Reshetnyak’s Theorem and The Inner Distortion

Kai Rajala

Abstract: We prove that a quasilight mapping of finite distortion with locally \(n \)-integrable weak partials and locally integrable inner distortion is discrete and open.

Keywords: Mapping of finite distortion, quasiregular mapping, Reshetnyak’s theorem.

1. Introduction

We call \(f : \Omega \to \mathbb{R}^n \), \(n \geq 2 \), a mapping of finite distortion if \(f \in W^{1,1}_{\text{loc}}(\Omega, \mathbb{R}^n) \), \(J_f \in L^1_{\text{loc}}(\Omega) \), and if there exists a measurable function \(K : \Omega \to [1, \infty) \) such that

\[
|Df(x)|^n \leq K(x)J_f(x) \quad \text{a.e. } x \in \Omega.
\]

Here \(|Df(x)| \) and \(J_f(x) \) are the operator norm and the Jacobian determinant of \(Df(x) \), respectively. If \(K \in L^\infty(\Omega) \), \(f \) is called quasiregular, or a mapping of bounded distortion.

For a mapping of finite distortion \(f \), the outer and inner distortion functions \(K_O \) and \(K_I \) are defined as

\[
K_O(x) = \frac{|Df(x)|^n}{J_f(x)} \quad \text{and} \quad K_I(x) = \frac{|D^#f(x)|^n}{J_f(x)^{n-1}},
\]

Received March 5, 2007.

Mathematics Subject Classification (2000): 30C65, 26B10.

Research supported by the Academy of Finland, and by the Vilho, Yrjö and Kalle Väisälä foundation. Part of this research was done when the author was visiting at the University of Michigan. He wishes to thank the department for hospitality.
Kai Rajala

respectively, when \(0 < |Df(x)|, J_f(x) < \infty\), and \(K_O(x) = K_I(x) = 1\) otherwise. Here \(D^2f(x)\) is the adjoint matrix of \(Df(x)\). Then we have

\[
K_I^{1/(n-1)}(x) \leq K_O(x) \leq K_I^{n-1}(x) \quad \text{a.e. } x \in \Omega.
\]

In the late 1960s, Reshetnyak proved that a non-constant mapping of bounded distortion is always continuous, open and discrete. This theorem initiated the by now well-established theory of mappings of bounded distortion, see [13], [14], [6].

Recently, a lot of research has been done in order to find the sharp assumptions of Reshetnyak’s theorem in the class of mappings of finite distortion, cf. [3], [4], [5], [7], [8], [11]. In this note we continue this line of research by giving a new partial result towards a conjecture of Iwaniec and Šverák [7].

Theorem 1.1. Suppose that \(f : \Omega \to \mathbb{R}^n, n \geq 2\), is a quasilight mapping of finite distortion satisfying \(f \in W^{1,n}_{\text{loc}}(\Omega, \mathbb{R}^n)\) and \(K_I \in L^{1}_{\text{loc}}(\Omega)\). Then \(f\) is discrete and open.

By definition, a mapping \(f\) is called quasilight if the components of every point-inverse \(f^{-1}(y)\) are compact. The Iwaniec-Šverák conjecture is Theorem 1.1 without the quasilightness assumption. In [7] the conjecture is proved for \(n = 2\). An example of Ball [2] shows that the integrability assumption on \(K_I\) cannot be relaxed in Theorem 1.1.

There are other partial results concerning the Iwaniec-Šverák conjecture, see [3], [4], [5] and [11]. The novelty in Theorem 1.1 lies in the fact that it only deals with the inner distortion; the previous results are proved under assumptions on the outer distortion function. In particular, Hencl and Malý [5] proved Theorem 1.1 assuming \(K_O \in L^{n-1}_{\text{loc}}(\Omega)\), and Manfredi and Villamor [11] without the quasilightness assumption when \(K_O \in L^p_{\text{loc}}(\Omega)\) for some \(p > n - 1\). It is clear that, when working with the inner distortion, one has to find methods different from those used in the above-mentioned works. We prove Theorem 1.1 by using the conformal modulus of \((n-1)\)-dimensional sets, the coarea formula, and elementary topological considerations. Also, we use several results concerning the theory of mappings of finite distortion. Another natural intermediate step towards the Iwaniec-Šverák conjecture would be the theorem of Manfredi and Villamor under the assumption \(K_I \in L^p_{\text{loc}}(\Omega)\) for some \(p > 1\) (instead of the assumption on \(K_O\)), which we cannot prove. For closely related results on the
global invertibility properties of Sobolev mappings, see [2, Theorem 2] and [15, Corollary 2].

