On the local-global principle for divisibility in the cohomology of elliptic curves

Brendan Creutz

For every prime power p^n with $p = 2$ or 3 and $n \geq 2$ we give an example of an elliptic curve over \mathbb{Q} containing a rational point which is locally divisible by p^n but is not divisible by p^n. For these same prime powers we construct examples showing that the analogous local-global principle for divisibility in the Weil-Châtelet group can also fail.

1. Introduction

Let G be a connected commutative algebraic group over a number field k, and let n and r be nonnegative integers. An element ρ in the Galois cohomology group $H^r(k,G) := H^r(\text{Gal}(\overline{k}/k), G(\overline{k}))$ is divisible by n if there exists $\rho' \in H^r(k,G)$ such that $n\rho' = \rho$. We say ρ is locally divisible by n if, for all primes v of k, there exists $\rho'_v \in H^r(k_v,G)$ such that $n\rho'_v = \text{res}_v(\rho)$. It is natural to ask whether every element locally divisible by n is necessarily divisible by n. When the answer is yes, we say the local-global principle for divisibility by n holds.

For $r = 0$ and $G = \mathbb{G}_m$, the answer is given by the Grunwald-Wang theorem (see [NSW08, IX.1]); the local-global principle for divisibility by n holds, except possibly when 8 divides n. The case $r = 1$ and $G = \mathbb{G}_m$ is trivial in light of Hilbert’s Theorem 90. For $r \geq 2$ and general G, a result of Tate implies that the local-global principle for divisibility by n always holds (see Theorem 2.1 below).

A study of the problem for $r = 0$ and general G was initiated in [DZ01], with particular focus on elliptic curves in [DZ04, DZ07, PRV12, PRV14]. For elliptic curves over \mathbb{Q} it is shown that the local-global principle for divisibility by a prime power p^n holds for $n = 1$ or $p \geq 5$, and counterexamples have been constructed for $p^n = 4$. An alternative proof for the case $p \geq 5$ is given in [LW, Theorem 24]. For $r = 1$ and G an elliptic curve, the question was first raised by Cassels [Cas62a, Problem 1.3]. In particular, he asked whether
elements of $H^1(k, G)$ that are everywhere locally trivial must be divisible. In response, Tate proved the local-global principle for divisibility by a prime p [Cas62b]. The question was taken up again in [Baš72], and recently by Çiperiani and Stix [ÇS15] who showed that, for elliptic curves over \mathbb{Q}, the local-global principle for divisibility by p^n holds for all prime powers with $p \geq 11$. Though it is not expressly stated, the results of [PRV14] extend this to $p \geq 5$. An example showing that it does not hold in general over \mathbb{Q} for any $p^n = 2^n$ with $n \geq 2$ was constructed in [Cre13].

The purpose of this paper is to settle these questions for the remaining undecided prime powers. We prove the following.

Theorem. Let $n \geq 2$ be an integer, let $p \in \{2, 3\}$ and let $r \in \{0, 1\}$. Then there exists an elliptic curve E over \mathbb{Q} for which the local-global principle for divisibility by p^n fails in $H^r(\mathbb{Q}, E)$.

Notation

Throughout the paper p denotes a prime number, m and n are positive integers, and r is a nonnegative integer. As above, G is a connected commutative algebraic group defined over a number field k with a fixed algebraic closure \overline{k}. We will use K to denote a field containing k and use \overline{K} to denote a fixed algebraic closure of K containing \overline{k}. For a Gal(\overline{k}/k)-module M, let M^\vee denote its Cartier dual and define

$$
\Pi r(\overline{k}, M) := \ker \left(H^r(\overline{k}, M) \xrightarrow{\prod \text{res}_v} \prod_v H^r(k_v, M) \right),
$$

the product running over all primes of k.

