CONGRUENCES BETWEEN HILBERT MODULAR FORMS:
CONSTRUCTING ORDINARY LIFTS, II

THOMAS BARNET-LAMB, TOBY GEE AND DAVID GERAGHTY

Abstract. In this paper, we improve on the results of our earlier paper [BLGG12], proving a near-optimal theorem on the existence of ordinary lifts of a mod \(l \) Hilbert modular form for any odd prime \(l \).

Contents

1. Introduction 67
2. The adequate case 68
3. Inadequate cases 69
Acknowledgment 71
References 71

1. Introduction

Let \(F \) be a totally real field with absolute Galois group \(G_F \), and let \(l \) be an odd prime number. In our earlier paper [BLGG12], we proved a general result on the existence of ordinary modular lifts of a given modular representation \(\overline{\rho} : G_F \to \GL_2(\mathbb{F}_l) \); we refer the reader to the introduction of op. cit. for a detailed discussion of the problem of constructing such a lift, and of our techniques for doing so.

The purpose of this paper is to improve on the hypotheses imposed on \(\overline{\rho} \), removing some awkward assumptions on its image; in particular, if \(l = 3 \) then the results of [BLGG12] were limited to some cases where \(\overline{\rho} \) was induced from a quadratic character, whereas our main theorem is the following.

Theorem A. Suppose that \(l > 2 \) is prime, that \(F \) is a totally real field, and that \(\overline{\rho} : G_F \to \GL_2(\mathbb{F}_l) \) is irreducible and modular. Assume that \(\overline{\rho}|_{G_{F_v}} \) is reducible at all places \(v|l \) of \(F \).

If \(l = 5 \) and the projective image of \(\overline{\rho}|_{G_F(\zeta_5)} \) is isomorphic to \(\PSL_2(\mathbb{F}_5) \), assume further that there is a finite solvable totally real extension \(F'/F \) such that \(\overline{\rho}|_{G_{F'}} \) is conjugate to a representation valued in \(\GL_2(\mathbb{F}_5) \).

Then \(\overline{\rho} \) has a modular lift \(\rho : G_F \to \GL_2(\overline{\mathbb{Q}}_l) \), which is ordinary at all places \(v|l \).

Received by the editors December 21, 2012.
2000 Mathematics Subject Classification. 11F33.
(Note that the assumption that $\rho|_{G_{F_v}}$ is reducible at all places $v|l$ of F is necessary.) Our methods are based on those of [BLGG12]. The reason that we are now able to prove a stronger result is that the automorphy lifting results that we employed in [BLGG12] have since been optimized in [BLGGT10] and [Tho12]; in particular, we make extensive use of the results of the appendix to [BLGG13], which improves on a lifting result of [BLGGT10], and classifies the subgroups of $\text{GL}_2(F_l)$, which are adequate in the sense of [Tho12]. In Section 2, we use these results to prove Theorem A, except in the case that $l = 3$ or 5 and the projective image of $\overline{\rho}(G_{F(\zeta_l)})$ is isomorphic to $\text{PSL}_2(F_l)$, and certain cases where ρ is dihedral. In the dihedral cases, the result is proved in [All12]. In the remaining cases, the adequacy hypothesis we require fails, but in Section 3 we handle this case completely when $l = 3$ by making use of the Langlands–Tunnell theorem, and we prove a partial result when $l = 5$ using the results of [SBT97].

1.1. Notation. If M is a field, we let G_M denote its absolute Galois group. We write $\overline{\epsilon}$ for the mod l cyclotomic character. We fix an algebraic closure \overline{Q} of Q, and regard all algebraic extensions of Q as subfields of \overline{Q}. For each prime p we fix an algebraic closure \overline{Q}_p of Q_p, and we fix an embedding $\overline{Q} \hookrightarrow \overline{Q}_p$. In this way, if v is a finite place of a number field F, we have a homomorphism $G_{F_v} \to G_F$. We also fix an embedding $\overline{Q} \hookrightarrow \mathbb{C}$.

