Extensions of Truncated Discrete Valuation Rings

Toshiro Hiranouchi and Yuichiro Taguchi

Dedicated to Professor Jean-Pierre Serre on the Occasion of His 80th Birthday

Abstract: An equivalence is established between the category of at most a-ramified finite separable extensions of a complete discrete valuation field K and the category of at most a-ramified finite extensions of the “length-a truncation” \mathcal{O}_K/m_K^a of the integer ring of K.

1. Introduction

Let K be a complete discrete valuation field (abbr. cdvf in the following), \mathcal{O}_K its valuation ring, and m_K its maximal ideal. Let a be an integer ≥ 1. In this paper, we prove that the category $\mathcal{FE}_{\leq a}^K$ of finite étale K-algebras with ramification “bounded by a” (cf. Def. 3.1) depends only on \mathcal{O}_K/m_K^a. More precisely, let m be any rational number such that $0 < m \leq a$ and put $\mathcal{A} = \mathcal{O}_K/m_K^a$. We give an equivalence of $\mathcal{FE}_{\leq m}^K$ with a category $\mathcal{FFP}_{\leq m}^\mathcal{A}$ of finite flat principal \mathcal{A}-algebras with ramification “bounded by m” (cf. Def. 3.2). The morphisms in $\mathcal{FFP}_{\leq m}^\mathcal{A}$ are defined (cf. Def. 3.3) by using Hattori’s functor ([6]); they are the usual \mathcal{A}-algebra homomorphisms modulo a certain equivalence relation.

For each object L in $\mathcal{FE}_{\leq m}^K$, let \mathcal{O}_L be the integral closure of \mathcal{O}_K in L. Then the quotient ring $T(L) := \mathcal{O}_L/m_K^a\mathcal{O}_L$ is an object of $\mathcal{FFP}_{\leq m}^\mathcal{A}$ (Cor. 3.5). This correspondence $L \mapsto T(L)$ is functorial, and thus we obtain a functor

\[T : \mathcal{FE}_{\leq m}^K \to \mathcal{FFP}_{\leq m}^\mathcal{A}. \]

Our main result in this paper is:

Received July 31, 2006.

1Supported by the JSPS Fellowships for Young Scientists.

2We mean by a principal \mathcal{A}-algebra an \mathcal{A}-algebra of which every ideal is generated by one element. All algebras in this paper are commutative.
Theorem 1.1. The functor T is an equivalence of categories.

Remarks. (i) The case of $a = 1$ in the Theorem is well-known (cf. [12], Chap. III, Sect. 5). Indeed, if $m \leq 1$, the objects of $\mathcal{FE} \leq m$ are direct products of finite unramified extensions of K, and the Theorem implies that the objects of $\mathcal{FFP} \leq m_A$ are étale over A. Thus our main interest is in the case $a > 1$.

(ii) Let $G_K = \text{Gal}(\bar{K}/K)$ denote the absolute Galois group of K, and G^a_K its ath ramification subgroup defined by Abbes and Saito ([2], [3]). The category $\mathcal{FE}_K^{\leq m}$ is, and hence $\mathcal{FFP}_A^{\leq m}$ is also, a Galois category whose fundamental group is G_K/G^m_K by the very definition of the ramification filtration (cf. Sect. 3). Note that $\mathcal{FE}_K^{\leq m}$ is equivalent also to the category of coverings of $\text{Spec}(O_K)$ with ramification bounded by m^a_K ([7], Def. 2.3); in the terminology of op. cit., we have $\pi_1(\text{Spec}(O_K), m^a_K) = G_K/G^m_K$.

A finite étale K-algebra is the direct product of a finite number of finite separable extension fields of K. Similarly, a finite flat principal A-algebra is the direct product of a finite number of local objects (cf. [9], Th. 1.1, Th. 1.2). Since the boundedness of ramification of direct products of K- and A-algebras may be considered componentwise, the above Theorem is equivalent with the following Corollary, in which $\mathcal{FE}_K^{\leq m}$ (resp. $\mathcal{FFP}_A^{\leq m}$) denotes the full subcategory of $\mathcal{FE}_K^{\leq m}$ (resp. $\mathcal{FFP}_A^{\leq m}$) consisting of local rings.

