The Rallis-Schiffmann Lifting and Arthur Packets of G_2

Wee Teck Gan and Nadya Gurevich

§1. Introduction

The purpose of this paper is to give a natural (unconditional) construction of a family of non-tempered Arthur packets of G_2 , and to construct the submodule in the space of square-integrable automorphic forms associated to these Arthur packets. A surprising aspect of our definition is that a representation in one of these local Arthur packets can actually be reducible. To the best of our knowledge, this is the first instance of such a phenomenon for split p-adic groups.

Our construction is based on an earlier paper of Rallis and Schiffmann [RS] which we recall briefly. In the paper [RS], Rallis and Schiffmann constructed a lifting of cuspidal automorphic forms from the metaplectic group \widetilde{SL}_2 to the split exceptional group of type G_2 over a number field F. This was achieved by exploiting the fact that $SL_2 \times G_2$ is a subgroup of $SL_2 \times O_7$, which is the classical dual pair in Sp_{14} . The lifting is then defined using the theta kernel furnished by the Weil representation $\omega_{\psi}^{(7)}$ of \widetilde{Sp}_{14} (which depends on the choice of an additive character ψ).

The surprising discovery of Rallis-Schiffmann is that, despite restricting from O_7 to the smaller group G_2 , one still obtains a correspondence of representations. More precisely, if σ is an irreducible cuspidal representation of $\widetilde{SL}_2(\mathbb{A})$, let $V(\sigma)$ be the theta lift of σ ; it is a non-zero subspace of the space of automorphic forms on G_2 . Then the main results of Rallis-Schiffmann are:

- $V(\sigma)$ is contained in the space of cusp forms if and only if the theta lift (associated to ψ) of σ to SO_3 (studied by Waldspurger) is zero.
- The cuspidal representations obtained as lifts from \widetilde{SL}_2 are characterized as those having a non-zero period with respect to some quasi-split SU_3 (which is a subgroup of G_2).

Received October 4, 2004

- The local correspondence of unramified representations is precisely determined. In particular, when $V(\sigma)$ is cuspidal, the local components of each irreducible constituent of $V(\sigma)$ are determined for almost all places v, in terms of the local components of σ .
- As a consequence of the unramified correspondence, the irreducible cuspidal representations contained in $V(\sigma)$ are non-generic and CAP with respect to the Heisenberg parabolic or the Borel subgroup of G_2 . This gives the first construction of CAP representations of G_2 .

In this paper, we complete the study initiated in [RS] by giving a precise determination of the representation $V(\sigma)$. The first step in this is the complete determination of the *local* theta correspondence. Since the archimedean correspondence has to a large extent been determined by Li-Schwermer [LS], we shall only discuss the non-archimedean case here. More precisely, if v is a p-adic place of F and σ_v an irreducible representation of $\widetilde{SL}_2(F_v)$, the maximal σ_v -isotypic quotient of $\omega_{\psi_v}^{(7)}$ can be expressed as $\sigma_v \otimes \theta(\sigma_v)$, where $\theta(\sigma_v)$ is a smooth representation of $G_2(F_v)$. Let $\Theta(\sigma_v)$ be the maximal semisimple quotient of $\theta(\sigma_v)$. Our main local result is:

(1.1) **Theorem** $\Theta(\sigma_v)$ can be completely determined for any σ_v (to the extent that classification of representations of $G_2(F_v)$ is known). It turns out that $\Theta(\sigma_v)$ is irreducible except when $\sigma_v = \omega_{\psi_v}^{\pm}$ (the even and odd Weil representations of $\tilde{SL}_2(F_v)$ associated to ψ_v). In these two exceptional cases, $\Theta(\sigma_v)$ is the sum of 2 unipotent representations.

A precise statement of the results is given in Theorem 2.16.

We now turn to the global situation. For any cuspidal σ on \widetilde{SL}_2 , one can show that $V(\sigma)$ is contained in the space of square-integrable automorphic forms. Thus $V(\sigma)$ is semisimple and is a non-zero summand of $\Theta(\sigma) := \otimes_v \Theta(\sigma_v)$. Our precise local result immediately shows that $V(\sigma) \cong \Theta(\sigma)$, whenever σ_v is not the even or odd Weil representations associated to ψ_v for any place v, since $\Theta(\sigma)$ is irreducible then. However, when $\Theta(\sigma)$ is reducible, there are more than one possibilities for $V(\sigma)$. The determination of $V(\sigma)$ in this case is easily the trickiest part of the paper. In any case, our main global result (Theorem 3.7) says:

(1.2) Theorem If $\sigma \subset \mathcal{A}_{00}$, i.e. σ is not an irreducible summand of any Weil representation, then $V(\sigma) \cong \Theta(\sigma)$.

In fact, one can define the theta lift of any square-integrable automorphic representation of \widetilde{SL}_2 by a regularization of the theta integral. Thus, one can

speak of the regularized theta lift of the orthogonal complement of \mathcal{A}_{00} , which consists of the Weil representations of \widetilde{SL}_2 . One can show that the space of automorphic forms of G_2 thus obtained is precisely equal to that constructed in [GGJ], by restriction of the minimal representation of the various quasi-split $Spin_8$'s.

Let us highlight a corollary of the global theorem above. It pertains to the question of whether there are cuspidal representations of G_2 with non-zero SL_3 -period. Such cuspidal representations should be very scarce, but can be obtained by restriction from the minimal representation of split $Spin_8$ [GGJ]. It wasn't known previously if other SL_3 -distinguished cuspidal representations exist. Now, as a consequence of our global theorem, we know that they do. Indeed, when $\sigma \subset A_{00}$ is such that its theta lift to SO_3 is non-zero, we know from [RS] that $V(\sigma)$ is not totally contained in $A_{cusp}(G_2)$. However, this does not exclude the possibility that $V(\sigma) \cap A_{cusp}(G_2)$ is non-zero. In [RS, Pg. 823], Rallis-Schiffmann remarked that they do not know if such a possibility can actually happen. Our global theorem implies that it does, and the cuspidal representations thus obtained are SL_3 -distinguished.

