ELLIPTIC CURVES WITH A LOWER BOUND ON 2-SELMER RANKS OF QUADRATIC TWISTS

Zev Klagsbrun

Abstract. For any number field K with a complex place, we present an infinite family of elliptic curves defined over K such that $\dim_{\mathbb{F}_2} \text{Sel}_2(E^F/K) \geq \dim_{\mathbb{F}_2} E^F(K)[2] + r^2$ for every quadratic twist E^F of every curve E in this family, where r^2 is the number of complex places of K. This provides a counterexample to a conjecture appearing in work of Mazur and Rubin.

1. Introduction

1.1. Distributions of Selmer ranks. Let E be an elliptic curve defined over a number field K and let $\text{Sel}_2(E/K)$ be its 2-Selmer group (see Section 2 for its definition). The 2-Selmer rank of E, denoted $d_2(E/K)$, is defined as

$$d_2(E/K) = \dim_{\mathbb{F}_2} \text{Sel}_2(E/K) - \dim_{\mathbb{F}_2} E(K)[2].$$

For a given elliptic curve and positive integer r, we are able to ask whether E has a quadratic twist with 2-Selmer rank equal to r. A single restriction on which r can appear as a 2-Selmer rank within the quadratic twist family of a given curve E is previously known. Using root numbers, Dokchitser and Dokchitser identified a phenomenon called constant 2-Selmer parity where $d_2(E^F/K) \equiv d_2(E/K) \pmod{2}$ for every quadratic twist E^F of E and showed that E has constant 2-Selmer parity if and only if K is totally imaginary and E acquires everywhere good reduction over an abelian extension of K.

In this paper, we show the existence of an additional obstruction to small r appearing as 2-Selmer ranks within the quadratic twist family of E. We prove that there are curves having this obstruction over any number field K with a complex place. Specifically:

Theorem 1. For any number field K, there exist infinitely many elliptic curves E defined over K such that $d_2(E^F/K) \geq r^2$ for every quadratic F/K. Moreover, these curves do not have constant 2-Selmer parity and none of them become isomorphic over \bar{K}.

This result disproves a conjecture appearing in [7], which predicted that subject only to the restriction of constant 2-Selmer parity, the set of twists of E having 2-Selmer rank r has positive density within the set of all twists of E for every $r \geq 0.$

Received by the editors January 27, 2012.

1137
We prove Theorem 1 by presenting a family of elliptic curves defined over \(\mathbb{Q} \) for which each curve in the family has the appropriate property when viewed over \(K \). For \(n \in \mathbb{N} \), let \(E_{(n)} \) be the elliptic curve defined by the equation
\[
E_{(n)} : y^2 + xy = x^3 - 128n^2x^2 - 48n^2x - 4n^2
\]
and define \(\mathcal{F} = \{ E_{(n)} : n \in \mathbb{N}, 1 + 256n^2 \not\in (K^\times)^2 \} \). Each curve \(E \in \mathcal{F} \) has a single point of order 2 in \(E(K) \) and a cyclic 4-isogeny defined over \(K(E[2]) \) but not \(K \). Let \(\phi : E \to E' \) be the isogeny whose kernel is \(C = E(K)[2] \). Our results are obtained by using local calculations combined with a Tamagawa ratio of Cassels to establish a lower bound on the rank of the Selmer group associated to \(\phi \) (to be defined in Section 2).

Although curves \(E \in \mathcal{F} \) have the property that \(d_2(E^F/K) \geq r_2 \) for every quadratic \(F/K \), this does not hold in general for curves \(E \) with \(E(K)[2] \simeq \mathbb{Z}/2\mathbb{Z} \) that have a cyclic 4-isogeny defined over \(K(E[2]) \) but not over \(K \). In particular, the forthcoming work of this author can be used to show that every \(r \geq 0 \) appears infinitely often as a 2-Selmer rank within the quadratic twist family of \(E' \) for every \(E \in \mathcal{F} \) [4].

2. Selmer groups

We begin by briefly recalling the constructions of the 2-Selmer and \(\phi \)-Selmer groups along with some of the standard descent machinery. A more detailed explanation can be found in Section X.4 of [8].