2. The obstruction to the local-global principle for divisibility

Because K has characteristic 0, multiplication by n is a finite étale endomorphism of G. Hence, for any $r \geq 0$, the short exact sequence of Gal(\overline{K}/K)-modules

$$
0 \rightarrow G[n] \xrightarrow{i} G \xrightarrow{n} G \rightarrow 0
$$
On the local-global principle for divisibility

379

(2.1) \[H^r(K, G[n]) \xrightarrow{\iota_*} H^r(K, G) \xrightarrow{n_*} H^r(K, G) \] \[\xrightarrow{\delta_n} H^{r+1}(K, G[n]) \xrightarrow{i_*} H^{r+1}(k, G). \]

From this one easily sees that an element \(\rho \in H^r(k, G) \) is locally divisible by \(n \) if and only if \(\delta_n(\rho) \in \text{III}^{r+1}(k, G[n]) \), and that \(\rho \) is divisible by \(n \) if and only if \(\delta_n(\rho) = 0 \). In particular, the local-global principle for divisibility by \(n \) in \(H^r(k, G) \) holds whenever \(\text{III}^{r+1}(k, G[n]) = 0 \). Combining this observation with Tate’s duality theorems yields the following.

Theorem 2.1. Assume any of the following:

1) \(r = 0 \) and \(\text{III}^1(k, G[n]) = 0 \);

2) \(r = 1 \) and \(\text{III}^1(k, G[n]^\vee) = 0 \); or

3) \(r \geq 2 \).

Then the local-global principle for divisibility by \(n \) in \(H^r(k, G) \) holds.

Proof. As noted above, in each case it suffices to show that \(\text{III}^{r+1}(k, G[n]) = 0 \). Case (1) is trivial, and cases (2) and (3) follow immediately from [Tat63, Theorem 3.1]. \(\square \)

The following proposition shows that when \(G \) is a principally polarized abelian variety, the conditions in the theorem are necessary, at least conjecturally.

Proposition 2.2. Suppose \(G \) is an abelian variety with dual \(G^\vee \). Then for every \(\xi \in \text{III}^1(k, G[n]) \), exactly one of the following hold:

1) \(\xi = 0 \);

2) \(\xi = \delta_n(\rho) \) for some \(\rho \in G(k) \) that is locally divisible by \(n \), but is not divisible by \(n \); or

3) \(\iota_*(\xi) \neq 0 \), in which case there either exists \(\rho \in \text{III}^1(k, G^\vee) \) such that \(\rho \) is not divisible by \(n \), or \(\iota_*(\xi) \) is divisible in \(\text{III}^1(k, G) \) by all powers of \(n \).

If \(G \) is a principally polarized abelian variety and \(\text{III}^1(k, G) \) is finite, then the local-global principle for divisibility by \(n \) holds in \(H^r(k, G) \) for every \(r \geq 0 \) if and only if \(\text{III}^1(k, G[n]) = 0 \).
Proof. Exactness of (2.1) implies that the cases in the first statement of the proposition are exhaustive and mutually exclusive. For the claim in case (3) we may apply [Cre13, Thm. 3], which states that $\mathbb{H}^1(k, G^\vee) \subset n\mathbb{H}^1(k, G^\vee)$ if and only if the image of $\iota_* : \mathbb{H}^1(k, G[n]) \to \mathbb{H}^1(k, G)$ is contained in the maximal divisible subgroup of $\mathbb{H}^1(k, G)$.

Now suppose G is a principally polarized abelian variety and that $\mathbb{H}^1(k, G)$ is finite. We must prove the equivalence in the second statement. One direction follows from Theorem 2.1 since $G[n] = G[n]^\vee$. The other direction follows from the first statement in the proposition, since finiteness of $\mathbb{H}^1(k, G)$ implies that it contains no nontrivial divisible elements as in case (3). □

The next lemma formalizes a method for constructing elements of $\mathbb{H}^1(k, G[mn])$, for some $m \geq 1$.

Lemma 2.3. Let $m \geq 1$ and let $j : G[n] \subset G[mn]$ be the inclusion map. Suppose $\xi \in \mathbb{H}^1(k, G[n])$ is such that $\text{res}_v(\xi) \in \delta_n(G(k_v)[m])$, for all primes v of k. Then

1) $j_*(\xi) \in \mathbb{H}^1(k, G[mn])$;
2) $j_*(\xi) = 0$ if and only if $\xi \in \delta_n(G(k)[m])$;
3) if $\xi = \delta_n(\rho)$ for some $\rho \in G(k)$, then $m\rho$ is locally divisible by mn; and
4) if $\xi = \delta_n(\rho)$ for some $\rho \in G(k)$ and $j_*(\xi) \neq 0$, then $m\rho$ is not divisible by mn.