This paper serves as an announcement of some of the results of the longer paper [GG]. In particular, though we provide a precise statement of the local theorem, we do not give its proof here. We do, however, give the proof of the global theorem, since it provides a justification for our definition of the local Arthur packets, especially in the case when the local packet contains a reducible representation. The details can be found in Section 4. In [GG], we provide further justification of the correctness of our local packets by showing that the spaces we constructed are full near equivalence classes; this last aspect will not be discussed here.

§2. Local Results

In this section, we shall state our precise local results. For this, we need to introduce a number of notations and recall a number of background facts. Throughout this section, F will denote a non-archimedean local field of characteristic zero, and we fix a non-trivial additive character ψ of F. For any $a \in F^{\times}$, we let ψ_a be the character defined by $\psi_a(x) = \psi(ax)$.

(2.1) The group $\widetilde{SL}(2)$. The group $\widetilde{SL}_2(F)$ is a topological central extension of $SL_2(F)$ by $\{\pm 1\}$. As usual, we shall let T denote the diagonal torus of SL_2 and N the group of unipotent upper triangular matrices. Hence B = TN is the usual Borel subgroup. For a subgroup H of $SL_2(F)$, let \tilde{H} be its inverse image

in $\widetilde{SL}_2(F)$.

One can define a character χ_{ψ} of \tilde{T} by:

$$\chi_{\psi}(t(a), \epsilon) = \epsilon \cdot \gamma_{\psi} / \gamma_{\psi_a}$$

where $t(a) = diag(a, a^{-1})$, $\epsilon = \pm 1$ and γ_{ψ} is the 8th root of unity associated to ψ by Weil. Let us recall the classification of irreducible genuine representations of $\widetilde{SL}_2(F)$.

(2.2) The Weil representations of $\widetilde{SL}_2(F)$. Let χ be a quadratic character of F^{\times} (possibly trivial). Then χ corresponds to an element $a_{\chi} \in F^{\times}/F^{\times 2}$. Associated to χ is a Weil representation ω_{χ} of $\widetilde{SL}_2(F)$. As a representation of $\widetilde{SL}_2(F)$, ω_{χ} is reducible. In fact, it is the direct sum of two irreducible representations:

$$\omega_{\chi} = \omega_{\chi}^{+} \oplus \omega_{\chi}^{-},$$

where ω_{χ}^{-} is supercuspidal and ω_{χ}^{+} is not.

(2.3) The principal series. The principal series representations of $\widetilde{SL}_2(F)$ can be parametrized by the characters μ of F^{\times} (cf. [W2, Pg. 225]). The representation associated to μ is the induced representation

$$\tilde{\pi}(\mu) = Ind_{\tilde{B}}^{\tilde{S}L_2} \chi_{\psi} \cdot \delta_{\tilde{B}}^{1/2} \cdot \mu$$

Note that this parametrization depends on the additive character $\psi.$ Now we have:

- (2.4) Proposition (i) $\tilde{\pi}(\mu)$ is irreducible if and only if $\mu^2 \neq |-|^{\pm 1}$, in which case $\tilde{\pi}(\mu) \cong \tilde{\pi}(\mu^{-1})$.
- (ii) If $\mu = \chi \cdot |-|^{1/2}$ where χ is a quadratic character, then we have a short exact sequence:

$$0 \longrightarrow sp_{\chi} \longrightarrow \tilde{\pi}(\mu) \longrightarrow \omega_{\chi}^{+} \longrightarrow 0.$$

We call sp_{χ} the special representation associated to χ .

(iii) If $\mu = \chi \cdot |-|^{-1/2}$, then we have a short exact sequence,

$$0 \longrightarrow \omega_{\chi}^{+} \longrightarrow \tilde{\pi}(\mu) \longrightarrow sp_{\chi} \longrightarrow 0.$$

The proposition gives all the non-supercuspidal genuine representations of $\tilde{S}L_2(F)$. The other irreducible representations of $\tilde{S}L_2(F)$ are all supercuspidal, including the ω_{χ}^- 's introduced above.

(2.5) Whittaker functionals. For any $a \in F^{\times}$, let ψ_a be the character of N defined by:

$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \mapsto \psi(ax).$$

It is known that

$$\dim(\sigma_{N,\psi_a}) \leq 1.$$

We say that σ has a ψ_a -Whittaker functional if $\sigma_{N,\psi_a} \neq 0$. It is also known that any genuine σ has a ψ_a -Whittaker functional for some a. We let

$$\widehat{F}(\sigma) = \{ a \in F^{\times} : \sigma \text{ has a } \psi_a\text{-Whittaker functional} \}.$$

Clearly, $\widehat{F}(\sigma)$ is a non-empty union of square classes.

(2.6) The Weil representation of $\widetilde{SL}_2(F) \times SO(V,q)$. If (V,q) is a quadratic space, then as is well-known, one can define a Weil representation $\omega_{\psi,q}$ of the group $\widetilde{SL}_2(F) \times SO(V,q)$. For example, if χ is a quadratic character of F^{\times} and (V,q) is the rank 1 quadratic space $\langle a_{\chi} \rangle$, then $\omega_{\psi,q}$ is simply the representation of $\widetilde{SL}_2(F)$ denoted by ω_{χ} in 2.2.

Let (V_m, q_m) be the (2m+1)-dimensional quadratic space $\langle 1 \rangle \oplus \mathbb{H}^m$, where \mathbb{H} is the rank 2 hyperbolic space. We shall write $\omega_{\psi}^{(m)}$ for the Weil representation of $\widetilde{SL}_2(F) \times SO(V_m, q_m)$.