If \(E \) is an elliptic curve defined over a field \(K \), then the Kummer map \(\delta_{[2]} \) maps \(E(K)/2(K) \) into \(H^1(K, E[2]) \). If \(K \) is a number field, then for each place \(v \) of \(K \) we define a distinguished local subgroup \(H^1_v(K, E[2]) \subset H^1(K_v, E[2]) \) by
\[
\text{Image} (\delta_{[2]} : E(K_v)/2E(K_v) \to H^1(K_v, E[2]))
\]
We define the 2-Selmer group of \(E \), denoted \(\text{Sel}_2(E/K) \), by
\[
\text{Sel}_2(E/K) = \ker \left(H^1(K, E[2]) \xrightarrow{\sum_{v \text{ of } K} r_{v E}} \bigoplus_{v \text{ of } K} H^1(K_v, E[2])/H^1_v(K_v, E[2]) \right).
\]

If \(E^F \) is the quadratic twist of \(E \) by \(F/K \) where \(F \) is given by \(F = K(\sqrt{d}) \), then there is an isomorphism \(E \to E^F \) given by \((x, y) \mapsto (dx, d^{3/2}y) \) defined over \(F \). Restricted to \(E[2] \), this map gives a canonical \(G_K \) isomorphism \(E[2] \to E^F[2] \), allowing us to view \(H^1_v(K_v, E^F[2]) \) as sitting inside \(H^1(K_v, E[2]) \). The following lemma due to Kramer describes the connection between \(H^1_v(K_v, E[2]) \) and \(H^1_v(K_v, E^F[2]) \).

Given a place \(w \) of \(F \) above a place \(v \) of \(K \), we get a norm map \(E(F_w) \to E(K_v) \), the image of which we denote by \(E_N(K_v) \).

Lemma 2.1. Viewing \(H^1_v(K_v, E^F[2]) \) as sitting inside \(H^1(K_v, E[2]) \), we have
\[
H^1_v(K_v, E[2]) \cap H^1_v(K_v, E^F[2]) \simeq E_N(K_v)/2E(K_v)
\]

Proof. This is Proposition 7 in [5] and Proposition 5.2 in [6]. The proof in [6] works even at places above 2 and \(\infty \).

If \(E(K)[2] \simeq \mathbb{Z}/2\mathbb{Z} \), then there is an isogeny \(\phi : E \to E' \) with kernel \(C = E(K)[2] \) that gives rise to a \(\phi \)-Selmer group, \(\text{Sel}_\phi(E/K) \). There is a connecting map arising from Galois cohomology, \(\delta_\phi : E'(K)/\phi(E(K)) \to H^1(K, C) \), taking the coset of
$Q \in E'(K)$ to the coset defined by the cocycle $c(\sigma) = \sigma(R) - R$ where R is any point on $E(K)$ with $\phi(R) = Q$. Identifying C with μ_2, we can view $H^1(K, C)$ as $K^*/(K^*)^2$ and under this identification, $\delta_\phi(C) = \langle \Delta_E \rangle$, where Δ_E is the discriminant of (any model of) E. The map δ_ϕ can be defined locally as well and for each place v of K, we define a distinguished local subgroup $H^1_v(K_v, C) \subset H^1(K_v, C)$ as the image of $E'_v(K_v) / \phi(E(K_v))$ under δ_ϕ. We define the ϕ-Selmer group of E, denoted $\text{Sel}_\phi(E/K)$, as

$$\text{Sel}_\phi(E/K) = \ker \left(H^1(K, C) \xrightarrow{\sum_v \res_v} \bigoplus_v H^1(K_v, C) / H^1_v(K_v, C) \right).$$

The isogeny ϕ on E gives gives rise to a dual isogeny $\hat{\phi}$ on E' whose kernel is $C' = \phi(E[2])$. Exchanging the roles of (E, C, ϕ) and $(E', C', \hat{\phi})$ in the above defines the $\hat{\phi}$-Selmer group, $\text{Sel}_{\hat{\phi}}(E'/K)$, as a subgroup of $H^1(K, C')$. The local conditions $H^1_\phi(K_v, C)$ and $H^1_\phi(K, C')$ are connected via the following exact sequence.

Proposition 2.2. The sequence

$$(2.1) \quad 0 \to C'/\phi(E(K_v)[2]) \xrightarrow{\delta_\phi} H^1_\phi(K_v, C) \xrightarrow{i} H^1_f(K_v, E[2]) \xrightarrow{\phi} H^1_\phi(K_v, C') \to 0$$

is exact.