2. Preliminaries

In this section we recall some known properties of mappings satisfying the assumptions of Theorem 1.1. First, let \(f : \Omega \rightarrow \mathbb{R}^n \) be a continuous map, and \(U \subset \subset \Omega \) open. Then the (local) topological degree \(\mu(y, f, U) \) is well-defined for every \(y \in \mathbb{R}^n \setminus f(\partial U) \), see [14, I.4]. We will use the following facts:

\[
(2.1) \quad \mu(y, f, U) = 0 \text{ if } y \not\in f(U),
\]

\[
(2.2) \quad \mu(y, f, U) = \mu(v, f, U)
\]

whenever \(y \) and \(v \) lie in the same component of \(\mathbb{R}^n \setminus f(\partial U) \), and

\[
(2.3) \quad \mu(y, f, U) = \sum_{i=1}^{k} \mu(y, f, U_i)
\]

if both sides are well-defined, and if \(U_1, \ldots, U_k \) are disjoint open sets satisfying

\[
U \cap f^{-1}(y) \subset \bigcup_{i=1}^{k} U_i \subset U.
\]

We call \(f \) sense-preserving if \(\mu(y, f, U) > 0 \) whenever \(y \in f(U) \setminus f(\partial U) \). Notice that if \(f \) is sense-preserving, then

\[
\mu(y, f, U) \leq \mu(y, f, V)
\]

whenever both sides are well-defined and \(U \subset V \).

We say that \(f \) satisfies condition \(N \) if the \(n \)-measure \(|f(E)| = 0 \) whenever \(|E| = 0 \). For mappings of finite distortion with locally \(n \)-integrable partials, we have

Theorem 2.1 ([3, Theorem 1.3]). Suppose that \(f \in W^{1,n}_{loc}(\Omega, \mathbb{R}^n) \) is a mapping of finite distortion. Then

1. \(f \) has a continuous representative,
2. \(f \) is sense-preserving,
3. \(f \) satisfies condition \(N \),
4. \(f \) is differentiable almost everywhere in \(\Omega \).
Part 3. implies that the change of variables formula holds for f. In fact, if $U \subset \subset \Omega$ is open, we have
\begin{equation}
N(y, f, U) = \mu(y, f, U)
\end{equation}
for almost every $y \in \mathbb{R}^n \setminus f(\partial U)$, see [5, Proposition 2]. Here
$$N(y, f, U) = \text{card}\{f^{-1}(y) \cap U\}.$$ Since $K^{1/(n-1)} \leq K_I$ almost everywhere, [9, Theorem 1.2] implies

Theorem 2.2. Suppose that f is as in Theorem 1.1. Then $J_f(x) > 0$ for almost every $x \in \Omega$. In particular, if $(A_i), A_i \subset \Omega$, is a decreasing sequence of measurable sets so that $|A_1| < \infty$ and $\cap_i A_i \subset f^{-1}(y)$ for some $y \in \mathbb{R}^n$, then
$$\int_{A_i} K_I \to 0 \quad \text{as } i \to \infty.$$ The following characterization of quasilightness will be useful in the sequel.

Theorem 2.3 ([16, Theorem 3.1]). A mapping $f : \Omega \to \mathbb{R}^n$ is quasilight if and only if every point $x \in \Omega$ has a neighborhood $U \subset \subset \Omega$ such that $f(x) \notin f(\partial U)$.

We call a mapping f light if every point-inverse $f^{-1}(y)$ is totally disconnected. Hence a light mapping is quasilight in particular.

Lemma 2.4 ([14, VI Lemma 5.6]). If $f : \Omega \to \mathbb{R}^n$ is continuous, light and sense-preserving, then f is discrete and open.

By combining Theorem 2.1 and Lemma 2.4, we see that in order to prove Theorem 1.1 it suffices to show that f is light. We conclude this section with a topological lemma.