(2.7) Waldspurger's lift and packets for $\widetilde{SL}_2(F)$. By a detailed study of the representation $\omega_{\psi,q}$ as (V,q) ranges over all 3-dimensional quadratic spaces [W1,2], Waldspurger defined a map Wd_{ψ} from the set of irreducible representations of $\widetilde{SL}_2(F)$ which are not equal to ω_{χ}^+ to the set of infinite dimensional representations of $PGL_2(F)$. This leads to a partition of the set of such representations of $\widetilde{SL}_2(F)$ indexed by the infinite dimensional representations of $PGL_2(F)$. Namely, if τ is such a representation of $PGL_2(F)$, we set

$$\tilde{A}_{\tau} = \text{ inverse image of } \tau \text{ under } W d_{\psi}.$$

It turns out that

$$\#\tilde{A}_{\tau} = \begin{cases} 2 \text{ if } \tau \text{ is discrete series;} \\ 1 \text{ if } \tau \text{ is not.} \end{cases}$$

In the first case, the set \tilde{A}_{τ} has a distinguished element σ_{τ}^{+} , which is characterized by the fact that $\tau \otimes \sigma_{\tau}^{+}$ is a quotient of $\omega_{\psi}^{(3)}$. The other element of \tilde{A}_{τ} will be denoted by σ_{τ}^{-} . In the second case, we shall let $\sigma(\tau)^{+}$ be the unique element in \tilde{A}_{τ} and set $\sigma(\tau)^{-} = 0$.

(2.8) The group G_2 . Now we come to the split group G_2 . It is the automorphism group of the octonion algebra \mathbb{O} . Like the quaternion algebra, the octonion algebra carries a quadratic norm form N and a linear trace form Tr and these are preserved by G_2 . Let V be the space of trace zero elements in \mathbb{O} , equipped with the quadratic form q = -N. Then (V, q) is isomorphic to (V_7, q_7) and G_2 acts as automorphisms of (V, q). This gives us an embedding $G_2 \hookrightarrow SO(V_7, q_7)$.

The group G_2 has two conjugacy classes of maximal parabolic subgroups. One of them is the Heisenberg parabolic $P_2 = L_2 \cdot U_2$, with U_2 a 5-dimensional Heisenberg group. Denote the other maximal parabolic by $P_1 = L_1 \cdot U_1$. Its unipotent radical U_1 is a 3-step nilpotent group. In both cases, the Levi subgroups are isomorphic to GL_2 and we fix these isomorphisms.

Now let us recall some facts about representations of $G_2(F)$.

(2.9) Langlands quotients. Let τ be a tempered representation of $GL_2(F)$ and s > 0. In the following, we shall use standard notions for the representations of PGL_2 . For example, St denotes the Steinberg representation, St_{χ} the twist of St by the quadratic character χ and $\pi(\mu_1, \mu_2)$ for a principal series representation. Now the induced representations

$$I_{P_i}(\tau, s) = Ind_{P_i}^{G_2} \delta_{P_i}^{1/2} \cdot \tau \cdot |det|^s$$

has a unique irreducible quotient $J_{P_i}(\tau, s)$. The reducibility points of these induced representations are known by [M, Thm. 3.1 and Thm. 5.3].

(2.10) Degenerate principal series. Consider now the induced representation

$$I_{P_1}(\mu) = Ind_{P_1}^{G_2} \delta_{P_1}^{1/2}(\mu \circ det),$$

where μ is a character of F^{\times} . The following was shown in [M, Thm. 3.1 and Props. 4.1, 4.3, 4.4]:

- (2.11) Lemma Assume that $|\mu| = |-|^s$ with $Re(s) \ge 0$. Then $I_{P_1}(\mu)$ is irreducible unless $\mu^2 = |-|$ or $\mu = |-|^{5/2}$. For these exceptional cases, we have the following non-split exact sequences:
 - (i) If $\mu = \chi |-|^{1/2}$, with $\chi \neq 1$ a quadratic character, then we have:

$$0 \longrightarrow J_{P_2}(St_{\chi}, 1/2) \longrightarrow I_{P_1}(\mu) \longrightarrow J_{P_1}(\pi(1, \chi), 1) \longrightarrow 0$$

(ii) If
$$\mu = |-|^{1/2}$$
, then we have:

$$0 \longrightarrow J_{P_1}(St, 1/2) \longrightarrow I_{P_1}(\mu) \longrightarrow J_{P_1}(\pi(1, 1), 1) \oplus J_{P_2}(St, 1/2) \longrightarrow 0$$

(iii) If
$$\mu = |-|^{5/2}$$
,
 $0 \longrightarrow J_{P_2}(St, 3/2) \longrightarrow I_{P_1}(\mu) \longrightarrow 1 \longrightarrow 0$

(2.12) U_2 -spectrum. The $L_2(F)$ -orbits of characters of $U_2(F)$ can be naturally parametrized by cubic algebras over F (cf. [GGJ]). For a cubic algebra E, let us write ψ_E for a character in the corresponding orbit. The U_2 -spectrum of a smooth representation π of G_2 is the set of those cubic algebras E such that the corresponding twisted Jacquet module π_{U_2,ψ_E} is non-zero. In this paper, we shall only look at the cubic algebras of the form $F \times K$ where K is an étale quadratic algebra. We set

$$\widehat{F}(\pi) = \{ a \in F^{\times} : K_a = F(\sqrt{a}) \text{ is in the } U_2\text{-spectrum of } \pi \}.$$

Clearly, $\widehat{F}(\pi)$ is a union of square classes.

(2.13) Some unipotent representations. We recall the results of [HMS] concerning the restriction of the (unique) unitarizable minimal representation Π_K of the quasi-split $Spin^K(8)$ to the subgroup G_2 , where K is an étale quadratic algebra. The representation Π_K is trivial on the center of $Spin_8^K$ and can be extended to a representation of SO_8^K . Any such extension will be called a minimal representation of SO_8^K and each has the same restriction to G_2 . Now we have:

(2.14) Proposition (i) When
$$K = F \times F$$
,

$$\Pi_K = J_{P_1}(\pi(1,1),1) \oplus 2 \cdot J_{P_2}(St,1/2) \oplus \pi_{\epsilon}$$

where π_{ϵ} is supercuspidal.

(ii) When K is a quadratic field, with associated quadratic character χ ,

$$\Pi_K = J_{P_1}(\pi(1,\chi),1) \oplus \pi(\chi)$$

where $\pi(\chi)$ is supercuspidal.