Proof. This well-known result follows from the sequence of kernels and cokernels arising from the composition $\hat{\phi} \circ \phi = [2]_E$. See Remark X.4.7 in [8] for example. □

The following two theorems allow us to compare the ϕ-Selmer group, the $\hat{\phi}$-Selmer group and the 2-Selmer group.

Theorem 2.3. The ϕ-Selmer group, the $\hat{\phi}$-Selmer group, and the 2-Selmer group sit inside the exact sequence

$$(2.2) \quad 0 \to E'(K)[2]/\phi(E(K)[2]) \xrightarrow{\delta_\phi} \text{Sel}_\phi(E/K) \to \text{Sel}_2(E/K) \xrightarrow{\phi} \text{Sel}_{\hat{\phi}}(E'/K).$$

Proof. This is a diagram chase based on the exactness of (2.1). See Lemma 2 in [3] for example. □

Theorem 2.4 (Cassels). The **Tamagawa ratio**, defined as $T(E/E') = \left| \frac{\text{Sel}_\phi(E/K)}{\text{Sel}_{\hat{\phi}}(E'/K)} \right|$, is given by a local product formula

$$T(E/E') = \prod_{v \text{of } K} \left| \frac{H^1_\phi(K_v, C)}{2} \right|.$$

Proof. This is a combination of Theorem 1.1 and equations (1.22) and (3.4) in [1]. This product converges since $H^1_\phi(K_v, C)$ equals the unramified local subgroup $H^1_u(K_v, C)$ for all $v \nmid 2\Delta_E\infty$. □
3. Local conditions for curves in \mathcal{F}

The goal of this section is to prove the following proposition.

Proposition 3.1. Let $E = E_{(n)} \in \mathcal{F}$. Then $\dim_{\mathbb{F}_2} H^1_{\phi}(K_v, C^F) \geq H^1(K_v, C) - 1$ for every place v of K, where $C^F = E^F(K)[2]$.

Let $E = E_{(n)} \in \mathcal{F}$. The point $P = \left(-\frac{1}{4}, \frac{1}{8}\right)$ on E has order 2 and $E' = E/\langle P \rangle$ can be given by a model $y^2 + xy = x^3 + 64n^2x^2 + 4n^2(1 + 256n^2)x$. The discriminants of the model (1.1) for E and this model for E' are given by $\Delta_E = 4n^2(1 + 256n^2)^3$ and by $\Delta_{E'} = 16n^4(1 + 256n^2)^3$, respectively. As $1 + 256n^2 \not\in \langle K^\times \rangle^2$, we have $E(K)[2] = \langle P \rangle$. Since Δ_E and $\Delta_{E'}$ differ by a square, we get that $K(E[2]) = K(E'[2])$ and it follows that $\dim_{\mathbb{F}_2} E(K_v)[2] = \dim_{\mathbb{F}_2} E'(K_v)[2]$ for every place v of K. Proposition 3.1 will follow from some results applicable to all curves that have $K(E[2]) = K(E'[2])$ and some results that are specific to curves in \mathcal{F}.

Remark 3.2. Forthcoming work of this author shows if $E(K)[2] \simeq \mathbb{Z}/2\mathbb{Z}$, then E does not have a cyclic 4-isogeny defined over K but acquires one over $K(E[2])$ if and only if $K(E[2]) = K(E'[2])$. See Section 4 of [4] for more details.

Lemma 3.3. Let E be an elliptic curve with $E(K)[2] \simeq \mathbb{Z}/2\mathbb{Z}$ and suppose further that $K(E[2]) = K(E'[2])$. If E has additive reduction at a place $v \nmid 2$, then $\dim_{\mathbb{F}_2} H^1_{\phi}(K_v, C) = 1$.