Lemma 2.5. Let f be as in Theorem 1.1. Suppose that $V \subset \mathbb{R}^n$ is homeomorphic to $B(0,1)$ and \overline{V} to $\overline{B}(0,1)$, and that $\emptyset \neq U \subset \subset \Omega$ is a component of $f^{-1}(V)$. Then $f(\partial U) = \partial V$, and $f(U) = V$.

Proof. First, $f(\partial U) \subset \partial V$ by the continuity of f. Hence, for every $a \in f(U)$, $\mu(a, f, U)$ is well-defined, and strictly positive by Theorem 2.1. By (2.1), there exists $b \in \mathbb{R}^n$ such that $\mu(b, f, U) = 0$. Hence, by (2.2), $f(\partial U)$ separates $f(U)$ and b, and so $f(\partial U) = \partial V$. Also, if there exists a point $p \in V \setminus f(U)$, then $\mu(p, f, U) = 0$. But p and $f(U)$ lie in the same component of $\mathbb{R}^n \setminus f(\partial U) = \mathbb{R}^n \setminus \partial V$.

Hence, by (2.2), \(\mu(p, f, U) = \mu(a, f, U) > 0 \) whenever \(a \in f(U) \). We conclude that \(f(U) = V \). \(\square \)

3. Preimages of radial segments

From now on we assume that \(f \) is as in Theorem 1.1. Recall from Section 2 that in order to prove Theorem 1.1 it suffices to show that \(f \) is light. We assume, in contrary, that there exists a point \(a \in \mathbb{R}^n \) such that some component of \(f^{-1}(a) \) has positive \(\mathcal{H}^1 \)-measure. Without loss of generality, \(a = 0 \in f(\Omega) \), and \(E \) is a component of \(f^{-1}(0) \) so that \(\mathcal{H}^1(E) > 0 \). Then Theorem 1.1 is proved if we can show that \(\mathcal{H}^1(E) \) has to be zero.

We denote the projection \((x_1, \ldots, x_n) \mapsto x_1\) by \(\text{pr} \). By scaling and rotating, if necessary, we may assume that \(\mathcal{H}^1(\text{pr}(E)) = 1 \). By Theorem 2.3, there exists a domain \(G \subset \subset \Omega \) so that \(E \subset G \), and a number \(M > 0 \) so that \(|f(x)| \geq M \) for every \(x \in \partial G \). Moreover, by Theorem 2.1, there exists \(m \in \mathbb{N} \) so that

\[
\mu(y, f, G) = m \quad \text{for every } y \in B(0, M).
\]

For \(0 < R < M \), we denote the \(E \)-component of \(f^{-1}(B(0, R)) \) by \(E_R \). Then \(E_R \subset G \). We define radial segments

\[
I(R, \phi) = \{(t, \phi) : t \in (R/2, R)\}
\]

in polar coordinates, and denote \(A_R = B(0, R) \setminus \overline{B}(0, R/2) \), and \(U_R = E_R \cap f^{-1}(A_R) \). The first main ingredient in the proof of Theorem 1.1 is the following.

Proposition 3.1. There exists \(0 < M_0 < M \), so that for each \(R < M_0 \) there exist \(\phi_R \in S(0, 1) \) and \(a_R \in \mathbb{R} \), so that if we denote

\[
L_R = (a_R - (4m)^{-1}, a_R + (4m)^{-1}),
\]

then

\[
L_R \subset \text{pr}(E) \quad \text{and} \quad \text{pr}^{-1}(L_R) \cap E_R \cap f^{-1}(I(R, \phi_R)) = \emptyset.
\]

Proof. For \(R < M \), define

\[
h_R : U_R \to S(0, 1), \quad h_R(x) = \frac{f(x)}{|f(x)|}.
\]
Then $h^{-1}_R (\phi) = f^{-1}(I(R, \phi)) \cap E_R$ for every $\phi \in S(0, 1)$. Also, we have
\[|J_{n-1} h_R(x)| \leq \frac{|D^2 f(x)|}{|f(x)|^{n-1}} \text{ a.e. } x \in U_R, \]
for the $(n - 1)$-dimensional Jacobian of h_R. Then, the coarea formula (cf. [10]), and Hölder’s inequality yield
\[
\int_{S(0,1)} \mathcal{H}^1(h^{-1}_R (\phi)) \, d\mathcal{H}^{n-1}(\phi) = \int_{U_R} |J_{n-1} h_R| \leq \int_{U_R} \frac{|D^2 f|}{|f|^{n-1}}
\]
\[
= \left(\int_{U_R} \frac{K_I^{1/n} f^{(n-1)/n}}{|f|^{n-1}} \right) \leq \left(\int_{U_R} K_I \right)^{1/n} \left(\int_{U_R} \frac{J_f}{|f|^n} \right)^{(n-1)/n}.
\]

