In this paper, we study the regularity of solutions of the Monge-Ampère equation in two dimensions when the inhomogeneous term is Hölder continuous only in one variable or piecewise Hölder continuous.

1. Introduction

The aim of this paper is to study the Monge-Ampère equation

\begin{equation}
\det D^2 u(x) = f(x)
\end{equation}

in a bounded convex domain \( \Omega \) in \( \mathbb{R}^2 \). We are concerned with the anisotropic regularity when \( f \) is merely partially or piecewise Hölder continuous.

The Monge-Ampère equation has many applications in differential geometry and optimal transportation. The regularity problem for solutions of (1.1) has received a great deal of attention. In [1] Caffarelli established the interior \( C^{2,\alpha} \) estimates for the solution \( u \) when \( f \) is Hölder continuous, and later Jian and Wang [12] obtained the continuity estimates for \( D^2 u \) for Dini continuous \( f \). In the two dimensional case, the interior \( C^{2,\alpha} \) estimates were established by Heinz, and these estimates were used for his solution of Weyl’s embedding problem with the aid of a continuity method. In particular, following Lewy’s work [17], Heinz developed a characteristic theory for the Monge-Ampère equations in two dimensions [9–11]. See Schulz’s book [23] for an excellent exposition to this characteristic theory. The main ingredient of the theory is the so-called partial Legendre transform, which was later used by many authors in their study of the local regularity of certain

\begin{flushright}
2010 Mathematics Subject Classification: Primary 35J96; Secondary 35J60.
Key words and phrases: Monge-Ampère equation, anisotropic regularity, a priori estimates.
\end{flushright}
degenerate Monge-Ampère equations, see e.g. [4, 7]. For more recent applications and detailed discussions of the partial Legendre transform, we refer the reader to the paper [8].

The regularity theory mentioned above is isotropic, namely solutions are regular in all variables. An interesting and quite natural question is whether a solution of (1.1) is regular in one variable if the inhomogeneous term is regular in this variable only. For some PDEs from fluid mechanics or physical problems, the anisotropic regularity of the solutions is a significant problem, see e.g. [3, 16] and the references therein. It is known that, for uniformly elliptic equations in second order, if the coefficients and inhomogeneous term satisfy an anisotropic Hölder continuity condition, then the second derivatives of the solution satisfy a related anisotropic Hölder continuity estimates [5, 13, 24]. By [12], equation (1.1) is uniformly elliptic for strictly convex solutions if $f$ is Dini continuous in all variables and

$$\lambda \leq f \leq \Lambda$$

for two positive constants $\lambda$, $\Lambda$. However, if $f$ is not Dini continuous in all variables, the uniform ellipticity of (1.1) is unknown even in two dimensions.

Let $\varphi$ be a function defined in $\Omega \subset \mathbb{R}^2$, and $\xi$ be a fixed unit vector in $\mathbb{R}^2$. We denote

$$\omega_{\varphi, \xi}(r) = \sup\{|\varphi(x + t\xi) - \varphi(x)| : x + t\xi, x \in \Omega, |t| < r\}.$$ 

We say $\varphi$ is Dini continuous in $x_1$ if

$$\int_0^1 \frac{\omega_{\varphi,e_1}(r)}{r} dr < \infty,$$

and denote this by $\varphi \in C_{x_1}^{Dini}(\Omega)$. We say $\varphi$ is Hölder continuous in $x_1$ with exponent $\alpha$ if $\omega_{\varphi,e_1}(t) \in C^\alpha$, and denote $\varphi \in C_{x_1}^{\alpha}(\Omega)$, with the norm

$$\|\varphi\|_{C_{x_1}^{\alpha}(\Omega)} = \sup_{\Omega} |\varphi| + [\varphi]_{C_{x_1}^{\alpha}(\Omega)},$$

where

$$[\varphi]_{C_{x_1}^{\alpha}(\Omega)} = \sup_{r > 0} \frac{\omega_{\varphi,e_1}(r)}{r^\alpha}.$$ 

The first main result of this paper is the following anisotropic Schauder type estimate.
Theorem 1.1. Let $u$ be a smooth, strictly convex solution of (1.1) in a bounded convex domain $\Omega \subset \mathbb{R}^2$. Assume that $f$ satisfies (1.2). Then $\forall x, \bar{x} \in \Omega$ and $\forall \bar{\alpha} \in (0, 1)$,

\begin{equation}
|\partial_x \partial_{x_1} u(\bar{x}) - \partial_x \partial_{x_1} u(x)| \leq C d^{\bar{\alpha}} \left(1 + \int_d^1 \frac{\omega_{f,e_1}(r)}{r^{1+\bar{\alpha}}}ight) + C \int_0^d \frac{\omega_{f,e_1}(r)}{r},
\end{equation}

where $d = |x - \bar{x}|$, $C \geq 0$ depends only on $\bar{\alpha}, \delta, \lambda, \Lambda$ and the modulus of convexity of $u$. It follows that, for $0 < \alpha < 1$,

\begin{equation}
\|\partial_x \partial_{x_1} u\|_{C^\alpha(\Omega)} \leq C \left[1 + [f]_{C^\alpha(\Omega)}\right]
\end{equation}

for some $C$ only depending on $\alpha, \delta, \lambda, \Lambda$, and the modulus of convexity of $u$. In particular (1.3) also yields a continuity estimate of the second derivatives $\partial_x \partial_{x_1} u$ in terms of the $x_1$-direction Dini continuity of $f$.

In the above theorem we have used the notion of modulus of convexity of $u$, which is given by

$m_{u,\Omega}(t) = \inf \{m_z(t) : z \in \Omega\},$

$m_z(t) = \inf \{u(x) - \ell_z(x) : |x - z| > t\},$

where $t > 0$, $\ell_z$ a support function of $u$ at $z$. Clearly when $u$ is strictly convex, $m_{u,\Omega}(t)$ is a positive function of $t > 0$.

Assume that $f$ is $k$-times differentiable in variable $x_1$. We denote by $f \in C^k_{x_1}(\Omega)$ (resp. $f \in C^k_{x_1,\text{loc}}(\Omega)$) if the derivative $\partial^k_{x_1} f$ is Hölder continuous (resp. locally Hölder continuous) in $x_1$ with exponent $\alpha$. As a consequence of the previous estimates we have the following theorem.

Theorem 1.2. Let $u$ be the convex Aleksandrov solution of (1.1) in a bounded convex domain $\Omega \subset \mathbb{R}^2$, and $u = 0$ on $\partial \Omega$. Assume that $f$ satisfies (1.2). If $f \in C^k_{x_1}(\Omega)$, then $u \in C^{1,1}_{\text{loc}}(\Omega)$. If $f \in C^k_{x_1,\text{loc}}(\Omega)$, for some nonnegative integer $k$ and $0 < \alpha < 1$, then $D^2 u \in C^{k,\alpha'}_{x_1,\text{loc}}(\Omega)$ and $\partial^k_{x_1} u \in C^{1,\alpha'}_{\text{loc}}(\Omega)$ for any $0 < \alpha' < \alpha$.

The highlight of our assumptions in the above theorems are the following: no assumptions on the regularity of $f$ in $x_2$-direction as far as it is uniformly bounded from zero and infinity. Since $f$ is merely measurable in $x_2$, the conclusions of [12] do not imply that (1.1) is uniformly elliptic, and the higher order regularity does not follow from Evans-Krylov’s interior $C^2,\alpha$.
estimate and the standard Schauder theory for linear elliptic equations. A main work of this paper is to show that (1.1) is indeed uniformly elliptic in two dimensions, under the assumption that $f$ is Dini continuous in only one variable.

