HILBERT–SAMUEL MULTIPLICITIES OF CERTAIN DEFORMATION RINGS

FABIAN SANDER

Abstract. We compute presentations of crystalline framed deformation rings of a two-dimensional representation \(\bar{\rho} \) of the absolute Galois group of \(\mathbb{Q}_p \), when \(\bar{\rho} \) has scalar semi-simplification, the Hodge–Tate weights are small and \(p > 2 \). In the non-trivial cases, we show that the special fibre is geometrically irreducible, generically reduced and the Hilbert–Samuel multiplicity is either 1, 2 or 4 depending on \(\bar{\rho} \). We show that in the last two cases the deformation ring is not Cohen–Macaulay.

1. Introduction

Let \(p > 2 \) be a prime. Let \(k \) be a finite field of characteristic \(p \), \(E \) be a finite totally ramified extension of \(W(k)[\frac{1}{p}] \) with ring of integers \(\mathcal{O} \) and uniformizer \(\pi \). For a given continuous representation \(\bar{\rho}: G_{\mathbb{Q}_p} \to \text{GL}_2(k) \) we consider the universal framed deformation ring \(R_{\bar{\rho}}^\square \) and the universal framed deformation \(\rho_{\text{univ}}: G_{\mathbb{Q}_p} \to \text{GL}_2(R_{\bar{\rho}}^\square) \).

For all \(\mathfrak{p} \in m\text{-Spec}(R_{\bar{\rho}}^\square[\frac{1}{p}]) \), the set of maximal ideals of \(R_{\bar{\rho}}^\square[\frac{1}{p}] \), we can specialize the universal representation at \(\mathfrak{p} \) to obtain the representation \(\rho_{\mathfrak{p}}: G_{\mathbb{Q}_p} \to \text{GL}_2(R_{\bar{\rho}}^\square[\frac{1}{p}]/\mathfrak{p}) \), where \(R_{\bar{\rho}}^\square[\frac{1}{p}]/\mathfrak{p} \) is a finite extension of \(\mathbb{Q}_p \).

Let \(\tau: I_{G_{\mathbb{Q}_p}} \to \text{GL}_2(E) \) be a representation with an open kernel, where \(I_{G_{\mathbb{Q}_p}} \) is the inertia subgroup of \(G_{\mathbb{Q}_p} \). We also fix integers \(a, b \) with \(b \geq 0 \) and a continuous character \(\psi: G_{\mathbb{Q}_p} \to \mathcal{O}^\times \) such that \(\bar{\psi}\epsilon = \det(\bar{\rho}) \), where \(\epsilon \) is the cyclotomic character. Kisin showed in [10] that there exist unique reduced \(\mathcal{O} \)-torsion free quotients \(R_{\bar{\rho}}^\square,\psi(a, b, \tau) \) and \(R_{\bar{\rho},\text{cris}}^\square(a, b, \tau) \) of \(R_{\bar{\rho}}^\square \) with the property that \(\rho_{\mathfrak{p}} \) factors through \(R_{\bar{\rho}}^\square,\psi(a, b, \tau) \) resp. \(R_{\bar{\rho},\text{cris}}^\square(a, b, \tau) \) if and only if \(\rho_{\mathfrak{p}} \) is potentially semi-stable resp. potentially crystalline with Hodge–Tate weights \((a, a + b + 1) \) and determinant \(\psi\epsilon \) and inertial type \(\tau \). If \(\tau \) is trivial then \(R_{\bar{\rho},\text{cris}}^\square(a, b, \tau) := R_{\bar{\rho},\text{cris}}^\square(a, b, 1 \oplus 1) \) parametrizes all the crystalline lifts of \(\bar{\rho} \) with Hodge–Tate weights \((a, a + b + 1) \) and determinant \(\psi\epsilon \). The Breuil–Mézard conjecture, proved by Kisin for almost all \(\bar{\rho} \), see also [2,3,7,8,14], says that the Hilbert–Samuel multiplicity of the ring \(R_{\bar{\rho}}^\square,\psi(a, b, \tau)/\pi \) can be determined by computing certain automorphic multiplicities, which do not depend on \(\bar{\rho} \), and the Hilbert–Samuel multiplicities of \(R_{\bar{\rho},\text{cris}}^\square(a, b) \) in low weights for \(0 \leq a \leq p - 2, \ 0 \leq b \leq p - 1 \). For most \(\bar{\rho} \), the Hilbert–Samuel multiplicities of \(R_{\bar{\rho},\text{cris}}^\square(a, b) \) have already been determined. Our goal in this paper is to compute the...
Hilbert–Samuel multiplicity of the ring $R_{\bar{\rho},\text{cris}}(a, b)$ with $0 \leq a \leq p - 2$, $0 \leq b \leq p - 1$ when

$$\bar{\rho}: G_{\mathbb{Q}_p} \to \text{GL}_2(k), \quad g \mapsto \begin{pmatrix} \chi(g) & \phi(g) \\ 0 & \chi(g) \end{pmatrix}.$$

One may show that $R_{\bar{\rho},\text{cris}}(a, b)$ is zero if either $b \neq p - 2$ or the restriction of χ to $I_{\mathbb{Q}_p}$ is not equal to ϵ^a modulo π.