We normalize the definition of Hodge–Tate weights so that all the Hodge–Tate weights of the l-adic cyclotomic character ϵ are -1. We refer to a two-dimensional potentially crystalline representation with all pairs of labelled Hodge–Tate weights equal to $\{0, 1\}$ as a weight 0 representation. (The reason for this terminology is that the Galois representations associated to an automorphic representation, which is cohomological of weight 0 have these Hodge–Tate weights.)

If F is a totally real field, then a continuous representation $\overline{\rho} : G_F \to \text{GL}_2(\overline{F}_l)$ is said to be modular if there exists a regular algebraic automorphic representation π of $\text{GL}_2(\mathbb{A}_F)$, such that $\overline{\rho}(\pi) \equiv \overline{\epsilon}$, where $r_l(\pi)$ is the l-adic Galois representation associated with π.

We let ζ_l be a primitive lth root of unity.

2. The adequate case

2.1. The notion of an adequate subgroup of $\text{GL}_n(\overline{F}_l)$ is defined in [Tho12]. We will not need to make use of the actual definition; instead, we will use the following classification result. Note that by definition an adequate subgroup of $\text{GL}_n(\overline{F}_l)$ necessarily acts irreducibly on \overline{F}_l^n.

Proposition 2.1.1. Suppose that $l > 2$ is a prime, and that G is a finite subgroup of $\text{GL}_2(\overline{F}_l)$, which acts irreducibly on \overline{F}_l^2. Then precisely one of the following is true:
- We have $l = 3$, and the image of G in $\text{PGL}_2(\overline{F}_3)$ is conjugate to $\text{PSL}_2(\overline{F}_3)$.
- We have $l = 5$, and the image of G in $\text{PGL}_2(\overline{F}_3)$ is conjugate to $\text{PSL}_2(\overline{F}_3)$.
- G is adequate.

Proof. This is Proposition A.2.1 of [BLGG13]. □
In the case that $\overline{\rho}(G_{F(\zeta)})$ is adequate, our main result follows exactly as in section 6 of [BLGG12], using the results of Appendix A of [BLGG13] (which in turn build on the results of [BLGGT10]). We obtain the following theorem.

Theorem 2.1.2. Suppose that $l > 2$ is prime, that F is a totally real field, and that $\overline{\rho} : G_F \to \text{GL}_2(\mathbb{F}_l)$ is irreducible and modular. Suppose also that $\overline{\rho}(G_{F(\zeta)})$ is adequate. Then:

1. There is a finite solvable extension of totally real fields L/F which is linearly disjoint from $\overline{F}^{\text{ker} \, \overline{\rho}}$ over F, such that $\overline{\rho}|_{G_L}$ has a modular lift $\rho_L : G_L \to \text{GL}_2(\overline{\mathbb{Q}}_l)$ of weight 0, which is ordinary at all places $v|l$.
2. If furthermore $\overline{\rho}|_{G_{F' \zeta}}$ is reducible at all places $v|l$, then $\overline{\rho}$ itself has a modular lift $\rho : G_F \to \text{GL}_2(\overline{\mathbb{Q}}_l)$ of weight 0, which is ordinary at all places $v|l$.

Proof. First, note that (2) is easily deduced from (1) using the results of Section 3 of [Gee11] (which build on Kisin’s reinterpretation of the Khare–Wintenberger method). Indeed, the proofs of Theorems 6.1.5 and 6.1.7 of [BLGG12] go through unchanged in this case.

Similarly, (1) is easily proved in the same way as Proposition 6.1.3 of [BLGG12] (and in fact the proof is much shorter). First, note that the proof of Lemma 6.1.1 of [BLGG12] goes through unchanged to show that there is a finite solvable extension of totally real fields L/F which is linearly disjoint from $\overline{F}^{\text{ker} \, \overline{\rho}}$ over F, such that $\overline{\rho}|_{G_L}$ has a modular lift $\rho' : G_L \to \text{GL}_2(\overline{\mathbb{Q}}_l)$ of weight 0 which is potentially crystalline at all places dividing l, and in addition both $\overline{\rho}|_{G_{L_w}}$ and $\overline{\varepsilon}|_{G_{L_w}}$ are trivial for each place $w|l$ (and in particular, $\overline{\rho}|_{G_{L_w}}$ admits an ordinary lift of weight 0), and $\overline{\rho}$ is unramified at all finite places. By Lemma 4.4.1 of [GK12], $\rho'|_{G_{L_w}}$ is potentially diagonalizable in the sense of [BLGGT10] for all places $w|l$ of L.

Choose a CM quadratic extension M/L that is linearly disjoint from $L(\zeta)$ over L, in which all places of L dividing l split. We can now apply Theorem A.4.1 of [BLGG13] (with $F' = F = M$, S the set of places of L dividing l, and ρ_v an ordinary lift of $\overline{\rho}|_{G_{L_w}}$ for each $w|l$) to see that $\overline{\rho}|_{G_M}$ has an ordinary automorphic lift $\rho_M : G_M \to \text{GL}_2(\overline{\mathbb{Q}}_l)$ of weight 0.

The argument of the last paragraph of the proof of Proposition 6.1.3 of [BLGG12] (which uses the Khare–Wintenberger method to compare deformation rings for $\overline{\rho}|_{G_L}$ and $\overline{\rho}|_{G_M}$) now goes over unchanged to complete the proof. \(\square\)

3. Inadequate cases

3.1. The first inadequate case

We now consider the case that $l = 3$ and $\overline{\rho}|_{G_{F(\zeta)}}$ is irreducible, but $\overline{\rho}(G_{F(\zeta)})$ is not adequate. By Proposition 2.1.1, this means that the projective image of $\overline{\rho}(G_{F(\zeta)})$ is isomorphic to $\text{PSL}_2(\mathbb{F}_3)$, and is in particular soluble. We now use the Langlands–Tunnell theorem to prove our main theorem in this case.

Theorem 3.1.1. Suppose that F is a totally real field, and that $\overline{\rho} : G_F \to \text{GL}_2(\mathbb{F}_3)$ is irreducible and modular. Assume that $\overline{\rho}|_{G_{F \zeta}}$ is reducible at all places $v|3$ of F, and that the projective image of $\overline{\rho}(G_{F(\zeta)})$ is isomorphic to $\text{PSL}_2(\mathbb{F}_3)$.

Then $\overline{\rho}$ has a modular lift $\rho : G_F \to \text{GL}_2(\overline{\mathbb{Q}}_3)$ which is ordinary at all places $v|3$.
3.2. The second inadequate case. We now suppose that \(l = 5 \), that \(\rho \big|_{G_F(\zeta_5)} \) is irreducible but its image is not adequate. Then \(\rho \big|_{G_F(\zeta_5)} \) has projective image conjugate to \(\text{PSL}_2(\mathbb{F}_3) \), and we see that \(\rho(G_F) \) has projective image conjugate to either \(\text{PGL}_2(\mathbb{F}_5) \) or \(\text{PSL}_2(\mathbb{F}_5) \). (This follows from [DDT97, Prop. 2.47].) Thus, after conjugating, we may assume that \(\rho : G_F \rightarrow \text{GL}_2(\mathbb{F}_5) \) takes values in \(\mathbb{F}_5^\times \text{GL}_2(\mathbb{F}_5) \).

In order to apply the results of [SBT97], we need to assume further that there is a finite solvable totally real extension \(F'/F \) such that \(\rho \big|_{G_{F'}} \), is valued in \(\text{GL}_2(\mathbb{F}_5) \). (This condition is not automatic, but it holds if the projective image of \(\rho(G_F) \) is isomorphic to \(\text{PSL}_2(\mathbb{F}_5) \).)

Theorem 3.2.1. Suppose that \(F \) is a totally real field, and that \(\rho : G_F \rightarrow \text{GL}_2(\mathbb{F}_5) \) is irreducible and modular. Assume that \(\rho \big|_{G_{F'}} \) is reducible at all places \(v \nmid 5 \) of \(F \), and that the projective image of \(\rho(G_F(\zeta_5)) \) is isomorphic to \(\text{PSL}_2(\mathbb{F}_5) \). Assume further that there is a finite solvable totally real extension \(F'/F \) so that \(\rho \big|_{G_{F'}} \), is conjugate to a representation valued in \(\text{GL}_2(\mathbb{F}_5) \).

Then \(\rho \) has a modular lift \(\rho : G_F \rightarrow \text{GL}_2(\overline{\mathbb{Q}}_5) \) which is ordinary at all places \(v \nmid 5 \).

