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1. Introduction

Random planar geometry has been a central topic in probability in the last two decades.

One of the main goals is to construct and study random surfaces. A natural approach is

to consider the scaling limit of random planar maps. Inspired by Riemannian geometry, a

natural point of view is to consider a planar map as an abstract metric measure space. In

this regard, Le Gall [LG1], Miermont [M], and others (e.g. [BJM], [Ab], [ABA], [BLG])

proved that a large class of uniformly sampled random planar maps converge in the

scaling limit to a random metric measure space with the topology of the sphere, known

as the Brownian map. In the case where the random planar map has a macroscopic

boundary, the scaling limit is the Brownian disk [BM], which is a metric measure space

with the topology of a disk.

Liouville quantum gravity (LQG) is another approach for constructing a random

surface, which takes the perspective of conformal geometry. Since the foundational work

of Polyakov [P], LQG has been an active research area in theoretical physics. The

mathematical study of LQG was initiated by Duplantier and Sheffield [DS]. The idea is

to consider an instance h of the Gaussian free field (GFF) on a planar domain D and

study the surface with volume measure eγh d2z. This definition does not make rigorous

sense, since h is a distribution and not a function. However, by first regularizing h and

then taking a limit, for each γ∈(0, 2), the random area measure µh :=e
γh d2z on D is

well defined and non-trivial. If D has a non-trivial boundary, the measure ξh :=e
γh/2 dz

on ∂D can also be defined. Very recently, Ding, Dubédat, Dunlap, and Falconet [DDDF]

and Gwynne and Miller [GM3] proved that one may construct a unique metric (i.e., a

distance function) dh by regularizing the metric tensor

e2γh/dimγ (dx2+dy2),
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where dimγ is the Hausdorff dimension of the surface [GP]. For γ=
√

8
3 , this metric

agrees with the metric constructed earlier by Miller and Sheffield [MS4]–[MS6], which

gives a metric space with the law of a Brownian surface, namely the random metric

measure spaces which describe the scaling limits of uniform planar maps as mentioned in

the previous paragraph. There is a coordinate change rule depending on γ that relates

fields on two conformally equivalent domains such that (dh, µh, ξh) is invariant under

conformal maps. The random geometry defined by (h, dh, µh, ξh) is called γ-LQG. We

refer to §2.3 for more details.

A fundamental belief in random planar geometry which has been guiding its devel-

opment is the following. Given any γ∈(0, 2), there is a family of random planar maps

whose scaling limit under discrete conformal embeddings is γ-LQG. In particular, uni-

form random planar maps converge to
√

8
3 -LQG in this sense. Here a discrete conformal

embedding means a discrete approximation of the Riemann mapping. Notable examples

include the circle packing and the Tutte embedding. See e.g. [DS], [LG2], [DKRV] for

precise conjectures. Before the current paper, this convergence had not been verified for

any natural combinatorial random planar maps under any discrete conformal embedding.

See §1.5 for results on planar maps obtained from coarse graining of a γ -LQG surface.

As pointed out in in [LPSA], it was conjectured by Aizenman that critical planar

percolation is conformally invariant. This conjecture was checked numerically for the

crossing probability in [LPSA]. Cardy [Ca] then predicted an explicit formula for the

left/right crossing probability for rectangles of any aspect ratio. Cardy’s formula was

proved by Smirnov [Sm] in the case of site percolation on the triangular lattice. A

by-product of Smirnov’s proof is a discrete conformal embedding based on percolation

observables, which we call the Cardy embedding (see Definition 1.1). In this paper, we

prove that large uniform triangulations converge to
√

8
3 -LQG under the Cardy embedding

(see Theorem 1.3).

This paper is the culmination of a seven-paper research program which also includes

[HLLS], [HLS], [BHS], [AHS], [GHS1], [GHSS]. Other papers that are important to this

program include [GPS1]–[GPS3], [DMS], [GM4]. See §1.4 for an overview of the program

and an outline of this paper.

1.1. The Cardy embedding as a discrete conformal embedding

The Riemann mapping theorem asserts that any two simply connected planar domains

with boundary are related by a conformal map. The Riemann mapping admits natu-

ral discrete approximations which we call discrete conformal embeddings. As a notable

example, Thurston conjectured that the circle packing gives an approximation of the
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Riemann mapping from a simply connected domain to the unit disk. This conjecture

was proved by Rodin and Sullivan [RSu].

Consider the equilateral triangle

∆ := {(x, y, z) :x+y+z=1 and x, y, z > 0}.

We view ∆ as an oriented surface with disk topology and boundary ∂∆, where the

orientation is such that (1, 0, 0), (0, 1, 0), and (0, 0, 1) are ordered counterclockwise. See

Figure 1.1 for an illustration. Given a Jordan domain D with three distinct boundary

points a, b, and c in counterclockwise order, there exists a unique Riemann mapping from

D to ∆ that maps a, b, and c to (1, 0, 0), (0, 1, 0), and (0, 0, 1), respectively. We denote

this mapping by CdyD. The dependence on (a, b, c) is dropped to lighten the notation.

Smirnov’s elegant proof of Cardy’s formula provides an approximation scheme for CdyD
based on percolation observables. This gives another example of a discrete conformal

embedding which we call the Cardy embedding.

We now define the Cardy embedding in the general setting of triangulations of poly-

gons. Recall that a planar map is a planar graph (multiple edges and self-loops allowed)

embedded into the sphere, viewed modulo orientation-preserving homeomorphisms. For

a planar map M , we write V(M), E(M), and F(M) for the set of vertices, edges, and

faces, respectively. A map is rooted if one of its edges, called the root edge, is distin-

guished and oriented. The face to the right of the root edge is called the root face. Given

an integer ℓ⩾2, a rooted planar map M is called a triangulation with boundary length ℓ

if every face in F(M) has degree 3, except the root face, which has degree ℓ. We write

∂M for the graph consisting of the edges and vertices on the root face of M . A vertex

on M is called a boundary vertex if it is on ∂M . Otherwise, it is called an inner vertex.

We similarly define boundary edges and inner edges. If ∂M is simple, namely, consists of

ℓ distinct boundary vertices, we say that M is a triangulation of an ℓ-gon. Let T(ℓ) be

the set of triangulations of an ℓ-gon and define T:=
⋃
ℓ⩾2 T(ℓ). We call an element in T

a triangulation of a polygon.

Given M∈T, a site percolation on M is a coloring of V(M) in two colors, say, red

and blue. The Bernoulli- 12 site percolation on M is the random site percolation ω on M

such that each inner vertex is independently colored red or blue with equal probability.

The coloring of the boundary vertices is called the boundary condition of ω and can be

prescribed arbitrarily.

Given a triangulation of a polygonM with three distinct boundary edges a, b, and c

ordered counterclockwise, we denote by (a, b) the set of boundary vertices of M situated

between a and b in counterclockwise order (including one endpoint of a and one endpoint

of b). Define (b, c) and (c, a) similarly. For a vertex v∈V(M), let Ea(v) be the event
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Figure 1.1. Left : Illustration of ∆ as an oriented surface with disk topology. The arrow

indicates the counterclockwise orientation of ∂∆. Right : Illustration of the event Ea(v).

that there exists a simple path (i.e., a sequence of distinct vertices on M where any two

consecutive vertices are adjacent) P on M such that

(a) P contains one endpoint in (c, a) and one endpoint in (a, b), while all other

vertices of P are inner blue vertices;

(b) either v∈P or v is on the same side of P as the edge a.

See Figure 1.1 for an illustration. We define the events Eb(v) and Ec(v) similarly.

Note that Ea(v), Eb(v), and Ec(v) do not depend on the boundary condition of ω.

Given any non-negative vector (x, y, z)∈[0,∞)3, let

(x, y, z)∆ := (x+y+z)−1(x, y, z),

with the convention that (0, 0, 0)∆ :=
(
1
3 ,

1
3 ,

1
3

)
. In other words, (x, y, z)∆ is the projection

of (x, y, z) onto the equilateral triangle ∆ along its own direction. The Cardy embedding

is a mapping from the vertex set of a triangulation of a polygon to the closed triangle

∆̄:=∆∪∂∆, defined using observables of site percolation on top of it.

Definition 1.1. (Cardy embedding) Given a triangulation of a polygonM with three

distinct boundary edges a, b , and c ordered counterclockwise, let BerM be the probability

measure corresponding to the Bernoulli-12 site percolation on M . The Cardy embedding

CdyM of (M,a, b, c) is the function from V(M) to ∆̄ given by

CdyM (v)= (BerM [Ea(v)],BerM [Eb(v)],BerM [Ec(v)])∆ for all v ∈V(M).

Smirnov’s theorem [Sm] can be phrased in terms of the Cardy embedding as follows.

Suppose that D is a Jordan domain with three distinct marked boundary points a, b,

and c ordered counterclockwise. Let T denote the triangular lattice. Given a small mesh
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size δ>0, let Dδ be a lattice approximation of D via δT such that Dδ is a triangulation

of a polygon (see §2.1 for a precise definition). Let aδ, bδ, and cδ be points on ∂Dδ that

approximate a, b, and c, respectively. Let Cdyδ be the Cardy embedding of (Dδ, aδ, bδ, cδ)

and recall the Riemann mapping CdyD from D to ∆ defined above.

Theorem 1.2. (Smirnov) In the setting above,(1)

lim
δ!0

sup
v∈Dδ

|BerDδ [Eaδ(v)]+BerDδ [Ebδ(v)]+BerDδ [Ecδ(v)]−1|=0

and

lim
δ!0

sup
v∈V(Dδ)

|Cdyδ(v)−CdyD(v)|=0.

In Definition 1.1, let e be an edge lying on the arc (c, a), and let v be the endpoint

of e closer to a. Then, BerM [Ea(v)] is the so-called crossing probability between (c, e)

and (a, b). Let D=[0, R]×[0, 1] for some R>0, and let the marked boundary points of

D be (R, 0), (R, 1), and (0, 1). By Theorem 1.2, the x coordinate of CdyD(0, 0) is the

δ!0 limit of the crossing probability between the left and right sides of Dδ. By the

Schwarz–Christoffel formula, the value of CdyD(0, 0) can be expressed explicitly as a

function of R, which agrees with Cardy’s formula for this crossing probability in [Ca].

Therefore, Theorem 1.2 gives a rigorous proof of Cardy’s formula, which explains why

we call our embedding the Cardy embedding.

1.2. Main result

1.2.1. Scaling limit of uniform triangulations under the Cardy embedding

Our main result is that large uniform triangulations of polygons converge to
√

8
3 -LQG

under the Cardy embedding. We will focus on a particular variant where self-loops are

not allowed while multiple edges are allowed; these are often called type-II triangulations

of polygons. See Remark 1.7 for extensions to other variants. We consider the critical

Boltzmann measure, which is defined as follows. For ℓ⩾3, let T2(ℓ) be the set of maps in

T(ℓ) with no self-loops (but multiple edge are allowed). Given ℓ⩾3, it is well known that if

each element M∈T2(ℓ) is assigned weight
(

2
27

)n
, where n is the number of vertices of M ,

then the resulting measure on T2(ℓ) is finite. Let Bol2(ℓ) be the probability measure

obtained by normalizing this measure. Following [AS], we call a map with law Bol2(ℓ) a

Boltzmann triangulation of type II with boundary length ℓ.

(1) Smirnov’s definition of crossing probabilities is slightly different from ours, but the difference
between the definitions is negligible in the scaling limit.
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Fix a sequence of integers {ℓn}n∈N such that ℓn⩾3 for all n∈N and

(3n)−1/2ℓn! 1 as n!∞.