Since $\mu(y, f, E_R) \leq m$ for every $y \in B(0, R)$, and $U_R \subset E_R$, the change of variables formula gives
\[
\int_{U_R} J_f \frac{1}{|f|^n} \leq \int_{A_R} \frac{\mu(y, f, E_R)}{|y|^n} \, dy \leq m \omega_{n-1} \log 2.
\]
Moreover, by Theorem 2.2,
\[
\int_{U_R} K_I \to 0 \text{ as } R \to 0.
\]

Now, by combining (3.2), (3.3) and (3.4), we have: for every $\epsilon > 0$ there exists $k < M$ so that
\[
\int_{S(0,1)} \mathcal{H}^1(E_R \cap f^{-1}(I(R, \phi))) \, d\mathcal{H}^{n-1}(\phi) < \epsilon
\]
for every $R \leq k$. Moreover, by slightly changing the set A_R, we see that (3.5) also holds for $W_{R,\phi} = E_R \cap f^{-1}(I(R, \phi))$.

Let R be as above. Next, we claim that, for each $\phi \in S(0, 1)$, $W_{R,\phi}$ consists of at most m components. Fix ϕ and let $\{J_i\}, i = 1, \ldots, N$ be a finite set of preimage components of $I(R, \phi)$ in E_R. Denote by I_δ the closed δ-neighborhood of $I(R, \phi)$. Then I_δ has N_δ different preimage components \tilde{I}_j^δ containing some J_i. When δ is small enough, $\tilde{I}_j^\delta \subset G$ for every $j = 1, \ldots, N_\delta$. Then, by Lemma 2.5, $f(\tilde{I}_j^\delta) = I_\delta$ for δ small enough. Moreover, for $\delta < \delta_0$ we have $N_\delta = N$. Then, if $y \in I(R, \phi)$, Theorem 2.1 and (2.3) yield
\[N \leq \sum \mu(y, f, \text{int } \tilde{I}_j^\delta) \leq \mu(y, f, G) = m. \]
Reshetnyak’s Theorem and The Inner Distortion

This proves the claim.

Suppose that \(M_0 < M \) is small enough, so that (3.5) holds with \(\epsilon = \omega_{n-1}(100m)^{-1} \). Then, in particular, for every \(R \leq M_0 \) there exists \(\phi_R \in S(0,1) \) such that

\[
\mathcal{H}^1(\text{pr}(W_R,\phi_R)) < (100m)^{-1}.
\]

Moreover, we showed that \(W_R,\phi_R \) consists of at most \(m \) components. Now the proposition follows from our assumption \(\mathcal{H}^1(\text{pr}(E)) = 1 \). \(\square \)

4. Modulus estimates and the proof of Theorem 1.1

In this section we prove Theorem 1.1, except for an upper bound for the conformal modulus of certain \((n-1)\)-dimensional sets (Proposition 4.2). For a measurable function \(\omega \in L^1_{\text{loc}}(\Omega), \Omega \subset \mathbb{R}^n \), and a family \(\Lambda = \{V_i : i \in I\} \) of Borel sets, set

\[
M_\omega \Lambda = \inf_{\rho \in X(\Lambda)} \int_{\Omega} \omega \rho^{n/(n-1)},
\]

where \(X(\Lambda) \) is the set of all Borel functions \(\rho : \Omega \to [0,\infty] \) satisfying

\[
\int_{V_i} \rho \, d\mathcal{H}^{n-1} \geq 1
\]

for every \(V_i \in \Lambda \) with \(\mathcal{H}^{n-1}(V_i) > 0 \). If \(\omega = 1 \) almost everywhere in \(\Omega \), we denote \(M_\omega \) by \(M \).