Theorem 1. Let a be an integer with $0 \leq a \leq p - 2$ such that $\chi|_{I_{\mathbb{Q}_p}} \equiv \epsilon^a \pmod{\pi}$. Then $R_{\bar{\rho},\text{cris}}(a, p - 2)/\pi$ is geometrically irreducible, generically reduced and

$$e(R_{\bar{\rho},\text{cris}}(a, p - 2)/\pi) = \begin{cases} 1 & \text{if } \bar{\rho} \otimes \chi^{-1} \text{ is ramified,} \\ 2 & \text{if } \bar{\rho} \otimes \chi^{-1} \text{ is unramified, indecomposable,} \\ 4 & \text{if } \bar{\rho} \otimes \chi^{-1} \text{ is split.} \end{cases}$$

In the last two cases, $R_{\bar{\rho},\text{cris}}(a, p - 2)$ is not Cohen–Macaulay.

The multiplicity 4 does not seem to have been anticipated in the literature, see for example [11, 1.1.6]. Our method is elementary in the sense that we do not use any integral p-adic Hodge theory. The only p-adic Hodge theoretic input is that if ρ is a crystalline lift of $\bar{\rho}$ with Hodge–Tate weights $(0, p - 1)$, then we have an exact sequence

$$0 \to \epsilon^{p-1}\chi_1 \to \rho \to \chi_2 \to 0,$$

where $\chi_1, \chi_2: G_{\mathbb{Q}_p} \to \mathcal{O}^\times$ are unramified characters. This allows us to convert the problem into a linear algebra problem, which we solve in Lemma 2. This gives us an explicit presentation of the ring $R_{\bar{\rho},\text{cris}}(a, p - 2)$, using which we compute the multiplicities in Section 4. Our argument gives a proof of the existence of $R_{\bar{\rho},\text{cris}}(a, p - 2)$ independent of [10]. After writing this note we discovered that the idea to convert the problem into linear algebra already appears in [15].

2. The universal ring

After twisting we may assume that $\chi = 1$ and $a = 0$ so that

$$\bar{\rho}(g) = \begin{pmatrix} 1 & \phi(g) \\ 0 & 1 \end{pmatrix}.$$

Since the image of $\bar{\rho}$ in $\text{GL}_2(k)$ is a p-group, the universal representation factors through the maximal pro-p quotient of $G_{\mathbb{Q}_p}$, which we denote by G. We have the following commuting diagram:

$$\begin{array}{ccc}
G_{\mathbb{Q}_p} & \longrightarrow & G \\
\downarrow & & \downarrow \\
G_{\mathbb{Q}_p}^{\text{ab}} & \longrightarrow & G_{\mathbb{Q}_p}^{\text{ab}}(p) \cong G^{\text{ab}},
\end{array}$$
Lemma 1. Let $\eta: G_{Q_p} \to \mathbb{Z}_p^\times$ be a continuous character such that $\eta \equiv 1(p)$. Then $\eta = \epsilon^k \chi$ for an unramified character χ if and only if $\eta(\gamma) = \epsilon(\gamma)^k$ and $p - 1 | k$.

Proof. “\Rightarrow.” Since γ maps to identity in $Gal(\mathbb{Q}_p^{ur}/\mathbb{Q}_p)$, we clearly have $\chi(\gamma) = 1$ for every unramified character χ. Hence $\epsilon(\gamma)^k \equiv 1(p)$, which implies $p - 1 | k$.

“\Leftarrow.” From $\eta \epsilon^{-k}(\gamma) = 1$ and the fact that δ maps to the image of identity in the maximal pro-p quotient of $Gal(\mathbb{Q}_p(\mu_{p\infty})/\mathbb{Q}_p)$, we see that $\eta \epsilon^{-k} = \chi$ for an unramified character χ. \square

Since G is a free pro-p group generated by γ and δ, to give a framed deformation of ρ to (A, m_A) is equivalent to give two matrices in $GL_2(A)$ which reduce to $\bar{\rho}(\gamma)$ and $\bar{\rho}(\delta)$ modulo m_A. Thus

$$R^\Box_{\bar{\rho}} = \mathcal{O}[[x_{11}, x_{12}, x_{21}, t_\gamma, y_{11}, y_{12}, y_{21}, t_\delta]]$$

and the universal framed deformation is given by

$$\rho^{univ}: G \to GL_2(R^\Box_{\bar{\rho}}),$$

$$\gamma \mapsto \left(\begin{array}{cc} 1 + t_\gamma + x_{11} & x_{12} \\ x_{21} & 1 + t_\gamma - x_{11} \end{array} \right),$$

$$\delta \mapsto \left(\begin{array}{cc} 1 + t_\delta + y_{11} & y_{12} \\ y_{21} & 1 + t_\delta - y_{11} \end{array} \right),$$

where $x_{12} := \hat{x}_{12} + [\phi(\gamma)]$, $y_{12} := \hat{y}_{12} + [\phi(\delta)]$ where $[\phi(\gamma)], [\phi(\delta)]$ denote the Teichmüller lifts of $\phi(\gamma)$ and $\phi(\delta)$ to \mathcal{O}.

where $G^ab_{Q_p} := Gal(\mathbb{Q}_p^{ab}/\mathbb{Q}_p)$ is the maximal abelian quotient of G_{Q_p} and can be described by the exact sequence

$$1 \rightarrow Gal(\mathbb{Q}_p^{ab}/\mathbb{Q}_p^{ur}) \rightarrow G^ab_{Q_p} \rightarrow G^F_{Q_p} \rightarrow 1$$

where \mathbb{Q}_p^{ur} is the maximal unramified extension of \mathbb{Q}_p inside $\bar{\mathbb{Q}}_p$. Local class field theory implies that the natural map

$$G^ab_{Q_p} \rightarrow Gal(\mathbb{Q}_p^{ur}/\mathbb{Q}_p) \times Gal(\mathbb{Q}_p(\mu_{p\infty})/\mathbb{Q}_p)$$

is an isomorphism, where $\mu_{p\infty}$ is the group of p-power order roots of unity in $\bar{\mathbb{Q}}_p$. The cyclotomic character ϵ induces an isomorphism

$$Gal(\mathbb{Q}_p(\mu_{p\infty})/\mathbb{Q}_p) \xrightarrow{\epsilon} \mathbb{Z}_p^\times$$

and $Gal(\mathbb{Q}_p^{ur}/\mathbb{Q}_p) \cong \hat{\mathbb{Z}}$, hence

$$G^ab \cong (1 + p\mathbb{Z}_p) \times \mathbb{Z}_p,$$

where the map onto the first factor is given by e^{p-1}. We choose a pair of generators γ, δ of G^ab such that $\gamma \mapsto (1 + p, 0)$ and $\delta \mapsto (1, 1)$. With [1, Lemma 3.2] we obtain that G is a free pro-p group in two letters γ, δ which project to $\bar{\gamma}, \bar{\delta}$. The way we choose these generators will be of importance in the following.
Remark 1. We note that there are essentially three different cases:

1. \(\bar{\rho} \) is ramified \(\iff \phi(\gamma) \neq 0 \iff x_{12} \in (R_{\bar{\rho}}^\square)^\times \);
2. \(\bar{\rho} \) is unramified, non-split \(\iff \phi(\gamma) = 0, \phi(\delta) \neq 0 \iff x_{12} \in m_{R_{\bar{\rho}}^\square}, y_{12} \in (R_{\bar{\rho}}^\square)^\times \);
3. \(\bar{\rho} \) is split \(\iff \phi(\gamma) = 0, \phi(\delta) = 0 \iff x_{12}, y_{12} \in m_{R_{\bar{\rho}}} \).

Let \(\psi: G_{\mathbb{Q}_p} \to \mathcal{O}^\times \) be a continuous character, such that \(\det(\bar{\rho}) = \overline{\psi \epsilon} \), and let \(R_{\bar{\rho}}^{\square, \psi} \) be the quotient of \(R_{\bar{\rho}}^{\square} \) which parametrizes lifts of \(\bar{\rho} \) with determinant \(\psi \epsilon \). Since \(\gamma, \delta \) generate \(G \) as a group, we obtain

\[
R_{\bar{\rho}}^{\square, \psi} \cong R_{\bar{\rho}}^{\square}/(\det(\rho_{\text{univ}}(\gamma) - \psi(\gamma)), \det(\rho_{\text{univ}}(\delta) - \psi(\delta)))
\]

\[
\cong \mathcal{O}[x_{11}, x_{12}, x_{21}, y_{11}, y_{12}, y_{21}],
\]

because we can eliminate the parameters \(t_\gamma, t_\delta \) due to the relations \((1 + t_\gamma)^2 = \psi(\gamma) + x_{11}^2 + x_{12}x_{21}, t_\gamma \equiv 0(\mathfrak{m}), (1 + t_\delta)^2 = \psi(\delta) + y_{11}^2 + y_{12}y_{21}, t_\delta \equiv 0(\mathfrak{m}) \). We let \(v := \frac{1 - e^{p-1}(\gamma)}{2} \) and define four polynomials

\[
(I_1) \quad I_1 := (v + x_{11})(v - x_{11}) - x_{12}x_{21},
\]

\[
(II) \quad I_2 := (v + x_{11})^2 y_{12} - 2(v + x_{11})x_{12}y_{11} - x_{12}^2 y_{21},
\]

\[
(III) \quad I_3 := x_{21} y_{12} - 2x_{21}(v - x_{11})y_{11} - (v - x_{11})^2 y_{21},
\]

\[
(IV) \quad I_4 := (v + x_{11})x_{21} y_{12} - 2x_{12}x_{21}y_{11} - x_{12}(v - x_{11})y_{21}.
\]

Since for every representation with Hodge–Tate weights \((0, p - 1)\) the determinant is a character of Hodge–Tate weight \(p - 1 \) and \(R_{\bar{\rho}, \text{cris}}^{\square}(0, p - 2) \) parametrizes all lifts \(\rho_{\bar{\rho}} \) with determinant \(\psi \epsilon \), we let from now on \(\psi \) have Hodge–Tate weight \(p - 2 \), as otherwise \(R_{\bar{\rho}, \text{cris}}^{\square}(0, p - 2) \) would be trivial.