Let Mn be sampled from Bol2(ℓ
n). Denote the root edge of Mn by an and sample two

other boundary edges bn and cn uniformly at random, conditioning on an, bn, and cn

being distinct and ordered counterclockwise. Let dgrMn :V(Mn)×V(Mn)!N∪{0} be the

graph distance of Mn and define

dn :=
(
3
4n

)−1/4
dgrMn .

Let µn be (2n)−1 times the counting measure on V(Mn). Let ξn be 1/ℓn times the

counting measure on V(∂Mn). We obtain a random compact metric space endowed with

two measures, which we denote byMn=(Mn, dn, µn, ξn). In collaboration with Albenque

[AHS], we proved that Mn converge in law to a variant of the Brownian disk called

the free Brownian disk with unit perimeter, which we denote by BD1 (see Theorem 1.5).

Moreover, the marked edges (an, bn, cn) converge to three marked points on the boundary

of BD1. By works of Miller and Sheffield [MS4]–[MS6] (see [MS5, Corollary 1.5]), there

exists a variant h∆ of the Gaussian free field on ∆ such that

(∆̄, d∆, µ∆, ξ∆) := (∆̄, cddh∆
, cmµh∆

, ξh∆
)

has the law of BD1 with the three marked points being (1, 0, 0), (0, 1, 0), and (0, 0, 1).

Here (dh∆
, µh∆

, ξh∆
) is the metric/measure triple in

√
8
3 -LQG corresponding to h∆ as

mentioned above §1.1, and cd and cm are implicit positive constants coming from Miller

and Sheffield’s theorem. See Theorem 2.7 and Definition 2.8 for precise definitions.

Let Cdyn be the Cardy embedding of (Mn, an, bn, cn). Now, we define a triple

(dn∆, µ
n
∆, ξ

n
∆) which is the pushforward of Mn onto ∆̄ under Cdyn. To be precise, for

x∈∆̄, let v(x) be the vertex of Mn which is closest to x under the Cardy embedding, i.e.,

we let v(x) be the vertex v∈V(Mn) such that |CdyMn(v)−x| is minimized over v∈V(Mn);

if there is a tie we resolve it in some arbitrary way. Let(2)

dn∆(x, y) := dn(v(x), v(y)), for x, y ∈ ∆̄,

µn∆(U) :=µn({v ∈V(Mn) : CdyMn(v)∈U}), for each Borel set U ⊂ ∆̄,

ξn∆(U) := ξn({v ∈V(∂Mn) : CdyMn(v)∈U}), for each Borel set U ⊂ ∆̄.

Our main result can be stated as follows.

(2) By Theorem 2.9 and (1.1), the measure ξn∆ concentrates near ∂∆, although we view it as a
measure on ∆̄.
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v
`

Figure 1.2. Left : The loop ensemble Γ(M,ω) of the percolation ω is shown in purple. The

vertex v marked in orange is a pivotal point since two of the loops will be joined together to

form a longer loop if the color of v is flipped. Right : The subgraph with bold edges is reg(ℓ)
as defined in §1.4.2.

Theorem 1.3. In the setting above, we have that (dn∆, µ
n
∆, ξ

n
∆) converge jointly in law

to (d∆, µ∆, ξ∆) as n!∞, where we equip the first coordinate with the uniform topology

and the latter two coordinates with the Prokhorov topology on Borel measures on ∆̄.

To draw an analogy with Theorem 1.2, Theorem 1.3 asserts that the Cardy embed-

ding of Mn provides a discretization of the conformal embedding of the Brownian disk

onto ∆̄.

Theorem 1.6 still holds under slight modifications to the definition of the Cardy

embedding in Definition 1.1. For example, by Proposition 4.4, we have the following

analogue of the first equation of Theorem 1.2:

max
v∈V(Mn)

|BerMn(Ean(v))+BerMn(Ebn(v))+BerMn(Ecn(v))−1|= on(1). (1.1)

Therefore, the projection ( · , · , ·)∆ in Definition 1.1 is not essential. We can also modify

some details in the definition of Ea(v), such as letting a, b, and c be vertices instead of

edges, or requiring that v does not lie on P . Using ideas from a recent alternative proof

of Cardy’s formula on the triangular lattice [Kh], it is possible to modify in such a way

that the three crossing probabilities in (1.1) always sum to exactly 1.

1.3. Quenched scaling limits of site percolation

We prove Theorem 1.3 by establishing quenched scaling limit results for site percola-

tion on uniform triangulations. To explain what we mean by quenched, let us start by

considering the simplest percolation observable, namely the crossing probability between

two boundary arcs. Let (Mn, an, bn, cn) and h∆ be as in Theorem 1.3. Conditioning on
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(Mn, an, bn, cn), uniformly sample an edge en on the arc (cn, an) and let vn be the end-

point of en which is closer to an. By the discussion below Theorem 1.2, BerMn [Ean(v
n)]

is the crossing probability between the arcs (cn, en) and (an, bn). In the continuum,

let v be a point on the counterclockwise arc on ∂∆ from (0, 0, 1) to (1, 0, 0) sampled

according to the measure ξ∆ on ∂∆ restricted to this arc. In other words, v is a random

point on this arc such that, conditioning on h∆, the ratio between the ξ∆-masses of the

counterclockwise arcs from (0, 0, 1) to v and the one from (0, 0, 1) to (1, 0, 0) is uniformly

distributed between 0 and 1. Let x(v) be the x-coordinate of v. Then, we have the

following result.

Theorem 1.4. In the setting described above, we have that BerMn [Ean(v
n)] converge

in law to x(v).

It is clear from Theorem 1.4 that the following more symmetric looking variant

holds. Let (en1 , e
n
2 , e

3
n, e

n
4 ) be four uniformly sampled edges on ∂Mn, conditioning on

the edges being distinct and ordered counterclockwise. Then, the crossing probability

between the arcs (en1 , e
n
2 ) and (en3 , e

n
4 ) converge in law to a random variable, whose law is

straightforward to describe in terms of the measure ξ∆. We skip a more formal statement

to avoid extra notation.

Earlier scaling limit results for percolation on random planar maps have considered

observables involving both the randomness of the planar map and the percolation. This

includes for example [GM4], [BHS], [CK], [An2] and Theorem 1.9 below. In the context

of random processes in random environment, these types of statements are referred as

annealed scaling limit results. Alternatively, we can consider percolation observables

which are functions only of the environment, in our case, the underlying planar map. The

crossing probability BerMn [Ean(v
n)] in Theorem 1.4 is an example of such an observable.

Convergence of such observables are referred to as quenched scaling limit results.

Smirnov’s proof of Cardy’s formula is famously difficult to adapt to percolation in

other settings [Bf1], even for bond percolation on Z2. To our best knowledge, this paper

is the first work where quenched scaling limit results for percolation on random planar

maps are established. Even for general environments beyond the triangular lattice, the

only other quenched scaling limit result we are aware of is for the crossing probability

of squares for Poisson Voronoi percolation [AGMT]. We also note that a variant of

Theorem 1.4 with SLE6 in place of percolation is stated in [Cu] as a theorem conditional

on an unproven assertion.

There is a close relationship between quenched scaling limit results and the con-

vergence of certain embeddings, which is well known in the context of random walk in

random environment. There the embedding is the so-called Tutte embedding. See [BB],
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[GMS2] and reference therein. Our proof of Theorem 1.3 is also based on this connection.

More precisely, by the disk variant of Le Gall [LG1], Miermont [M] (see Theorem 1.5),

and Miller–Sheffield [MS4], [MS5], there exists a sequence of embeddings {Ebn} of Mn

to ∆ such that Theorem 1.3 holds with CdyMn replaced by Ebn. One example of {Ebn}
can be obtained from the framework of mating of trees [BHS], [GHS1]. However, the

embeddings {Ebn} are rather implicit and a priori do not carry any information about

the conformal structure of Mn. Our approach to Theorem 1.3 can be understood as first

proving that under the random environment obtained by embedding Mn via Ebn, the

critical site percolation has a quenched scaling limit as if the environment is just the

regular triangular lattice. Then since the Cardy embedding is defined via percolation

observables, the difference between Ebn and CdyMn must vanish as n!∞, hence Theo-

rem 1.3 follows. In §1.3.1, we formulate a variant of this approach without introducing

the extra embeddings {Ebn}.

1.3.1. Scaling limit of multiple site percolations on uniform triangulations

RecallMn in Theorem 1.3. Conditioning onMn, let {ωni }i∈N be a sequence of independent

samples from BerMn . In this section we formulate a convergence result for {(Mn, ωni )}i∈N

(Theorem 1.6) which is sufficient for the proof of Theorem 1.3.

Recall that Mn is sampled from Bol2(ℓ
n) and has a root edge denoted by an. Also

recall that Mn=(Mn, dn, µn, ξn), where ξn is the uniform measure on V(∂Mn). In this

section, instead of a measure ξn, we consider a curve ξ⃗n of duration [0, 1], tracing ∂Mn

clockwise starting and ending at an such that each boundary edge is traced 1/ℓn units of

time. This way, we view Mn as a compact metric measure space decorated by a curve.

The natural topology for such objects is the so-called Gromov–Hausdorff–Prokhorov-

uniform (GHPU) topology, which is introduced in [GM1]. It is the natural variant of

the Gromov–Hausdorff topology for spaces which are also equipped with a measure and

a curve. In the continuum, the free Brownian disk with unit perimeter BD1 can also be

naturally viewed as a compact metric measure space decorated by a curve. See §2.2 for

more details on the GHPU topology and the Brownian disk.

With Albenque, we proved the following.

Theorem 1.5. ([AHS]) We have that Mn converge in law to BD1 in the GHPU

topology as n!∞.

In order to capture the full information of the percolation, we consider the loop

ensemble observable [CN], which is defined as follows. Given a triangulation of a poly-

gon M , let ω be a site percolation on M with monochromatic blue boundary condition.
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Namely, the color of each boundary vertex is blue. Removing all edges on M whose end-

points have opposite colors, we call each connected component in the remaining graph a

percolation cluster, or simply a cluster, of ω. By definition, vertices in each cluster have

the same color. Moreover, each pair of neighboring vertices that are on different clusters

must have opposite colors. We call the cluster containing ∂M the boundary cluster. If C
is a non-boundary cluster of ω, one can canonically define a loop on M surrounding C as

a path of vertices in the dual map of M . We orient the path such that the vertices to the

left (resp. right) of the path are red (resp. blue). The collections of such loops is called

the loop ensemble of ω, and we denote it by Γ(M,ω). See Figure 1.2 for an illustration.

Note that ω is uniquely determined by Γ(M,ω).

Given a Jordan domain D, a loop ensemble in D is a collection of oriented loops,

each viewed as a curve in D∪∂D modulo monotone reparametrization and rerooting.

Let L(D) denote the space of loop ensembles in D. Recall the lattice approximation

Dδ to D in Theorem 1.2. Let ωδ be sampled from BerDδ with monochromatic blue

boundary condition. It was proved in [CN] that Γ(Dδ, ωδ) converge in law as δ!0 to a

random variable Γ taking values in L(D) which is called a conformal loop ensemble with

parameter κ=6 (CLE6) on D.(3) See Theorem 2.9 for a precise statement of this result

including the topology of convergence.

Given Mn and {ωni }i∈N as above, let Υni :=Γ(Mn, ωni ) be the loop ensemble asso-

ciated with ωni as defined in §1.2. Then, (Mn,Υn) can be viewed as a compact met-

ric measure space decorated by a (boundary) curve and a loop ensemble. The natu-

ral topology for such objects is the so-called Gromov–Hausdorff–Prokhorov-uniform-loop

(GHPUL) topology, which was first introduced in [GHS1]. This is the natural variant

of the GHPU topology for cases where the metric space is further decorated by a loop

ensemble; see §2.2.