Proof. Let $E_0(K_v)$ be the group of points on $E(K_v)$ with non-singular reduction, $E_1(K_v)$ the subgroup of points with trivial reduction, and \mathbb{F}_v the residue field of K_v. The formal group structure on $E_1(K_v)$ shows that $E_1(K_v)$ is uniquely divisible by 2 and since $E_0(K_v)/E_1(K_v) \simeq \mathbb{F}_v^+$, $E_0(K_v)$ is uniquely 2-divisible as well. Since $E(K_v)$ has a point of order 2, Tate’s algorithm then shows that $E(K_v)/E_0(K_v)$ and therefore $E(K_v)[2^\infty]$ – either injects to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ or is cyclic of order 4. Therefore, if $E(K_v)$ has a point R of order 4, then $2R \in C$. It follows that $\phi(R) \in E'(K_v)[2] - C'$ and $E'(K_v)[2] \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. This contradicts the fact that $\dim_{\mathbb{F}_2} E(K_v)[2] = \dim_{\mathbb{F}_2} E'(K_v)[2]$ since the 2-part of $E(K_v)$ is cyclic. This shows that $E(K_v)$ cannot have any points of order 4 and similar logic shows that the same is true for $E'(K_v)$. It then follows that $\dim_{\mathbb{F}_2} E'(K_v)/\phi(E(K_v)) = 1$ since $\dim_{\mathbb{F}_2} E(K_v)[2] = \dim_{\mathbb{F}_2} E'(K_v)[2]$ and ϕ has degree 2. \hfill \Box

Lemma 3.4. Let E be an elliptic curve with $E(K)[2] \simeq \mathbb{Z}/2\mathbb{Z}$ and suppose that $K(E[2]) = K(E'[2])$. If E has split multiplicative reduction at a place v where the Kodaira symbols of E and E' are I_n and I_{2n}, respectively, then $H^1_{\phi}(K_v, C) = H^1(K_v, C)$.

Further, if F/K is a quadratic extension in which v does not split, then $\dim_{\mathbb{F}_2} H^1_{\phi}(K_v, C^F) = \dim_{\mathbb{F}_2} H^1(K_v, C) - 1$ and $H^1_{\phi}(K_v, C^F) = N_{F_v/K_v} E^F_v / (K^\times_v)^2$, where w is the place of F above v.

Proof. Since E and E' have split multiplicative reduction at v, E/K_v and E'/K_v are G_{K_v}-isomorphic to Tate curves E_q and $E_{q'}$, respectively. By the condition on the Kodaira symbols, $|q|_v^2 = |q'|_v$. Observe that E_q can be two-isogenous to three different curves: $E_{q''}$, $E_{\sqrt{q}}$, and $E_{-\sqrt{q}}$. The curve $E_{q''}$ must therefore be one of these possibilities and the only possibility with $|q''|_v^2 = |q'|_v^2$ is $q'' = q^2$. We therefore get G_{K_v}.
isomorphisms $\overline{K_v}^\times/q^2 \to E(\overline{K_v})$ and $\overline{K_v}^\times/q^{2Z} \to E'(\overline{K_v})$ such that the following diagram commutes.

\[
\begin{array}{ccc}
\overline{K_v}^\times/q^2 & \xrightarrow{\varphi} & \overline{K_v}^\times/q^{2Z} \\
\downarrow & & \downarrow \\
E(\overline{K_v}) & \xrightarrow{\phi} & E'(\overline{K_v}) \\
\end{array}
\]

Since the maps in this diagram are G_{K_v} equivariant, we can restrict to K_v giving the following diagram, where the vertical arrows are isomorphisms.

\[
\begin{array}{ccc}
K_v^\times/q^2 & \xrightarrow{\varphi} & K_v^\times/q^{2Z} \\
\downarrow & & \downarrow \\
E(K_v) & \xrightarrow{\phi} & E'(K_v) \\
\end{array}
\]

We therefore get a sequence of G_K-isomorphisms $H^1_\phi(K_v, C) \simeq E'(K_v)/\phi(E(K_v)) \simeq (K_v^\times/q^{2Z})/(K_v^\times/q^2)^2 \simeq K_v^\times/(K_v^\times)^2 \simeq H^1(K_v, C)$ and that $H^1_\phi(K_v, C^n) = 0$ proving the first part of the lemma.

Further, by the exactness of (2.1), the map $i : H^1(K_v, C) \to H^1_\phi(K_v, E[2])$ is surjective. Because $E'(K_v) \simeq K_v^\times/q^{2Z}$, we see that $E'(K_v)[2] = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Since $K(E[2]) = K(E'[2])$, we then see that $E(K_v)[2] = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ as well. The exactness of (2.1) then shows that i is injective. We therefore get that the restriction $\tilde{i} : H^1_\phi(K_v, C) \to H^1_\phi(K_v, E[2]) \cap H^1_\phi(K_v, E^F[2])$ is also injective.