Corollary 1.2. The functor T induces an equivalence $\mathcal{FE}_K^{\leq m} \simeq \mathcal{FFP}_A^{\leq m}$.

This extends a theorem of Deligne ([4], Th. 2.8) to the imperfect residue field case, except that our construction of the category $\mathcal{FFP}_A^{\leq m}$ for $A = O_K/m^a_K$ depends on the cdvf K and hence our result is somewhat weaker than the “true” generalization of Deligne’s theorem. We expect, however, that the category $\mathcal{FFP}_A^{\leq m}$ depends only on the isomorphism class of A as a ring (such a ring as $A = O_K/m^a_K$ is called a truncated discrete valuation ring; see Sect. 2). If this is the case, we may define the Galois group G_A of A to be G_K/G^m_K (or equivalently, to be the fundamental group of the Galois category $\mathcal{FFP}_A^{\leq m}$) together with the ramification subgroups $G^m_A := G^m_K/G^m_K$, where K is any cdvf such that $A \simeq O_K/m^a_K$. The filtered group G_A should depend (up to inner automorphisms) only on the isomorphism class of A as a ring. It is natural to ask the converse:

3Note also that Deligne uses a category, instead of $\mathcal{FFP}_A^{\leq m}$, of certain triples which have a priori less information than the objects of $\mathcal{FFP}_A^{\leq m}$.
Extensions of Truncated Discrete Valuation Rings

Question. If A and A' are two truncated discrete valuation rings of length a and if there is an isomorphism $\gamma : G_A \rightarrow G_{A'}$ of groups such that $\gamma(G^m_A) = G^m_{A'}$ for all $m \leq a$, then is it true that $A \simeq A'$ as a ring?

This problem is a version of the Grothendieck conjecture in anabelian geometry. It will certainly be necessary to assume that the residue fields of A and A' are either finite or of some “anabelian” nature. For the case of local fields (or, the case of “$a = \infty$” and finite residue fields), see [10] and [1].

In Section 2, we study basic properties of truncated discrete valuation rings. After recalling some basics of the ramification theory of Abbes-Saito ([2], [3]) and Hattori ([6]), we construct the category $\mathcal{F} \mathcal{F} \mathcal{P} \mathcal{P}_{\leq m}^A$ and prove the Theorem in Section 3.

Throughout this paper, K is a complete discrete valuation field with residual characteristic $p > 0$. We denote by \mathcal{O}_K the valuation ring of K, m_K the maximal ideal of \mathcal{O}_K, π_K a uniformizing element of K, and \tilde{K} a fixed separable closure of K. For any étale K-algebra L, we denote by \mathcal{O}_L the integral closure of \mathcal{O}_K in L. For A-algebras B and B', we denote by $\text{Hom}_A(B, B')$ the set of A-algebra homomorphisms $B \rightarrow B'$. We use the following abbreviations:

- $\text{cdvf} :=$ complete discrete valuation field,
- $\text{cdvr} :=$ complete discrete valuation ring,
- $\text{tdvr} :=$ truncated discrete valuation ring.

Acknowledgments. The authors thank Shin Hattori for sending them his paper [6] when it was still a preprint, and Takeshi Saito for helpful comments on the first version of this paper. They thank also the Referee for many useful comments, especially for suggesting improvements in Section 3.

2. Truncated discrete valuation rings

A tdvr is an Artinian local ring whose maximal ideal is generated by one element. The length of a tdvr A is the length of A as an A-module. It is known that a tdvr A is principal, and any ideal is of the form m_A^i for some $i \geq 0$ if m_A is the maximal ideal of A. Any generator π_A of m_A is said to be a uniformizer of A. Any non-zero element x of A can be written as $x = u \pi_A^i$ with $u \in A^\times$, π_A a uniformizer of A, and $0 \leq i < \text{length}(A)$ (with the convention $0^0 = 1$ if $\text{length}(A) = 1$). If $\text{length}(A) > 1$ (resp. $\text{length}(A) = 1$), we mean by an extension B/A of tdvr’s a local ring homomorphism $A \rightarrow B$ of tdvr’s via which B is flat over A (resp. an extension B/A of fields); thus we refrain from calling a
homomorphism such as $A \hookrightarrow A[t]/(t^n)$ an extension if A is a field. An extension B/A is said to be finite if B is finite as an A-module. If $a > 1$, an A-algebra is a finite extension of A if and only if it is finite, flat, principal and local. In general, the objects of the category $\text{FFP}_{A}^{\leq m}$ are finite extensions of the tdvr A. The ramification index $e_{B/A}$ of a homomorphism $f : A \rightarrow B$ of tdvr’s is defined to be the integer e such that $f(m_A)B = m_B^e$ (with the convention $e_{B/A} = 1$ if $\text{length}(A) = 1$). Note that the homomorphism f is an extension of tdvr’s if and only if one has the equality $\text{length}(B) = e_{B/A} \text{length}(A)$ (cf. [4], Sect. 1.4 and [8], Exer. 22.1).

Lemma 2.1. Let B and C be extensions of A. Then any A-algebra homomorphism $f : B \rightarrow C$ is an extension.

Proof. We have to show that $\text{length}(C) = e_{C/B} \text{length}(B)$. We may assume that $\text{length}(A) > 1$. Let m_A, m_B and m_C be respectively the maximal ideals of A, B and C. By the definition of ramification index, we have $m_AB = m_B^{e_{B/A}}$, $m_AC = m_C^{e_{C/A}}$, and $f(m_B)C = m_C^{e_{C/B}}$. The equality $m_C^{e_{C/A}} = f(m_B^{e_{B/A}})C$ (the ideal generated by m_A) implies that $e_{C/A} = e_{C/B} e_{B/A}$. Since B and C are extensions of A, we have $\text{length}(C) = e_{C/A} \text{length}(A) = e_{C/B} e_{B/A} \text{length}(A) = e_{C/B} \text{length}(B)$. □

If K is a cdvf, then O_K/m_A^a is a tdvr for any integer $a \geq 1$. If L/K is a finite extension of cdvf’s, then $B = O_L/m_A^aO_L$ is a finite extension of $A = O_K/m_A^a$. Conversely, it is known that any tdvr is a quotient of a cdvr ([9], Th. 3.3). More precisely, we have:

Proposition 2.2. (i) Let A be a tdvr with residue field k of characteristic $p \geq 0$, and let a be the length of A. Then there exists a cdvr O such that A is isomorphic to O/m^a, where m is the maximal ideal of O. If $pA = 0$, then this O can be taken to be the power series ring $k[\pi]$; if $pA \neq 0$, then O as above must be finite over a Cohen p-ring ([5], 0IV, 19.8) with residue field k. (If $pA = 0$ and $p \neq 0$, then both types of O are possible.)

(ii) Let K be a cdvf and let $A = O_K/m_A^a$ with $a \geq 1$. For any finite extension B/A of tdvr’s, there exist a finite separable extension L/K and an isomorphism.
ψ : \(O_L/\mathfrak{m}_K^a O_L \rightarrow B\) such that the diagram

\[
\begin{array}{ccc}
O_L/\mathfrak{m}_K^a O_L & \xrightarrow{\psi} & B \\
\uparrow & & \uparrow \\
O_K/\mathfrak{m}_K^a & \longrightarrow & A
\end{array}
\]

is commutative, where the left vertical arrow is the one induced by \(O_K \hookrightarrow O_L\).

Proof. (i) Let \(W\) be a Cohen \(p\)-ring with residue field \(k\). The reduction map \(W \rightarrow k\) lifts by the formal smoothness of \(W\) to a local ring homomorphism \(W \rightarrow A\) ([5], 0IV, 19.8.6).

If \(pA = 0\), the map \(W \rightarrow A\) factors through the residue field \(k\), which makes \(A\) a \(k\)-algebra. Then there exists a surjective \(A\)-algebra homomorphism \(k[\pi] \rightarrow A\) which maps \(\pi\) to \(\pi_A\), where \(\pi_A\) is a uniformizer of \(A\). Hence \(A\) is isomorphic to \(k[\pi]/(\pi^a)\) (cf. [9], Th. 3.1).