In the continuum, there exists a variant of the GFF on the unit disk D, denoted
by h, such that

(D∪∂D, cddh, cmµh, ξ⃗h)

has the law of BD1 as a metric measure space decorated by a curve [MS4]–[MS6], where

the constants cd and cm are as in the definition of (d∆, µ∆) in Theorem 1.3. The curve ξ⃗h

is defined by tracing ∂D clockwise, starting and ending at 1, with the speed prescribed

by the boundary measure ξh. Since (∆, h∆) in Theorem 1.3 and (D,h) both correspond

to BD1, the two fields are related (in law) by a conformal map between D and ∆ and the

change of coordinates formula for
√

8
3 -LQG (see (2.6) below). Let {Γi}i∈N be a sequence

(3) In §2.4, Γ is called a CLE6 with monochromatic blue boundary condition.
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of independent samples of CLE6 on D which are also independent of h. Then,

(D∪∂D, cddh, cmµh, ξ⃗h,Γi) (1.2)

can be viewed as a compact metric measure space decorated by a curve and a loop

ensemble; see §2.4. For simplicity, we write (1.2) as (D,h,Γi). The following theorem is

a precise formulation of the aforementioned convergence of {(Mn, ωni )}i∈N.

Theorem 1.6. In the setting of the paragraph above, for each k∈N, {(Mn,Υni )}1⩽i⩽k
jointly converge in law to {(D,h,Γi)}1⩽i⩽k in the GHPUL topology.

We point out that Theorem 1.6 for k>1 does not easily follow the k=1 case. The

reason is that the macroscopic behavior of the percolation could depend on microscopic

details of the map which disappear in the limit. This way, two independent copies of

percolation on the same map could have some correlation in the scaling limit. In general,

conditional distributions do not behave well under convergence in law.

Theorems 1.3 and 1.4 are easy consequences of Theorem 1.6. We briefly explain the

idea here and refer to §4 for details.

For Theorem 1.4, recall vn defined there. For i∈N, let Eian(v
n) be defined as

Ean(v
n), with ωni being the site percolation on Mn. Our proof of Theorem 1.6 im-

plies that {1Ei
an (vn)}1⩽i⩽k also converge jointly to their continuum counterparts. By the

law of large numbers,

BerMn [Ean(v
n)]−k−1

k∑
i=1

1Ei
an (vn)

converge to zero in probability as k!∞ uniformly in n. This proves Theorem 1.4.

Now, suppose we are in the setting of Theorem 1.3. By the same reasoning as in

the previous paragraph, if vn is sampled uniformly from V(Mn), then BerMn(Ean(v
n)),

BerMn(Ebn(v
n)), and BerMn(Ecn(v

n)) jointly converge to their continuum counterparts.

This essentially gives the convergence of µn∆ to µ∆. A similar argument gives the con-

vergence of ξn∆. For the metric dn∆, let (vn, un) be a pair of vertices uniformly sampled

from V(Mn)×V(Mn). Then, by the GHPU convergence of Mn, we have that dn(vn, un)

converge to its continuum counterpart. Now, the uniform convergence of dn∆ follows from

the continuity of d∆. This gives Theorem 1.3.

1.3.2. On the universality

We now comment on the universality of our results within the realm of uniform maps

and percolation observables. See §1.5 for discussion of (non-uniform) planar map models

decorated by other statistical physics models.
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Remark 1.7. (Other variants of uniform triangulations) Recall that a triangulation

is of type I (resp. type II, type III) if multi-edges and self-loops are allowed (resp. multi-

edges are allowed but not self-loops, neither multi-edges nor self-loops are allowed). In

[AHS] we consider natural couplings between Boltzmann triangulations of types I–III,

and prove that triangulations of polygons of all three types converge in the scaling limit to

the Brownian disk. In these couplings triangulations of different types are related by col-

lapsing self-loops or multiple edges. On the other hand, whether a crossing event occurs

for a site percolation does not change under these operations. Thus, Theorems 1.3, 1.4,

and 1.6 still hold for Boltzmann triangulations of types I and III. We also expect these

results to hold for uniformly sampled planar maps with other local constraints (quadran-

gulations, general maps, etc). Establishing these results require non-trivial work. The

main ingredient which is missing is convergence of the pivotal measure on the planar

map. In the case of type-II triangulations, we obtain this via the bijection in [BHS].

Remark 1.8. (Surfaces with other topologies) Our proof techniques can also give

variants of Theorem 1.6 on uniform triangulations with other topologies. More precisely,

given some surface topology (sphere, torus, etc.), if one knows that a uniformly sampled

triangulation with this topology converges to a Brownian surface, then one can establish

a variant of Theorem 1.6. Furthermore, we get quenched scaling limit results for macro-

scopic observables of Bernoulli- 12 site percolation, similar to Theorem 1.4. For example,

for uniform triangulation on the sphere with four uniformly sampled vertices a, b, c,

and d, in which case the convergence to the Brownian surface has been established, our

method gives that the probability that a, b and c, d are separated by a red cycle has

a scaling limit. For uniform triangulation on the torus, if the convergence to Brownian

torus is shown, then the probability that there exists a non-contractible red cluster has

a scaling limit. Although the Cardy embedding is specific to surfaces conformally equiv-

alent to the disk, for other surfaces we can use other percolation observables to define

discrete conformal embeddings.

1.4. Outline of the program

Recall that the current work is the final paper in a program also involving [HLLS], [HLS],

[BHS], [AHS], [GHS1], [GHSS]. See Figure 1.3 for an overview of the dependencies

between these papers and other papers relevant for the program. The bulk of this paper

(§3, §5, and §6), as well as the bulk of the whole program, is to establish Theorem 1.6.

In this section we give an overview of this program by giving an outline of the proof of

Theorem 1.6.
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[GMS2]

&&

[GHS1]
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[GHSS]

}}

[GPS1]–[GPS3]oo

[AHS]

99

This paper

[Brn] // [BHS]

==

[HLS]

aa

[HLLS]oo

Figure 1.3. The figure shows other papers in our program (purple), other papers directly

relevant for our program (blue), and the dependencies between these papers (black arrows).
In addition to the papers shown in the figure, several stages of our program rely heavily on

the fundamental papers [Schr], [Sm], [CN], [LG1], [M], [DMS], [MS4]–[MS6].

1.4.1. Annealed scaling limit for one site percolation

The k=1 case of Theorem 1.6 is proved in our joint work with Gwynne.

Theorem 1.9. ([GHS1]) Theorem 1.6 holds when k=1.

The single interface variant of Theorem 1.9 was proved in [GM4], conditioning on

Theorem 1.5, which was proved in [AHS]. Based on this variant, Theorem 1.9 was proved

in [GHS1] via an iterative construction of CLE6 with chordal SLE6 (see Lemma 2.11 for

this construction) and its discrete analog.

Theorem 1.9 is an example of an annealed scaling limit result for percolated trian-

gulations, where the convergence is in the sense of GHPUL. In another paper of this

program [BHS], we discovered, together with Bernardi, a bijection between lattice walks

with steps in {(0, 1), (1, 0), (−1,−1)} and percolated type-II triangulations. This bijec-

tion builds on an earlier bijection of Bernardi [Brn] between lattice walks in the first

quadrant and trivalent maps decorated by a depth-first-search tree. Many percolation

observables are encoded nicely in this bijection. The two most relevant examples are the

crossing events in Definition 1.1, along with the counting measure on self-intersection

and mutual-intersection points of macroscopic loops in the loop ensemble. These points

are called pivotal points. See §1.4.2.
The bijection in [BHS] is an example of a mating-of-trees bijection. Its continuum

counterpart is an encoding of a CLE6 and an independent
√

8
3 -LQG surface by a 2D

Brownian motion. This encoding was introduced in a foundational paper by Duplantier,

Miller, and Sheffield [DMS]. See also [BHS, §7] and [GHS2]. Using this bijection and

the continuum theory in [DMS], the scaling limit of many percolation observables were

established in [BHS], including those concerning crossing events and pivotal points. This



106 n. holden and x. sun

type of scaling limit result is sometimes referred to as convergence in the mating-of-trees

sense. In [GHS1], it was proved that the GHPUL convergence in Theorem 1.9 holds

jointly with the mating-of-trees convergence in [BHS]. See Proposition 6.34 and (4.4) for

consequences of such joint convergence.

The two works [BHS] and [GHS1] give a rather complete annealed scaling limit result

for percolation on triangulations. This was achieved by employing the full strength of the

continuum theory of SLE6 and CLE6 coupled with
√

8
3 -LQG (including [DMS], [GM2]

and [BHS, §7]), as well as three powerful tools in the discrete: a labeled tree encoding

of the graph metric in the spirit of Schaeffer [Schf] (see [AHS]), a Markovian exploration

of uniform triangulations called the peeling process [An1] (also see [GM4]), and the

mating-of-trees bijection in [BHS].

When attacking Theorem 1.6 for k⩾2, the toolbox becomes quite limited. The main

methodological innovation of this paper is to supply an approach for doing so, which we

explain in §1.4.2 and §1.4.3.

1.4.2. Dynamical percolation on uniform triangulations

It will be apparent from §3 that all the difficulties with proving Theorem 1.6 for general

k∈N are present already in the k=2 case. Therefore, we focus on this case.

Our high-level idea is the following. Let (D,h,Γi)i=1,2 be a subsequential limit of

(Mn,Υni )i=1,2, whose existence is guaranteed by Theorem 1.9. It suffices to show that

Γ1 and Γ2 are independent. Suppose that we have a dynamic (�ωnt )t⩾0 which is stationary

conditioned on Mn and has 1-time conditional marginal law BerMn . Moreover, suppose

the process (Mn,Γ(Mn, �ωnt ))t⩾0 has a GHPUL scaling limit whose 1-time marginal law

is given by (D,h,Γ1). We denote this process by (D,h, �Γt)t⩾0. For t>0, since ωn1 and

ωn2 are completely independent while �ωn0 and �ωnt may not be, the correlation between Γ1

and Γ2 should be no stronger than that of �Γ0 and �Γt. If we further know that (�Γt)t⩾0 is

ergodic, then, by sending t!∞, we must have that Γ1 and Γ2 are independent. See §3
for a precise version of this reasoning.

It remains to establish the existence of a dynamic as described in the previous

paragraph. The most natural candidate is the following. Let Mn be as in Theorem 1.6

and let �ωn be sampled from BerMn . Given (Mn, �ωn), put i.i.d. exponential clocks of rate

n−1/4 at each interior vertex.(4) When the clock at v rings, flip the color of v. For t⩾0,

let �ωnt be the site percolation at time t. We call (�ωnt )t⩾0 a dynamical percolation on Mn.

(4) An exponential clock of rate r>0 is a clock which rings at a discrete set of times such that

the time between two consecutive rings is given by independent exponential random variables with

parameter r. In other words, the set of times at which the process rings has the law of a Poisson process
on (0,∞) of intensity r.
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We set the clock rate to be n−1/4 because the number of vertices on Mn governing

macroscopic changes is of order n1/4 (see the discussion on pivotal points below), so that

under this rate the number of updates for these vertices is of constant order. We expect

that the scaling limit of (Mn, �ωnt )t⩾0 satisfies the desired ergodic property described in

the second paragraph. If Mn is replaced by δT for δ>0, then the same dynamic was

studied by Garban, Pete, and Schramm [GPS2], [GPS3], who established the existence

of a scaling limit. However, their proof is hard to adapt to the random triangulation case

since it relies on the fact that T is nicely embedded into C (see [GPS3, §8] in particular).

We expect that proving the aforementioned convergence of (Mn, �ωnt )t⩾0 is a technically

challenging problem.

To get around this difficulty, we introduce a cutoff variant of (�ωnt )t⩾0. In this variant

of the process, we only update vertices that cause macroscopic changes.