Our idea is to show that the solution of (1.1) is very close to the solution of the Monge-Ampère equation with certain inhomogeneous term that only varies in one direction. The regularity of the latter equation shall be studied in Section 2 by making use of the partial Legendre transform. By a perturbation method similar to [12, 26], Theorem 1.1 will be proved in Section 3. As an application of our a priori estimates, we prove Theorem 1.2 also in Section 3.

Our method can be also used to study (1.1) with piecewise Hölder continuous inhomogeneous term. Suppose $\{\Sigma_i\}_{i=1}^N$ is a family of disjoint simple curves in $\mathbb{R}^2$. Assume $\Sigma_i$ divide $\Omega$ into subdomains $\{\Omega_i\}_{i=1}^{N+1}$. Suppose that $f$ is Hölder continuous in each $\Omega_i$, but could be discontinuous across the boundaries of $\Omega_i$. We obtain the following result.

**Theorem 1.3.** Let $u$ be the convex Aleksandrov solution of (1.1) in a bounded convex domain $\Omega \subset \mathbb{R}^2$, and $u = 0$ on $\partial \Omega$. Assume that $f$ satisfies (1.2), $f \in C^\alpha(\Omega_i)$, and $\partial \Omega_i$ is of class $C^{1,\beta}$, for all $i = 1, \ldots, N + 1$. Then $u \in C^{1,1}_{\text{loc}}(\Omega)$. Moreover, for $x_0 \in \partial \Omega_i \cap \Omega$, if $\xi_0$ is a unit vector tangential to $\partial \Omega_i$ at $x_0$, then $\partial \xi_0 u \in C^{1,\alpha'}_{\text{loc}}(N_{x_0})$ for $\alpha' < \frac{1}{2} \min\{\alpha, \beta\}$, and some neighborhood $N_{x_0}$ of $x_0$.

Linear elliptic equations with piecewise Hölder continuous coefficients have been studied extensively. This problem is related to the study of composite media, see e.g. [18, 19, 27] and the references therein. Theorem 1.3 deals with an analogous problem for the Monge-Ampère equation. The proof of Theorem 1.3 follows from the same techniques used in previous sections, and will be sketched in Section 4. In the appendix, we give a Pogorelov type estimate which is needed in Section 2. This estimate was known in [22]. For completeness, we also include a proof in the appendix.

2. Equations with inhomogeneous term independent of one variable

In this section, we study the convex solutions of

\[(2.1) \quad \det D^2 u(x) = f(x_2),\]
Two dimensional Monge-Ampère equations

in a bounded convex domain $U \subset \mathbb{R}^2$. The feature of (2.1) is that the inhomogeneous term $f$ varies only in one direction. We assume that $f$ satisfies (1.2), but does not satisfy any smoothness. Namely $f$ is merely measurable in $x_2$.

Our motivation is as follows. The $C^{2, \alpha}$ estimate in [1, 12] is based on showing that under the regularity assumption of $f$, the solution $u$ of (1.1) can be approximated by convex functions which solve the Monge-Ampère equations with constant inhomogeneous term, say 1, in appropriate scaling. Since the latter solution has interior a priori estimates, one can prove by perturbation that $C^2$ norm of $u$ remains bounded. However, in our case, the inhomogeneous term of (1.1) is not regular in all variables. This forces us to consider (2.1) instead of equations with constant inhomogeneous term.

The main goal of this section is to obtain the interior $C^{1, 1}$ estimate for solutions of (2.1). One cannot apply Pogorelov’s estimate to get this as the inhomogeneous term is merely measurable in $x_2$. However, when $f$ is independent of $x_1$, a partial Pogorelov type estimate has been shown in [22], by which we conclude that if convex function $u \in C^4(U) \cap C(\bar{U})$ solves (2.1) with $u = 0$ on $\partial U$, then $\sup_{U_\delta} u_{x_1x_1} \leq C_{\delta}$ for any $U_\delta \subset \subset U$. For reader’s convenience, we include a proof of this partial Pogorelov type estimate in the appendix, by a slightly different computation. To bound the remaining second derivatives of $u$, our idea is to reduce the two dimensional Monge-Ampère equation (2.1) to a linear elliptic equation, and then apply the regularity theory of linear equations. This shall be achieved by the partial Legendre transform.

Let us define an injective mapping $\mathcal{P} : U \to \mathbb{R}^2$ by

(2.2) \[ x \mapsto y = \mathcal{P}(x) = (u_{x_1}, x_2). \]

Recall that the partial Legendre transform of $u$ is given by

(2.3) \[ u^*(y) = x_1y_1 - u. \]

It is easy to check that

(2.4) \[ u_{y_1}^* = x_1, \quad u_{y_2}^* = -u_{x_2}, \]

and

(2.5) \[ u_{y_1y_1}^* = \frac{1}{u_{x_1x_1}}, \quad u_{y_1y_2}^* = \frac{u_{x_1x_2}}{u_{x_1x_1}}, \quad u_{y_2y_2}^* = -\frac{f}{u_{x_1x_1}}. \]
Therefore $u^*$ satisfies

$$
(2.6) \quad f(y_2)u^*_{y_1y_1} + u^*_{y_2y_2} = 0 \text{ in } \mathcal{P}(U).
$$

As we assume that $f$ satisfies (1.2), the equation above is uniformly elliptic. Morrey [20] and Nirenberg [21] proved a remarkable theorem (see also [6, Chapter 12]), which gives Hölder estimates for the first derivatives of solutions of linear uniformly elliptic equations in two variables. The significant feature of their result is that the estimate depends only on bounds on the coefficients and not on any regularity properties. By repeatedly differentiating (2.6) along $y_1$-direction, we obtain

**Proposition 2.1.** Let $u^*$ be bounded smooth solution of (2.6). Assume that $f$ satisfies (1.2). There exist $\beta$ and $C$ only depending on $\lambda$ and $\Lambda$, such that for any $U' \subseteq U$, and any $p \neq q$ in $\mathcal{P}(U')$ with $d = \min\{\text{dist}(p, \partial \mathcal{P}(U')), \text{dist}(q, \partial \mathcal{P}(U'))\} > 0$,

\[
\frac{|\partial_y \partial_{y_1}^k u^*(p) - \partial_y \partial_{y_1}^k u^*(q)|}{|p - q|^{\beta}} \leq \frac{C}{d^{1+\beta}} \|\partial_{y_1}^k u^*\|_{L^\infty(\mathcal{P}(U'))},
\]

where $k$ is any nonnegative integer.

By the proposition above, we are able to prove

**Proposition 2.2.** Assume that convex function $u \in C^4(U) \cap C(\overline{U})$ solves (2.1), $u = 0$ on $\partial U$, $B_{1/2} \subseteq U \subseteq B_1$ is normalised, and $f$ satisfies (1.2). Then

\[
\|u\|_{C^{1,1}(U_\delta)}, \|D^2 u\|_{C^{0,1}(U_\delta)} \leq C_\delta,
\]

where $U_\delta = \{x \in U : \text{dist}(x, \partial U) > \delta\}$, and $C_\delta$ only depends on $\delta$, $\lambda$ and $\Lambda$.