Proof. The connecting homomorphism $G(K)[m] \to \mathbb{H}^1(k, G[n])$ arising from the short exact sequence

$$0 \to G[n] \xrightarrow{j} G[mn] \xrightarrow{n} G[m] \to 0$$

is the restriction of the δ_n to $G(K)[m]$. This implies that

$$\ker\left(j_* : \mathbb{H}^1(K, G[n]) \to \mathbb{H}^1(K, G[mn]) \right) = \delta_n(G(K)[m]),$$

from which the first two statements in the proposition easily follow.

The inclusion $j : G[n] \subset G[mn]$ also induces a commutative diagram

$$
\begin{array}{ccccccccc}
G(K)[n] & \xrightarrow{j} & G(K) & \xrightarrow{n} & G(K) & \xrightarrow{\delta_n} & \mathbb{H}^1(K, G[n]) \\
\downarrow j & & \downarrow n & & \downarrow \delta_n & & \downarrow j_* \\
G(K)[mn] & \xrightarrow{mn} & G(K) & \xrightarrow{\delta_m} & \mathbb{H}^1(K, G[mn])
\end{array}
$$
where the rows are the exact sequence (2.1) with $r = 0$, and the same sequence with mn in place of n. From this the last two statements can be deduced easily. \hfill \Box

3. The examples for $p = 2$

Proposition 3.1. Let E be the elliptic curve defined by

$$y^2 = (x + 2795)(x - 1365)(x - 1430)$$

and let $P = (341 : 59136 : 1) \in E(\mathbb{Q})$. For every $n \geq 2$, the point $2^{n-1}P$ is locally divisible by 2^n, but not divisible by 2^n. In particular, the local-global principle for divisibility by 2^n in $E(\mathbb{Q})$ fails for every $n \geq 2$.

Remark 3.2. This is due to Dvornicich and Zannier who stated and proved the proposition in the case $n = 2$ \cite[§4]{DZ04}. The general case follows immediately from this and the fact that $E(\mathbb{Q})[2] = E(\mathbb{Q})[2^\infty]$. We include our own proof here since our examples for $p = 3$ will be obtained using a similar, though more involved argument.

Proof. Fix the basis $P_1 = (1365 : 0 : 1), P_2 = (1430 : 0 : 1)$ for $E[2]$. By \cite[Proposition X.1.4]{Sil86} the composition of δ_2 with isomorphism $H^1(K, E[2]) \cong (K^\times/K^\times 2)^2$ is given explicitly by

$$Q = (x_0, y_0) \mapsto \begin{cases}
(x_0 - 1365, x_0 - 1430) & \text{if } Q \neq P_1, P_2 \\
(-1, -65) & \text{if } Q = P_1 \\
(65, 65) & \text{if } Q = P_2 \\
(1, 1) & \text{if } Q = 0
\end{cases}.$$

In particular, $\delta_2(P) = (-1, -1)$ and $\delta_2(E(K)[2])$ is generated by $\{(-1, -65), (65, 65)\}$. It follows that $\delta_2(P) \in \delta_2(E(K)[2])$ if and only if at least one of $65, -65$ or -1 is a square in K. If $K = \mathbb{Q}_v$ for some $v \leq \infty$, then one of these is a square. Indeed, 65 is a square in \mathbb{R} and in \mathbb{Q}_2, -1 is a square \mathbb{Q}_5 and in \mathbb{Q}_{13}, and for all other primes v the Legendre symbols satisfy the identity $\left(\frac{-1}{v}\right) \left(\frac{65}{v}\right) = \left(\frac{-65}{v}\right)$. Hence $\xi := \delta_2(P)$ satisfies the hypothesis of Lemma 2.3 with (m, n) replaced by $(2^{n-1}, 2)$.

On the other hand, $65, -65$ and -1 are not squares in \mathbb{Q}, and $E(\mathbb{Q})[2^\infty] = E(\mathbb{Q})[2]$ (the reduction mod 3 is nonsingular, so the 2-primary torsion must inject into the group of \mathbb{F}_3-points on the reduced curve. This group has order less than 8 by Hasse’s theorem). So the result follows from Lemma 2.3. \hfill \Box
Proposition 3.3. Let E be the elliptic curve defined by

$$y^2 = x(x + 80)(x + 205).$$

Then $\III^1(\Q, E) \not\subset 4\H^1(\Q, E)$. In particular, the local-global principle for divisibility by 2^n in $\H^1(\Q, E)$ fails for every $n \geq 2$.