Let us first quantify the notion of macroscopic change. Let ωn be a site percolation

on Mn with monochromatic blue boundary condition. Given a non-boundary cluster C
of ωn, let ¬C be the connected component of V(Mn)\V(C) containing ∂Mn. Let �C be the

largest subgraph ofMn such that v∈V(C) if and only if v /∈¬C. For each loop ℓ∈Γ(Mn, ωn),

let reg(ℓ)= �C, where C is the cluster of ωn surround by ℓ. We call area(ℓ):=µn(reg(ℓ)) the

area of ℓ. For v∈V(Mn)\V(∂Mn), let ωnv be obtained from ωn by flipping the color of v,

and let Lnv be the symmetric difference between Γ(Mn, ωn) and Γ(Mn, ωnv ). For ε>0, we

say that v is an ε-pivotal point of ωn if there are at least three loops in Lnv with area at

least ε. Morally speaking, v is an ε-pivotal point if flipping the color of v results in a

macroscopic change of “size” at least ε.

We now consider the following modification of (Mn, �ωnt )t⩾0: when the clock of a

vertex v rings at time t, the color of v is flipped if and only if v is an ε-pivotal point of

�ωnt . We denote this modified dynamic by (Mn, �ωε,nt )t⩾0.

Let h be as in Theorem 1.6 and let Γ be a CLE6 on D independent of h. We can mimic

the definition in the discrete to define the ε-pivotal points of (h,Γ) (see Definition 2.14).

Let Pε be the set of ε-pivotal points of (h,Γ). Then
⋃
ε>0 Pε is simply the collection of

all self-intersections and mutual intersections of loops in Γ. We call points in
⋃
ε>0 Pε

the pivotal points of Γ. The analogue of color flipping in the continuum is merging and

splitting of loops of Γ; see §2.4.
In [BHS], a measure νεh,Γ supported on the ε-pivotal points of (h,Γ), called the

√
8
3 -

LQG ε-pivotal measure, was defined based on the theory of mating of trees [DMS]. (See

Definition 5.18 for a precise definition.) Let νε,npiv be n−1/4 times the counting measure

on the ε-pivotal points of �ωn0 . As alluded to in §1.4.1, it was proved in [BHS], [GHS1]

that for some constant cp>0,

(Mn, νε,npiv ,Γ(M
n, �ωn0 )) converge in law to (D,h, cpνεh,Γ,Γ)). (1.3)
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Here the convergence is for a variant of the GHPUL topology that takes into account the

additional measure νε,npiv .

The Markovian dynamic (�ωε,nt )t⩾0 can be described as follows. Starting from the

configuration at time t=0, we wait for an exponential clock of rate νε,npiv (V(Mn)) to ring.

Once the clock rings, a vertex v is chosen according to νε,npiv and the color of v is flipped.

Then we iterate this procedure. In light of this description and (1.3), we can show that

(Mn,Γ(Mn, �ωε,nt ))t⩾0 has a GHPUL scaling limit whose 1-time marginal law is given by

(D,h,Γ1). We denote this process by (D,h, �Γεt )t⩾0. For each ε>0, the process (�Γεt )t⩾0 is

not ergodic. However, we will prove in §1.4.3 that

(�Γεt )t⩾0 converge to an ergodic process as ε! 0. (1.4)

Recall the setting of the second paragraph. The correlation between Γ1 and Γ2 should

be no stronger than that of �Γε0 and �Γεt for each ε>0 and t>0. In light of (1.4), by first

sending ε!0 and then t!∞, we can still establish the k=2 case of Theorem 1.6. Again

see §3 for how to make this reasoning rigorous.

1.4.3. Quantum pivotal measure and Liouville dynamical percolation

The proof of (1.4) is done in §5 and §6, based on [HLLS], [HLS], [GHSS].

The first key step is to achieve a good understanding of the measure νεh,Γ. Recall

(D,h,Γ) in (1.3) and the set Pε of ε-pivotal points of (h,Γ) in §1.4.2. By (1.3), νεh,Γ is the

scaling limit of µn restricted to the discrete analog of Pε under a proper renormalization.

Fix δ>0, and let Dδ be the lattice approximation of D via δT. Let ωδ be sampled

from BerDδ . In [GPS2], it was proved that the counting measure on the pivotal points

of ωδ under proper rescaling converge to a random measure m; see the discussion below

Definition 6.24 for a precise description of m. The convergence is joint with the loop

ensembles. Now, suppose {ωδ}δ>0 are coupled such that the loop ensemble convergence

holds almost surely. Suppose h is independent of {ωδ}δ>0. For each loop ℓ of ωδ let

µh(reg(ℓ)) be the area of ℓ and define the ε-pivotal points for (h, ωδ) as in §1.4.2 with

this notion of loop area. Let Pδε be the union of all hexagons corresponding to ε-pivotal

points of (h, ωδ). It is not hard to show that under proper rescaling, as δ!0, theGaussian

multiplicative chaos (GMC) measure eh/
√
6d2z restricted to Pδε converge in probability to

a random measure Mε
h,Γ; see §6.5. Moreover, Mε

h,Γ=(eh/
√
6m)|Pε a.s., where the right

side is understood as the restriction of a GMC; see [RV], [Brs] and Definition 5.25. It is

well-known that Pε is a fractal of dimension 3
4 (see e.g. [SWe]). The so-called Knizhnik–

Polyakov–Zamolodchikov (KPZ) relation (see e.g. [DS] and Remark 5.31) suggests that

νεh,Γ = cMε
h,Γ a.s. for a deterministic constant c. (1.5)
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Here the exponent 1/
√
6 in Mε

h,Γ is precisely related to the dimension 3
4 of Pε via the

KPZ relation. We restate (1.5) as Proposition 5.1 and prove it in §6.5. Most of the work

is carried out in §5, where we prove Proposition 5.44, a local version of Proposition 5.1.

We say that it is local because we will cover Pε by finitely many sets which are the

scaling limits of the pivotal points of the crossing event for certain topological quads (see

Lemma 6.14), and Proposition 5.44 is the variant of (1.5) for these sets.

Although the argument is quite technical, the underlying idea behind Proposi-

tions 5.1 and 5.44 is simply that both νεh,Γ and Mε
h,Γ are canonical in the sense that

they satisfy a few natural properties that uniquely determine the measure. To carry out

this idea, we need an intrinsic characterization of the aforementioned measure m that

does not refer to the limiting procedure. With this in mind, we proved with Lawler

and Li [HLLS] that rd−2 times the Lebesgue measure restricted to the r-neighborhood

of cut points of a planar Brownian motion has a scaling limit as r!0, which we call

the 3
4 -dimensional occupation measure. Using a connection between Brownian cut points

and the scaling limit of pivotal points of quad-crossing events (see Proposition 5.35),

we proved with Li [HLS] that restricting to the scaling limit of the pivotal points of

quad crossing events, the measure m equals the corresponding 3
4 -dimensional occupation

measure on these points.

With the results from [HLLS], [HLS] at hand, we first prove the variant of (1.5)

with Pε replaced by Brownian cut points (i.e. Lemma 5.39). This is based on the theory

of quantum zippers in [Sh2], [DMS] and the coordinate change formula for GMC over

occupation measures. Then using the connection between Brownian cut points and

the scaling limits of pivotal points of quad crossing events, we conclude the proof of

Proposition 5.44. We finally prove (1.5) (i.e. Proposition 5.1) via a covering argument.

Given (1.5), we will approximate the process (�Γεt )t⩾0 in (1.4) by a variant of dynam-

ical percolation on the triangular lattice T. This enables us to use powerful tools that

are only available for site percolation on T, including various scaling limit results and

the sharp noise sensitivity established in [GPS1].

Fix δ>0, and suppose that ωδ is sampled from BerDδ independently of h. In light

of (1.5), we can consider a variant of the dynamical percolation on Dδ, where the rate of

the exponential clock at a vertex v is proportional to (a regularized version of) eh(v)/
√
6.

This is the so-called discrete Liouville dynamical percolation (LDP) driven by eh/
√
6

introduced by Garban, Sepúlveda, and us in [GHSS]; see §6.2. Now we can define an

ε-cutoff dynamic of the discrete LDP on the triangular lattice by mimicking the definition

of (ωε,nt )t⩾0 in §1.4.2, and then use (1.5) to argue that the loop ensemble evolution of

this cutoff dynamic converge to the process (�Γεt )t⩾0 in (1.4).
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Now to conclude the proof of (1.4), we just need to show that as ε!0, the ε-cutoff

dynamic of the discrete LDP driven by eh/
√
6 stabilize to a limiting ergodic process.

The paper [GHSS] achieved this goal modulo two differences. First, following [GPS2],

[GPS3], in [GHSS] we work under a different cutoff on the pivotal points which is based on

alternating four arm events. (See the notion of ρ-important points in §6.4.2.) Compared

to the ε-pivotal points, this cutoff is not so natural in the context of random planar maps

because it relies on the ambient space. However, it is convenient for fine multi-scale

analysis on T, which gives the desired stability when removing the cutoff. The limiting

process is called the continuum Liouville dynamical percolation driven by eh/
√
6. In §6

we study the relation between the two cutoffs and show that

lim
ε!0

(�Γεt )t⩾0

exists and is given by the continuum Liouville dynamical percolation driven by eh/
√
6.

The second difference from [GHSS] is that there the planar percolation is not encoded

by the loop ensemble, but rather by crossing information for all topological rectangles in

the plane. The latter is called the quad-crossing configuration. Similarly as above, the

quad crossing configuration is not so natural in the context of random planar maps due to

its dependence on the ambient space. On the other hand, the quad crossing perspective

is crucial in our proof of the ergodicity of continuous LDP in [GHSS], which relies on

Fourier analysis of Boolean functions following [GPS1]. This difference in observable will

not be a problem if we know that the CLE6 and the scaling limit of the quad-crossing

configuration of ωδ determine each other. This has long been conjectured to be true (see

[SSm]). The fact that the CLE6 determines quad-crossing configuration is essentially

proved in [CN], as pointed out in [GPS2]. We establish measurability in the reverse

direction in this paper; see Theorem 6.10. This concludes our proof.

1.5. Related works and outlook

Theorem 1.3 solves a special case of the aforementioned conjecture that Liouville quan-

tum gravity describes the scaling limit of random planar maps under discrete conformal

embeddings. The general version of the conjecture can be formulated as follows.

For the ease of discussion, assume that there are m1 different ways to sample a

random planar map of a given size. The map can be required to be a triangulation,

quadrangulations, simple map, etc., and the probability measure can be uniform (like in

our paper) or non-uniform. For example, we can reweight the uniform distribution by

the partition function of a statistical physics model such as the uniform spanning tree

(UST), the (critical) Ising model, or the Fortuin–Kasteleyn (FK) random cluster model.
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We also assume that there are m2 different ways to conformally embed a planar map

into C. Besides the Cardy embedding considered in this paper and the aforementioned

circle packing and the Tutte embedding, one can also consider the square tiling and the

embedding obtained by applying the uniformization theorem to the planar map viewed

as a piecewise smooth 2D Riemannian manifold.

The general conjecture predicts convergence of random planar maps under conformal

embedding to γ-LQG in each of them1m2 situations obtained by specifying the law of the

random planar map and the embedding method, where the value of γ depends on the law

of the planar map. For example, uniformly sampled planar maps give γ=
√

8
3 . Consider

a statistical physics model on a planar map whose partition function is approximately

(det∆)−c/2, where det∆ represents the determinant of the Laplacian of the planar map

and c∈R is the so-called central charge of the model. Suppose our random planar map

is sampled such that the probability of sampling a particular map is proportional to the

partition function of the statistical physics model on the planar map. Choose γ∈(0, 2)
such that

c=25−6

(
2

γ
+
γ

2

)2
.