**Proof.** By the uniform estimate [25],

$$
C^{-1} \leq \sup_U |u| \leq C
$$

for some universal constant $C$. (Throughout this proof we say a constant is universal if it only depends on $\lambda$ and $\Lambda$.) It follows that

$$
\sup_{U_{\delta/4}} |Du| \leq 4\delta^{-1} \sup_U |u| \leq C_\delta.
$$

By Proposition 5.1 in the appendix, we have $\sup_{U_\delta} |u|_{x_1 x_1} \leq C_\delta$. 

---

Qi-Rui Li
To prove $\sup_{U_\delta} u_{x_1 x_1} \geq C_\delta$, by the partial Legendre transform, it suffices to show $\sup_{\mathcal{P}(U_\delta)} u^*_n y_1 y_1 \leq C_\delta$. We shall apply Proposition 2.1 to achieve this. We first prove

(2.7) \quad \text{dist}(\mathcal{P}(U_\delta), \partial \mathcal{P}(U_{\delta/2})) \geq C_\delta.

Let $m_{U_{\delta/4}}(t)$ denote the modulus of convexity of $u$ on $U_{\delta/4}$. It is known that $m_{U_{\delta/4}}(t)$ depends only on $\delta$, $\lambda$ and $\Lambda$. Indeed we have $m_{U_{\delta/4}}(t) \geq C_\delta t^{1+\beta}$ for some universal constant $\beta$, see e.g. [25]. For any $z \in U_\delta$, by subtracting an affine function, we assume that $u(z) = 0$ and $Du(z) = 0$. Let $C_{z, \varepsilon} = \{ x \in \mathbb{R}^2 : |\overrightarrow{x z} \cdot e_2| < \varepsilon |\overrightarrow{x z}| \}$, where $\varepsilon$ is a constant to be determined. For any $\tilde{z} \in \partial U_{\delta/2}$, let $p = (p_1, p_2) = Du(\tilde{z})$ and $t_0 = |\overrightarrow{\tilde{z} z}|$. To prove (2.7), it suffices to consider two cases: (i) $\tilde{z} \in C_{z, \varepsilon} \cap \partial U_{\delta/2}$; and (ii) $\tilde{z} \in \partial U_{\delta/2} \setminus C_{z, \varepsilon}$. For case (i), by the convexity of $u$,

$$p \cdot \overrightarrow{\tilde{z} z} \geq m_{U_{\delta/4}}(t_0).$$

Consequently

$$t_0(|p_1| + |p| \varepsilon) \geq p_1 \overrightarrow{\tilde{z} z} \cdot e_1 + p_2 \overrightarrow{\tilde{z} z} \cdot e_2 \geq C_\delta t_0^{1+\beta}.$$

This implies

$$|p_1| \geq C_\delta t_0^\beta - |p| \varepsilon \geq C_\delta (\delta/2)^\beta - \varepsilon \sup_{U_{\delta/4}} |Du|.$$

Hence by choosing $\varepsilon = \varepsilon_\delta$ small, only depending on $\delta$, $\lambda$ and $\Lambda$, we have

$$\text{dist}(\mathcal{P}(z), \mathcal{P}(\tilde{z})) \geq |u_{x_1}(\tilde{z}) - u_{x_1}(z)| = |p_1| \geq C_\delta.$$

Now the constant $\varepsilon$ is fixed. For case (ii), one gets

$$\text{dist}(\mathcal{P}(z), \mathcal{P}(\tilde{z})) \geq |\overrightarrow{\tilde{z} z} \cdot e_2| \geq \varepsilon |\overrightarrow{\tilde{z} z}| \geq C_\delta.$$

Hence (2.7) has been proved.

It is easy to check by (2.2), (2.3) and (2.4)

$$\|u^*\|_{L^\infty(\mathcal{P}(U_{\delta/2}))} \leq \text{diam}(U) \cdot \|Du\|_{L^\infty(U_{\delta/2})} + \|u\|_{L^\infty(U)} \leq C_\delta,$$

and

$$\|Du^*\|_{L^\infty(\mathcal{P}(U_{\delta/2}))} \leq \text{diam}(U) + \|Du\|_{L^\infty(U_{\delta/2})} \leq C_\delta.$$

By Proposition 2.1 (for $k = 1$) and the estimate (2.7), we get

$$\|\partial_y \partial_{y_1} u^*\|_{C^2(\mathcal{P}(U_\delta))} \leq C_\delta.$$
Hence

\[(2.8) \quad \| \partial_y \partial_y^* u \|_{L^\infty(\mathcal{P}(U_\delta))} \leq C_\delta. \]

It follows from (2.5) that

\[
\sup_{U_\delta} u_{x_1 x_1} \geq 1/C_\delta \quad \text{and} \quad \sup_{U_\delta} |u_{x_1 x_2}| \leq C_\delta.
\]

Noting that \(u_{x_2 x_2} = (f + u_{x_1 x_2}^2)/u_{x_1 x_1}\), we get \(\|u\|_{C^{1,1}(U_\delta)} \leq C_\delta\).

The argument above shows (2.2) is a Lipschitz mapping. By Proposition 2.1 (for \(k = 2\)) again, (2.8) implies \(\|u_{y_1 y_1}^*\|_{L^\infty(\mathcal{P}(U_\delta))} \leq C_\delta\). Differentiating (2.6) along \(y_1\), we get

\[
\|u_{y_1 y_1}^*\|_{L^\infty(\mathcal{P}(U_\delta))} \leq C_\delta.
\]

It is not hard to see \((u^*)^* = u\). Hence

\[
u_{x_1 x_1} = \frac{1}{u_{y_1 y_1}^*}, \quad u_{x_1 x_2} = \frac{u_{y_1 y_2}^*}{u_{y_1 y_1}^*}, \quad u_{x_2 x_2} = \frac{-f}{u_{y_1 y_1}^*}.
\]

It follows that \(\|D^2 u\|_{C^{0,1}(U_\delta)} \leq C_\delta\). \(\square\)

Before closing this section, we prove two lemmas which will be used later.

Kim and Krylov [14, 15] established the interior \(W^{2,p}\) estimate for linear uniformly elliptic equations with coefficients that are measurable in one variable and VMO in others. This enables us to prove the following

**Lemma 2.1.** Let \(u_i, i = 1, 2\), be two convex solutions of (2.1) in \(B_1\). Assume that \(f\) satisfies (1.2). Suppose \(\|u_i\|_{C^{1,1}(B_1)}\) and \(\|D^2 u_i\|_{C^{0,1}(B_1)}\) are bounded by \(C_0\). Then if \(|u_1 - u_2| \leq \nu\) in \(B_1\) for some \(\nu > 0\), we have for any \(\bar{\alpha} \in (0, 1)\),

\[
\|u_1 - u_2\|_{C^{1,\bar{\alpha}}(B_{1/2})} \leq C_{\bar{\alpha}} \nu,
\]

and

\[
\|\partial_{x_1} u_1 - \partial_{x_1} u_2\|_{C^{1,\bar{\alpha}}(B_{1/2})} \leq C_{\bar{\alpha}} \nu,
\]

where \(C_{\bar{\alpha}}\) only depends on \(\bar{\alpha}, \lambda, \Lambda\) and \(C_0\).
Proof. We have

\begin{equation}
0 = \int_0^1 \frac{d}{dt} \log \det (tD^2u_2 + (1-t)D^2u_1) dt = \sum_{i,j} a_{ij} \partial_{ij}^2 (u_2 - u_1),
\end{equation}

where \( a_{ij} = \int_0^1 [tD^2_{ij} u_2 + (1-t)D^2_{ij} u_1]^{-1} dt \). By our assumptions, the operator \( L = \sum_{i,j} a_{ij} \partial_{ij}^2 \) is uniformly elliptic, and \( \|a_{ij}\|_{C^{0,1}(B_1)} \leq C \) (only depending on \( \lambda, \Lambda \) and \( C_0 \)). Denote \( w = u_2 - u_1 \). Since \( a_{ij} \) is Lipschitz continuous in \( x_1 \) (hence VMO), by applying the interior \( W^{2,p} \) estimate in [14, 15] to (2.9), we obtain

\[ \|w\|_{W^{2,p}(B_{a/5})} \leq C_p \nu, \quad \forall \ p > 2, \]

where \( C_p \) is a constant only depending on \( p, \lambda, \Lambda \) and \( C_0 \).

Differentiating (2.9) in \( x_1 \) variable, we have

\[ \sum_{i,j} a_{ij} \partial_{ij}^2 w_{x_1} = - \sum \partial_{x_1} a_{ij} \partial_{ij}^2 w \in L^p(B_{a/5}). \]

By the interior \( W^{2,p} \) estimate again, we obtain \( \|w_{x_1}\|_{W^{2,p}(B_{a/4})} \leq C_p \nu \). We complete the proof by Sobolev inequality immediately. \( \square \)

The following lemma is a consequence of Proposition 2.2. It is almost identical to a lemma in [12]. Let us first recall some notions. By John’s lemma, for bounded convex domain \( U \subset \mathbb{R}^2 \), there is a minimum ellipsoid containing \( U \). We say \( U \) is normalised if its minimum ellipsoid is a ball. When \( U \) is normalised, one has \( B_{r/2} \subset U \subset B_r \) for two concentric balls \( B_{r/2} \) and \( B_r \). There is a unique unimodular affine transform \( T \) (i.e., \( \det T = 1 \)) such that \( T(U) \) is normalised. Choose an appropriate coordinates system such that \( T \) is determined by the matrix \( \text{diag}\{\lambda_1, \lambda_2\} \), with \( \lambda_1 \leq \lambda_2 \). Following [12], we say \( U \) has a good shape if

\[ \lambda_2 \leq c^* \lambda_1 \]

for some constant \( c^* \) under control.

**Lemma 2.2.** Let \( u \) be a convex solution of (2.1) in \( U \) which vanishes on \( \partial U \). Assume that \( f \) satisfies (1.2). Suppose \( u \) attains its minimum at the origin and \( D^2u(0) \) is uniformly bounded, then the domain \( U \) is of good shape.
Proof. Let $T$ be the unimodular affine transform such that $B_{1/2} \subseteq T(U) \subseteq B_1$, and $\lambda_2 \geq \lambda_1$ be the eigenvalues of $T$. If $U$ does not have a good shape, the ratio $\lambda_2/\lambda_1$ is very large. Let $v(y) = u(T^{-1}(y))$. Then $\det v(y) = f(ay_1 + by_2 + c)$, where $a, b, c$ are determined by the transform $T$. Notice that $f$ is constant in the direction $\|T_*(e_1)\|^{-1}T_*(e_1)$. By Proposition 2.2, $D^2_y v(0)$ is uniformly bounded (independent of $a, b, c$). Hence $D^2_x u(0) = T'D^2_y v(0) T$ cannot be uniformly bounded, a contradiction. \qed

3. Equations with inhomogeneous term regular in one direction

This section is devoted to the proofs of Theorems 1.1 and Theorem 1.2. We prove them by a perturbation argument. Since $f$ is merely measurable in $x_2$, our idea is to show that the solution $u$ of (1.1) is very close to the solution of certain equation of the form (2.1) (namely, the right hand side term is constant in one direction). By the interior a priori estimates established in the previous section, we can prove by interpolation that the $C^{1,1}$ norm of $u$ remains bounded. Hence (1.1) is uniformly elliptic. As $f$ could be very rough in $x_2$ variable, one cannot apply Evans-Krylov’s interior $C^{2,\alpha}$ estimate.

We shall obtain the higher order anisotropic regularity of $u$ by the partial Schauder theory for linear equations [5, 13, 24].

Proof of Theorem 1.1. Our argument follows [12] but some adjustments are needed. The main ingredient of the proof is to show that (1.1) is uniformly elliptic.

For $x_0 \in \Omega_\delta$, by a translation and subtracting an affine function, we suppose that $x_0 = 0$, $u(0) = 0$ and $Du(0) = 0$, so that the origin is the minimum point of $u$. We consider the solution $u$ in the level set

$$S^0_h = S^0_{h,u} = \{x \in \Omega : u(x) < h\}.$$

Choose $h > 0$ small such that $S^0_h$ is compactly contained in $\Omega$. There is a unimodular affine transform $T_h$ such that $T_h(S^0_h)$ is normalised. By making the change $x \mapsto T_h x/\sqrt{h}$ and $u \mapsto u/h$, we may suppose $h = 1$, $S^0_1$ is normalised, and

$$\int_0^1 \frac{\omega f \xi(r)}{r} \leq \varepsilon,$$

where $\xi = \|T_h)_*(e_1)\|^{-1}[(T_h)_*(e_1)]$. By a further rotation if necessary, we may still assume that $\xi = e_1$. Note that $\varepsilon$ can be as small as we want.
provided \( h \) sufficiently small. The Monge-Ampère equation is invariant under the above transform.

Starting with the function \( u \) satisfying the above conditions, we define a sequence of convex functions \( \{u_k\}_{k=0}^{\infty} \) as the solutions of

\[
\det D^2 u_k = \bar{f}(x_2) := f(0, x_2) \quad \text{in} \quad S^0_{4^{-k}, u},
\]

\[ u_k = u = 4^{-k} \quad \text{on} \quad \partial S^0_{4^{-k}, u}. \]

The feature of the above equations is that the inhomogeneous terms only depend on \( x_2 \). The interior regularity of such equations has been studied in the previous section. Denote

\[
\nu(t) = \sup_{z \in B_1} \{ |f(y) - f(x)| : x, y \in S^0_{t^2, u}(z), y - x \parallel e_1 \},
\]

\[ \nu_k = \nu(2^{-k}), \]

which is invariant under unimodular affine transform of \( x \). Here \( S^0_{h, u}(z) \) is the level set of \( u \) at \( z \), namely

\[ S^0_{h, u}(z) = \{ x \in \Omega : u(x) < \ell_z(x) + h \}, \]

where \( \ell_z \) is the support function of \( u \) at \( z \). If \( S^0_{t^2, u} \) has a good shape, then \( \nu(t) \leq \omega_{f, e_1}(Ct) \leq C \omega_{f, e_1}(t) \).

Since \( S^0_{1, u} \) has a good shape, by Lemma 2.2, \( \|u_0\|_{C^{1,1}(S^0_{3/4, u})} \leq C \). The key point in our argument below is to understand that \( S^0_{t^2, u} \) has a good shape for all \( t > 0 \) small. Note that

\[
\det D^2 (1 - C \nu_0) u \leq \det D^2 u_0 \leq \det D^2 (1 + C \nu_0) u \quad \text{in} \quad S^0_{1, u},
\]

and \( u = u_0 = 1 \) on the boundary. By the comparison principle, we have

\[ |u - u_0| \leq C \nu_0 \quad \text{in} \quad S^0_{1, u}. \]

Similarly we have \( |u - u_1| \leq C \nu_1 \). Hence we obtain \( |u_1 - u_0| \leq C \nu_0 \). Since \( S^0_{1, u} \) has a good shape, so does \( S^0_{4^{-1}, u} \). It follows by Proposition 2.2 that \( |u_1|_{C^{1,1}(S^0_{3/16, u})} \leq C \) and \( \|D^2 u_1\|_{C^{0,1}(S^0_{3/16, u})} \leq C \). By Lemma 2.1, we obtain

\[
\| \partial_{x_1} u_1 - \partial_{x_1} u_0 \|_{C^{1, \alpha}(S^0_{3/16, u})} \leq C \alpha \nu_0.
\]

In particular, this estimate implies \( D^2 u_1(0) \) is uniformly bounded. It then follows from Lemma 2.2 that \( S^0_{1^{-2}, u} \) has a good shape.
By induction we assume that $S_{4^{-k-2},u}^0$ has a good shape, with the shape constant $c^*$, independent of $k$. Hence $\nu_k \leq C\omega_{r,e_1}(2^{-k})$ for some $C$ (depending on $c^*$ but independent of $k$). Applying Proposition 2.2 and Lemma 2.1 to $\hat{u}_0 := 4^k u_k(\frac{x}{2^k})$ and $\hat{u}_1 := 4^k u_{k+1}(\frac{x}{2^k})$, we obtain, for $x \in S_{4^{-k-2},u_{k+1}}^0$,

$$|Du_k(x) - Du_{k+1}(x)| \leq C2^{-k}\nu_k,$$

and

$$|\partial_x \partial_x u_k(x) - \partial_x \partial_x u_{k+1}(x)| \leq C\nu_k,$$

Note that $C$ is independent of $k$. Since

$$(u_k)_{x_2 x_2} = \frac{\bar{f} + (u_k)_{x_1 x_1}}{(u_k)_{x_1 x_1}},$$

the second inequality above implies

$$|D^2u_k(x) - D^2u_{k+1}(x)| \leq C\nu_k.$$

Hence for $x \in S_{4^{-k-2},u_{k+1}}^0$

$$(3.4) \quad |D^2u_0(x) - D^2u_{k+1}(x)| \leq \sum_{i=0}^{k} |D^2u_i - D^2u_{i+1}|$$

$$\leq C \int_{2^{-k}}^{1} \frac{\omega_{f,e_1}(r)}{r} \leq C\varepsilon.$$

Estimate (3.4) and assumption (3.1) imply that $D^2u_{k+1}(0)$ is uniformly bounded. Hence $S_{4^{-k-2},u_{k+1}}^0$ has a good shape, with the shape constant $c^*$ (independent of $k$). Consider

$$\hat{u} = 4^{k+1} u \left(\frac{x}{2^{k+1}}\right), \quad \hat{u}_{k+1} = 4^{k+1} u_{k+1} \left(\frac{x}{2^{k+1}}\right).$$

Then $\hat{u}$ and $\hat{u}_{k+1}$ satisfy the equations det $D^2\hat{u} = f \left(\frac{x}{2^{k+1}}\right)$ and det $D^2\hat{u}_{k+1} = f(0, \frac{x}{2^{k+1}})$ respectively. By the comparison principle

$$|\hat{u} - \hat{u}_{k+1}| \leq C\nu_{k+1}.$$

Hence $S_{4^{-k-2},u}^0$ has a good shape.
From above argument, we obtain by letting $k \to \infty$,

$$|D^2 u(x) - D^2 u_0(x)| \leq C \int_0^1 \frac{\omega_{f,e}(r)}{r}.$$

Hence equation (1.1) is uniformly elliptic if $f$ is Dini continuous in $x_1$-direction. However one cannot apply Evans-Krylov’s $C^{2,\alpha}$ estimate to complete the proof, since our estimate (1.3) does not depend on the regularity of $f$ in $x_2$ variable. For fully nonlinear uniformly elliptic equations, a partial Schauder type estimate has been proved in [24].

For any given $\bar{x}$ near the origin,

$$\left|\partial_{\bar{x}} \partial_{x_1} u(\bar{x}) - \partial_{\bar{x}} \partial_{x_1} u(0)\right| \leq I_1 + I_2 + I_3$$

(3.5)

$$= : \left|\partial_{\bar{x}} \partial_{x_1} u_k(\bar{x}) - \partial_{\bar{x}} \partial_{x_1} u_k(0)\right|$$

$$+ \left|\partial_{\bar{x}} \partial_{x_1} u_k(0) - \partial_{\bar{x}} \partial_{x_1} u(0)\right|$$

$$+ \left|\partial_{\bar{x}} \partial_{x_1} u_k(\bar{x}) - \partial_{\bar{x}} \partial_{x_1} u(\bar{x})\right|.$$  

Suppose $4^{-k-4} < u(\bar{x}) \leq 4^{-k-3}$. Then by (3.3),

$$I_2 \leq \sum_{i=k}^{\infty} \left|\partial_{\bar{x}} \partial_{x_1} u_i(0) - \partial_{\bar{x}} \partial_{x_1} u_{i+1}(0)\right| \leq C \int_0^{||\bar{x}||} \frac{\omega_{f,e}(r)}{r}.$$  

(3.6)

Let $u_{\bar{x},j}$ be the solution of

$$\det D^2 u_{\bar{x},j} := \bar{f}_\bar{x} \text{ in } S_{4^{-j-1},u}(\bar{x}),$$

$$u_{\bar{x},j} = u \text{ on } \partial S_{4^{-j-1},u}(\bar{x}),$$

where $\bar{x}$ is the first coordinate of $\bar{x}$. Clearly $\bar{f}_\bar{x}$ only varies in one direction. Let $j_k = \inf \{ j : S_{4^{-j},u}(\bar{x}) \subset S_{4^{-k-1},u}(\bar{x}) \}$. Obviously $j_k \geq k$. By Caffarelli’s strict convexity [2], there exists $l_0$ (independent of $k$) such that $j_k \leq k + l_0$. Note that $|u_k - u_{\bar{x},k+l_0}| \leq C \nu_k$. By applying Lemma 2.1 to $u_k$ and $u_{\bar{x},k+l_0}$ in $S_{4^{-k-l_0},u}(\bar{x})$, it follows that

$$\left|\partial_{\bar{x}} \partial_{x_1} u_k(\bar{x}) - \partial_{\bar{x}} \partial_{x_1} u_{\bar{x},k+l_0}(\bar{x})\right| \leq C \nu_k.$$  

Similarly to (3.6) we have

$$\left|\partial_{\bar{x}} \partial_{x_1} u(\bar{x}) - \partial_{\bar{x}} \partial_{x_1} u_{\bar{x},k+l_0}(\bar{x})\right| \leq C \sum_{i=k+l_0}^{\infty} \nu_i \leq C \int_0^{||\bar{x}||} \frac{\omega_{f,e}(r)}{r}.$$  

We obtain the desired estimate for $I_3$ by the above two inequalities.
Denote \( h_i = u_i - u_{i-1} \). By scaling argument and Lemma 2.1, we have
\[
|\partial_x \partial_{x_1} h_i(\bar{x}) - \partial_x \partial_{x_1} h_i(0)| \leq \|\partial_x \partial_{x_1} h_i\|_{C^\alpha(S^0_{4^{i-1}, u_i})} \cdot |\bar{x}|^\alpha \\
\leq C_\alpha 2^{\alpha i} \nu_i |\bar{x}|^\alpha.
\]
Hence
\[
I_1 \leq |\partial_x \partial_{x_1} u_0(\bar{x}) - \partial_x \partial_{x_1} u_0(0)| + \sum_{i=1}^k |\partial_x \partial_{x_1} h_i(\bar{x}) - \partial_x \partial_{x_1} h_i(0)|
\]
\[
\leq C_\alpha |\bar{x}|^{\alpha} \left(1 + \int |\bar{x}| \frac{\omega f,\epsilon_1(r)}{r^{1+\alpha}} \right).
\]
This completes the proof. \( \square \)

We introduce a family of smooth functions \( f_k \) to approximate the function \( f \) which can be very rough in one variable. Let \( \varrho(t) \) be the standard mollifier on \( \mathbb{R} \). Namely \( \varrho \) is a non-negative function in \( C^\infty(\mathbb{R}) \) vanishing outside the unit interval \((-1, 1)\) and satisfying \( \int \varrho dt = 1 \). Let us define, for \( \varepsilon_k \to 0 \),
\[
f_k(x) = \frac{1}{\varepsilon_k^2} \int_{\mathbb{R}} \int_{\mathbb{R}} f(t, s) \varrho \left( \frac{x_1 - t}{\varepsilon_k} \right) \varrho \left( \frac{x_2 - s}{\varepsilon_k} \right) dt ds
\]
\[
= \int_{|s| \leq 1} \int_{|t| \leq 1} f(x_1 - \varepsilon_k t, x_2 - \varepsilon_k s) \varrho(t) \varrho(s) dt ds.
\]
Choose \( \varepsilon_k \) small enough such that \( \Omega' \subset B_{\varepsilon_k}(\Omega') = \{x : d(x, \Omega') < \varepsilon_k \} \subset \Omega \).

It is not hard to see

(i) \( f_k \) converges to \( f \) strongly in \( L^1(\Omega') \);

(ii) If \( f \in C^{\text{Dini}}(\Omega) \), then \( f_k \in C^{\text{Dini}}(\Omega') \), and \( \|f_k\|_{C^{\alpha}_D(\Omega')} \leq \|f\|_{C^{\alpha}_D(\Omega)} \);

(iii) If \( f \in C^{m,\alpha}_1(\Omega) \), then \( f_k \in C^{m,\alpha}_1(\Omega') \) \( \|f_k\|_{C^{m,\alpha}_1(\Omega')} \leq \|f\|_{C^{m,\alpha}_1(\Omega)} \), where \( m \) is nonnegative integer and \( 0 \leq \alpha \leq 1 \).

In (iii) we use the norm \( \|\varphi\|_{C^{m,\alpha}_1(\Omega)} := \sum_{i=0}^m \sup_{\Omega} |\partial^i_{x_1} \varphi| + |\partial^m_{x_1} \varphi|_{C^{\alpha}_1(\Omega)}. \)

**Proof of Theorem 1.2.** We define a family of smooth functions \( f_k \) as above. Let \( u_k \) be the convex solution of \( \det D^2 u_k = f_k \) in \( \Omega \), vanishing on \( \partial \Omega \). It is known that \( u_k \) is smooth in \( \Omega \), see e.g. [25]. Since \( f_k \) converges to \( f \) strongly in \( L^1(\Omega) \), \( u_k \) uniformly converges to \( u \). By the proof of Theorem 1.1, for \( \Omega' \subset \subset \Omega \), if \( f \in C^{\text{Dini}}(\Omega) \), then \( \|u_k\|_{C^{1,1}(\Omega')} \) is uniformly bounded, hence \( u \in \)
Two dimensional Monge-Ampère equations

$C_{\text{loc}}^{1,1}(\Omega)$. By the estimate (1.4), we have $\|\partial_{x_1} u_k\|_{C^{1,\alpha}(\Omega)} \leq C [1 + [f_k] C_{x_1}^{\alpha}(\Omega)]$. Using the equation (1.1), we conclude

$$\|D^2 u_k\|_{C_{x_1}^{\alpha}(\Omega)} \leq C [1 + [f_k] C_{x_1}^{\alpha}(\Omega)].$$

(3.7)

This implies $\partial_{x_1} u \in C_{\text{loc}}^{1,\alpha}(\Omega)$ and $D^2 u \in C_{x_1,\text{loc}}^{\alpha}(\Omega)$, provided $f \in C_{x_1,\text{loc}}^{\alpha}(\Omega)$.

For higher order regularity, we differentiate (1.1) along $x_1$ to get

$$\sum_{i,j} a_{ij} \partial^{2}_{ij} u^{(k)} = f^{(k)} - \sum_{l=1}^{k-1} \left( \begin{array}{c} k - 1 \\ l \end{array} \right) \sum_{i,j} a_{ij}^{(l)} \partial^{2}_{ij} u^{(k-l)} =: \Psi,$$

(3.8)

where $a_{ij}$ is the cofactor of $\{u_{ij}\}$, $u^{(k)} = \partial_{x_1}^k u$, and $a_{ij}^{(l)}$, $f^{(k)}$ are defined similarly. We claim that, if $u$ is a smooth solution of (1.1) in $\Omega$, vanishing on $\partial\Omega$, then for any $0 < \alpha' < \alpha$ and $\delta > 0$, there exists a constant $C_{\alpha',\alpha',\delta,m}$, only depending on $\alpha'$, $\alpha$, $\delta$, $\lambda$, $\Lambda$ and $\|f\|_{C_{x_1}^{m,\alpha}(\Omega)}$, such that

$$\|\partial_{x_1}^{m+1} u\|_{C^{1,\alpha'}(\Omega_\delta)} \leq C_{\alpha',\alpha',\delta,m} \quad \text{and} \quad \|D^2 u\|_{C_{x_1}^{m,\alpha'}(\Omega_\delta)} \leq C_{\alpha',\alpha',\delta,m}.$$ (3.9)

By applying the a priori estimate above to $u_k$, and using the approximation argument, the proof is completed.

We prove the claim by induction. For $m = 0$, we already know that the claim is true. By (3.7), we also have

$$\|a_{ij}\|_{C_{x_1}^{\alpha}(\Omega_{3/2})} \leq C [1 + [f] C_{x_1}^{\alpha}(\Omega)].$$

(3.10)

Assume (3.9) holds true for $m = 0, \ldots, k - 1$. Then the inhomogeneous term of (3.8) satisfies, for any $\alpha' < \alpha'' < \alpha$,

$$\|\Psi\|_{C_{x_1}^{\alpha''}(\Omega_{3/2})} \leq C_{\alpha'',\alpha,\delta,k}.$$ (3.11)

Let $v = u^{(k)}$ which solves (3.8). In [13] the authors established a partial Schauder estimate for linear uniformly elliptic equations with coefficients and inhomogeneous term that are Hölder continuous in one direction. They do not assume the continuity of the coefficients in two dimensions. When applying to (3.8), their result reads as, for any $p > \frac{2}{\alpha''}$ and $0 < \beta < \alpha'' - \frac{2}{p}$,

$$|\partial_{x_1} \partial_{x_1} v(x) - \partial_{x_1} \partial_{x_1} v(\bar{x})| \leq C \delta^\beta \left[ \sup_{\Omega_{3/2}} |v| + \|\Psi\|_{L^p(\Omega_{3/2})} + \frac{\|\Psi\|_{C_{x_1}^{\alpha''}(\Omega_{3/2})}}{\alpha'' - \beta} \right]$$

$$+ C \|a_{ij}\|_{C_{x_1}^{\alpha''}(\Omega_{3/2})} \left( \sup_{\Omega_{3/2}} |v| + \|\Psi\|_{L^p(\Omega_{3/2})} \right) \delta^{\alpha'' - \frac{2}{p}}.$$
where \( x, \bar{x} \in \Omega_\delta \) and \( d = |x - \bar{x}| \). The constant \( C \) only depends on \( \alpha'', \beta, p, \delta \) and the elliptic constants of (3.8). Set \( \beta = \alpha' \) and \( \alpha'' = \frac{1}{2}(\alpha' + \alpha) \), and choose \( p \) large (only depending on \( \alpha', \alpha \)) such that \( \frac{2}{p} < \alpha'' - \alpha' \). Then, by the above estimate, and (3.10) (3.11),

\[
\| \partial_x \partial_{x_i} u^{(k)} \|_{C^{\alpha'}(\Omega_\delta)} \leq C_{\alpha', \alpha, \delta, k}.
\]

By the equation (3.8), \( u^{(k)}_{x_2 x_2} = a_{22}^{-1}(\Psi - a_{11} u^{(k)}_{x_1 x_1} - 2 a_{12} u^{(k)}_{x_1 x_2}) \). Hence (3.9) follows. \( \square \)

4. Equations with piecewise Hölder continuous inhomogeneous term

We need the following approximation lemma. Its proof can be found in [12].

**Lemma 4.1.** Let \( u_i \) be the convex Aleksandrov solution of the Monge-Ampère equation \( \det D^2 u_i = f_i \geq 0 \) in convex domain \( U \), \( i = 1, 2 \). Assume \( u_1 = u_2 \) on \( \partial U \subset \mathbb{R}^n \). Then

\[
\sup_U |u_1 - u_2| \leq C \| f_1 - f_2 \|_{L^1(U)}^{1/n},
\]

where \( C \) depends only on \( n \) and \( \text{diam}(U) \).

To prove Theorem 1.3, it suffices to show the regularity at \( x_0 \in \Sigma_{n_0} \). By a translation and subtracting a support function, we assume \( x_0 = 0 \), and the origin is the minimum point of \( u \). Choose \( h \) small so that \( S_0 \) is compactly contained in \( \Omega \) and does not intersect with \( \Sigma_j \) if \( j \neq n_0 \). Make the change \( x \mapsto T_h x / \sqrt{h}, u \mapsto u / h \), where \( T_h \) is a unimodular affine transform such that \( T_h(S_0^0) \) is normalised. By a further rotation, we assume \( \Sigma_{n_0} = \{(x_1, g(x_1))\} \) for some function \( g \in C^{1, \beta} \) satisfying \( g(0) = g'(0) = 0 \). Assume \( \Sigma_{n_0} \) divides \( B_1 \) into two parts: \( D^+ = \{x \in B_1 : x_2 > g\} \) and \( D^- = \{x \in B_1 : x_2 < g\} \). We define locally

\[
\bar{f}(x) = \begin{cases} 
\lim_{y \in D^+, y \to 0} f(y) & \text{in } B_1^+ = B_1 \cap \{x_2 > 0\}, \\
\lim_{y \in D^-, y \to 0} f(y) & \text{in } B_1^- = B_1 \cap \{x_2 < 0\}, \\
f(0) & \text{on } B_1 \cap \{x_2 = 0\}.
\end{cases}
\]

Clearly \( \bar{f} \) only depends on \( x_2 \). We denote

\[
\bar{w}(r) = \frac{1}{r} \| f - \bar{f} \|_{L^1(B_1(0))}^{1/2}.
\]
Note that

\[
\int_{B_r} |f - \bar{f}| = \int_{B^+_r \cap D^+} + \int_{B^+_r \setminus D^+} + \int_{B^-_r \cap D^-} + \int_{B^-_r \setminus D^-}
\leq C \int_{B_r} |x|^\alpha + 2\Lambda |B^+_r \setminus D^+| + 2\Lambda |B^-_r \setminus D^-| 
\leq C r^{2+\gamma},
\]

where \( \gamma = \min\{\alpha, \beta\} \), and \( C \) only depends on \( \lambda, \Lambda \), \( \|f\|_{C^\alpha(\Omega)}, \|\Sigma\|_{C^{1,\beta}} \).

Hence

\[
\int_0^1 \frac{\tilde{\omega}(r)}{r} \leq \varepsilon
\]

for any small \( \varepsilon \), if \( h \) is sufficiently small.

Again, let convex functions \( u_k, k = 0, 1, \ldots \), be the solution of

\[
\det D^2 u_k = \bar{f}(0, x_2) \quad \text{in} \quad S^0_{4^{-k}, u},
\]

\[
u_k = u = 4^{-k} \quad \text{on} \quad \partial S^0_{4^{-k}, u}.
\]

Denote

\[
\tilde{\nu}(t) = \frac{1}{t} \left( \int_{S^0_{2^{-k}, u}} |f - \bar{f}| \right)^{1/2} \quad \text{and} \quad \tilde{\nu}_k = \tilde{\nu}(2^{-k}).
\]

For each \( k \), by scaling, we consider \( \hat{u} = 4^k u(x, \frac{x}{4^k}) \) and \( \hat{u}_k = 4^k u_k(x, \frac{x}{4^k}) \). Then \( \hat{u} \) and \( \hat{u}_k \) satisfy the equation \( \det D^2 \hat{u} = f(2^{-k} x) \) and \( \det D^2 \hat{u}_k = \bar{f}(2^{-k} x) \) respectively. By Lemma 4.1,

\[
|\hat{u} - \hat{u}_k| \leq C \tilde{\nu}_k.
\]

Hence, by the proof of Theorem 1.1 (replacing \( \omega_{f,e_1, \nu} \) by \( \tilde{\omega}, \tilde{\nu} \) respectively), we obtain that \( \|u\|_{C^{1,1}(\Omega_\delta)} \leq C_\delta \), and for any \( z \) close to 0,

\[
|\partial_x \partial_{\xi_0} u(z) - \partial_x \partial_{\xi_0} u(0)| \leq C |z|^\bar{\alpha} \left( 1 + \int_0^1 \frac{\tilde{\omega}(r)}{r^{1+\bar{\alpha}}} \right) + C \int_0^{|z|} \frac{\tilde{\omega}(r)}{r},
\]

where \( C \) depends only on \( \bar{\alpha}, \lambda \) and \( \Lambda \).

Similar to the proof of Theorem 1.2, Theorem 1.3 follows from (4.1), the above a priori estimates and the standard approximation argument.
5. Appendix

In this appendix, we prove a Pogorelov type estimate for smooth solutions of equation

\[ \det D^2 u = f(x') \text{ in } U, \]

where \( U \) is a bounded convex domain in \( \mathbb{R}^n \) and \( x' = (x_2, \ldots, x_n) \). This Pogorelov type estimate was known to Savin [22]. Here we include a proof for completeness by a slightly different computation.

**Proposition 5.1.** Assume that convex function \( u \in C^4(U) \cap C(\overline{U}) \) solves (2.1), \( u = 0 \) on \( \partial U \), and \( f > 0 \). Then

\[ [-u(x)]_{11} \leq C_n \left( \sup_U u^2 + 1 \right). \]

where \( C_n \) only depends on the dimension.

**Proof.** Consider the auxiliary function

\[ H(x) = \rho(x) \eta \left( \frac{1}{2} u^2 \right) u_{11}. \]

The function \( \eta(t) \) is to be determined and \( \rho \) is a cut-off function. Assume \( H \) attains its maximum at \( 0 \in U \). By performing the affine transform

\[ \tilde{u}(x) = u \left( x_1 - \frac{1}{u_{11}(0)} \sum_{i \geq 2} u_{1i}(0) x_i, x' \right), \]

which does not affect the equation or the maximum, one can also assume that \( D^2 u(0) \) is diagonal. Then the inverse matrix \( \{u^{ij}\} = \text{diag}\{u^{-1}_{11}, \ldots, u^{-1}_{nn}\} \).

We have, at 0,

\[ 0 = D_i \log H = \frac{\rho_i}{\rho} + \frac{\eta_i}{\eta} + \frac{u_{11i}}{u_{11}}, \]

\[ 0 \geq D^2_{ij} \log H = \frac{\rho_{ij}}{\rho} - \frac{\rho_i \rho_j}{\rho^2} + \frac{\eta_{ii}}{\eta^2} - \frac{\eta_i \eta_j}{\eta^2} + \frac{u_{11ij}}{u_{11}} - \frac{u_{11i} u_{11j}}{u^2_{11}}, \]

consequently

\[ 0 \geq \sum u^{ii} \left( \frac{\rho_{ii}}{\rho} - \frac{\rho_i^2}{\rho^2} \right) + \sum u^{ii} \left( \frac{\eta_{ii}}{\eta} - \frac{\eta_i^2}{\eta^2} \right) + \sum u^{ii} \left( \frac{u_{11ii}}{u_{11}} - \frac{u^2_{11i}}{u^2_{11}} \right). \]
Differentiating (5.1) w.r.t. $x_1$ up to twice, we get

\begin{align}
\sum_i u^{ii} u_{i11} &= 0, \\
\sum u^{ii} u_{i1} &= \sum u^{ii} u^{jj} u_{ij1}.
\end{align}

Plugging (5.5) into (5.3), we find

\begin{align}
0 &\geq \sum u^{ii} \left( \frac{\rho_{ii}}{\rho} - \frac{\rho_i^2}{\rho^2} \right) + \sum u^{ii} \left( \frac{\eta_{ii}}{\eta} - \frac{\eta_i^2}{\eta^2} \right) \\
&\quad + \frac{1}{u_{11}} \sum u^{ii} u^{jj} u_{ij1} - \frac{1}{u_{11}^2} \sum u^{ii} u_{11i}^2 \\
&= \sum u^{ii} \left( \frac{\rho_{ii}}{\rho} - \frac{\rho_i^2}{\rho^2} \right) + \sum u^{ii} \left( \frac{\eta_{ii}}{\eta} - \frac{\eta_i^2}{\eta^2} \right) \\
&\quad + \frac{1}{u_{11}} \sum_{i \geq 1, j \geq 2} u^{ii} u^{jj} u_{ij1}.
\end{align}

Setting $\rho = -u$, we compute

\begin{align*}
\sum u^{ii} \left( \frac{\rho_{ii}}{\rho} - \frac{\rho_i^2}{\rho^2} \right) &= -\frac{n}{|u|} - \frac{1}{|u|^2} \sum u^{ii} \rho_i^2 \\
&= -\frac{n}{|u|} - \frac{u_1^2}{|u|^2 u_{11}} - \sum_{i \geq 2} u^{ii} \left( \frac{\eta_i}{\eta} + \frac{u_{11i}}{u_{11}} \right)^2 \\
&= -\frac{n}{|u|} - \frac{u_1^2}{|u|^2 u_{11}} + \sum_{i \geq 2} u^{ii} \left( \frac{\eta_i^2}{\eta^2} + 2 \frac{\rho_i \eta_i}{\rho \eta} - \frac{u_{11i}^2}{u_{11}^2} \right) \\
&= -\frac{n}{|u|} - \frac{u_1^2}{|u|^2 u_{11}} - \frac{1}{u_{11}^2} \sum_{i \geq 2} u^{ii} u_{11i}^2,
\end{align*}

where we have used $\eta_2 = 0$. We may assume $\frac{u_1^2}{|u| u_{11}} \leq C$, otherwise we are through. Hence

\begin{align*}
\sum u^{ii} \left( \frac{\rho_{ii}}{\rho} - \frac{\rho_i^2}{\rho^2} \right) &\geq -\frac{C}{|u|} - \frac{1}{u_{11}^2} \sum_{i \geq 2} u^{ii} u_{11i}^2.
\end{align*}
Plugging this into (5.6), one gets

\[
0 \geq -\frac{C}{|u|} + \sum u^{ii} \left( \frac{\eta^{ii}}{\eta} - \frac{\eta^{2}}{\eta^2} \right) + \frac{1}{u_{11}} \sum_{i,j \geq 2} u^{ii} u^{jj} u^{2}_{ijj}
\]

\[
\geq -\frac{C}{|u|} + \sum u^{ii} \left[ \left( \frac{\eta''}{\eta} - \frac{\eta'^2}{\eta^2} \right) u_{i}^{2} u_{ii}^{2} + \frac{\eta'}{\eta} u_{i}^{2} + \frac{\eta'}{\eta} u_{i} u_{i1} \right]
\]

\[
= -\frac{C}{|u|} + \left[ \left( \frac{\eta''}{\eta} - \frac{\eta'^2}{\eta^2} \right) u_{i}^{2} + \frac{\eta'}{\eta} \right] u_{11}.
\]

Let \( \eta(t) = \left(1 - \frac{t}{2\sup_{\Omega} u_{i}^{2} + 1}\right)^{-1/8} \). Clearly \( \eta \) is non-decreasing and \( \eta \geq 1 \). It is direct to compute

\[
\eta' = \frac{\eta^{9}}{16 \sup_{\Omega} u_{i}^{2} + 8}, \quad \eta'' = \frac{9\eta^{17}}{(16 \sup_{\Omega} u_{i}^{2} + 8)^2},
\]

and therefore

\[
\frac{\eta''}{\eta} - \frac{\eta'^2}{\eta^2} = \frac{\eta^{16}}{8(2\sup_{\Omega} u_{i}^{2} + 1)^2}.
\]

Consequently, we have

\[
0 \geq -\frac{C}{|u|} + \frac{(2\eta^{8} - 1)\eta^{8}}{8(2\sup_{\Omega} u_{i}^{2} + 1)} u_{11}
\]

\[
\geq -\frac{C}{|u|} + \frac{C}{\sup_{\Omega} u_{i}^{2} + 1} u_{11},
\]

thus finishing the proof. \( \square \)

References


[10] E. Heinz, *Über die Differentialungleichung $0 < \alpha \leq rt - s^2 \leq \beta < \infty$, (German)* Math. Z **72** (1959/1960) 107–126.


Centre for Mathematics and Its Applications
The Australian National University
Canberra, ACT 2601, Australia
E-mail address: qi-rui.li@anu.edu.au

Received June 15, 2015