For a given K, the irreducible constituents of Π_K obtained in the above proposition make up a unipotent Arthur packet, as explained in [GGJ].

- (2.15) The Weil representation for $\widetilde{SL}_2(F) \times G_2(F)$. Finally, we are in a position to describe our main local theorem. Since G_2 is a subgroup of $SO(V_7, q_7)$, we may restrict the representation $\omega_{\psi}^{(7)}$ to $\widetilde{SL}_2(F) \times G_2(F)$. Given a representation σ of $\widetilde{SL}_2(F)$, we have defined the smooth representation $\theta(\sigma)$ and $\Theta(\sigma)$ in the introduction. The main local theorem is:
- (2.16) **Theorem** The representation $\theta(\sigma)$ is non-zero and admissible. Moreover, we have:
- (a) (Principal series) If $\sigma = \tilde{\pi}(\mu)$ is an irreducible principal series (so that $\mu^2 \neq |-|^{\pm 1}$) with $\mu \neq |-|^{5/2}$, then

$$\theta(\sigma) \cong I_{P_1}(\mu^{-1}).$$

In particular, $\theta(\sigma) = \Theta(\sigma)$ is irreducible, unless $\sigma = \tilde{\pi}(|-|^{\pm 5/2})$, in which case $\Theta(\sigma)$ is the trivial representation of G_2 .

(b) (Special representations) If $\sigma = sp_{\chi}$, then

$$\Theta(\sigma) \cong \begin{cases} J_{P_2}(St_{\chi}, 1/2) & \text{if } \chi \neq 1; \\ J_{P_1}(St, 1/2) & \text{if } \chi = 1. \end{cases}$$

(c) (Weil representations) If $\sigma = \omega_{\chi}^+$ where χ is a quadratic character of F^{\times} , then

$$\theta(\sigma) = \begin{cases} J_{P_1}(\pi(1,\chi), 1) & \text{if } \chi \neq 1; \\ J_{P_1}(\pi(1,1), 1) \oplus J_{P_2}(St, 1/2) & \text{if } \chi = 1. \end{cases}$$

If $\sigma = \omega_{\chi}^-$, then

$$\theta(\sigma) = \begin{cases} \pi(\chi) & \text{if } \chi \neq 1; \\ J_{P_2}(St, 1/2) \oplus \pi_{\epsilon} & \text{if } \chi = 1. \end{cases}$$

Here $\pi(\chi)$ and π_{ϵ} were defined in Prop. 2.14.

(d) (Supercuspidals) Suppose that σ is supercuspidal and $\sigma \neq \omega_{\chi}^-$ for any χ . Let $\tau = W d_{\psi}(\sigma)$. If $\sigma = \sigma_{\tau}^+$, then

$$\theta(\sigma) = J_{P_2}(\tau, 1/2).$$

If $\sigma = \sigma_{\tau}^-$, then $\theta(\sigma)$ is an irreducible non-generic supercuspidal representation such that

$$\widehat{F}(\theta(\sigma)) = \widehat{F}(\sigma).$$

Moreover, if $\theta(\sigma) \cong \theta(\sigma')$, then $\sigma \cong \sigma'$.

The main ingredients in the proof of the theorem are the computation of the Jacquet and Fourier-Jacobi functors of $\omega_{\psi}^{(7)}$ with respect to various unipotent subgroups of \widetilde{SL}_2 and G_2 , as well as the study of the U_2 -spectrum of $\theta(\sigma)$ in terms of the N-spectrum of σ .

(2.17) Remark Even though we have restricted ourselves to the non-archimedean case in this section, the archimedean correspondence can also be completely determined. To a large extent, this was already done by Li-Schwermer [LS].

§3. Global Results

In this section, we let F be a number field with adele ring \mathbb{A} and fix a non-trivial additive character ψ of $F \setminus \mathbb{A}$. We shall describe our main global results below.

(3.1) Cusp forms of $\widetilde{SL}_2(\mathbb{A})$. Let \mathcal{A}^2 denote the space of square-integrable genuine automorphic forms on $\widetilde{SL}_2(\mathbb{A})$. Then there is an orthogonal decomposition

$$\mathcal{A}^2 = \mathcal{A}_{00} igoplus \left(igoplus_\chi \mathcal{A}_\chi
ight).$$

Here, χ runs over all quadratic characters of $F^{\times} \backslash \mathbb{A}^{\times}$.

Let us describe the space \mathcal{A}_{χ} more concretely. If $\omega_{\chi} = \otimes_{v} \omega_{\chi_{v}}$ is the global Weil representation attached to χ , then the formation of theta series gives a map $\theta_{\chi}: \omega_{\chi} \to \mathcal{A}^{2}$, whose image is the space \mathcal{A}_{χ} . To describe the decomposition of \mathcal{A}_{χ} , for a finite set S of places of F, let us set

$$\omega_{\chi,S} = (\otimes_{v \in S} \omega_{\chi_v}^-) \otimes (\otimes_{v \notin S} \omega_{\chi_v}^+)$$

so that

$$\omega_{\chi} = \bigoplus_{S} \omega_{\chi,S}.$$

Then we have

$$\mathcal{A}_{\chi} \cong \bigoplus_{\#S \text{ even}} \omega_{\chi,S}.$$

Moreover, $\omega_{\chi,S}$ is cuspidal if and only if S is non-empty.

(3.2) Near equivalence classes. In a profound piece of work [W2], Waldspurger has described the near equivalence clases of representations in \mathcal{A}_{00} . Earlier, in [W1], he has shown that \mathcal{A}_{00} satisfies multiplicity one. Let us describe his results

Given a cuspidal automorphic representation $\tau = \otimes_v \tau_v$ of PGL_2 , we define a set of irreducible unitary representations of $\tilde{SL}_2(\mathbb{A})$ as follows. Recall that for each place v, we have a local packet

$$\tilde{A}_{\tau_v} = \{\sigma_{\tau_v}^+, \sigma_{\tau_v}^-\}$$

where $\sigma_{\tau_v}^- = 0$ if τ_v is not discrete series. Now set

$$\tilde{A}_{\tau} = \{ \sigma = \otimes_v \sigma_{\tau_v}^{\epsilon_v} : \epsilon_v = \pm \text{ and } \epsilon_v = + \text{ for almost all } v \}.$$

This is called the global packet associated to τ .

For $\sigma = \bigotimes_v \sigma_{\tau_v}^{\epsilon_v} \in \tilde{A}_{\tau}$, let us set

$$\epsilon_{\sigma} = \prod_{v} \epsilon_{v}.$$

Then we have:

$$\mathcal{A}_{00} = \bigoplus_{\text{cuspidal } \tau} \mathcal{A}(\tau)$$

where each $\mathcal{A}(\tau)$ is a near equivalence class of cuspidal representations and

$$\mathcal{A}(\tau) = \bigoplus_{\sigma \in \tilde{A}_{\tau} : \epsilon_{\sigma} = \epsilon(\tau, 1/2)} \sigma.$$

(3.3) Fourier coefficients. For a character χ of $N(F)\backslash N(\mathbb{A})$, the χ -Fourier coefficient of an automorphic form f of $\widetilde{SL}(\mathbb{A})$ is the function defined by

$$f_{\chi}(h) = \int_{N(F)\backslash N(\mathbb{A})} \overline{\chi(n)} \cdot f(nh) dn.$$

Say that σ has missing χ -coefficient if $f_{\chi} = 0$ for all $f \in \sigma$.

(3.4) Global theta lift. Let $\omega_{\psi}^{(7)} = \otimes_{v} \omega_{\psi_{v}}^{(7)}$ be the global Weil representation of $\widetilde{Sp}_{14}(\mathbb{A})$ associated to ψ . By the formation of theta series, we have a map

$$\theta: \omega_{\psi}^{(7)} \longrightarrow \mathcal{A}(\tilde{Sp}_{14}).$$

Now if $\sigma \subset \mathcal{A}^2$ is a cuspidal representation of $\tilde{SL}_2(\mathbb{A})$, then we let $V(\sigma)$ denote the linear span of all functions on $G_2(\mathbb{A})$ of the form

$$\theta(\varphi,f)(g) = \int_{\widetilde{SL}_2(F)\backslash \widetilde{SL}_2(\mathbb{A})} \theta(\varphi)(gh) \cdot \overline{f(h)} dh, \quad \text{for } \varphi \in \omega_{\psi}^{(7)} \text{ and } f \in \sigma.$$

The complex conjugate over f(h) is introduced to ensure the compatibility of global and local theta lifts.

From the results of [RS], one deduces:

- (3.5) Proposition The space $V(\sigma)$ is non-zero and is contained in the space of square-integrable automorphic forms on G_2 , so that $V(\sigma)$ is semisimple and is a non-zero summand of $\Theta(\sigma) = \bigotimes_v \Theta(\sigma_v)$. It is contained in the space of cusp forms if and only if σ has missing ψ -coefficient.
- (3.6) Regularized theta lift. It is desirable to extend the definition of the theta lift to all summands of \mathcal{A}^2 , i.e. for the non-cuspidal representations $\omega_{\chi,S}$ (S empty). Let us explain how this is done.

For simplicity, let us take the case when $\chi = 1$ is trivial, so that $\omega_1 = \omega_{\psi}^{(1)}$. With $V_8 := V_7 \oplus (-V_1) \cong \mathbb{H}^4$, we have the following seesaw diagram:

$$\tilde{SL}_2 \times \tilde{SL}_2$$
 $SO(V_8)$

$$\Delta SL_2$$
 G_2

As a representation of $G_2(\mathbb{A}) \times \Delta SL_2(\mathbb{A})$, $\omega_{\psi}^{(7)} \otimes \overline{\omega_{\psi}^{(1)}}$ is (a dense subspace of) the restriction to $SO(V_8)(\mathbb{A}) \times \Delta SL_2(\mathbb{A})$ of the Weil representation W_{ψ} of $\widetilde{Sp}_{16}(\mathbb{A})$. Let $\Theta: W_{\psi} \to \mathcal{A}(\widetilde{Sp}_{16})$ be the usual theta map. In particular, for $\varphi \in \omega_{\psi}^{(7)}$ and $f \in \omega_{\psi}^{(1)}$, the function

$$(g,h)\mapsto \theta(\varphi)(gh)\cdot \overline{f(h)}$$

is the restriction to $G_2(\mathbb{A}) \times \Delta SL_2(\mathbb{A})$ of the element $\Theta(\varphi \otimes f)$. It follows that the absolute convergence of $\theta(\varphi, f)$ is equivalent to the absolute convergence of

$$\int_{\Delta SL_2(F)\backslash \Delta SL_2(\mathbb{A})} \Theta(\varphi \otimes f)(gh) dh$$

for all $g \in G_2(\mathbb{A})$.

Now the convergence of this latter integral is a well-studied problem in the topic of regularized Siegel-Weil formula. In our case, if we realize W_{ψ} in the Schrodinger model $\mathcal{S}(V_8(\mathbb{A}))$, it is easy to see that the integral of $\Theta(\Phi)$ (for $\Phi \in W_{\psi}$) over ΔSL_2 converges absolutely iff $W_{\psi}(h)\Phi(0) = 0$ for all $h \in \Delta SL_2(\mathbb{A})$. So if $\varphi \otimes f$ has this property, then the integral $\theta(\varphi, f)$ converges. This is the case, for example, if f lies in $\omega_{\chi,S}$ with S non-empty.

In general, the map sending Φ to the function $h\mapsto W_{\psi}(h)\Phi(0)$ gives a $(SO(V_8)\times \Delta SL_2)$ -equivariant map

$$T: W_{\psi} \longrightarrow Ind_{B}^{SL_{2}} \delta_{B}^{2}$$
 (unnormalized induction).

Now fix an archimedean place v_0 . It is clear that one can find an element Z in the center of the universal enveloping algebra of $\Delta SL_2(F_{v_0})$ such that

$$Z = \begin{cases} 1 \text{ on the trivial representation;} \\ 0 \text{ on the above principal series.} \end{cases}$$

Then $W_{\psi}(Z)\Phi$ lies in ker(T) and this allows us to define the regularized theta lift:

$$\theta^{reg}(\varphi,f)(g) := \int_{\Delta SL_2(F) \backslash \Delta SL_2(\mathbb{A})} \Theta(W_{\psi}(Z)(\varphi \otimes f))(gh) dh.$$

Note that there is a unique equivariant extension of the theta integral from Ker(T) to W_{ψ} . Hence the regularized theta lift defined here is canonical.

Let

$$V_{\chi}$$
 = regularized theta lift of \mathcal{A}_{χ} .

Then a consideration of the above see-saw diagram and [GRS, Theorem 6.9] (which says that the regularized theta lift of the trivial representation of ΔSL_2 is a minimal representation of SO_8) gives the first part of our main global theorem:

(3.7) **Theorem** (i) The space V_{χ} is equal to the space of automorphic forms obtained by restricting the automorphic minimal representation of the quasi-split $Spin_8^{\chi}$. The latter space consists of square-integrable automorphic forms and was determined in [GGJ] as an abstract representation.

(ii) If
$$\sigma \subset A_{00}$$
, then $V(\sigma) \cong \Theta(\sigma)$.

(3.8) Sketch proof. We give a sketch of the proof of Theorem 3.7(ii). Clearly, there is nothing to prove if $\Theta(\sigma)$ is irreducible. In general, the proof is achieved by studying the Fourier coefficients of $\theta(\varphi, f)$, as we now explain.

We begin with some generalities which hold for any cuspidal σ . Recall that, with the character ψ as a base point, the \tilde{T} -orbits of Fourier coefficients for \widetilde{SL}_2 are parametrized by quadratic F-algebras. If $\sigma \subset \mathcal{A}_{00}$, then σ has at least 2 non-vanishing (\tilde{T} -orbits of) Fourier coefficients, whereas the representation $\omega_{\chi,S}$ supports only one Fourier coefficient, namely the one determined by the quadratic character χ . For a quadratic field K, we shall let $\tilde{\psi}_K$ denote a character of $N(F)\backslash N(\mathbb{A})$ in the orbit indexed by K.

As for G_2 , we shall consider Fourier expansion along U_2 , in which case the L_2 -orbits of Fourier coefficients are parametrized by cubic F-algebras. For a quadratic field K, we shall let ψ_K denote a character of $U_2(\mathbb{A})$, trivial on $U_2(F)$, which lies in the orbit indexed by $F \times K$. For $\theta(\varphi, f) \in V(\sigma)$, we set

$$\theta(\varphi, f)_{\psi_K}(g) = \int_{U_2(F)\setminus U_2(\mathbb{A})} \overline{\psi_K(u)} \cdot \theta(\varphi, f)(ug) \, du, \qquad g \in G_2(\mathbb{A}).$$

Let $W(\sigma, \psi_K)$ denote the span of all the functions $\theta(\varphi, f)_{\psi_K}$ with varying φ and $f \in \sigma$. Then we have a $G_2(\mathbb{A})$ -equivariant surjective map from $V(\sigma)$ to $W(\sigma, \psi_K)$, so that $W(\sigma, \psi_K)$ is a semisimple representation of $G_2(\mathbb{A})$ and is a summand of $\Theta(\sigma)$.

(3.9) Proposition The space $W(\sigma, \psi_K)$ is non-zero iff σ has non-zero $\tilde{\psi}_K$ -Fourier coefficient. In this case, if $f = \otimes_v f_v$ and $\varphi = \otimes_v \varphi_v$, then one has an expression:

$$\theta(\varphi, f)_{\psi_K}(g) = \prod_v \mathcal{W}_{\psi_{K_v}}(\varphi_v, f_v, g_v)$$

where $W_{\psi_{K_v}}(\varphi_v, f_v, g_v)$ is a local expression depending only on $\varphi_v \in \omega_{\psi_v}^{(7)}$ and $f_v \in \sigma_v$ (and the character ψ_{K_v}).

Let $W(\sigma_v, \psi_{K_v})$ denote the span of all the functions $W_{\psi_{K_v}}(\varphi_v, f_v, -)$, with varying φ_v and f_v . Then as a corollary, we have:

(3.10) Corollary As a representation of $G_2(\mathbb{A})$,

$$\mathcal{W}(\sigma, \psi_K) \cong \otimes_v \mathcal{W}(\sigma_v, \psi_{K_v})$$

and $W(\sigma_v, \psi_{K_v})$ is a non-zero summand of $\Theta(\sigma_v)$.

(3.11) The proof. Now suppose that $\sigma \subset \mathcal{A}_{00}$. Choose a quadratic field K so that σ supports a $\tilde{\psi}_K$ -Fourier coefficient. Then to prove the theorem for σ , it suffices to show that:

$$\mathcal{W}(\sigma_v, \psi_{K_v}) \cong \Theta(\sigma_v)$$
 for all v .

Again this is clear if $\Theta(\sigma_v)$ is irreducible. Hence, we are reduced to showing this for the representation $\omega_{\psi_v}^-$ with $K_v = F_v \times F_v$. More precisely, we need to show that

$$\mathcal{W}(\omega_{\psi_v}^-, \psi_{K_v}) \cong \Theta(\omega_{\psi_v}^-) = J_{P_2}(St_v, 1/2) \oplus \pi_{\epsilon_v}.$$

It is likely that there is a purely local proof of this statement. However, we shall present a local-global argument which we find rather amusing.

(3.12) A local-global argument. Suppose we want to prove the local statement above for a place v_0 . Choose a quadratic field K split at v_0 , and let χ_K be the quadratic character corresponding to K. Let v_1 be another place where K is split and set $S_0 = \{v_0, v_1\}$.

Consider the two representations π_1 and π_2 of $G_2(\mathbb{A})$ defined as follows:

$$(\pi_1)_v = \begin{cases} \pi_{\epsilon_v} \text{ if } v \in S_0; \\ J_{P_1}(\pi(1, \chi_v), 1) \text{ if } v \notin S_0 \end{cases} \quad \text{and} \quad (\pi_2)_v = \begin{cases} \pi_{\epsilon_v} \text{ if } v = v_1; \\ J_{P_2}(St_v, 1/2) \text{ if } v = v_0; \\ J_{P_1}(\pi(1, \chi_v), 1) \text{ if } v \notin S_0. \end{cases}$$

By the results of [GGJ], we know that π_1 and π_2 occur with multiplicity one in the restriction of the minimal representation of $Spin_8^K$. Hence, by Theorem 3.7(i), π_1 and π_2 occur with multiplicity one in V_{χ_K} . So they must occur in $V(\omega_{\chi_K,S})$ for some S of even cardinality. By our local results, one sees that the only possibility for S is S_0 . Hence we have:

$$\pi_1 \oplus \pi_2 \subset V(\omega_{\chi_K,S_0}).$$

Now since ω_{χ_K,S_0} has non-zero $\tilde{\psi}_K$ -coefficient, we have a surjective map from $V(\omega_{\chi_K,S_0})$ onto the non-zero space $\mathcal{W}(\omega_{\chi_K,S_0},\psi_K)$. In fact, by results of [GGJ], this map is non-zero when restricted to any irreducible summand of $V(\omega_{\chi_K,S_0})$. Hence, for i=1 or 2, $\pi_i \subset \mathcal{W}(\omega_{\chi_K,S_0},\psi_K)$ and thus $(\pi_i)_{v_0} \subset \mathcal{W}(\omega_{\psi_{v_0}}^-,\psi_{K_{v_0}})$, which is what we desire to prove.

§4. Arthur Packets

In this section, we shall explain how our main results allow us to give a definition of a family of Arthur packets for G_2 .

(4.1) Arthur parameters. Let L_F be the conjectural Langlands group of F. We shall be considering a family of Arthur parameters for G_2 :

$$\psi: L_F \times SL_2(\mathbb{C}) \longrightarrow G_2(\mathbb{C}).$$

To write down the relevant family, let us observe that

$$SL_{2,l} \times_{\mu_2} SL_{2,s} \subset G_2$$

where $(SL_{2,l}, SL_{2,s})$ is a pair of commuting SL_2 's corresponding to a pair of mutually orthogonal long and short roots. Now suppose that τ is a cuspidal representation of PGL_2 . Conjecturally, τ corresponds to an irreducible representation

$$\phi_{\tau}: L_F \longrightarrow SL_2(\mathbb{C}).$$

We define an Arthur parameter by

$$\psi_{\tau}: L_F \times SL_2(\mathbb{C}) \xrightarrow{\phi_{\tau} \times id} SL_{2,l}(\mathbb{C}) \times SL_{2,s}(\mathbb{C}) \xrightarrow{i} G_2(\mathbb{C}).$$

If $S_{\psi_{\tau}}$ is the component group of the centralizer of ψ_{τ} , then $S_{\psi_{\tau}} \cong \mathbb{Z}/2\mathbb{Z}$.

The global parameter gives rise to local parameters $\psi_{\tau,v}$ for each place v. The local component groups $S_{\psi_{\tau,v}}$ are given by

$$S_{\psi_{\tau},v} = \begin{cases} 1, & \text{if } \phi_{\tau,v} \text{ is reducible} \\ \mathbb{Z}/2\mathbb{Z}, & \text{if } \phi_{\tau,v} \text{ is irreducible.} \end{cases}$$

Note the the condition $\phi_{\tau,v}$ is irreducible is equivalent to τ_v being a discrete series representation of $PGL_2(F_v)$.

(4.2) Local Arthur packets. Now Arthur's conjecture (cf. [A1,2]) predicts that for each place v, there is a finite set $A_{\tau,v}$ of unitary representations of $G_2(F_v)$ associated to $\psi_{\tau,v}$. The representations should be indexed by the irreducible characters of $S_{\psi_{\tau,v}}$. Hence, in our case, $A_{\tau,v}$ has the form:

$$A_{\tau,v} = \begin{cases} \{\pi_{\tau_v}^+\}, & \text{if } \tau_v \text{ is not discrete series} \\ \{\pi_{\tau_v}^+, \pi_{\tau_v}^-\}, & \text{if } \tau_v \text{ is discrete series}. \end{cases}$$

Here, $\pi_{\tau_n}^+$ is indexed by the trivial character of $S_{\tau,v}$.

The set $A_{\tau,v}$ is called a local A-packet, and should satisfy

• for almost all $v, \pi_{\tau_v}^+$ is irreducible and unramified with Satake parameter

$$s_{\tau,v} = i \left(t_{\tau,v} \times \begin{pmatrix} q_v^{1/2} \\ q_v^{-1/2} \end{pmatrix} \right) \in G_2(\mathbb{C})$$

where $t_{\tau,v} \in SL_{2,l}(\mathbb{C})$ is the Satake parameter of τ_v .

- the distribution $\pi_{\tau_v}^+ \pi_{\tau_v}^-$ is stable.
- certain identities involving transfer of character distributions to endoscopic groups of $G(F_v)$ should hold.

(4.3) Definition of local Arthur packets. Now we can use Theorem 2.16 to give a natural candidate for the packet $A_{\tau,v}$. Recall that τ_v determines a set \widetilde{A}_{τ_v} of representations of $\widetilde{SL}_2(F_v)$. This has 2 or 1 elements $\sigma_{\tau_v}^{\pm}$, depending on whether τ_v is discrete series or not. We set

$$\pi_{\tau_v}^{\pm} = \Theta(\sigma_{\tau_v}^{\pm}).$$

This defines the packet $A_{\tau,v}$.