Proof. This is [Cre13, Theorem 5]; we are content to sketch the proof. Much like the previous proof, one uses the explicit description of the map $\delta_2 : E(K) \to \H^1(K, E[2]) \cong (K^\times/K^\times 2)^2$ to show that there is an element $\xi \in \H^1(Q, E[2]) \setminus \delta_2(E(Q))$ which maps into $\delta_2(E(Q_v))$ everywhere locally. Lemma 2.3 then shows that the image of ξ in $\H^1(k, E[4])$ falls under case (3) of Proposition 2.2. This gives the result, since $\III^1(\Q, E)[2^\infty]$ is finite (as one can check in multiple ways, with or without the assistance of a computer). \qed

4. Diagonal cubic curves and 3-coverings

The examples for $p = 2$ were constructed using an explicit description of the map

$$E(K) \xrightarrow{\delta_2} \H^1(K, E[2]) \cong (K^\times/K^\times 2)^2.$$

Another way to describe the connecting homomorphism is in the language of n-coverings. An n-covering of an elliptic curve E over K is a K-form of the multiplication by n map on E. In other words, an n-covering of E is a morphism $\pi : C \to E$ such that there exists an isomorphism $\psi : E_K \cong C_K$ of the curves base changed to the algebraic closure \overline{K} which satisfies $\pi \circ \psi = n$. We now summarize how this notion can be used to give an interpretation of the group $\H^1(K, E[n])$. Details may be found in [CFO+08, §1].

An isomorphism of n-coverings of E is, by definition, an isomorphism in the category of E-schemes. The automorphism group of the n-covering $n : E \to E$ can be identified with $E[n]$ acting by translations. By a standard result in Galois cohomology (the twisting principle) the K-forms of $n : E \to E$ are parameterized, up to isomorphism by $\H^1(K, E[n])$. Under this identification the connecting homomorphism δ_n sends a point $P \in E(K)$ to the isomorphism class of the n-covering,

$$\pi_P : E \to E, \quad Q \mapsto nQ + P.$$

In particular, the isomorphism class of an n-covering $\pi : C \to E$ is equal to $\delta_n(P)$ if and only if $P \in \pi(C(K))$.

Our examples for $p = 3$ will come from elliptic curves of the form

$$E : x^3 + y^3 + dz^3 = 0$$

with distinguished point $(1 : -1 : 0)$, where $d \in \mathbb{Q}^\times$. For these curves we can write down some of the 3-coverings quite explicitly. According to Selmer, the following lemma goes back to Euler (see [Sel51, Theorem 1]).

Lemma 4.1. Let $E : x^3 + y^3 + dz^3 = 0$ and suppose $a, b, c \in \mathbb{Q}^\times$ are such that $abc = d$. Then the curve $C : aX^3 + bY^3 + cZ^3 = 0$ together with the map $\pi : C \to E$ defined by

\[
\begin{align*}
 x + y &= 9abcX^3Y^3Z^3 \\
 x - y &= (aX^3 - bY^3)(bY^3 - cZ^3)(cZ^3 - aX^3) \\
 z &= 3(abX^3Y^3 + bcY^3Z^3 + caZ^3X^3)XYZ
\end{align*}
\]

is a 3-covering of E.

Proof. A direct computation verifies that these equations define a nonconstant morphism $\pi : C \to E$, which, by virtue of the fact that E and C are smooth genus 1 curves, implies that it is finite and étale. The map $\psi : E_K \to C_K$ defined by

\[
\begin{align*}
 x &= \sqrt[3]{a}X, \quad y = \sqrt[3]{b}Y, \quad z = \sqrt[3]{c/d}Z
\end{align*}
\]

is clearly an isomorphism. It is quite evident that $E[3]$, which is cut out by $xyz = 0$, is mapped by $\pi \circ \psi$ to the identity $(1 : -1 : 0) \in E_K$. Therefore $\pi \circ \psi$ is an isogeny which factors through multiplication by 3. Since it has degree 9 it must in fact be multiplication by 3, and so π is a 3-covering. \(\square\)

Lemma 4.2. Suppose $d = 3d'$ and let $\xi \in H^1(K, E[3])$ be the class corresponding to the 3-covering as in Lemma 4.1 with $C : X^3 + 3Y^3 + d'Z^3 = 0$. Then $\xi \in \delta_3(E(K)[3])$ if any of the following hold:

1) $3 \in K^{\times 3}$;
2) $d' \in K^{\times 3}$;
3) $3d \in K^{\times 3}$;
4) $d \in K^{\times 3}$ and K contains the 9th roots of unity; or
5) $d \in K^{\times 3}$ and K contains a cube root of unity ζ_3 such that $3\zeta_3 \in K^{\times 3}$.

Corollary 4.3. Suppose $d = 3d'$ and let $\xi \in H^1(\mathbb{Q}, E[3])$ be the class of the 3-covering in Lemma 4.2. Then $\text{res}_v(\xi) \in \delta_3(E(\mathbb{Q}_v)[3])$, for every prime $v \nmid d$.

Proof. Suppose $v \nmid d$ and set $K = \mathbb{Q}_v$. By assumption $d, d', 3,$ and $3d$ are units and, since $\mathbb{Z}_v^\times / \mathbb{Z}_v^\times 3$ is cyclic, one of them must be a cube. Moreover, if \mathbb{Q}_v does not contain a primitive cube root of unity, then they are all cubes (since $\mathbb{Z}_v^\times / \mathbb{Z}_v^\times 3$ is trivial in this case). In light of this, and the first three cases in the lemma, we may assume $d \in \mathbb{Q}_v^\times$ and that \mathbb{Z}_v contains a primitive cube root of unity ζ_3. If ζ_3 is a cube, then case (4) of the lemma applies. If ζ_3 is not a cube, then the class of 3 is contained in the subgroup of $\mathbb{Q}_v^\times / \mathbb{Q}_v^\times 3$ generated by ζ_3, in which case (5) of the lemma applies. This establishes the corollary. \[\square\]

Proof of Lemma 4.2. By the discussion at the beginning of this section, it suffices to show that in each of these cases there is a K-rational point on C which maps to a 3-torsion point on E.\footnote{The points given below were found with the assistance of the Magma computer algebra system described in [BCP97]. A Magma script verifying the claims here can be found in the source file of the arXiv distribution of this article.} The 3-torsion points are the intersections of E with the hyperplanes defined by $x = 0, y = 0$ and $z = 0$. In the first three cases (resp.) the points

\[(-\sqrt{3} : 1 : 0), \quad (-\sqrt{3}d : 0 : 1), \quad (0 : -\sqrt{3}d : 3) \]

are defined over K, and the explicit formula for π given in Lemma 4.1 shows that they map to $(1 : -1 : 0) \in E(K)[3]$.

In case (4) K contains a primitive 9th root of unity ζ_9 and a cube root $\sqrt[3]{d}$ of d. Then

\[\left(2\zeta_9^5 + \zeta_9^4 + \zeta_9^2 + 2\zeta_9 \right) \sqrt[3]{d} : (-\zeta_9^3 + \zeta_9^2 + \zeta_9 - 1) \sqrt[3]{d} : -3 \right) \in C(K), \]

and one can check that it maps under π to the point $(0 : -\sqrt[3]{d} : 1)$. In case (5) K contains cube roots $\sqrt[3]{d}$ and $\beta = \sqrt[3]{3\zeta_3}$, where ζ_3 is a cube root of unity. One may check that $(\beta^2 \sqrt[3]{d} : \beta \sqrt[3]{d} : -3) \in C(K)$, and that this point maps under π to the point $(\zeta^2 : -1 : 0)$. \[\square\]
5. The examples for $p = 3$

Proposition 5.1. Let $E : x^3 + y^3 + 30z^3 = 0$ be the elliptic curve over \mathbb{Q} with distinguished point $P_0 = (1 : -1 : 0)$, and let

$$P = (1523698559 : -2736572309 : 826803945) \in E(\mathbb{Q}).$$

For every $n \geq 2$, $3^{n-1}P$ is locally divisible by 3^n, but not divisible by 3^n. In particular, the local-global principle for divisibility by 3^n in $E(\mathbb{Q})$ fails for every $n \geq 2$.

Proof. Let $C : X^3 + 3Y^3 + 10Z^3$ be the 3-covering of E as in Lemma 4.1, and let $\xi \in H^1(\mathbb{Q}, E[3])$ be the corresponding cohomology class. One may check that the point $Q = (-11 : 3 : 5) \in C(\mathbb{Q})$ maps to P. Thus $\xi = \delta_3(P)$. By Corollary 4.3, $\text{res}_v(\xi) \in \delta_3(E(Q_v)[3])$ for all primes $v | 30$. Also, since $10 \in \mathbb{Q}^\times$ and 3 is a cube in both \mathbb{Q}_2 and \mathbb{Q}_5 the first two cases of Lemma 4.2 show that $\text{res}_v(\xi) \in \delta_3(E(Q_v)[3])$ also for $v | 30$. On the other hand, $\xi \neq 0$ because $C(\mathbb{Q})$ does not contain a point lying on the subscheme defined by $XYZ = 0$. Since, $E(\mathbb{Q})[3] = 0$ the result follows by applying Lemma 2.3. □

Remark 5.2. For any $d \in \{51, 132, 159, 213, 219, 246, 267, 321, 348, 402, 435\}$ the same argument applies, giving more examples where the local-global principle for divisibility by 3^n in $E(\mathbb{Q})$ fails for all $n \geq 2$.

Proposition 5.3. For $d \in \{138, 165, 300, 354\}$ let $E : x^3 + y^3 + dz^3 = 0$ be the elliptic curve over \mathbb{Q} with distinguished point $P_0 = (1 : -1 : 0)$. Then $\text{III}^1(\mathbb{Q}, E) \not\subset 9H^1(\mathbb{Q}, E)$. In particular, the local-global principle for divisibility by 3^n in $H^1(\mathbb{Q}, E)$ fails for every $n \geq 2$.

Proof. Set $d' = d/3$. Let $C : X^3 + 3Y^3 + d'Z^3$ be the 3-covering of E as in Lemma 4.1, and let $\xi \in H^1(\mathbb{Q}, E[3])$ be the corresponding cohomology class. In all cases one easily checks that $d' \in \mathbb{Q}_v^\times$ and that $3 \in \mathbb{Q}_v^\times$ for all $v | d'$. So using the first two cases of Lemma 4.2 and Corollary 4.3 we see that $\text{res}_v(\xi) \in \delta_3(E(Q_v)[3])$ for every prime v. Then, by Lemma 2.3, the image of ξ in $H^1(\mathbb{Q}, E[9])$ lies in $\text{III}^1(\mathbb{Q}, E[9])$.

For these values of d, Selmer showed that $E(\mathbb{Q}) = \{(1 : -1 : 0)\}$ and $C(\mathbb{Q}) = \emptyset$ [Sel51, Theorem IX and Table 4b]. The latter implies that the image of ξ in $\text{III}^1(\mathbb{Q}, E[3^n])$ is nontrivial for every $n \geq 2$. Moreover, Selmer’s proof shows that $3\text{III}^1(\mathbb{Q}, E)[3^\infty] = 0$. In particular $\text{III}^1(\mathbb{Q}, E)[3^\infty]$ contains
no nontrivial infinitely divisible elements. Thus we are in case (3) of Proposition 2.2, and conclude that there exists some element of $\text{III}^1(\mathbb{Q}, E)$ which is not divisible by 9 in $H^1(\mathbb{Q}, E)$. \square

Remark 5.4. The argument in the proof above shows that $C \in \text{III}^1(\mathbb{Q}, E)$, but does not show that $C \notin 9 H^1(\mathbb{Q}, E)$. Rather, the elements of $\text{III}^1(\mathbb{Q}, E)$ which are proven not to be divisible by 9 in $H^1(\mathbb{Q}, E)$ are those that are not orthogonal to C with respect to the Cassels-Tate pairing. See [Cre13, Theorem 4].

Acknowledgements

It is a pleasure to thank Jakob Stix for a number of helpful comments, including pointing out case (3) in Theorem 2.1.

References

School of Mathematics and Statistics, University of Canterbury
Christchurch 8140, New Zealand

E-mail address: brendan.creutz@canterbury.ac.nz

Received February 16, 2014