Now fix \(R \) and \(a_R \) as in Proposition 3.1. Denote \(l = ((8m)^{-1},(4m)^{-1}) \),

\[
V_t^+ = E_R \cap \text{pr}^{-1}(\{a_R + t\}), \quad V_t^- = E_R \cap \text{pr}^{-1}(\{a_R - t\}), \quad V_t = V_t^+ \cup V_t^-,
\]

\[
Q^+_R = \{x \in V_t^- : t \in l\}, \quad Q^-_R = \{x \in V_t^+ : t \in l\},
\]

and

\[
\Lambda_R = \{V_t : t \in l\}.
\]

Lemma 4.1. We have

\[
(16m)^{-n/(n-1)} \left(\int_{E_R} K_I \right)^{-1/(n-1)} \leq M_{K_I^{-1/(n-1)}} \Lambda_R \leq m M f(\Lambda_R).
\]

Proof. Since \(f \in W^{1,n}(E_R,\mathbb{R}^n) \), the restrictions of \(f \) to the components \(G_t \) of \(V_t \) belong to \(W^{1,n}(G_t,\mathbb{R}^n) \) for almost every \(t \in l \). In particular, for those \(t \) the change of variables formula holds in \(V_t \), see [12]. Also, Theorems 2.1 and 2.2 show that \(\mathcal{H}^{n-1}(f(V_t)) > 0 \) for almost every \(t \in l \).
Now fix $\rho \in X(f(\Lambda_R))$. Then, for almost every $t \in \mathcal{L}$, the change of variables formula yields

\[(4.1) \quad \int_{V_t} (\rho \circ f)|D^2 f|d\mathcal{H}^{n-1} \geq \int_{fV_t} \rho d\mathcal{H}^{n-1} \geq 1,\]
i.e. the function $\rho' : E_R \to [0, \infty]$, defined as $\rho'(x) = (\rho \circ f)(x)|D^2 f(x)|$ for $x \in V_t$, $t \in \mathcal{L}$, when (4.1) holds, $\rho'(x) = \infty$ when $x \in V_t$, $t \in \mathcal{L}$, and (4.1) does not hold, and $\rho'(x) = 0$ otherwise, belongs to $X(\Lambda_R)$. Now, by using the change of variables formula in E_R, with the fact that $\mu(y, f, E_R) \leq m$ for every $y \in B(0, R)$,

we have

\[
\int_{E_R} (\rho')^{n/(n-1)} K_I^{-1/(n-1)} = \int_{E_R} (\rho \circ f)^{n/(n-1)}|D^2 f|^{n/(n-1)} K_I^{-1/(n-1)}
\]
\[
= \int_{E_R} (\rho \circ f)^{n/(n-1)} J_f
\]
\[
\leq \int_{R^n} \rho(y)^{n/(n-1)} \mu(y, f, E_R) dy \leq m \int_{R^n} \rho^{n/(n-1)}.\]

Since $\rho \in X(f(\Lambda_R))$ is arbitrary, the second inequality in the lemma follows.

To prove the first inequality, fix $g \in X(\Lambda_R)$. Then, for every $t \in \mathcal{L}$,

\[1 \leq \int_{V_t^+} g d\mathcal{H}^{n-1} + \int_{V_t^-} g d\mathcal{H}^{n-1}.\]

By Fubini’s theorem,

\[(8m)^{-1} \leq \int_{Q_R^+} g + \int_{Q_R^-} g,\]

so that one of the integrals, say the one over Q_R^+, is greater than $(16m)^{-1}$. Then, Hölder’s inequality yields

\[(4.2) \quad (16m)^{-1} \leq \int_{Q_R^+} g K_I^{-1/n} K_I^{1/n} \leq \left(\int_{Q_R^+} g^{n/(n-1)} K_I^{-1/(n-1)} \right)^{(n-1)/n} \left(\int_{Q_R^+} K_I \right)^{1/n}.\]

Since g is arbitrary, (4.2) proves the first inequality in the lemma. \hfill \Box

In order to complete the proof of Theorem 1.1, we need an upper bound for $Mf(\Lambda_R)$.

Proposition 4.2.

\[Mf(\Lambda_R) \leq C,\]

where $C > 0$ only depends on n.