Then the scaling limit of the random planar map is conjecturally given by γ-LQG. For

example, the UST has central change c=−2, and therefore the scaling limit of UST

weighted random planar maps is
√
2-LQG. For the Ising model, we have c= 1

2 and γ=
√
3.

Our paper is the first work which solves one version of this conjecture.

We remark that convergence to LQG under a conformal embedding (namely, the

Tutte embedding) has been established earlier for a large class of random planar maps

obtained from coarse-graining an LQG surface, e.g. the so-called mated-CRTmap [GMS2]

and the Poisson Voronoi tessellation of the Brownian disk [GMS1] and its extension to

general γ-LQG in [AFS], except that the convergence established there is only for the

vertex counting measures, not for the measures and the graph metric jointly.

The Cardy embedding is a representative for a class of embeddings which are defined

using observables of statistical physics models on planar maps. The Tutte embedding is

another such example, where the model is simple random walk and the observables are

given by the harmonic measure. One can define natural embeddings of planar maps in

other universality classes by using observables of other statistical physics models. For

example, in the case of the FK random cluster model one can use properties of the FK

loops to define an embedding similarly to the case of percolation. For a UST weighted

map with sphere topology one can first send three uniformly sampled vertices v1, v2, and

v3 to 0, 1, and ∞, respectively, and then determine the position in C of an arbitrary

vertex w by considering the topology of the tree branches connecting w, v1, v2, and v3. In
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light of this, the “number” m2 of possible discrete conformal embeddings is quite large.

Using the aforementioned m1 random planar map models and m2 discrete conformal

embeddings, we obtain m1m2 random environments in which we can consider statisti-

cal physics models, such as random walk or percolation. We conjecture the following

universality. If the random process converges to a conformally invariant process on a

regular lattice, then the same convergence holds for the random process in one of these

m1m2 random environments, in a quenched sense. For example, our results in §1.3 imply

this type of convergence where the random process is site percolation, while the random

environment is provided by the uniform triangulation under the Cardy embedding, or

any other embedding for which the analog of Theorem 1.3 holds. As another example,

we expect that since random walk on regular lattices converge to planar Brownian mo-

tion, the random walk in one of these m1m2 environments converge to planar Brownian

motion in a quenched sense. Our results in §1.3 are the only such quenched scaling limit

results in the literature for natural model-decorated combinatorial random planar maps.

The quenched scaling limit of random walk has been established in [GMS3] for a large

class of random planar maps obtained by coarse graining LQG.

It may be possible to use the approach introduced in this paper to prove the con-

jectures above when the random planar map is weighted by a statistical physics model

and the discrete conformal embedding is defined using observables of the same model.

In this case, if one can establish the analogue of Theorem 1.6, then one can prove the

analogue of Theorem 1.3. Note that in our case, uniform planar maps can be thought of

as percolation weighted planar maps and the Cardy embedding is defined via percolation

observables. At a conceptual level, our dynamical approach should still work in the more

general setting. However, carrying out this approach beyond the setting of our current

paper is a challenge. In particular, we use the metric convergence of uniform triangula-

tions to the Brownian disk and a sharp mixing property for the scaling limit of dynamical

percolation on the planar map. Both of these ingredients are currently missing for other

planar maps and statistical physics models, each of which is a major open question in its

own right.

Convergence of model-decorated random planar maps to LQG has been established

for a much more general class of planar map models in the so-called peanosphere sense.

This convergence is based on the mating-of-trees framework of [DMS]. In the discrete, a

number of mating-of-trees type bijections have been discovered, similar in spirit as the

one we discovered with Bernardi [BHS]. With such kind of bijections and the mating-of-

trees framework for LQG coupled with SLE/CLE, convergence in the peanosphere sense

means convergence to Brownian motion of the random walk encoding the decorated map.

This idea was first proposed and carried out in [Sh3]. See [GHS2, §5.1] for a survey with
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further examples. Here we point out that this convergence does not concern the metric

or conformal structure of the map. Moreover, it is an annealed instead of quenched result

if we view it as a convergence result for a random process in a random environment.

Dynamical percolation is an important tool in the current paper, and we prove a weak

notion of convergence of dynamical percolation on the random planar map to Liouville

dynamical percolation; namely, we prove convergence of the variant of the process where

only ε-pivotal points change color, and we prove that the limiting process stabilizes to

the continuous LDP as ε!0. An interesting open problem is to prove convergence of true

dynamical percolation on the random planar map to the continuous LDP. One can also

attempt to establish similar scaling limit results for models closely related to dynamical

percolation, such as the minimal spanning tree, invasion percolation, and near-critical

percolation. See [GPS3], [GPS4] for scaling limit of results for these models on the

triangular lattice.

Structure of the paper

In §2 we provide necessary background on
√

8
3 -LQG, SLE6, CLE6, and the topological

spaces relevant for the convergence results. In §3 we prove Theorem 1.6, assuming two

lemmas which are proved in §6. In §4 we conclude the proof of Theorems 1.3 and 1.4

using Theorem 1.6. In §5 we establish a preliminary version of (1.5) via an extensive

analysis of the CLE6 pivotal points. In §6 we establish the two aforementioned lemmas

using Liouville dynamical percolation, in addition to concluding the proof of (1.5).
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2. Preliminaries

2.1. Basic notation

Sets. Let N={1, 2, ... } be the set of positive integers. Let C be the complex plane. Let

D={z∈C:|z|<1}, H={z :Re z>0}, and S=R×(0, π).

Domains. A (planar) domain is a connected open subset of C. Given a domain D, let

∂D denote the set of prime ends of D. If ∂D is a simple closed curve, we call D a Jordan

domain. Given a simply connected domain D, we say that D is C0 if any conformal

map ϕ:D!D can be extended continuously to ∂D. (Here, if D is unbounded, we use the

spherical metric on C∪{∞}). If D is C0 and the continuous extension of ϕ is smooth

except for finitely many points, we say that D is piecewise smooth. Given two domains

D1, D2⊂C we write D1⋐D2 if D1∪∂D1⊂D2. For two distinct points a and b on ∂D, let

∂a,bD be the counterclockwise arc on ∂D from a to b.

Lattice. Let T denote the regular triangular lattice where each face is an equilateral

triangle and the points (0, 0) and (1, 0) belong to T. For δ>0, let δT be T rescaled by δ.

A Jordan domain D is called a δ-polygon if ∂D lies on δT. If D is a general Jordan

domain, let Dδ be the largest δ -polygon whose set of inner vertices (namely, vertices on

δT that are inside the δ -polygon) is contained in D and forms a connected set on δT.(5)
Including all vertices and edges in Dδ∩δT, we obtain a triangulation of a polygon, which

we call the δ-approximation of D and still denote by Dδ.

Measures. Given measurable spaces E and F , a measure µ on E, and a measurable

map ϕ:E!F , the pushforward of µ under ϕ is denoted by ϕ∗µ. Let f be a measurable

non-negative function on E. We let fµ denote the measure whose Radon–Nikodym with

respect to µ is f .

Random variables. Given two random variables X and Y , we write X
d
=Y if X and

Y have the same law. If Z and W are two random variables on the same probability

space, we say that Z (almost surely) determines W if and only if there exists a random

variable W ′ measurable with respect to the σ-algebra generated by Z such that W=W ′

almost surely.

2.2. Topological preliminaries

In this section we define the topologies used in Theorems 1.5 and 1.6, following [GHS1].

We start by defining the GHPU topology in Theorem 1.5. Given a metric space (X, d),

(5) In case of a draw, we choose Dδ arbitrarily from the set of largest δ -polygons, but note that
Dδ will be uniquely determined for all sufficiently small δ.
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for two closed sets E1, E2⊂X, their Hausdorff distance is given by

d
H
d (E1, E2) :=max

{
sup
x∈E1

inf
y∈E2

d(x, y), sup
y∈E2

inf
x∈E1

d(x, y)
}
.

For a closed set A⊂X and ε>0, define

Aε= {z ∈X : d(x, z)⩽ ε for some x∈A}

to be the ε-neighborhood of A. Then, for two finite Borel measures µ1 and µ2 on X,

their Prokhorov distance is given by

d
P
d (µ1, µ2)

= inf{ε> 0 :µ1(A)⩽µ2(Aε)+ε and µ2(A)⩽µ1(Aε)+ε for all closed sets A⊂X}.

Let C0(R, X) be the space of continuous curves ξ:R!X which extend continuously

to the extended real line [−∞,∞], i.e., the limits limt!+∞ ξ(t) and limt!−∞ ξ(t) exist.

The uniform distance between ξ1, ξ2∈C0(R, X) is given by

d
U
d (ξ1, ξ2) := sup

t∈R
d(ξ1(t), ξ2(t)).

For a finite interval [a, b], we can view a curve ξ: [a, b]!X as an element of C0(R, X) by

defining

ξ(t)=

{
ξ(a), for t< a,

ξ(b), for t> b.

Let MGHPU be the set of quadruples X=(X, d, µ, ξ) where (X, d) is a compact met-

ric space, µ is a finite Borel measure on X, and ξ∈C0(R, X). If we are given ele-

ments X1=(X1, d1, µ1, ξ1) and X2=(X2, d2, µ2, ξ2) ofMGHPU and isometric embeddings

ι1: (X1, d1)!(W,D) and ι2: (X2, D2)!(W,D) for some metric space (W,D), we define

the GHPU distortion of (ι1, ι2) by

DisGHPU
X1,X2 (W,D, ι1, ι2) :=dH

D(ι
1(X1), ι2(X2))

+dP
D(((ι

1)∗µ
1, (ι2)∗µ

2))

+dU
D(ι

1
�ξ1, ι2�ξ2).

(2.1)

The Gromov–Hausdorff–Prokhorov-uniform distance between X1 and X2 is given by

d
GHPU(X1,X2)= inf

(W,D),ι1,ι2
DisGHPU

X1,X2 (W,D, ι1, ι2), (2.2)

where the infimum is over all compact metric spaces (W,D) and isometric embeddings

ι1:X1!W and ι2:X2!W . By [GM1, §2], dGHPU is a complete separable metric
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on MGHPU provided we identify any two elements of MGHPU which differ by a measure-

preserving and curve-preserving isometry.

Given a graph G, identify each edge of G with a copy of the unit interval [0, 1]. We

define a metric dgrG on G by requiring that this identification is an isometric embedding

of [0, 1] into (G, dG, µG). Let µG denote the counting measure on the vertex set of G.

For a discrete interval [a, b]Z :=[a, b]∩Z, a function ρ: [a, b]Z!E(G) is called an edge path

if ρ(i) and ρ(i+1) share an endpoint for each i∈[a, b−1]Z. We can extend an edge path ρ

from [a, b]Z to [a−1, b] in such a way that ρ is continuous and ρ([i−1, i]) lies on the edge

ρ(i). Note that there are multiple ways to extend ρ, but any two different extensions

result in curves with uniform distance at most 1.

Recall the Boltzmann triangulation Mn in Theorem 1.5, whose boundary length

ℓn satisfies (3n)−1/2ℓn!1. Then, ∂Mn can be viewed as an edge path βn tracing the

boundary clockwise(6) starting and ending at the root edge. Set

dn :=
(
3
4n

)−1/4
dgrMn , µn := (2n)−1µMn , and ξ⃗n(t) :=βn(tℓn) for t∈ [0, 1]. (2.3)

Then, Mn :=(Mn, dn, µn, ξ⃗n) is a random variable inMGHPU. Now, the precise meaning

of Theorem 1.5 becomes clear. It states that Mn converge in law to a random variable

BD1 in the GHPU topology. A random variable with the law of BD1 is called a free

Brownian disk with unit perimeter. We refer to [BM] for an explicit construction of BD1

using the Brownian snake. For the purpose of this paper, we can take Theorem 1.5 as

our definition of BD1. Alternatively, Theorem 2.7 below specifies BD1 as well.

We now define the GHPUL topology used in Theorem 1.6. Given a metric space

(X, d), an unrooted oriented loop on X is a continuous map from the circle to X identified

up to reparametrization by orientation-preserving homeomorphisms of the circle. Define

the pseudo-distance between two continuous maps from the circle R/Z to X by

d
u
d(ℓ, ℓ

′)= inf
ψ

sup
t∈R/Z

d(ℓ(t), ℓ′(ψ(t)),

where the infimum is taken over all orientation-preserving homeomorphisms

ψ:R/Z−!R/Z.

(6) In contrast to some other papers [AHS], [GHS1], we orient ∂Mn clockwise because in Theo-

rem 1.9, the percolation has monochromatic blue boundary condition. We want to be consistent with
the orientation induced by the percolation where blue color is on the right-hand side. Also see §2.4,
where we require the domain to have clockwise oriented boundary when the CLE6 has monochromatic

blue boundary condition. Note that the law of (Mn, dn, µn, ξ⃗n) in MGHPU is unchanged if we swap the
orientation of ∂Mn.
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A closed set of unrooted oriented loops on X with respect to the du
d-metric is called

a loop ensemble on X. We let L(X) be the space of loop ensembles on X equipped with

the Hausdorff metric

d
L
d (c, c

′)=max{dL,0
d (c, c′),dL,0

d (c′, c)}, (2.4)

where

d
L,0
d (c, c′)= inf{ε> 0 : for all ℓ∈ c there exists ℓ′ ∈ c′ such that du

d(ℓ, ℓ
′)⩽ ε}. (2.5)

LetMGHPUL be the set of 5-tuples X=(X, d, µ, η, c), where (X, d) is a compact metric

space, µ is a finite Borel measure on X, η∈C0(R, X), and c∈L(X). If we are given

elements X1=(X1, d1, µ1, η1, c1) and X2=(X2, d2, µ2, η2, c2) in MGHPUL and isometric

embeddings ι1: (X1, d1)!(W,D) and ι2: (X2, d2)!(W,D) for some metric space (W,D),

we define the GHPU-loop (GHPUL) distortion of (ι1, ι2) by

DisGHPUL
X1,X2 (W,D, ι1, ι2) :=DisGHPU

X1,X2 (W,D, ι1, ι2)+dL
d (ι

1(c1), ι2(c2)),

where DisGHPU
X1,X2 ( ·) is the GHPU distortion as defined in (2.1).

The GHPUL distance between X1 and X2 is given by

d
GHPUL(X1,X2)= inf

(W,D),ι1,ι2
DisGHPUL

X1,X2 (W,D, ι1, ι2),

where the infimum is over all compact metric spaces (W,D) and isometric embeddings

ι1:X1!W and ι2:X2!W . Following the same argument for the completeness and

separability of (MGHPU,dGHPU) in [GM1, Proposition 1.3 and §2.2], we see that the

space (MGHPUL,dGHPUL) is a complete separable metric space.

Recall Mn in Theorem 1.6. Let ωn be sampled from BerMn with monochromatic

blue boundary condition and let Υn :=Γ(Mn, ωn) be the loop ensemble of ωn defined

in §1.3. Given a loop ℓ∈Υn, the edges traversed by ℓ form an edge path. Therefore ℓ

can be viewed as an unrooted oriented loop on Mn. This way, Υn can be viewed as an

element in L(Mn) and (Mn, dn, µn, ξ⃗n,Υn) is a random variable in MGHPUL. We write

(Mn, dn, µn, ξ⃗n,Υn) as (Mn,Υn) for simplicity. In Theorem 1.6, {(Mn,Υni )}i∈N should

be understood as a sequence of identically distributed random variables inMGHPUL with

the law of (Mn,Υn).

2.3.
√

8
3
-Liouville quantum gravity

Let us recall the definition of the Gaussian free field (GFF). Let D⊊C be a simply

connected domain and let h be a random distribution on D. We call h a zero-boundary
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GFF on D if, for any compactly supported smooth function f :D!R, (h, f) is a centered

Gaussian with variance ∫∫
f(x)GD(x, y)f(y) d

2x d2y,

where GD( · , ·) is the Green’s function on D with Dirichlet boundary condition. We call

h a free-boundary GFF on D if, for any smooth function g on D with∫
D

g(x) d2x=0,

(h, g) is a centered Gaussian with variance∫∫
f(x)GN(x, y)f(y) d

2x d2y,

where GN( · , ·) is the Green’s function on D with Neumann boundary condition. The

law of the zero-boundary GFF is unique, while the law of free-boundary GFF is only

unique up to additive constant. The zero-boundary GFF and the free-boundary GFF are

not pointwise defined functions, but almost surely belong to the Sobolev space H−1(D).

We refer to [Sh1], [Sh2], [DMS] for more details on the GFF.

Let

DH= {(D,h) :D⊊C is a simply connected C0 domain, h is a distribution on D}.

Fix γ∈(0, 2). Given (D,h), (D̃, h̃)∈DH, let ϕ: D̃!D be a conformal map. We write

(D,h)
ϕ∼γ (D̃, h̃) if and only if h̃=h�ϕ+Q log |ϕ′| for Q :=

2

γ
+
γ

2
. (2.6)

We write (D,h)∼γ (D̃, h̃) if and only if there exists a conformal map ϕ: D̃!D such that

(D,h)
ϕ∼γ (D̃, h̃). Then, ∼γ defines an equivalence relation on DH. Let DHγ :=DH/∼γ .

By the Riemann mapping theorem, DHγ is in bijection with distributions on H if we

identify distributions h and h̃ on H satisfying (H, h)∼γ(H, h̃). This allows us to define

a topology on DHγ from the natural topology on distributions on H so that we can

consider the Borel σ-algebra and probability measures on DHγ . An element in DHγ

is called a generalized surface with disk topology. A random variable taking values in

DHγ is called a γ-Liouville quantum gravity surface (γ-LQG surface). More generally,

we can define generalized surfaces decorated with additional structures, such as metrics,

measures, points, and curves.
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Definition 2.1. For i=1, 2, let (Di, hi)∈DH. Let di, µi, xi, and ηi be a metric, a

measure, a point, and a curve on D∪∂D, respectively. Let ϕ:D2!D1 be a conformal

map. If (D1, h1)
ϕ∼γ (D2, h2), d2( · , ·)=d1(ϕ( ·), ϕ( ·)), µ1=ϕ∗µ

2, x1=ϕ(x2), and η1=ϕ�η2,

we write

(D1, h1, d1, µ1, x1, η1)
ϕ∼γ (D2, h2, d2, µ2, x2, η2).

If there are multiple metrics, measures, points, and/or curves, define
ϕ∼γ similarly. We

define the equivalence relation ∼γ for these tuples in the same way as we defined

(D,h)∼γ (D̃, h̃).

Convention 2.2. In this paper we focus on γ=
√

8
3 . Accordingly, Q=5/

√
6 in (2.6).

We will simply write DH,
ϕ∼, and ∼ instead of DH√

8/3
,
ϕ∼√

8/3
, and ∼√

8/3
, respectively.

In particular, if S is an element in DH, possibly with decorations as in Definition 2.1,

then we write its equivalence class under ∼ as S/∼.

Next, we introduce a general class of random distributions which covers all GFF

type distributions considered in this paper, such as the ones in Definition 2.4 and in

§5.1.1.

Definition 2.3. (Free Liouville field) A random distribution ĥ on H is called a free

Liouville field on H if there exists a pair (h′, g) such that the following conditions hold:

(1) h′ is a free-boundary GFF on H and g is a random function on H∪∂H which is

continuous except at finitely many points on ∂H;
(2) the law of ĥ is absolutely continuous with respect to the law of h′+g|H.
Given a simply connected domain D, a random distribution h on D is called a free

Liouville field on D if there exists a free Liouville field ĥ on H such that

(D,h)∼ (H, ĥ).

Set γ=
√

8
3 as in Convention 2.2. Let D be a simply connected C0 domain and

let h be a free Liouville field on D. According to [DS], one can define the
√

8
3 -LQG

area measure µh=:“eγh d2z” by a regularization procedure limε!0 ε
γ2/2eγhε , where hε is

the circle average modification of h; see Definition 5.25. Let ϕ:H!D be a conformal

map and h̃ be such that (D,h)
ϕ∼(H, h̃). One can similarly define a non-trivial measure

ξh̃ :=“eγh̃(z)/2 dz” on ∂H and then define ξh :=(ϕ−1)∗ξh̃. By [DS], the definition of ξh

does a.s. not depend on the choice of ϕ (see also [SWa]). We call ξh the
√

8
3 -LQG

boundary measure of (D,h). By [MS4], [MS5] a metric dh corresponding to the metric

tensor (eγh/4)2(dx2+dy2) may be defined on D∪∂D using a growth process called the
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quantum Loewner evolution (QLE). Recently, [GM3], [DDDF] constructed dh via a direct

regularization procedure similar to the area case. We list two important properties of

(dh, µh, ξh):

µh+c= eγcµh, ξh+c= eγc/2ξh, and dh+c= eγc/4dh a.s. for all c∈R. (2.7)

and

(D,h, dh, µh, ξh)
ϕ∼ (H, h̃, dh̃, µh̃, ξh̃) a.s. (2.8)

We now introduce the main
√

8
3 -LQG surface that will be considered in this paper.

It will be most convenient to introduce it on the horizontal strip S=R×(0, π). Let h

be a free-boundary GFF on S. Then, h can uniquely written as h=hc+hℓ, where hc is

constant on vertical lines of the form u+[0, iπ] for u∈R, and hℓ has mean zero on all

such vertical lines. Since the law of the free-boundary GFF is unique modulo an additive

constant, the law of hℓ does not depend on the choice of additive constant for h, and we

call hℓ the lateral component of the free-boundary GFF on S.

Definition 2.4. (
√

8
3 -LQG disk) Let γ=

√
8
3 , Q=5/

√
6, and a=Q−γ=1/

√
6. Let

(Xt)t∈R be such that (Xt)t⩾0 has the law of B2t−at, where Bt is a standard Brownian

motion starting at the origin. Furthermore, (X−t)t⩾0 is independent of (Xt)t⩾0 and has

the law of B2t−at conditioned on being negative.(7) Let h1(z)=Xt for each z∈S and

t∈R with Re z=t. Let h2 be a random distribution on S independent of Xt which has

the law of the lateral component of the free-boundary GFF on S. Let hs=h1+h2 and

M :=supt∈RXt. Let h
d be a random distribution on S, whose law is given by

hs−2γ−1 log ξhs(∂S) reweighted by e−2(Q−γ)Mξhs(∂S)4/γ2−1. (2.9)

Remark 2.5. (Equivalence of definitions of
√

8
3 -LQG disk) Various equivalent defini-

tions of the unit boundary length
√

8
3 -LQG disk are given in [DMS], [MS3]. We choose to

work with Definition 2.4 because the field is described explicitly. Here we show the equiv-

alence of Definition 2.4 and the construction in [DMS, §4.5]. In the notation of Defini-

tion 2.4, the construction in [DMS] can be described as follows. Let Ps be the probability
measure given by hs before the reweighting in (2.9) and let �hs :=hs−M . Let ∂̄ :=ξ�hs(∂S)
so that e−2(Q−γ)Mξhs(∂S)=∂̄. Let the pair (e∗, h̄s) be sampled from the product mea-

sure 1x>0x
4/γ2

dx⊗dPs. Then, the conditional law of (S,�hs+2γ−1 log e∗,+∞) given the

event e∗∂=1 is the unit boundary
√

8
3 -LQG disk as defined in [DMS].

(7) Here we condition on a zero-probability event. This can be made sense of via a limiting
procedure.
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To see the equivalence with Definition 2.4, we first note that when e∗∂=1, we have

�hs+2γ−1 log e∗ =�hs−2γ−1 log ∂̄=hs−2γ−1 log ξhs(∂S).

Moreover, for each ε>0, by Bayes’ rule, the conditional law Ps[ · |e∗∂̄∈[1, 1+ε]] equals
c∂̄4/γ

2−1 dPs, where c is a normalizing constant not depending on ε. Sending ε!0, we

obtain the equivalence.

We now give the precise definition of the field h in Theorem 1.6.

Definition 2.6. Let ϕ:D!S be the conformal map satisfying

ϕ(0)= 1
2πi and ϕ(1)=+∞.

Let h be the free Liouville field on D such that

(S, hd) ϕ∼ (D,h),

where hd is as in Definition 2.4.

By (2.8), Theorem 1.6 remains true if we replace ϕ by another conformal map from

D to S. We choose this particular definition both for concreteness and for technical

convenience in §6 (see Lemma 6.2).

The Brownian disk BD1 can be identified with (D,h) in Theorem 1.6 as follows.

Theorem 2.7. ([MS5]) Let h be as in Definition 2.6, let (dh, µh, ξh) be as above

(2.7), and let ξ⃗h be a curve of duration 1 which traces ∂D clockwise starting from 1 in

the speed specified by ξh. Then, there exist constants cd, cm>0 such that

(D∪∂D, cd dh, cm µh, ξ⃗h),

viewed as a random variable in MGHPU, is a free Brownian disk with unit perimeter.

We conclude this section by the precise description of the law of h∆ in Theorem 1.3.

Let h be as in Definition 2.6. Conditioning on h, independently sample two points v1

and v2 on ∂D according to the measure ξh. By possibly relabeling v1 and v2, we assume

that 1, v1, and v2 are ordered counterclockwise. Let ψ:D!∆ be the conformal map that

maps 1, v1, and v2 to (1, 0, 0), (0, 1, 0), and (0, 0, 1), respectively.

Definition 2.8. In Theorem 1.3, h∆ denotes a random distribution with the law of

h�ψ+Q log |ψ′|, where (h, ψ) is defined as in the paragraph above. Moreover,

d∆ := cd dh∆
, µ∆ := cm µh∆

, and ξ∆ := ξh∆
,

with dh∆
, µh∆

, ξh∆
as described above (2.7), and constants cd and cm as in Theorem 2.7.
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2.4. Chordal SLE6 and CLE6

Let

D∗,∗ = {(D, a, b) :D is a simply connected C0 domain, a, b∈ ∂D, a ̸= b}.

The clockwise (resp. counterclockwise) arc on ∂D from a to b is called the left (resp. right)

boundary of (D, a, b). Suppose η is a curve on D∪∂D from a to b for some (D, a, b)∈D∗,∗.

For each t⩾0 with η(t)∈D∪∂D, let Dt be the connected component of D\η([0, t]) whose
boundary contains b. Otherwise, let Dt=∅. For each (D, a, b)∈D∗,∗, the (chordal) SLE6

on (D, a, b) is a probability measure on non-self-crossing curves on D∪∂D from a to b

modulo increasing reparametrization. SLE6 is uniquely characterized by the following

three properties.

• Conformal invariance. Suppose ϕ is a conformal map from D to another simply

connected C0 domain D′. Then, η has the law of an SLE6 on (D, a, b) if and only if ϕ�η

(modulo increasing parametrization) has the law of an SLE6 on (D′, ϕ(a), ϕ(b)).

• Domain Markov property. Let η be an SLE6 on (D, a, b), parameterized such that

the parametrization on each initial segment is determined by the same segment modulo

increasing parametrization. For each t>0, on the event Dt ̸=∅, we have that Dt is C
0

a.s. and the conditional law of η after t is that of an SLE6 on (Dt, η(t), b).

• Target invariance. Let η (resp. η′) be a chordal SLE6 on (D, a, b) (resp. (D, a′, b′))

such that b ̸=b′. Let τ (resp. τ ′) be the first time η (resp. η′) hits the arc on ∂D between b

and b′ that does not contain a. Then η|[0,τ ] and η|[0,τ ′] are equal in law modulo increasing

reparametrization.

It is proved by Schramm [Schr] that the first two properties define a 1-parameter

family of random curves called (chordal) SLEκ with κ∈(0,∞). The target invariance

property singles out SLE6. By [RSc], if η is an SLE6 curve on (D, a, b), then η is

a.s. a non-simple curve which create “bubbles” (bounded simply connected domains) by

hitting its past and the domain boundary. Furthermore, the range of η has zero Lebesgue

measure a.s. When Dt ̸=∅, let ηtℓ and ηtr be the left and right, respectively, boundary of

(Dt, η(t), b). For t>0, the laws of ηtℓ and η
t
r away from ∂D are variants of SLE8/3 [Du].

We refer to [L] for more background on SLE6.

Given δ>0 and a Jordan domain D, let Dδ be the δ -approximation of D (see §2.1).
Let ωδ be a Bernoulli- 12 site percolation on Dδ, namely, each inner vertex of Dδ is colored

red or blue independently with probability 1
2 . Let Γδ be the loop ensembles of ωδ with

monochromatic blue boundary condition. Let L(D) be the space of loop ensembles on

D∪∂D endowed with the dL
d -metric (see §2.2), where d is the Euclidean metric on D.

Note that L(D) is complete and separable; see [CN, §2.2].
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Theorem 2.9. ([CN]) As δ!0, Γδ converge in law to a random variable Γ in L(D)

in the dL
d -metric.

We take Theorem 2.9 as our definition of CLE6 on D.

Definition 2.10. (CLE6) A random variable in L(D) with the law of Γ is called a

CLE6 on D with monochromatic blue boundary condition. A random variable with the

law of the loop ensemble obtained by reversing the orientation of each loop in Γ is called

a CLE6 on D with monochromatic red boundary condition.

For Γ in Definition 2.10, with probability 1, for each z∈D, the loop whose range is

the single point z belongs to Γ. We call these loops trivial loops in Γ. There are countably

many non-trivial loops in Γ almost surely, whose dud -closure equals Γ. Throughout the

paper when we declare a loop ℓ∈Γ, we always assume that ℓ is a non-trivial loop.

We now explain how to sample a CLE6 (with monochromatic boundary condition)

iteratively from chordal SLE6. We start by assigning an orientation to ∂D. If we want

the CLE6 to have blue (resp. red) boundary condition, we assign clockwise (resp. coun-

terclockwise) orientation to ∂D. Fix two distinct points a, b∈∂D. Let �ab be the segment

on ∂D from a to b in the same orientation as ∂D. We first sample an SLE6 η
ab on

(D, a, b). A connected component of D\ηab is called a dichromatic bubble if its boundary

has non-empty intersection with �ab. Let B be a dichromatic bubble and let xB and x̂B

be the last and first, respectively, point on ∂B visited by ηab, and let ηB be the segment

of ηab in between. For each dichromatic bubble B, conditioning on η, let ηB be a chordal

SLE6 on (B, xB, x̂B). Moreover, we assume that these ηB’s are conditionally independent,

given η. Let ℓB be the oriented loop obtained by concatenating ηB and ηB. Let

Γba= {ℓB :B is a dichromatic bubble}.

Let B′ be a connected component of D\
⋃
ℓ∈Γb

a
ℓ. The orientation of loops in Γba and

∂D together define an orientation on ∂B′, either clockwise or counterclockwise. If the

orientation is clockwise (resp. counterclockwise), we call B′ a monochromatic blue (resp.

red) bubble. Conditioning on Γba, for each monochromatic bubble B′, we independently

iterate the sampling procedure with the domain D replaced by B′ with the already

assigned orientation on ∂B′.

Lemma 2.11. ([CN]) Given ηab, Γba, and {ΓB′} as above, let Γ be the union of Γba
and the collection of non-trivial loops in ΓB′ , where B′ ranges over all monochromatic

bubbles. Then, if ∂D is oriented clockwise (resp. counterclockwise), then Γ has the law

of the non-trivial loops of a CLE6 on D with monochromatic blue (resp. red) boundary

condition. Moreover, Γ determines Γba and ηab almost surely. We call ηab the interface

of Γ on (D, a, b).
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Figure 2.1. Left : Illustration of the construction of a CLE6 loop. The concatenation of the

black curves and the purple curve is an SLE6 ηab from a to b. The domain B (light yellow)

is a dichromatic bubble. The CLE6 loop ℓB is the concatenation of ηB (purple) and ηB
(red). Middle: Illustration of the region reg(ℓ) (light yellow) surrounded by the CLE6 loop ℓ.

Right : Illustration of the operation of flipping the color at a pivotal point v. In Case (1) of

Definition 2.12 we go from left to right, and in Case (2) of Definition 2.12 we go from right
to left. The loops on the top (resp. bottom) left are non-nested (resp. nested).

Both Γba and η
ab can be defined as explicit functions of Γ. Consider all the loops in Γ

having non-empty intersection with �ab. There is a natural partial order ≺ on these loops

where ℓ≺ℓ′ if and only if ℓ is in a connected component of D\ℓ′ whose boundary contains

neither a nor b. Then Γba is exactly the set of maximal elements for the partial order ≺.

Moreover, for each loop ℓ∈Γba, it is possible to recover its corresponding dichromatic

bubble B, ηB, and ηB. By concatenating ηB for all B and taking a closure, we obtain ηab.

As a consequence of the iterative construction above and the conformal invariance

of SLE6, the law of CLE6 is also conformally invariant. Namely, let Γ be a CLE6 on a

Jordan domain D. Let D′ be another Jordan domain and let ϕ:D!D′ be a deterministic

conformal map. Then, the law of {ϕ�ℓ}ℓ∈Γ is a CLE6 on D′ with the same boundary

condition as Γ.

We now record some important geometric properties of CLE6. Suppose that we are

in the setting of Definition 2.10. For each ℓ∈Γ, let ¬ℓ be the connected component of

C\ℓ whose closure contains ∂D, where (here and below) we identify ℓ with its range.

Let reg(ℓ) be the closure of the union of all connected components of C\ℓ other than ¬ℓ
whose boundary is visited by ℓ in the same orientation as ℓ is visiting ∂(¬ℓ). We call

reg(ℓ) the region enclosed by ℓ. Given ℓ ̸=ℓ′∈Γ, we say that ℓ and ℓ′ are nested if and

only if ℓ⊂reg(ℓ′) or ℓ′⊂reg(ℓ).

Definition 2.12. (Pivotal point) Suppose that D and Γ are as in Theorem 2.9. A

point v∈D is called a pivotal point of Γ if one of the following two occurs:

(1) There exist two loops ℓ, ℓ′∈Γ such that v∈ℓ∩ℓ′.
(2) There exists a loop ℓ∈Γ that visits v and ℓ visits v at least twice.

The following basic properties of CLE6 are extracted from [CN].
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Lemma 2.13. If D and Γ are as in Theorem 2.9, then the following hold almost

surely.

• (Local finiteness) For each ε>0, there exist finitely many loops in Γ with diameter

larger than ε.

• (Finite chaining) Given any ℓ∈Γ and ℓ′∈Γ∪{∂D}, there is a finite set of loops

ℓ0=ℓ, ℓ1, ..., ℓk=ℓ
′ in Γ such that, for all i∈{1, ..., k}, ℓi−1∩ℓi ̸=∅.

• (No triple points) Γ has no pivotal points on ∂D. If v is a pivotal point of Γ,

exactly one of the following holds: There exist exactly two loops ℓ, ℓ′∈Γ that visit v, each

of which visits v exactly once; or there exists a unique loop ℓ∈Γ that visits v, and ℓ visits

v exactly twice.

• (Parity) Given any pair of loops in ℓ, ℓ′∈Γ with ℓ∩ℓ′ ̸=∅, ℓ and ℓ′ have opposite

orientation if and only if they are nested. If ℓ∩∂D ̸=∅, then ℓ must be an outermost

loop, in the sense that there exists no ℓ′∈Γ other than ℓ with ℓ⊂reg(ℓ′).

The local finiteness follows from [CN, Lemma 6.6]. The finite chaining and no-

triple-point properties follow from [CN, Theorem 2]. The parity property follows from

the no-triple-point property.

If v is a pivotal point of Γ, by flipping the color at v, we mean merging ℓ and ℓ′ into

a single loop in Case (1) of Definition 2.12 and splitting ℓ into two loops in Case (2) of

Definition 2.12. (See Figure 2.4.) If a loop does not visit v, flipping the color at v keeps

the loop unchanged. Let Γv denote the set of loops obtained after flipping the color at v.

By the parity property of CLE6, Γ induces an orientation on each loop in Γv, making it

an element of L(D) (after including trivial loops). By the no-triple point property, the

symmetric difference Lv of Γ and Γv always contains exactly three loops. Now we define

the continuum ε-pivotal points by mimicking the discrete definition in §1.4.2.

Definition 2.14. (ε-pivotal point) Given a Jordan domain D, let Γ be a CLE6 on D

and let h be a free Liouville field (see Definition 2.3) on D independent of Γ. Given a

pivotal point v of Γ and ε>0, we call v an ε-pivotal point of (h,Γ) if µh(reg(ℓ))⩾ε for

all ℓ∈Lv.

Remark 2.15. (CLE6 on top of
√

8
3 -LQG) Suppose we are in the setting of Theo-

rem 2.7. Let Γ be a CLE6 on D with monochromatic blue boundary condition. Then

(D∪∂D, cd dh, cm µh, ξ⃗h,Γ) is a random variable in MGHPUL. When it is clear from con-

text, we will denote this random variable by (D,h,Γ). In particular, (D,h,Γi) in The-

orem 1.6 should be understood in this sense. Now, Theorem 1.9 asserts that (Mn,Υn)

defined at the end of §2.2 converge in law to (D,h,Γ) in the GHPUL topology.
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3. A dynamical percolation on random triangulations

In this section we prove Theorem 1.6. The argument is “soft” as long as the “hard” input

Lemmas 3.2 and 3.3 are supplied. We postpone the proofs of these two lemmas to §6.
For ε>0, recall the dynamics (Mn, �ωε,nt )t⩾0 defined in §1.4.2. The following elemen-

tary observation is crucial to us. We leave the proof to the reader.

Lemma 3.1. Conditioning on Mn, the process (�ωε,nt )t⩾0 is stationary.

For t>0, let 
Υε,nt :=Γ(Mn, �ωε,nt ) be the loop ensemble of �ωε,nt . Recall Mn∈MGHPU

in §2.2, which is obtained by rescaling Mn according to (2.3). We view (Mn,
Υε,nt )t⩾0 as

a process taking values in MGHPUL as explained at the end of §2.2. In §6, we will prove

the following.

Lemma 3.2. For any fixed ε>0, (Mn,
Υε,ni )i∈N converge in law as n!∞ to a sta-

tionary sequence (Y εi )i∈N in the GHPUL topology.

We restrict the index set to positive integers in Lemma 3.2 to avoid unnecessary

topological technicalities for continuous time processes.

Recall (D,h,Γ) in Remark 2.15. By Theorem 1.9, for each i∈N, Y εi in Lemma 3.2 is

equal in law to (D,h,Γ) as a random variable in MGHPUL. More generally, there exists

a sequence of CLE6’s (�Γ
ε
i )i∈N coupled with h such that (Y εi )i∈N

d
=(D,h, �Γεi )i∈N.

Lemma 3.3. Let (h, �Γεi )i∈N be defined as above. There exists a sequence of CLE6’s

(�Γi)i∈N coupled with h such that, as ε!0, (h, �Γεi )i∈N converge in law to (h, �Γi)i∈N in the

H−1(D)×L(D) topology. Moreover, (�Γi)i∈N is stationary and ergodic.

To deduce Theorem 1.6 from the above lemmas, we use the following observation.

Lemma 3.4. Let X and (Yi)i∈N be random variables on the same probability space.

Suppose that (X,Yi)i∈N is stationary and (Yi)i∈N is ergodic. Then, X and Y1 are

independent.

Proof. Let f and g be two bounded real-valued measurable functions defined on the

space in which X and Yi, respectively, take values. By stationarity of (X,Yi)i∈N,

Cov(g(X), f(Y1))=Cov

(
g(X),

1

m

m∑
i=1

f(Yi)

)
.

Now, Lemma 3.4 follows from the Birkhoff ergodic theorem.

Proof of Theorem 1.6. Fix ε∈(0, 1). Consider the process

(Mn, �ωε,nt )t⩾0
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in Lemma 6.35. Conditioning on Mn, let ωn be sampled from BerMn such that ωn is

conditionally independent of (�ωε,nt )t⩾0. Let

Υn=Γ(Mn, ωn).

By Theorem 1.9, (Mn,
Υε,ni )i∈N and (Mn,Υn) are tight in the GHPUL topology. At this

moment, we do not know that they jointly converge in law. Indeed, the joint convergence

of (Mn,
Υε,n1 ) and (Mn,Υn) is precisely the k=2 case of Theorem 1.6. We now use

the previous lemmas to show that, in any subsequential limit, the joint limiting law of

(Mn,
Υε,n1 ) and (Mn,Υn) is as desired.

By the Skorokhod representation theorem, given any subsequence N⊂N, we can

choose a further subsequence N ′⊂N such that there exists a coupling of

{(Mn, ωn, �ωε,ni )i∈N :n∈N ′},

where both (Mn,
Υε,ni )i∈N and (Mn,Υn) have almost sure GHPUL limits as n!∞ along

N ′. By Lemma 2.7, the GHPU limit of Mn can be written as

(∆̄, cd dh, cm µh, ξ⃗h),

where h is as defined in Definition 2.6. As in Lemma 3.2, we denote the GHPUL limit

of (Mn,
Υε,ni )i∈N by (D,h, �Γεi )i∈N, where (�Γεi )i∈N is a sequence of CLE6’s on D. By

Theorem 1.9, there exists a CLE6 Γ on D with monochromatic blue boundary condition

such that (D,h,Γ) is the GHPUL limit of (Mn,Υn). Moreover, (h,Γ, �Γεi )i∈N is stationary.

By Lemma 3.3, the ε-indexed family {(h,Γ, �Γεi )i∈N :ε>0} is tight. Therefore, we

can choose a sequence εm#0 such that, as m!∞, (h,Γ, �Γεmi )i∈N converge in law to a

stationary sequence, which we denote by (h̃, Γ̃, �Γi)i∈N. (Similarly as above, due to the

presence of Γ, we need to choose a sequence εm#0 to ensure convergence in law instead

of simply taking ε#0.) Applying Lemma 3.4 to X=(h̃, Γ̃) and Yi=�Γi, we see that (h̃, Γ̃)

is independent of �Γ1. Since the law of (Mn,Υn,
Υε,n1 ) is equal to the law of (Mn,Υn1 ,Υ
n
2 )

in Theorem 1.6, which does not depend on ε, the law of (h,Γ, �Γε1) does not depend on

ε either. In fact, it must equal the law of (h̃, Γ̃, �Γ1). Therefore, (h,Γ) is independent

of �Γε1. In particular, the law of (h,Γ, �Γε1) does not depend on the choice of subsequences

N and N ′. Therefore, (Mn,Υn) and (Mn,Υε,n1 ) jointly converge in law to (D,h,Γ) and
(D,h, �Γε1), respectively. This gives Theorem 1.6, when k=2.

For k⩾3, we assume by induction that Theorem 1.6 holds for k−1. We now replace

ωn above by k−1 independent percolations sampled from BerMn , and apply the exact

same argument as above. Then, by the induction hypothesis, Γ above becomes k−1

independent copies of CLE6 which are also independent of h. We again use Lemma 3.4

to conclude the proof.
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4. Convergence under the Cardy embedding

In this section we will conclude the proof of Theorems 1.3 and 1.4.

Recall h∆, d∆=cddh∆
, µ∆=cmµh∆

, and ξ∆=ξh∆
in Theorem 1.3, whose precise

meaning can be found in Definition 2.8. Let Γ be a CLE6 on ∆ with monochromatic

blue boundary condition independent of h∆. Then, we can identify (∆, h∆,Γ) with

a random variable in MGHPUL as explained in Remark 2.15, with (D,h) replaced by

(∆, h∆). We first state a basic variant of Theorem 1.6 for maps with marked points.

Note that elements inMGHPUL with marked points can be naturally endowed a topology

as in §2.2, which includes the convergence of the marked points.

Lemma 4.1. Let (Mn, an, bn, cn) and {Υni }i∈N be as in Theorem 1.6. Let h∆ be as

above and let {Γi}i∈N be independent CLE6’s which are also independent of h∆. Let

(v̂n1 , v̂
n
2 , v̂

n
3 ):=(an, bn, cn). Let ẑ1, ẑ2, and ẑ3 be equal to (1, 0, 0), (0, 1, 0), and (0, 0, 1),

respectively. Conditioning on (Mn,Υn1 ,Υ
n
2 , ... ), let v̂

n
4 (resp. {vni :i∈N}) be vertices of

∂Mn (resp. Mn) which are sampled uniformly and independently at random. Condition-

ing on (h∆,Γ), let ẑ4 (resp. {zi :i∈N}) be boundary (resp. interior) points of ∆ which

are sampled independently from the measure ξ∆ (resp. µ∆). Then, there exists a coupling

such that for each m∈N, almost surely the following convergence holds in the GHPUL

topology with m+4 marked points:

lim
n!∞

(Mn,Υni , v̂
n
1 , ..., v̂

n
4 , v

n
1 , ..., v

n
m)

= (∆, h∆,Γi, ẑ1, ..., ẑ4, z1, ..., zm) for each i∈N.
(4.1)

Proof. By Skorokhod embedding theorem, it suffices to show that the convergence

in (4.1) holds in law for a fixed m. The convergence of v̂n1 , ..., v̂
n
4 follows from the uniform

convergence of the boundary curve, and the convergence of vn1 , ..., v
n
m follows from the

convergence of µn. The gives the desired convergence in law.

Throughout this section, we work under a coupling as described in Lemma 4.1.

We will prove that (dn∆, µ
n
∆, ξ

n
∆) converge to (d∆, µ∆, ξ∆) in probability, which implies

Theorem 1.3.

We first will argue that, for each fixed i∈N, as n!∞,

Cdyn(vni )! zi in probability for the Euclidean metric on ∆̄. (4.2)

Since the total mass of µn∆ converge to that of µ∆ in probability and Cdyn(vni ) (resp. zi)

has the law of a vertex (resp. point) sampled according to µn∆ (resp. µ∆), (4.2) implies

that µn∆ converge to µ∆ in probability.
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We fix i∈N while proving (4.2). For j∈N, let

Ej,n1 := {ωnj ∈Ean(vni )},

namely, Ej,n1 is the event Ean(v
n
i ) in Definition 1.1 for ωnj . The dependence of Ej,n1 on i

is dropped in the notation, since i is fixed. Similarly, let

Ej,n2 := {ωnj ∈Ebn(vni )} and Ej,n3 := {ωnj ∈Ecn(vni )}.

Let Ej1, E
j
2, and E

j
3 be the continuum analogs of Ej,n1 , Ej,n2 , and Ej,n3 , respectively, defined

in terms of zi∈∆ and the CLE6 Γj . We describe Ej1 precisely following [BHS, §7.9];
Ej2 and Ej3 can be defined similarly by permuting the indices. Let η be the interface

of Γj on (∆, ẑ3, ẑ2) as defined in Lemma 2.11. