A Dibisibility Problem Concerning Group Theory*

Maohua Le

Abstract: Let p be an odd prime with $p \neq 3$. In this paper we prove that $p^2 + p + 1 \nmid 3^p - 1$.

Keywords: divisibility, binary quadratic diophantine equation, cubic residue, solvable group.

Let \mathbb{Z}, \mathbb{N} be the sets of all integers and positive integers respectively. Let p and q be distinct odd primes. E.T.Parker observed that the very long proof by W.Feit and J.Thompson [2] that every group of odd order is solvable would be shortened if it could be proved that $(p^q - 1)/(p - 1)$ never divides $(q^p - 1)/(q - 1)$ (see Problem B25 of [3]). This is a very difficult problem. For the special case of $q = 3$, J.McKay has established that

$$p^2 + p + 1 \nmid 3^p - 1 \quad (1)$$

for $p < 53 \times 10^6$. But, in general, the problem is not solved as yet. In this paper we completely solve the case of $q = 3$ as follows.

Theorem For any odd prime p with $p \neq 3$, (1) holds.

The proof of our theorem depends on the following two lemmas.

Lemma 1 Let l be an odd prime with $l \equiv 1(\text{mod } 3)$. Then the equation

$$x^2 + 3y^2 = 4l, \quad x, y \in \mathbb{N}, \gcd(x, y) = 1 \quad (2)$$

Received August 19, 2008.

2000 Mathematics Subject Classification: 11A05, 20D10

*Supported by the National Natural Science Foundation of China(10771186,10971184)
has exactly two solutions \((x, y)\).

Proof Let \(m\) be a positive odd integer. By Theorem 12.4.1 and Exercise 12.4.4 of [4], the equation

\[x^2 + 3y^2 = 4m \quad , \quad x, y \in \mathbb{N} \quad , \quad 2 \nmid xy \]

has exactly \(E(m)\) solutions \((x, y)\), where \(E(m)\) is the difference between the numbers of divisors of \(m\) with the forms \(3k + 1\) and \(3k + 2\). If \(m = l\), then \(E(l) = 2\), the equations (2) and (3) have the same solutions. The lemma is proved.

Lemma 2 Let \(l\) be an odd prime with \(l \equiv 1(\text{mod } 3)\). If \(3\) is a cubic residue modulo \(l\), then \(4l = a^2 + 243b^2\), where \(a\) and \(b\) are coprime positive integers.

Proof This is an early result of F.G.Eisenstein [1](see Theorem 9.3.1 and Exercise 9.23 of [5]).

Proof of Theorem. We assume that \(p\) is an odd prime satisfying \(p \neq 3\) and

\[p^2 + p + 1 \mid 3^p - 1 \]

(4)

Let \(l = p^2 + p + 1\). Since \(l < (p + 1)^2\), if \(l\) is not a prime, then \(l\) has a prime divisor \(k\) with \(3 < k < p\). But, since \(3^{k-1} \equiv 1(\text{mod } k)\) and \(3^p \equiv 1(\text{mod } k)\) by (4), we get \(k - 1 \equiv 0(\text{mod } p)\) and \(k > p\), a contradiction. Therefore, if (4) holds, then \(l\) must be a prime.

If \(p \equiv 1(\text{mod } 3)\), then \(3 \mid l\). But, since \(l\) is a prime with \(l > 3\), it is impossible. So we have

\[p \equiv 2 \quad (\text{mod } 3) \]

(5)

and

\[l \equiv 1 \quad (\text{mod } 3) \]

(6)

Let \(g\) denote a primitive root modulo \(l\). By (4), we get

\[3^p \equiv 1 \quad (\text{mod } l) \]

(7)

Since \(l - 1 = p(p + 1)\), we see from (7) that

\[3 \equiv g^{(p+1)r} \quad (\text{mod } l) \quad , \quad r \in \mathbb{Z} \]

(8)
Further, since $3 \mid p + 1$ by (5), we find from (8) that 3 is a cubic residue modulo l. Therefore, by Lemma 2 with (6), then the equation (2) has a solution (x, y) satisfying
\[3^2 \mid y. \]
(9)
However, since $4l = (2p + 1)^2 + 3 = (p + 2)^2 + 3p^2$, by Lemma 1, (2) has only the solutions $(x, y) = (2p + 1, 1)$ and $(p + 2, p)$ which do not satisfy (9). Thus, (1) holds for any odd prime p with $p \neq 3$. The theorem is proved.

Acknowledgement. The author would like to thank the referees for their valuable suggestions.

References

Maohua Le
Department of Mathematics
Zhanjiang Normal College
Zhanjiang, Guangdong 524048
P.R.China
Email: lemaohua2008@163.com