Why is this a reasonable definition? For one thing, when τ_v is unramified, then $\Theta(\sigma_{\tau_v}^+)$ is indeed irreducible and unramified with the required Satake parameter $s_{\tau,v}$. As a second justification, we consider the following special case.

(4.4) A special case. We would like to highlight the case when τ_v is the Steinberg representation St. In this case, according to our definition,

$$\begin{cases} \pi_{\tau_v}^+ = \Theta(\omega_{\psi_v}^-) = J_{P_2}(St, 1/2) + \pi_{\epsilon} \\ \pi_{\tau_v}^- = \Theta(sp_1) = J_{P_1}(St, 1/2). \end{cases}$$

For the case of split p-adic groups, this is the first instance we know in which the representation in a packet can be reducible, and this is quite surprising at first sight. The initial guess would be to take $\pi_{\tau_v}^+$ simply as $J_{P_2}(St, 1/2)$. However, we have:

(4.5) Proposition Assume that the packet of unipotent representations in Prop. 2.14(i) is indeed an Arthur packet, so that $J_{P_1}(\pi(1,1),1) + 2J_{P_2}(St,1/2) + \pi_{\epsilon}$ is stable. Then $(J_{P_2}(St,1/2) + \pi_{\epsilon}) - J_{P_1}(St,1/2)$ is stable.

The proposition justifies our definition of $\pi_{\tau_v}^+$. A more powerful justification is given by our global theorem 3.7, as we explain below.

(4.6) Global A-packets. With the local packets $A_{\tau,v}$ at hand, we may define the global A-packet by:

$$A_{\tau} = \{ \pi = \bigotimes_{v} \pi^{\epsilon_{v}} : \pi^{\epsilon_{v}} \in A_{\tau,v}, \epsilon_{v} = \pm \text{ and } \epsilon_{v} = + \text{ for almost all } v \}.$$

It is a set of nearly equivalent representations of $G_2(\mathbb{A})$. If S is the set of places v where τ_v is discrete series, then $\#A_{\tau}=2^{\#S}$.

To each $\pi \in A_{\tau}$, one can attach a multiplicity $m(\pi)$ as follows. Arthur attached to ψ_{τ} a quadratic character $\epsilon_{\psi_{\tau}}$ of the component group $S_{\psi_{\tau}}$. In the case at hand, $\epsilon_{\psi_{\tau}}$ is the non-trivial character of $S_{\psi_{\tau}} \cong \mathbb{Z}/2\mathbb{Z}$ if and only if $\epsilon(\tau, 1/2) = -1$. Now if $\pi = \otimes_{v} \pi^{\epsilon_{v}} \in A_{\tau}$, set

$$m(\pi) = \begin{cases} 1, & \text{if } \epsilon_{\pi} := \prod_{v} \epsilon_{v} = \epsilon(\tau, 1/2); \\ 0, & \text{if } \epsilon_{\pi} = -\epsilon(\tau, 1/2). \end{cases}$$

If we let

$$V_{\tau} = \bigoplus_{\pi \in A_{\tau}: \epsilon_{\pi} = \epsilon(\pi, 1/2)} \pi,$$

then Arthur conjectures that there is a $G_2(\mathbb{A})$ -equivariant embedding

$$\iota_{\tau}: V_{\tau} \hookrightarrow L^2_d(G_2(F) \backslash G_2(\mathbb{A})).$$

Now our global theorem 3.7 says that for the given τ , the global theta correspondence constructs a subspace of $L^2_d(G_2(F)\backslash G_2(\mathbb{A}))$ isomorphic to

$$\bigoplus_{\sigma \in \tilde{A}_{\tau}: \epsilon_{\sigma} = \epsilon(\tau, 1/2)} \Theta(\sigma).$$

This is isomorphic to V_{τ} with our definition of the local packets $A_{\tau,v}$. This provides compelling global justification for our definition, especially for taking $\pi_{\tau_v}^+$ to be reducible when τ_v is Steinberg.

References

- [A1] J. Arthur, On some problems suggested by the trace formula, in Lie Groups Representations II, Lecture Notes in Math. 1041 (1983), Springer-Verlag, 1-49.
- [A2] J. Arthur, *Unipotent automorphic representations: conjectures*, in Orbites Unipotentes et Representations, Asterique Vol. 171-172 (1989), 13-71.

- [GG] W. T. Gan and N. Gurevich, Non-tempered A-packets of G_2 : liftings from \widetilde{SL}_2 , in preparation.
- [GGJ] W. T. Gan, N. Gurevich and D.-H. Jiang, Cubic unipotent Arthur parameters and multiplicities of square-integrable automorphic forms, Invent. Math. 149 (2002), 225-265.
- [GRS] D. Ginzburg, S. Rallis and D. Soudry, On the automorphic theta module for simply-laced groups, Israel J. of Math. 100 (1997), 61-116.
- [HMS] J.-S. Huang, K. Magaard and G. Savin, Unipotent representations of G_2 arising from the minimal representations of D_4^E , J. Reine Angew Math. 500 (1998), 65-81.
- [LS] J.-S. Li and J. Schwermer, Construction of automorphic forms and related cohomology classes for arithmetic subgroups of G_2 , Compositio Math. 87 (1993), 45-78.
- [M] G. Muic, Unitary dual of p-adic G_2 , Duke Math. J. 90 (1997), 465-493.
- [RS] S. Rallis and G. Schiffmann, Theta correspondence associated to G_2 , American J. of Math. 111 (1989), 801-849.
- [W1] J.-L. Waldspurger, Correspondence de Shimura, J. Math. Pures et Appl. 59 (1980), 1-133.
- [W2] J.-L. Waldspurger, Correspondence de Shimura et quaternions, Forum Math. 3 (1991), 219-307.

Wee Teck Gan

Mathematics Department University of California, San Diego 9500 Gilman Drive La Jolla, USA

E-mail: wgan@math.ucsd.edu

Nadya Gurevich

Department of Mathematics Ben Gurion University of the Negev, P.O.B. 653 Beer Sheva $84105,\, \mathrm{ISRAEL}$

E-mail: ngur@math.bgu.ac.il