We will prove Proposition 4.2 in Section 5. Assuming the proposition, Theorem 1.1 now follows: combining Lemma 4.1 with the proposition yields
\[(16m)^{-n/(n-1)}\left(\int_{E_R} K_I\right)^{-1/(n-1)} \leq mC,\]
where C does not depend on R. Thus,
\[\int_{E_R} K_I \geq T > 0,\]
with T independent of R. This contradicts Theorem 2.2, since
\[\bigcap_{R>0} E_R = E.\]
We conclude that \(\mathcal{H}^1(E) = 0\), as desired.

5. Proof of Proposition 4.2

We assume that \(n \geq 3\). For \(n = 2\) the proposition is trivial. The idea for the proof is to show, using Proposition 3.1, that the sets \(f(V_t)\) separate \(I(R, \phi_R)\) and another “large” set in \(A_R\). There are some technicalities, though, that slightly complicate matters.

Fix a point \(\xi \in \text{pr}^{-1}(a_R) \cap E\), and denote by \(W\) the \(\xi\)-component of \(\mathbb{R}^n \setminus (V_{(8m)^{-1}} \cup \partial E_R)\). Notice that, by the definition of \(V_t\),
\[(5.1) \quad \text{pr}(W) \subset (a_R - (8m)^{-1}, a_R + (8m)^{-1}).\]

Lemma 5.1. For almost every \(r \in (R/2, R)\) there exist \(q_r \in W\) and a neighborhood \(U_r \subset W\) of \(q_r\) so that \(|p_r| = |f(q_r)| = r\) and
\[f^{-1}(p_r) \cap U_r = \{q_r\}.\]

Proof. First, by Proposition 3.1, there exists a segment \(\alpha\) joining \(\partial E_R\) and \(\xi\) in \(W \cap \text{pr}^{-1}(a_R)\). Fix a small \(\epsilon > 0\). Then, for any \(x \in B^{n-1}(0, \epsilon)\), we can choose a segment \(\alpha_x\) as follows: if \(\tilde{\alpha}\) is the line spanned by \(\alpha\), then \(\tilde{\alpha}_x = \tilde{\alpha} + x\), \(x \in B^{n-1}(0, \epsilon) \subset H\), where \(H \ni 0\) is the hyperplane orthogonal to \(\tilde{\alpha}\). Moreover, \(\alpha_x\) is a segment in \(\tilde{\alpha}_x\) joining \(\partial E_R\) and \(B(\xi, \epsilon)\) in \(W\). Choose \(\epsilon\) to be small enough, so that \(f(\alpha_x)\) connects \(S(0, R)\) and \(S(0, R/2)\) for every \(x \in B^{n-1}(0, \epsilon)\).

By the definition of a mapping of finite distortion, and Theorems 2.1 and 2.2, there exists \(x_0 \in B^{n-1}(0, \epsilon)\) so that
(1) f is absolutely continuous on α_{x_0},
(2) f is differentiable \mathcal{H}^1-almost everywhere on α_{x_0},
(3) $J_f > 0$ \mathcal{H}^1-almost everywhere on α_{x_0}.

If f is differentiable at $z \in \alpha_{x_0}$, and $J_f(z) > 0$, then, for every $\nu > 0$ small enough,
\[
f(z) \notin f(S(z, \nu)).
\]
Because this is true for almost every $z \in \alpha_{x_0}$, the absolute continuity of f on α_{x_0} completes the proof. \hfill \Box

Denote by D the exceptional set in Lemma 5.1. For a radius $r \in (R/2, R) \setminus D$, denote $\{\beta_r\} = S(0, r) \cap I(R, \phi_R)$. By (5.1), Lemma 5.1 and (5.3) below, $\beta_r \neq p_r$ for every r.

Lemma 5.2. Let $\kappa : [0, 1] \to S(0, r)$ be a one-to-one C^∞-path such that $\kappa(0) = p_r$ and $\kappa(1) = \beta_r$. Then, for every $t \in ((8m)^{-1}, (4m)^{-1})$,
\[
\kappa((0, 1)) \cap f(V_t) \neq \emptyset.
\]

Proof. Recall that
\[
pr^{-1}((a_R - (4m)^{-1}, a_R + (4m)^{-1})) \cap E_R \cap f^{-1}(\beta_r) = \emptyset
\]
by Proposition 3.1. For q_r and U_r as in Lemma 5.1, denote by $\tilde{\kappa}$ the q_r-component of $f^{-1}(\kappa([0, 1]))$. By using Lemma 2.5 as below, we see that $\tilde{\kappa} \neq \{q_r\}$. Then, by (5.2), we find $s \in (0, 1)$, and a component κ' of $f^{-1}(\kappa([s, 1]))$ so that $\kappa' \cap U_r \neq \emptyset$ and $\kappa' \subset \tilde{\kappa}$.