Definition 1. We set

\[
R := R_{\bar{\rho}}^{\square, \psi}/(I_1, I_2, I_3, I_4).
\]

Our goal is to show that \(R_{\bar{\rho}, \text{cris}}^{\square}(0, p - 2) \) is isomorphic to \(R \).

Lemma 2. If \(\mathfrak{p} \in \text{m-Spec}(R_{\bar{\rho}}^{\square, \psi}[\frac{1}{p}]) \), then \(\mathfrak{p} \in \text{m-Spec}(R[\frac{1}{p}]) \) if and only if \(\rho_{\mathfrak{p}}(\gamma) \) acts on the \(G \)-invariant subspace with eigenvalue \(e^{p-1}(\gamma) \).

Proof. Let \(\mathfrak{p} \in \text{m-Spec}(R_{\bar{\rho}}^{\square, \psi}[\frac{1}{p}]) \), such that \(\rho_{\mathfrak{p}} \) is reducible and \(\rho_{\mathfrak{p}}(\gamma) \) acts on the \(G \)-invariant subspace with eigenvalue \(e^{p-1}(\gamma) \). Since \(\det(\rho_{\mathfrak{p}}(\gamma)) = \psi(\gamma) = e(\gamma)^{p-1} \) and \(e(\gamma)^{p-1} \) is an eigenvalue of \(\rho_{\mathfrak{p}}(\gamma) \), the other eigenvalue must be 1. Therefore we can write \(1 + t_{\gamma} = \frac{e(\gamma)^{p-1} + 1}{2} \) and obtain

\[
0 = \det \left(\begin{array}{cc}
1 + t_{\gamma} + x_{11} - e(\gamma)^{p-1} & x_{12} \\
x_{21} & 1 + t_{\gamma} - x_{11} - e(\gamma)^{p-1}
\end{array} \right)
\]

\[
= (v + x_{11})(v - x_{11}) - x_{12}x_{21}.
\]
If we now take \(p \) as above but with \(I_1 := (v + x_{11})(v - x_{11}) - x_{12}x_{21} \in p \), it is easy to see that the vectors \(v_1 = \left(\frac{-x_{12}}{v + x_{11}} \right) \) and \(v_2 = \left(\frac{v - x_{11}}{-x_{21}} \right) \) are eigenvectors for \(\rho_p(\gamma) \) with eigenvalue \(\epsilon(\gamma)^{p-1} \) if they are non-zero. But at least one of them is non-zero because otherwise we obtain \(v = 0 \) and thus \(\epsilon(\gamma)^{p-1} = 1 \), which is a contradiction to the definition of \(\gamma \). So \(\rho_p \) is reducible with an invariant subspace on which \(\rho_p(\gamma) \) acts by \(\epsilon(\gamma)^{p-1} \) if and only if the vectors \(v_1, v_2, \rho^{\text{univ}}(\delta)v_1, \rho^{\text{univ}}(\delta)v_2 \) are pairwise linear dependent. It is easy to check that this is equivalent to the satisfaction of the equations \(I_1 = I_2 = I_3 = I_4 = 0 \). □

Lemma 3.

\[
\text{m-Spec}\left(R \left[\frac{1}{p} \right] \right) = \text{m-Spec}\left(R_p^{\square, \psi}(0, p - 2) \left[\frac{1}{p} \right] \right).
\]

Proof. From Khare and Wintenberger [9, Proposition 3.5(i)] we know that every crystalline lift \(\rho_p \) of a reducible two-dimensional representation \(\bar{\rho} \), such that \(\rho_p \) has Hodge–Tate-weights \((0, p - 1) \), is reducible itself. Moreover, Brinon and Conrad [4, Theorem 8.3.5] say that if \(\rho \) is a reducible two-dimensional crystalline representation, then we have an exact sequence

\[
0 \longrightarrow \epsilon^{p-1} \chi_1 \longrightarrow \rho \longrightarrow \chi_2 \longrightarrow 0.
\]

Thus \(\rho_p(\gamma) \) acts on the invariant subspace as \(\epsilon(\gamma)^{p-1} \) and hence from Lemma 2 it is clear that

\[
\text{m-Spec}\left(R \left[\frac{1}{p} \right] \right) \supset \text{m-Spec}\left(R_p^{\square, \psi}(0, p - 2) \left[\frac{1}{p} \right] \right).
\]

For the other inclusion we note that it is also clear from Lemma 2 that any maximal ideal \(p \in \text{m-Spec}(R[\frac{1}{p}]) \) gives rise to a reducible representation \(\rho_p \) such that \(\rho_p(\gamma) \) acts on the invariant subspace as \(\epsilon(\gamma)^{p-1} \) and that the other eigenvalue of \(\rho_p(\gamma) \) is 1. So we obtain with Lemma 1 that \(\rho_p \) is an extension of two crystalline characters

\[
0 \rightarrow \eta_1 \rightarrow * \rightarrow \eta_2 \rightarrow 0,
\]

where the Hodge–Tate weight of \(\eta_1 \) is equal to \(p - 1 \) and the weight of \(\eta_2 \) is equal to 0. Then we can conclude from [13, Proposition 128] that it is semi-stable and from [4, Theorem 8.3.5, Proposition 8.38] that it is crystalline and hence \(p \in \text{m-Spec}(R_p^{\square, \psi}(0, p - 2)\left[\frac{1}{p} \right]) \). □

