla \). Then the monodromy of \(M \) maps \(S \) to the connection matrix \(\Phi(A_0, A_1) \).

2. Assume that \(r = 1 \). Then the monodromy maps \(S \) to 1, and \(T \) to a cubic root of 1.

Proof. First, we prove (1). Put \(V = \mathbb{C}^r \), and identify \(V \times I \) \((I = [0,1])\) with the pull back by \(\pi \circ (\lambda)^{-1} |_{\bar{X}_1} \) of the trivial bundle \(F \). By that \(\lambda(-1/\tau) = 1 - \lambda(\tau) \) and that the connection form of \(\nabla \) has the residues \(A_p \) at \(p = 0, 1 \), the transformation by \(S \) along the line \(i \mathbb{R} \subset H \) from \(i \infty \) to 0 gives an element of End_{\mathbb{C}}(V) represented as

\[
\lim_{\varepsilon \to 0} (\varepsilon^{-A_1} S \varepsilon^{A_0}),
\]

where \(S : V \cong V \times \{\varepsilon\} \to V \times \{1 - \varepsilon\} \cong V \). Therefore, using iterated integrals of \(\omega \),

\[
\lim_{\varepsilon \to 0} (\varepsilon^{-A_1} S \varepsilon^{A_0}) = \lim_{\varepsilon \to 0} \left\{ \varepsilon^{-A_1} \left(\sum_{n=0}^{\infty} \int_{\varepsilon}^{1-\varepsilon} \omega \cdots \omega \right) \varepsilon^{A_0} \right\},
\]

which is \(\Phi(A_0, A_1) \).

Second, we prove (2). By a theorem of Frobenius, there is an extension \(\bar{M} \) of \(M \) by gluing the trivial line bundle around \(q = 0 \) with meromorphic connection of the form \(Adq/q \), where exp(2\pi i A) is the monodromy of \(M \) around \(q = 0 \). Since \((\pi \circ \lambda^{-1})*M \) is isomorphic to a \(D \)-module over \(\mathbb{P}^1 \setminus \{0, 1, \infty\} \), there are a line bundle \(F' \) over \(\mathbb{P}^1 \) and a meromorphic connection \(\nabla' \) on \(F' \) holomorphic except \(0, 1, \infty \) at which \(\nabla' \) has logarithmic poles such that \((\pi \circ (\lambda)^{-1})*M \) is isomorphic to \((F', \nabla') \). Represent the fiber of \(F' \) around \(\infty \) as \(W \cong \mathbb{C} \). Then changing the trivialization of \(F' \) around \(\infty \) by \(a \mapsto a \cdot z^n \) \((a \in W)\) for certain \(n \in \mathbb{Z} \), \((F', \nabla')\) becomes a trivial line bundle with meromorphic connection \((F, \nabla) \) over \(\mathbb{P}^1 \) satisfying the desired property. Since \(M \) is of rank 1, \(A_0 \) and \(A_1 \) given in (1) are commutative, and hence \(G_0(z) = z^{A_0}(1-z)^{A_1} = G_1(z) \) which implies that \(S \) is mapped to \(\Phi(A_0, A_1) = 1 \). Therefore, by the relation \((T S)^3 = 1\), \(T \) is mapped to a cubic root of 1. \(\square \)

Corollary 2.1. There is a representation \(\pi_1(X_1) \to \mathbb{C}^\times \) which is not obtained as the monodromy of any \(D \)-module over \(X_1 \).

Proof. Let \(\rho : \pi_1(X_1) = \langle T, S \rangle \to \mathbb{C}^\times \) be the representation which maps \(T, S \) to \(e^{2\pi i/6}, -1 \) respectively. Then by Theorem 2.1 (2), \(\rho \) cannot be obtained as the monodromy of any \(D \)-module over \(X_1 \). \(\square \)
2.4. The cubic root of j. By results of Kac and Peterson [KP] and of Tsuchiya et al. [TUY], the conformal field theory for the family of elliptic curves gives rise to examples of D-modules over X_1 (satisfying the assumption of Theorem 2.1 (1)) whose sections are described by the characters for affine Lie algebras. For example, the cubic root

$$j^{1/3}(\tau) = q^{-1/3} \left(1 + \sum_{n=1}^{\infty} \frac{1}{n} (q \cdot j(\tau) - 1)^n \right)$$

$$= q^{-1/3} (1 + 248q + 4124q^2 + \cdots)$$

of $j(\tau)$ satisfies the differential equation

$$\frac{d}{d\lambda} j^{1/3} = \left(-\frac{2}{3} \left(\frac{1}{\lambda} + \frac{1}{\lambda - 1} \right) + \sum_{\gamma \in R_3} \frac{1}{\lambda - \gamma} \right) j^{1/3}$$

associated with a D-module over X_1 of rank 1, and satisfies the functional equations

$$j^{1/3}(T(\tau)) = e^{-2\pi i/3} \cdot j^{1/3}(\tau), \quad j^{1/3}(S(\tau)) = j^{1/3}(\tau).$$

By a result of Kac [K], $j^{1/3}$ becomes the character for the affine Lie algebra of type E_8.

References