In the general case, we can write \(A\) as a quotient of the polynomial ring \(W[X]\) by sending \(X\) to \(\pi_A\). Then we obtain a surjection onto \(A\) from a cdvr \(O\) which is finite over \(W\) by the same procedure as in the proof of (ii) below.

(ii) Since \(B\) is finite over \(A = O_K/\mathfrak{m}_K^a\), there exists a surjective \(O_K\)-algebra homomorphism \(\phi : R \rightarrow B\) from a polynomial ring \(R = O_K[X_1, \ldots, X_n]\) onto \(B\). Let \(\mathfrak{m} = \phi^{-1}(\mathfrak{m}_B)\) and \(R_{\mathfrak{m}}\) the localization of \(R\) at the maximal ideal \(\mathfrak{m}\). Then \(R_{\mathfrak{m}}\) is a regular local ring of Krull dimension \(n + 1\) ([5], 0IV, 17.3.7), and \(\phi\) extends to a surjective \(O_K\)-algebra homomorphism \(\varphi : R_{\mathfrak{m}} \rightarrow B\). By abuse of notation, we denote also by \(\mathfrak{m}\) the maximal ideal of \(R_{\mathfrak{m}}\). Put \(n = \text{Ker} (\varphi)\). We identify the residue field \(k'\) of \(R_{\mathfrak{m}}\) with that of \(B\) via \(\varphi\). Since \(\varphi(\mathfrak{m}^2) = \mathfrak{m}_B^2\), the map \(\varphi\) induces a surjective \(k'\)-linear map \(\mathfrak{m}/\mathfrak{m}^2 \rightarrow \mathfrak{m}_B/\mathfrak{m}_B^2\) and its kernel is \((n + \mathfrak{m}^2)/\mathfrak{m}^2 \cong n/(n \cap \mathfrak{m}^2)\). Thus we have an exact sequence

\[
0 \rightarrow n/(n \cap \mathfrak{m}^2) \rightarrow \mathfrak{m}/\mathfrak{m}^2 \rightarrow \mathfrak{m}_B/\mathfrak{m}_B^2 \rightarrow 0.
\]

Assume \(a \geq 2\), as the case \(a = 1\) can be treated similarly and more easily. Then \(\dim_{k'}(\mathfrak{m}_B/\mathfrak{m}_B^2) = 1\) and \(\dim_{k'}(n/(n \cap \mathfrak{m}^2)) = n\). Choose a regular system of parameters \((w, f_1, \ldots, f_n)\) of \(R_{\mathfrak{m}}\) such that \(\varphi(w)\) gives a basis of \(\mathfrak{m}_B/\mathfrak{m}_B^2\) and \(f_1, \ldots, f_n \in n\) give a basis of \(n/(n \cap \mathfrak{m}^2)\). Let \(\mathfrak{p}\) be the ideal of \(R_{\mathfrak{m}}\) generated by \(f_1, \ldots, f_n\). Then by [5], 0IV, 17.1.7, the quotient ring \(O = R_{\mathfrak{m}}/\mathfrak{p}\) is a regular local ring of dimension 1 and hence a discrete valuation ring. It contains \(O_K\) since \(\varphi\) maps \(\pi_K\) to a non-zero non-unit in \(B\), and is finite over \(O_K\). Hence it is a cdvr.
Since \(n \supset p \), the map \(\varphi \) factors through \(\mathcal{O} \). Thus we see the diagram (1) commutes (with \(\mathcal{O} \) in place of \(\mathcal{O}_L \)). Since \(B \) is flat over \(A \), the induced homomorphism \(\psi \) is bijective.

To make the fraction field \(L \) of \(\mathcal{O} \) separable over \(K \), we “deform” the prime ideal \(p \) if necessary. By multiplying the \(f_i \) with some \(u \in R \setminus \mathfrak{m} \), we may assume that all \(f_i \) are in the polynomial ring \(R \). Note that the composite map \(R \hookrightarrow R_\mathfrak{m} \to R_\mathfrak{m}/p = \mathcal{O} \) is surjective by Nakayama’s lemma, since its image generates \(B = \mathcal{O}/\mathfrak{m}_K^2 \mathcal{O} \). Let \(q \) be its kernel, so that \(\mathcal{O} = R/q \). We have \(qR_\mathfrak{m} = p \), i.e., \(q \) is generated by \(f_1, \ldots, f_n \) locally at \(\mathfrak{m} \). By the Jacobian criterion ([11], V, Sect. 2, Th. 5), the \(K \)-algebra \(L \) is separable (i.e., the \(\mathcal{O}_K \)-algebra \(\mathcal{O} \) is étale at the generic point of \(\text{Spec}(\mathcal{O}) \)) if and only if the Jacobian \(\det \left(\frac{\partial f_i}{\partial X_j} \right)_{1 \leq i,j \leq n} \neq 0 \pmod{q} \).

Let \(g_i := f_i + x_i X_i \) with \(x \in \mathfrak{m}_K^2 \). Then, since \(g_i \in n \) and \(g_i \equiv f_i \pmod{n \cap \mathfrak{m}^2} \), the ideal \(p' = (g_1, \ldots, g_n) \) of \(R_\mathfrak{m} \) has similar properties as \(p \) so that the quotient ring \(\mathcal{O}' := R_\mathfrak{m}/p' \) is a cdvr which contains \(\mathcal{O}_K \) and surjects onto \(B \). Moreover, if \(J := \left(\frac{\partial f_i}{\partial X_j} \right)_{1 \leq i,j \leq n} \) we have

\[
\det \left(\frac{\partial g_i}{\partial X_j} \right)_{1 \leq i,j \leq n} = \det(xI_n + J) = x^n + \text{Tr}(J)x^{n-1} + \cdots + \det(J).
\]

Considering this modulo \(q \) and noticing that \(\mathcal{O}_K \subset \mathcal{O} = R/q \), we find an \(x \in \mathfrak{m}_K^n \) such that \(\det \left(\frac{\partial g_i}{\partial X_j} \right) \neq 0 \pmod{q} \). Then the fraction field of \(\mathcal{O}' \) is separable over \(K \).

3. Ramification

Let \(G_K \) be the absolute Galois group of \(K \). A. Abbes and T. Saito ([2], [3]) defined a decreasing filtration \((G_K^m)_{m \geq 0}\) by closed normal subgroups \(G_K^m \) of \(G_K \) indexed with rational numbers \(m \geq 0 \), in such a way that \(\cap_{m \geq 0} G_K^m = 1 \), \(G_K^0 = G_K \) and \(G_K^1 \) is the inertia subgroup of \(G_K \). The filtration coincides with the classical upper numbering ramification filtration shifted by one if the residue field of \(K \) is perfect (see [12], Chap. IV, Sect. 3, for the classical case). It is defined by using certain functors \(F \) and \(F^m \) from the category \(\mathcal{FE}_K \) of finite étale \(K \)-algebras to the category \(S_K \) of finite \(G_K \)-sets. We recall here the definition of \(F \) and \(F^m \) assuming for simplicity that \(m \) is a positive integer. Let \(L \) be a finite étale \(K \)-algebra, and let \(\mathcal{O}_L \) be the integral closure of \(\mathcal{O}_K \) in \(L \). We define \(F(L) := \text{Hom}_K(L, \overline{K}) = \text{Hom}_{\mathcal{O}_K}(\mathcal{O}_L, \mathcal{O}_K) \). The functor \(F \) gives an anti-equivalence of \(\mathcal{FE}_K \) with \(S_K \), thereby making \(\mathcal{FE}_K \) a Galois category. To define
Extensions of Truncated Discrete Valuation Rings

F^m, we proceed as follows: An embedding of \mathcal{O}_L is a pair $(B, B \to \mathcal{O}_L)$ consisting of an \mathcal{O}_K-algebra B which is formally of finite type and formally smooth over \mathcal{O}_K and a surjection $B \to \mathcal{O}_L$ of \mathcal{O}_K-algebras which induces an isomorphism $B/m_B \to \mathcal{O}_L/m_L$, where m_B and m_L are respectively the radicals of B and \mathcal{O}_L (cf. [3], Def. 1.1). Let I be the kernel of the surjection $B \to \mathcal{O}_L$. Define an affinoid algebra B^m over K by $B^m = B[I/\pi_K^m]^\wedge \otimes_K K$, where \wedge means the π_K-adic completion. Let $X^m(B \to \mathcal{O}_L)$ be the affinoid variety $\text{Sp}(B^m)$ associated with B^m. For any affinoid variety X over K, let $\pi_0(X_R)$ denote the set $\lim_{\pi_K} \pi_0(X \otimes_K K')$ of geometric connected components, where K' runs through the finite separable extensions of K. Then we define the functor F^m by