We assume that $\kappa' \cap V_t = \emptyset$. Since $f(\partial E_R) = S(0, R)$, we conclude that κ' is compact. On the other hand, $\beta_r = \kappa(1) \notin f(\kappa')$ by (5.3). Thus there exists $t \in (s, 1)$ so that
\[
t = \max\{\tau : \kappa(\tau) \in f(\kappa')\}.
\]
Choose a point $x_t \in f^{-1}(\kappa(t)) \cap \kappa'$. By our assumption on κ', the x_t-component of $f^{-1}(\kappa(t))$ does not intersect V_t. Then there exists a ball $B = B(\kappa(t), \epsilon)$ so that the x_t-component U_t of $f^{-1}(B)$ does not intersect V_t. By Lemma 2.5 $f(U_t) = B$, and since κ is C^∞, applying Lemma 2.5 to the ϵ-neighborhoods of $\kappa((t - \delta, t + \delta))$ for small enough δ, and the x_t-components of their preimages, shows that actually $\kappa([t, t + \delta]) \subset f(\kappa')$, contradicting (5.4). The proof is complete. \Box
Lemma 5.3. For every \(r \in (R/2, R) \setminus D \), there exists a Borel function \(\rho_r : S(0, r) \to [0, \infty) \) so that, whenever \(t \in ((8m)^{-1}, (4m)^{-1}) \),

\[
\int_{S(0, r) \cap f(V_t)} \rho_r \, d\mathcal{H}^{n-2} \geq C_1/r,
\]
and

\[
\int_{S(0, r)} \rho_r^{n/(n-1)} \, d\mathcal{H}^{n-1} \leq C_2/r,
\]

where the constants \(C_1, C_2 > 0 \) only depend on \(n \).

Proof. We first map \(S(0, r) \) onto \(S(e_n/2, 1/2) \) by a map \(T \) which is a composition of scaling, translation and rotation, so that \(T(\beta_r) = e_n \). Then, if \(\rho : S(e_n/2, 1/2) \to [0, \infty] \) satisfies

\[
\int_{(T \circ f)(V_t)} \rho \, d\mathcal{H}^{n-2} \geq C_1(n)
\]

for all \(t \in ((8m)^{-1}, (4m)^{-1}) \), and

\[
\int_{S(e_n/2, 1/2)} \rho^{n/(n-1)} \, d\mathcal{H}^{n-1} \leq C_2(n),
\]

then the function \(\rho_r = r^{1-n}(\rho \circ T) \) satisfies (5.5) and (5.6). Hence it suffices to show (5.7) and (5.8).

If we map \(S(e_n/2, 1/2) \) onto \(\mathbb{R}^{n-1} \) by the stereographic projection \(h \),

\[
h(x) = e_n + (x - e_n)/|x - e_n|^2,
\]

then \(e_n = T(\beta_r) \) gets mapped to \(\infty \). We denote

\[
a = (h \circ T)(p_r) \in \mathbb{R}^{n-1}.
\]

We define \(\rho : \mathbb{R}^{n-1} \to [0, \infty] \),

\[
\rho(x) = |x - a|^{2-n}(1 + |x|^2)^{n-2},
\]

and denote \(Y_t = (h \circ T \circ f)(V_t) \). Then we have to show that

\[
\int_{Y_t} \rho(x) \, d\mathcal{H}^{n-2}(x) = \int_{Y_t} |x - a|^{2-n} \, d\mathcal{H}^{n-2}(x) \geq C_1(n)
\]

for all \(t \in ((8m)^{-1}, (4m)^{-1}) \), and

\[
\int_{\mathbb{R}^{n-1}} \rho^{n/(n-1)}(x) \, d\mathcal{H}^{n-1}(x) = \int_{\mathbb{R}^{n-1}} |x - a|^{1-n+1/(n-1)} \, d\mathcal{H}^{n-1}(x) \leq C_2(n).
\]
By Lemma 5.2, for every $\alpha \in S^{n-2}(0,1)$, the half-line
\[I_\alpha = \{ a + \alpha t : t > 0 \} \]
intersects Y_t. For $i \in \mathbb{Z}$, denote $A_i = B(a, 2^i) \setminus B(a, 2^{i-1})$, and
\[\Phi_i = \{ \alpha \in S^{n-2}(0,1) : I_\alpha \cap A_i \cap Y_t \neq \emptyset \} . \]