Let $c \in H^1_t(K_v, E[2]) \cap H^1_t(K_v, E^F[2])$. As $H^1_t(K_v, C) = 0$, c maps trivially into $H^1_t(K_v, C^F)$ under the map ϕ in (2.1). It follows from Proposition 2.2 that c is in the image of $H^1_\phi(K_v, C^F)$ and that $\tilde{i} : H^1_\phi(K_v, C^F) \to H^1_t(K_v, E[2]) \cap H^1_t(K_v, E^F[2])$ is surjective. Therefore \tilde{i} is an isomorphism.

By Lemma 2.1, $H^1_t(K_v, E[2]) \cap H^1_t(K_v, E^F[2]) = N_{F_w/K_v}E(F_w)/2E(K_v)$. The elliptic curve norm map $N_{F_w/K_v} : E(F_w) \to E(K_v)$ translates into the usual field norm $N_{F_w/K_v} : F_w^\times/q^2 \to K_v^\times/q^{2Z}$, so $H^1_t(K_v, E[F]) \cap H^1_t(K_v, E^F[2])$ can be identified with

\[
(N_{F_w/K_v}F_w^\times/q^{2Z})/ (K_v^\times/q^{2Z})^2 \simeq N_{F_w/K_v}F_w^\times/(K_v^\times)^2.
\]

The isomorphism $E^F(K_v)/\phi(E^F(K_v)) \to E(K_v)/2E(K_v) \cap E^F(K_v)/2E^F(K_v)$ is given by $\hat{\phi}$. As $\hat{\phi}$ is given by $x \mapsto x$ in the above diagram, the identification of $H^1_\phi(K_v, E[2]) \cap H^1_\phi(K_v, E^F[2])$ with $N_{F_w/K_v}F_w^\times/(K_v^\times)^2$ identifies $H^1_\phi(K_v, C^F)$ with $N_{F_w/K_v}F_w^\times/(K_v^\times)^2$. Standard results from the theory of local fields then give that $\dim_{\mathbb{F}_2} H^1_\phi(K_v, C^F) = \dim_{\mathbb{F}_2} H^1(K_v, C) - 1$.

\[\Box\]

Lemma 3.5. If $E = E_{(n)} \in \mathcal{F}$, then E has multiplicative reduction at primes $p \mid 2n$. Further, if $k = \ord_p 2n$, then E has Kodaira symbol I_{2k} at p and E' has Kodaira symbol I_{4k} at p.
Proof. If \(p \mid 2n \), then the model (1.1) is minimal at \(p \). The reduction of (1.1) mod \(p \) has a node so \(E \) has multiplicative reduction at \(p \). We can then read the Kodaira symbols for \(E \) and \(E' \) at \(p \) off of the denominators of their j-invariants, which are \(j(E) = \frac{(1+1024n^2)^3}{4n^2} \) and \(j(E') = \frac{(1+64n^2)^3}{16n^2} \) respectively. \(\square \)

Proof of Proposition 3.1. Lemma 3.5 combined with Lemma 3.4 show that the proposition is true for all places \(v \mid 2n \). The \(j \)-invariant of \(E \) shows that these are the only places where \(E^F \) can have multiplicative reduction and the result then follows from Proposition 3.3. \(\square \)

4. Proof of main theorem

We begin by relating \(d_2(E/K) \) to the 2-adic valuation of \(T(E/E') \).

Proposition 4.1. If \(E(K)[2] \cong \mathbb{Z}/2\mathbb{Z} \) and \(K(E[2]) = K(E'[2]) \), then
\[
d_2(E/K) \geq \operatorname{ord}_2 T(E/E').
\]
Proof. From the definition, we have
\[
(4.1) \quad \operatorname{ord}_2 T(E/E') = \dim_{\mathbb{F}_2} \Sel_\phi(E/K) - \dim_{\mathbb{F}_2} \Sel_\phi(E'/K).
\]
Since \(E(K)[2] \cong \mathbb{Z}/2\mathbb{Z} \) and \(K(E[2]) = K(E'[2]) \), we get that \(E'(K)[2] \cong \mathbb{Z}/2\mathbb{Z} \) as well. It then follows from Theorem 2.3 that \(\dim_{\mathbb{F}_2} \Sel_\phi(E'/K) \geq 1 \) and that the map of \(\Sel_\phi(E/K) \) into \(\Sel_2(E/K) \) is 2-to-1. Combined with (4.1), we get that the image of \(\Sel_\phi(E/K) \) in \(\Sel_2(E/K) \) has \(\mathbb{F}_2 \)-dimension at least \(\operatorname{ord}_2 T(E/E') \).