$$F^m(L) := \lim_{(B \to \mathcal{O}_L)} \pi_0(X^m(B \to \mathcal{O}_L)_R),$$

where $(B \to \mathcal{O}_L)$ runs through the category of embeddings of \mathcal{O}_L. The projective system in the right-hand side is constant. The finite set $F(L)$ can be identified with a subset of $X^m(B \to \mathcal{O}_L)(\bar{R})$, and this causes a natural surjective map $F(L) \to F^m(L)$. Thus the category $\mathcal{F}E_{\leq m}^K$ of finite étale K-algebras with ramification bounded by m forms a Galois full-subcategory of $\mathcal{F}E_K$ whose fundamental group is G_K/G_K^m ([2], Prop. 2.1) as noted in the Introduction. Note that the above definition of “ramification bounded by m” coincides with Deligne’s one in [4] when L is a field and \mathcal{O}_L is monogenic over \mathcal{O}_K (cf. [2], Prop. 6.7).

Let a be an integer ≥ 1, and put $A = \mathcal{O}_K/m_K^a$. For each rational number $0 < m \leq a$, Hattori ([6]) defined another functor F^m from the category of finite flat A-algebras to the category \mathcal{S}_K of finite G_K-sets. We next recall the definition of F^m assuming for simplicity that m is a positive integer. Let B be a finite flat A-algebra. An embedding of B is a pair $(B, B \to B)$ consisting of an \mathcal{O}_K-algebra B which is formally of finite type and formally smooth over \mathcal{O}_K and a surjection $B \to B$ of \mathcal{O}_K-algebras which induces an isomorphism $B/m_B \to B/m_B$, where m_B and m_B are respectively the radicals of B and B. Let I be the kernel of the surjection $B \to B$. Define an affinoid algebra B^m over K by $B^m = B[I/\pi_K^m]^\wedge \otimes_K K$. Let $X^m(B \to B)$ be the affinoid variety $\text{Sp}(B^m)$ associated with B^m. Then we define the functor F^m by

$$F^m(B) := \lim_{(B \to B)} \pi_0(X^m(B \to B)_R),$$

where $(B \to B)$ runs through the category of embeddings of B. In general, we have $\mathcal{g}F^m(B) \leq \text{rank}_A(B)$. Two key definitions in this paper are the following:
Definition 3.2. Let B be a finite flat A-algebra. We say that the ramification of B is bounded by m if \(\sharp F^m(B) = \text{rank}_A(B) \).

Definition 3.3. For any rational number m with $0 < m \leq a$, we define $\mathcal{FFP}_{\leq m}^A$ to be the category whose objects are finite flat principal A-algebras with ramification bounded by m and whose morphisms are defined as follows: For any B and B' in $\mathcal{FFP}_{\leq m}^A$, set
\[
\text{Hom}_{\mathcal{FFP}_{\leq m}^A}(B, B') \colonequals \text{Hom}_{\mathcal{S}_K}(F^m(B'), F^m(B)).
\]
We also define $\mathcal{FFP}_{\leq m}^A$ to be the full-subcategory of $\mathcal{FFP}_{\leq m}^A$ consisting of local objects.

To prove Theorem 1.1, we recall the following lemma due to Hattori ([6], Lem. 1):

Lemma 3.4. Let L be a finite étale K-algebra, and a an integer ≥ 1. If $B = O_L/m_a^aO_L$, then we have $F^m(B) = F^m(L)$ as an object of \mathcal{S}_K for any rational number $0 < m \leq a$.

This is because one may choose a common B in the embeddings $(B, B \to O_L)$ and $(B, B' \to O_L)$, so that, if $m \leq a$, we have $X^m(B \to O_L) = X^m(B' \to O_L)$.

By Definitions 3.1 and 3.2, we have:

Corollary 3.5. For any rational number $0 < m \leq a$, the ramification of B is bounded by m if and only if the ramification of L is bounded by m.

Now we can prove Theorem 1.1. The essential surjectivity of the functor $T : \mathcal{FE}_{\leq m}^K \to \mathcal{FFP}_{\leq m}^A$ follows from (ii) of Proposition 2.2 and Corollary 3.5, since any object of $\mathcal{FFP}_{\leq m}^A$ is a direct product of finite extensions of A. To prove the full-faithfulness of T, let L and L' be two objects in $\mathcal{FE}_{\leq m}^K$, and let $B = T(L)$ and $B' = T(L')$. Since the functor F^m gives an anti-equivalence of the Galois category $\mathcal{FE}_{\leq m}^K$ with a full-subcategory of \mathcal{S}_K, we have
\[
\text{Hom}_{\mathcal{FE}_{\leq m}^K}(L, L') \simeq \text{Hom}_{\mathcal{S}_K}(F^m(L'), F^m(L)).
\]
By Lemma 3.4, we have
\[
\text{Hom}_{\mathcal{S}_K}(F^m(L'), F^m(L)) = \text{Hom}_{\mathcal{S}_K}(F^m(B'), F^m(B)).
\]
It follows from our definition (2) of Hom in $\mathcal{FFP}_{\leq m}^A$ that
\[
\text{Hom}_{\mathcal{FE}_{\leq m}^K}(L, L') = \text{Hom}_{\mathcal{FFP}_{\leq m}^A}(B, B').
\]
This completes the proof of the Theorem.
Remark. The relation of $\text{Hom}_A(B, B')$ to the Hom sets appearing in the above proof is summarized by the following commutative diagram:

\[
\begin{array}{ccc}
\text{Hom}_K(L, L') & \xrightarrow{\cong}_{F^m} & \text{Hom}_{S_K}(F^m(L'), F^m(L)) \\
\downarrow & & \downarrow \\
\text{Hom}_A(B, B') & \xrightarrow{\cong}_{F^m} & \text{Hom}_{S_K}(F^m(B'), F^m(B)),
\end{array}
\]

where the left vertical arrow is the reduction mod m^μ_K of $\text{Hom}_{O_K}(O_L, O_{L'})$. This shows that the map $F^m : \text{Hom}_A(B, B') \to \text{Hom}_{F, F, p, \leq m}(B, B')$ is surjective and compatible with the composition of morphisms. It can be shown that this map identifies the set $\text{Hom}_{F, F, p, \leq m}(B, B')$ with the quotient of $\text{Hom}_A(B, B')$ by an equivalence relation \sim defined as follows: Put $\bar{A} = O_R/m^\mu_R O_R$ and let \mathcal{X}^m be the affinoid variety associated with an embedding of B. Recall that there exists a natural surjective map $\mathcal{X}^m(R) \to \text{Hom}_A(B, \bar{A})$ with connected fibers ([2], Lem. 3.2), so that its inverse yields a well-defined map $\xi : \text{Hom}_A(B, \bar{A}) \to \pi_0(\mathcal{X}^m_R)$. Then we have a map

\[
\text{Hom}_A(B, B') \times \text{Hom}_A(B', \bar{A}) \to \pi_0(\mathcal{X}^m_R)
\]

which maps (f, α) to $\xi(\alpha \circ f)$. For f and f' in $\text{Hom}_A(B, B')$, define

\[
f \sim f' \iff \xi(\alpha \circ f) = \xi(\alpha \circ f') \quad \text{for all } \alpha \in \text{Hom}_A(B', \bar{A}).
\]

It can also be shown that, if B' is local, then for given f and f', the equality $\xi(\alpha \circ f) = \xi(\alpha \circ f')$ holds for all $\alpha \in \text{Hom}_A(B', \bar{A})$ if it holds for some α.

References

Toshiro Hiranouchi
JSPS Research Fellow
Graduate School of Mathematics, Kyushu University 33,
Fukuoka 812-8581, Japan
E-mail: hiranouchi@math.kyushu-u.ac.jp

Yuichiro Taguchi
Graduate School of Mathematics, Kyushu University 33,
Fukuoka 812-8581, Japan
E-mail: taguchi@math.kyushu-u.ac.jp