Then a projection argument shows that
\begin{equation}
\tag{5.11}
\int_{Y_t \cap A_i} |x - a|^{2-n} \, d\mathcal{H}^{n-2}(x) \geq C(n)\mathcal{H}^{n-2}(\Phi_i).
\end{equation}

Since $\sum_i \mathcal{H}^{n-2}(\Phi_i) = \omega_{n-2}$, (5.9) follows by summing over i.

In order to prove (5.10), we first consider the case $|a| > 1$. We divide \mathbb{R}^{n-1} to $N_1 = B^{n-1}(a,|a|/2)$, $N_2 = B^{n-1}(0,|a|/2)$ and $N_3 = \mathbb{R}^{n-1} \setminus (N_1 \cup N_2)$. Then
\begin{align*}
\int_{N_1} |x - a|^{1-n+1/(n-1)} \, d\mathcal{H}^{n-1}(x) &\leq C|a|^{-\frac{2}{n-1}} \int_{N_1} |x - a|^{1-n+1/(n-1)} \, d\mathcal{H}^{n-1}(x) \\
&\leq C|a|^{-\frac{1}{n-1}},
\end{align*}
and, since $10|x| \geq |x - a|$ for $x \in N_3$,
\begin{align*}
\int_{N_3} |x - a|^{1-n+1/(n-1)} \, d\mathcal{H}^{n-1}(x) &\leq C \int_{N_3} |x - a|^{1-n+1/(n-1)} \, d\mathcal{H}^{n-1}(x) \\
&\leq C|a|^{-\frac{1}{n-1}}.
\end{align*}

Combining the integrals proves (5.10) in the case $|a| > 1$. The case $|a| \leq 1$ is similar, but now it suffices to consider the division $\tilde{N}_1 = B^{n-1}(a,3)$, $\tilde{N}_2 = \mathbb{R}^{n-1} \setminus \tilde{N}_1$.

Define $\rho : A_R \to [0,\infty]$, $\rho(x) = \rho_{|x|}(x)$, where ρ_r is as in Lemma 5.3 for $r \notin D$, and $\rho_r = 0$ otherwise. Since the restrictions of f to the components G^j_t of V_t belong to $W^{1,n}(G^j_t, \mathbb{R}^n)$ for almost every t, $f(V_t)$ is countably $(n-1)$-rectifiable.
for \(t \in ((8^m)^{-1}, (4^m)^{-1}) \setminus Q \), where \(\mathcal{H}^4(Q) = 0 \). Then, Lemma 5.3, and the coarea formula for rectifiable sets, cf. [1, Theorem 2.93 and Remark 2.94], yield
\[
\int_{f(V_t)} \rho \, d\mathcal{H}^{n-1} \geq C(n) \int_{R/2}^R \int_{f(V_t) \cap S(0,r)} \rho \, d\mathcal{H}^{n-2} \, dr \geq C(n)
\]
for every \(t \in ((8^m)^{-1}, (4^m)^{-1}) \setminus Q \). Also, by Lemma 5.3,
\[
\int_{A_R} \rho^{n/(n-1)} = \int_{R/2}^R \int_{S(0,r)} \rho^{n/(n-1)} \, d\mathcal{H}^{n-1} \, dr \leq C(n) \int_{R/2}^R \frac{dr}{r} \leq C(n).
\]
By Theorem 2.1, \(M\{f(V_t) : t \in Q\} = 0 \). The proof of Proposition 4.2 is complete.

Acknowledgements. We thank Jani Onninen and Xiao Zhong for useful discussions.

References

Kai Rajala
University of Jyväskylä
Department of Mathematics and Statistics
P.O. Box 35
FI-40014 University of Jyväskylä
Finland
E-mail: kirajala@maths.jyu.fi