Let \(P \) generate \(E(K)[2] \) and let \(c \in \Sel_\phi(E/K) \) be the image of \(P \) in \(\Sel_2(E/K) \). We can represent \(c \) by a cocycle \(\hat{\phi} : G_K \to E[2] \) given by \(\hat{\phi}(\gamma) = \gamma(R) - R \) for some \(R \in E(\mathbb{K})[4] \) with \(2R = P \). Observe that since \(2R = P \), it must be that \(\phi(R) \in E'[2] - C' \). If \(\sigma(R) - R \in C \) for every \(\sigma \in G_K \), then \(\phi(R) \in E'(K) \) since \(\phi(C) = 0 \) and \(\phi'(\sigma(R) - R) = \sigma(\phi(R)) - R \) for \(\sigma \in G_K \). Since this would contradict \(E'(K)[2] \cong \mathbb{Z}/2\mathbb{Z} \), it must be that \(\sigma(R) - R \notin C \) for some \(\sigma \in G_K \) and \(c \) therefore does not come from \(H^1(K,C) \). We therefore get that \(d_2(E/K) \geq \operatorname{ord}_2 T(E/E') \). \(\square \)

Theorem 1 now follows easily from Proposition 3.1.

Proof of Theorem 1. Let \(E = E_{\langle n \rangle} \in \mathcal{F} \) and \(F/K \) quadratic.

By Lemma 2.4, \(\operatorname{ord}_2 T(E^F/E'^F) \) is given by
\[
\operatorname{ord}_2 T(E^F/E'^F) = \sum_{v \mid K} (\dim_{\mathbb{F}_2} H^1_\phi(K_v, C^F) - 1).
\]

By Proposition 3.1, we get that \(\dim_{\mathbb{F}_2} H^1_\phi(K_v, C^F) - 1 \geq 0 \) for all places \(v \mid 2\infty \). This yields
\[
\operatorname{ord}_2 T(E^F/E'^F) \geq -(r_1 + r_2) + \sum_{v \mid 2} (\dim_{\mathbb{F}_2} H^1_\phi(K_v, C^F) - 1)
\]
\[
\geq -(r_1 + r_2) + \sum_{v \mid 2} (\dim_{\mathbb{F}_2} H^1(K_v, C) - 2),
\]
with the second inequality following from Proposition 3.1 as well.
As $H^1(K_v, C) \simeq K_v^\times / (K_v^\times)^2$, we get that $\dim_{\mathbb{F}_2} H^1(K_v, C) = 2 + [K_v : \mathbb{Q}_2]$ for places $v \mid 2$. We therefore have

$$\text{ord}_2 T(E^F/E^F) \geq -(r_1 + r_2) + \sum_{v \mid 2} [K_v : \mathbb{Q}_2] = -(r_1 + r_2) + [K : \mathbb{Q}] = r_2.$$

Proposition 4.1 then shows that $d_2(E^F/K) \geq r_2$.

The family \mathcal{F} is infinite since every number field K has infinitely many n with $1 + 256n^2 \not\in (K^\times)^2$. The curves E_n have distinct j-invariants and therefore are not isomorphic over K. Since all of the E_n have multiplicative reduction at all places above 2, work of Mazur and Rubin in [7] shows that none of them have constant 2-Selmer parity.

\[\Box \]

Acknowledgments

This paper is based on work conducted by the author as part of his doctoral thesis at UC-Irvine under the direction of Karl Rubin and was supported in part by the NSF grants DMS-0457481 and DMS-0757807. I would like to express my utmost gratitude to Karl Rubin for the guidance and assistance he provided while undertaking this research. I would also like to thank the reviewer for making many helpful suggestions, in particular suggesting the model (1.1) for $E_{(n)}$.

References

Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Drive, Madison, WI 53706, USA

E-mail address: klagsbru@math.wisc.edu