Remark 2. We have the following identities mod \(I_1 \):

\[
\begin{align*}
(5) & \quad x_{21}I_1 = (v + x_{11})I_4, \\
(6) & \quad (v - x_{11})I_2 = x_{12}I_4, \\
(7) & \quad x_{21}I_4 = (v + x_{11})I_3, \\
(8) & \quad (v - x_{11})I_4 = x_{12}I_3.
\end{align*}
\]
3. Reducedness

In order to show that $R^{\square,\psi}_{\overline{\rho}}(0, p - 2)$ is equal to R, it is enough to show that R is reduced and \mathcal{O}-torsion free, since then the assertion follows from Lemma 3, as $R[\frac{1}{p}]$ is Jacobson because R is a quotient of a formal power series ring over a complete discrete valuation ring.

Lemma 4. If $\mathcal{O} = W(k)$, then R is an $W(k)$-torsion-free integral domain.

Proof. We distinguish two cases.

If $\overline{\rho}$ is ramified, i.e., x_{12} is invertible, we consider the fact that for every complete local ring A with $a \in \mathfrak{m}_A, u \in A^\times$, there is a canonical isomorphism $A[[z]]/(uz - a) \cong A$. Using this we see from (1), (2), (6) and (8) that

$$R = \mathcal{O}[x_{11}, \hat{x}_{12}, x_{21}, y_{11}, \hat{y}_{12}, y_{21}]/(I_1, I_2) \cong \mathcal{O}[x_{11}, \hat{x}_{12}, y_{11}, \hat{y}_{12}],$$

which shows the claim.

In the second case, where $\overline{\rho}$ is unramified, i.e., $x_{12} \notin R^\times$, we consider the ideal $I := (\pi, x_{11}, x_{12}, x_{21})$ and have

$$\text{gr}_I R^{\square,\psi}_{\overline{\rho}} \cong k[[y_{11}, \hat{y}_{12}, y_{21}]]_{[\hat{x}_{11}, \hat{x}_{12}, \hat{x}_{21}]}.$$

Since $\mathcal{O} = W(k)$ we have $v \in I \setminus I^2$ and hence the elements I_1, I_2, I_3, I_4 are homogeneous of degree 2, so that

$$\text{gr}_I R \cong k[[y_{11}, \hat{y}_{12}, y_{21}]]_{[\hat{x}_{11}, \hat{x}_{12}, \hat{x}_{21}]}/(I_1, I_2, I_3, I_4),$$

see [6, Example 5.3]. Because R is noetherian it follows from [6, Corollary 5.5] that it is enough to show that $\text{gr}_I R$ is an integral domain.

We define

$$A := k[[y_{11}, \hat{y}_{12}, y_{21}]]_{[\hat{x}_{11}, \hat{x}_{12}, \hat{x}_{21}, \hat{x}_{21}]}/(I_1)$$

and look at the map

$$\phi: A \rightarrow A[x_{12}^{-1}]/(I_2).$$

The latter ring is isomorphic to $(k[[y_{11}, \hat{y}_{12}, y_{21}]]_{[\hat{x}_{11}, \hat{x}_{12}, \hat{x}_{12}^{-1}, \hat{x}_{11}]}/(I_2))$ and since I_2 is irreducible it is an integral domain. So we would be done by showing that $\text{ker}(\phi) = (I_2, I_3, I_4)$. The inclusion $(I_2, I_3, I_4) \subset \text{ker}(\phi)$ is clear from (6) and (8). For the other one we consider the fact that

$$\text{ker}(\phi) = \{a \in A : \exists n \in \mathbb{N} \cup \{0\}, b, c, d \in A : x_{12}^n a = bI_2 + cI_3 + dI_4\}.$$

To show that $\text{ker}(\phi) \subset (I_2, I_3, I_4)$, we let $a \in A$ and n be minimal with the property that there exist $b, c, d \in A$ such that

$$x_{12}^n a = bI_2 + cI_3 + dI_4.$$
If \(n = 0 \) there is nothing to show. Now we assume that \(n > 0 \) and consider the prime ideal \(p := (\bar{x}_{12}, \bar{v} - \bar{x}_{11}) \subset A \) and see that

\[
A/p \cong k[[y_{11}, y_{12}, y_{21}]][\bar{x}_{11}, \bar{x}_{12}]
\]

is a unique factorization domain. We also observe that

\[
\begin{align*}
I_2 & \equiv y_{12}(\bar{v} + \bar{x}_{11})^2 \mod p, \\
I_3 & \equiv y_{12}\bar{x}_{21}^2 \mod p, \\
I_4 & \equiv y_{12}(\bar{v} + \bar{x}_{11})\bar{x}_{21} \mod p.
\end{align*}
\]

Modulo \(p \) (9) becomes

\[
0 \equiv y_{12}b(\bar{v} + \bar{x}_{11})^2 + y_{12}c\bar{x}_{21}^2 + y_{12}d(\bar{v} + \bar{x}_{11})\bar{x}_{21}.
\]

Since \(A/p \) is a unique factorization domain there are \(b_1, c_1 \in A \) such that

\[
\begin{align*}
y_{12}b & \equiv b_1\bar{x}_{21} \mod p, \\
y_{12}c & \equiv c_1(\bar{v} + \bar{x}_{11}) \mod p
\end{align*}
\]

and we see that

\[
d \equiv -\frac{b_1\bar{x}_{21} + c_1(\bar{v} + \bar{x}_{11})}{2} \mod p.
\]

Hence we can find \(b_2, b_3, c_2, c_3, d_1, d_2 \in A \) such that

\[
\begin{align*}
b & = b_1\bar{x}_{21} + b_2\bar{x}_{12} + b_3(\bar{v} - \bar{x}_{11}), \\
c & = c_1(\bar{v} + \bar{x}_{11}) + c_2\bar{x}_{12} + c_3(\bar{v} - \bar{x}_{11}), \\
d & = -\frac{b_1\bar{x}_{21} + c_1(\bar{v} + \bar{x}_{11})}{2} + d_1\bar{x}_{12} + d_2(\bar{v} - \bar{x}_{11}).
\end{align*}
\]

Substituting this in (9) we get

\[
\begin{align*}
\bar{x}_{12}^n a & = b\bar{I}_2 + c\bar{I}_3 + d\bar{I}_4 \\
& = \bar{x}_{12}(b_2I_2 + b_3I_4 + c_2I_3 + d_1I_4 + d_2I_3) \\
& \quad + \frac{1}{2}(b_1(\bar{v} + \bar{x}_{11}) + c_1\bar{x}_{21})I_4 + (\bar{v} - \bar{x}_{11})c_3I_3.
\end{align*}
\]

Modulo \(p \) we have \(b_1(\bar{v} + \bar{x}_{11}) + c_1\bar{x}_{21} \equiv 0 \) and hence there are \(b_4, b_5, b_6, c_4, c_5, c_6 \) with

\[
\begin{align*}
b_1 & = b_2b_4 + \bar{x}_{12}b_5 + (\bar{v} - \bar{x}_{11})b_6, \\
c_1 & = (\bar{v} + \bar{x}_{11})c_4 + \bar{x}_{12}c_5 + (\bar{v} - \bar{x}_{11})c_6.
\end{align*}
\]

Hence we can rewrite (18) to

\[
\bar{x}_{12}^n a = \bar{x}_{12}z + \frac{1}{2}(b_4 + c_4)(\bar{v} + \bar{x}_{11})^2I_3 + (\bar{v} - \bar{x}_{11})c_3I_3
\]
for a certain \(z \in (I_2, I_3, I_4) \). So with (21) we see that \(b_4 + c_4 \equiv 0 \mod p \) and \(c_3 \equiv 0 \mod p \) modulo the prime ideal \(p' := (\bar{x}_{12}, \bar{v} + \bar{x}_{11}) \). Therefore we can find some \(c_7, c_8, e_1, e_2 \in A \) with

\[
\begin{align*}
 c_3 &= c_7 \bar{x}_{12} + c_8 (\bar{v} + \bar{x}_{11}), \\
 b_4 + c_4 &= e_1 \bar{x}_{12} + e_2 (\bar{v} - \bar{x}_{11}).
\end{align*}
\]

But since we have \((v + x_{11})(v - x_{11}) = x_{12}x_{21}\) in \(A \) we can finally transform (21) to

\[
\bar{x}_{12}^n a = \bar{x}_{12}z'
\]

for some \(z' \in (I_2, I_3, I_4) \) which shows that \(\bar{x}_{12}^{n-1} a \in (I_2, I_3, I_4) \), since \(A \) is an integral domain. But this is a contradiction to the minimality of \(n \). \(\square \)

Proposition 1. \(R \) is reduced and \(\mathcal{O} \)-torsion free for any choice of \(\mathcal{O} \).

Proof. Since \(\mathcal{O} \) is flat over \(W(k) \) and we have seen in Lemma 3 that

\[
S := W(k)[[x_{11}, \bar{x}_{12}, x_{21}, y_{11}, \hat{y}_{12}, y_{21}]]/(I_1, I_2, I_3, I_4)
\]

is an integral domain, we get an injection

\[
\mathcal{O} \otimes_{W(k)} S \rightarrow \mathcal{O} \otimes_{W(k)} \text{Quot}(S).
\]

As \(S \) is \(W(k) \)-torsion free by Lemma 3, we obtain an isomorphism

\[
\mathcal{O} \otimes_{W(k)} \text{Quot}(S) \cong \mathcal{O} \left[\frac{1}{p} \right] \otimes_{W(k) \left[\frac{1}{p} \right]} \text{Quot}(S).
\]

Since \(\mathcal{O} \left[\frac{1}{p} \right] \) is a separable field extension of \(W(k) \left[\frac{1}{p} \right] \), we deduce that \(\mathcal{O} \left[\frac{1}{p} \right] \otimes_{W(k) \left[\frac{1}{p} \right]} \text{Quot}(S) \) is reduced and \(\mathcal{O} \)-torsion free. \(\square \)

4. The multiplicity

We want to compute the Hilbert–Samuel multiplicity of the ring \(R/\pi \) for the given representation

\[
\bar{\rho}: G_{Q_p} \rightarrow \text{GL}_2(k), \quad g \mapsto \begin{pmatrix} 1 & \phi(g) \\ 0 & 1 \end{pmatrix}.
\]

We denote the maximal ideal of \(R/\pi \) by \(m \).

Theorem 2.

\[
e(R/\pi) = \begin{cases}
1 & \text{if } \bar{\rho} \text{ is ramified,} \\
2 & \text{if } \bar{\rho} \text{ is unramified, indecomposable,} \\
4 & \text{if } \bar{\rho} \text{ is split.}
\end{cases}
\]

Proof. If we set \(J := y_{12}x_{21} + 2x_{11}y_{11} + x_{12}y_{21} \) we obtain modulo \(\pi \) the relations

\[
\begin{align*}
(I_2 & \equiv -x_{12}J, \\
(I_3 & \equiv x_{21}J, \\
(I_4 & \equiv x_{11}J.
\end{align*}
\]
We split the proof into three cases as in Remark 1. If $\bar{\rho}$ is ramified, i.e., x_{12} is invertible, we see as in the proof of Lemma 4 that
\[
R/\pi \cong k[[x_{11}, \hat{x}_{12}, x_{21}, y_{11}, \hat{y}_{12}, y_{21}]]/(x_{11}^2 + x_{12}x_{21}, J)
\cong k[[x_{11}, \hat{x}_{12}, y_{11}, \hat{y}_{12}]].
\]
Hence it is a regular local ring and therefore $e(R/\pi) = 1$.

Let us assume in the following that $\bar{\rho}$ is unramified, i.e., $x_{12} = \hat{x}_{12} \in m_R$, and we can consider the exact sequence
\[
0 \to (R/\pi)/\Ann_{R/\pi}(J) \to R/\pi \to R/(\pi, J) \to 0.
\]
Since $x_{11}, x_{12}, x_{21} \in \Ann_{R/\pi}(J)$, see (22)–(24), we have $\dim((R/\pi)/\Ann_{R/\pi}(J)) \leq 3$. But $\dim R/\pi = 4$ so that (25) gives us $e(R/\pi) = e(R/(\pi, J))$, see [12, Theorem 14.6]. We obtain that
\[
R/(\pi, J) \cong k[[x_{11}, x_{12}, x_{21}, y_{11}, \hat{y}_{12}, y_{21}]]/(x_{11}^2 + x_{12}x_{21}, J)
\cong (k[[x_{11}, x_{12}, x_{21}]]/(x_{11}^2 + x_{12}x_{21}))[y_{11}, \hat{y}_{12}, y_{21}]/(J)
\]
is a complete intersection of dimension 4. So if $q \subseteq R/(\pi, J)$ is an ideal generated by four elements, such that $R/(\pi, J, q)$ has finite length as a $R/(\pi, J)$-module, then these elements form a regular sequence in $R/(\pi, J)$ and $e_q(R/(\pi, J)) = l(R/(\pi, J, q))$, see [12, Theorem 17.11]. Besides, if there exists an integer n such that $qm^n = m^{n+1}$, then $e(R/(\pi, J)) = e_q(R/(\pi, J))$, see [12, Theorem 14.13]. So to finish the proof it would suffice to find such an ideal q.

If $\bar{\rho}$ is indecomposable, i.e., $\phi(\delta)$ is non-zero and therefore y_{12} is a unit in R, we can write the equation $J = 0$ as
\[
x_{21} = -y_{12}^{-1}(2x_{11}y_{11} + y_{21}x_{12})
\]
and $I_1 = 0$ as
\[
x_{11}^2 = x_{12}y_{12}^{-1}(2x_{11}y_{11} + y_{21}x_{12})
\]
so that
\[
R/(\pi, J) \cong k[[x_{11}, x_{12}, y_{11}, \hat{y}_{12}, y_{21}]]/(x_{11}^2 - x_{12}y_{12}^{-1}(2x_{11}y_{11} + y_{21}x_{12})).
\]
Hence it is clear that $x_{12}, x_{21}, y_{11}, \hat{y}_{12}$ is a system of parameters for $R/(\pi, J)$ that generates an ideal q with $qm = m^2$. So we obtain
\[
e_q(R/(\pi, J)) = l(R/(\pi, J, q)) = l(k[[x_{11}]]/(x_{11}^2)) = 2
\]
and hence $e(R/\pi) = 2$.

If $\bar{\rho}$ is split, which is equivalent to $x_{12}, y_{12} \notin R^\times$, we take $q := (x_{12} - x_{21}, x_{12} - y_{12}, x_{12} - y_{21}, y_{11})$ and claim that $qm^2 = m^4$. If we write $m = (x_{12} - x_{21}, x_{12} - y_{12}, x_{12} - y_{21}, y_{11}, x_{11}, x_{12})$ we just have to check that $x_{11}^3, x_{11}^2 x_{12}, x_{11} x_{12}^2, x_{12}^3 \in qm^2$. Therefore it is enough to see that
\[
x_{11}^2 = x_{11}y_{11} - \frac{1}{2}(x_{12} - y_{12})x_{21} - \frac{1}{2}(x_{21} - y_{21})x_{12} \in mq,
\]
\[
x_{12}^2 = -x_{11}^2 + x_{12}(x_{12} - x_{21}) \in mq.
\]
Hence
\[e(R/\pi) = l(R/(\pi, J, q)) = l(k[[x_{11}, x_{12}]]/(x_{11}^2, x_{12}^2)) = 4. \]

\[\square \]

Corollary 1. If \(\bar{\rho} \) is unramified, then the ring \(R \) is not Cohen–Macaulay.

Proof. Since \(R \) is \(O \)-torsion free, \(\pi \) is \(R \)-regular and hence \(R \) is CM if and only if \(R/\pi \) is CM. In (25) we have constructed a non-zero submodule of \(R/\pi \) of dimension strictly less than the dimension of \(R/\pi \). It follows from [5, Theorem 2.1.2(a)] that \(R/\pi \) cannot be CM. \(\square \)

Proposition 2. Spec\((R/\pi)\) is geometrically irreducible and generically reduced.

To prove the proposition we need the following lemma. As in the proof of Theorem 2 we define \(J := y_{12}x_{21} + 2x_{11}y_{11} + x_{12}y_{21} \).

Lemma 5. \(R/(\pi, J) \) is an integral domain.

Proof. We again distinguish between three cases as in Remark 1. If \(\bar{\rho} \) is ramified, i.e., \(x_{12} \) is invertible, we have already seen in the proof of Theorem 2 that
\[R/(\pi, J) \cong k[[x_{11}, \hat{x}_{12}, x_{21}, y_{11}, \hat{y}_{12}, y_{21}]]/(x_{11}^2 + x_{12}x_{21}, J) \]
\[\cong k[[x_{11}, \hat{x}_{12}, y_{11}, \hat{y}_{12}]]. \]
If \(\bar{\rho} \) is unramified and indecomposable, i.e., \(x_{12} = \hat{x}_{12} \in m_R, y_{12} \in R^\times \) we saw that
\[R/(\pi, J) \cong k[[x_{11}, x_{12}, y_{11}, \hat{y}_{12}, y_{21}]]/(x_{11}^2 - x_{12}y_{12}^{-1}(2x_{11}y_{11} + y_{21}x_{12})) \]
which is easily checked to be an integral domain. If \(\bar{\rho} \) is unramified and split, i.e., \(x_{12}, y_{12} \in m_R \), let \(n \) denote the maximal ideal of \(R/(\pi, J) \). It is enough to show that the graded ring \(\text{gr}_n R/(\pi, J) \) is a domain. Since \(J \) is homogeneous we have
\[\text{gr}_n R/(\pi, J) \cong k[[x_{11}, x_{12}, x_{21}, y_{11}, y_{12}, y_{21}]]/(x_{11}^2 + x_{12}x_{21}, J). \]
We set \(A := k[[x_{11}, x_{12}, x_{21}, y_{11}, y_{12}, y_{21}]]/(x_{11}^2 + x_{12}x_{21}) \) and have to prove that \((J) \subset A \) is a prime ideal. We look at the localization map \(A \xrightarrow{\hat{\iota}} A[y_{21}^{-1}] \), which is an inclusion because \(y_{21} \) is regular in \(A \). This gives us a map \(A \xrightarrow{\hat{\iota}} A[y_{21}^{-1}]/(J) \). Since
\[A[y_{21}^{-1}]/(J) \cong k[[x_{11}, x_{21}, y_{11}, y_{12}, y_{21}]]/(x_{11}^2 - x_{21}y_{21}^{-1}(2x_{11}y_{11} + x_{21}y_{12})) \]
is a domain, we would be done by showing that \(\ker(\hat{\iota}) = (J) \). We have
\[\ker(\hat{\iota}) = \{ a \in A : y_{21}^{-1}a = bJ \text{ for some } i \in \mathbb{Z}_{\geq 0}, b \in A : y_{21} \nmid b \}. \]
But since \((y_{21}) \subset A \) is a prime ideal and \(y_{21} \) does not divide \(J \), we see that \(i = 0 \) in all these equations and hence \(\ker(\hat{\iota}) = (J) \). \(\square \)

Proof of Proposition 2. Let \(p \) be a minimal prime ideal of \(S := R/\pi \). It follows from (22)–(24) that \(J^2 = 0 \) and thus \(J \in \text{rad}(S) = \bigcap_p \text{ minimal } p \). So Lemma 5 gives us that \(JS \) is the only minimal prime ideal of \(S \), hence Spec\((S)\) is irreducible. If we replace the field \(k \) by an extension \(k' \), we obtain the irreducibility of Spec\((S \otimes_k k')\) analogously, thus Spec\((S)\) is geometrically irreducible.
Spec(S) is called generically reduced if \(S_p \) is reduced for any minimal prime ideal \(p \).
We have already seen that there is only one minimal prime ideal \(p = JS \).
By localizing (25) we obtain \(S_p \cong R/(\pi, J) \).
Lemma 5 implies that \(S_p \) is reduced. \(\square \)

Acknowledgment

This paper was written as a part of my PhD thesis. I want to thank my advisor Prof. Dr. Vytautas Paškūnas for his great support.

References

Department of Mathematics, University of Duisburg-Essen, Thea-Leymann-Strasse 9, 45127 Essen, Germany

E-mail address: fabian.sander@uni-due.de