Proof. Since \(\rho \) is totally odd, we can replace \(F'/F \) by a further finite solvable totally real extension and assume that \(\rho \big|_{G_{F'}} \) takes values in \(\text{GL}_2(\mathbb{F}_5) \) and has determinant equal to the cyclotomic character. Now, as in the proof of Theorem 2.1.2, to prove the current theorem, it suffices to show that \(\rho \big|_{G_{F'}} \) has a modular lift of weight 0, which is ordinary at each \(v \nmid 5 \). (The only thing that needs to be checked is that Proposition 3.1.5 of [Gee11] applies to \(\rho \big|_{G_{F'}} \). The only hypothesis which is not immediate is that if the projective image of \(\rho \big|_{G_{F'}} \) is \(\text{PGL}_2(\mathbb{F}_5) \), then \([F'(\zeta_5) : F'] = 4 \). To see this, note that if \([F'(\zeta_5) : F'] = 2 \), then since the determinant of \(\rho \big|_{G_{F'}} \) is the mod 5 cyclotomic character, it has image \(\{ \pm 1 \} \). This implies that the projective image is \(\text{PSL}_2(\mathbb{F}_5) \), as required.)

By [SBT97, Theorem 1.2], there exists an elliptic curve \(E/F' \) such that \(E[5] \cong \rho \big|_{G_{F'}} \), and the image of \(G_{F'} \) in \(\text{Aut}(E[3]) \) contains \(\text{SL}_2(\mathbb{F}_2) \) (and hence its image is equal to \(\text{Aut}(E[3]) \) since the determinant is totally odd). We may further suppose that \(E \) has good ordinary reduction at each prime of \(F' \) dividing 5. (To see this, note that we may
incorporate Ekedahl’s effective version of the Hilbert Irreducibility Theorem [Eke90] into the proof of [SBT97, Theorem 1.2] exactly as is done in [Tay03, Lemma 2.3].) By the Langlands–Tunnell theorem, $E[3]$ has a modular lift corresponding to a Hilbert modular form f_0 of parallel weight 1. Replacing F' by a finite totally real solvable extension linearly disjoint from $\overline{F'}\ker E[3]$, we may assume that f_0 is ordinary at each prime dividing 3. By Hida theory, $E[3]$ then has a modular lift corresponding to a Hilbert modular form of parallel weight 2, which is ordinary at each prime dividing 3. Note that the conditions of the modularity lifting theorem [Gee09, Theorem 1.1], applied to $\rho := T_3E$, are satisfied. (For the third condition, note that $E[3]|_{G_F'}$ has non-dihedral image.) It follows that T_3E is modular and hence that T_3E is modular. Thus we have exhibited a modular lift of $\overline{\rho}|_{G_F'} \cong E[5]$ which has weight 0 and is ordinary at each prime above 5.

Finally, we deduce our main result from Theorems 2.1.2, 3.1.1 and 3.2.1.

Proof of Theorem A. If $\overline{\rho}|_{G_F(\zeta_l)}$ is reducible, then $\overline{\rho}$ is dihedral, and the result follows from Lemma 5.1.2 of [All12]. If $l = 3$ (respectively $l = 5$) and the projective image of $\overline{\rho}(G_F(\zeta_l))$ is isomorphic to $\text{PSL}_2(\mathbb{F}_l)$, then the result follows from Theorem 3.1.1 (respectively, from Theorem 3.2.1). In all other cases, we see from Proposition 2.1.1 that $\overline{\rho}(G_F(\zeta_l))$ is adequate and the result follows from Theorem 2.1.2(2). □

Acknowledgment

We would like to thank Vincent Pilloni for pointing out to us that we could make use of the results of [SBT97].

References

Department of Mathematics, Brandeis University, 415 South St, Waltham, MA 02453, USA
E-mail address: tbl@brandeis.edu

Department of Mathematics, Imperial College London, South Kensington Campus, Exhibition Rd, London SW7 2AZ, UK
E-mail address: toby.gee@imperial.ac.uk

Princeton University and Institute for Advanced Study, 1 Einstein Dr, Princeton, NJ 08540, USA
E-mail address: geraghty@math.princeton.edu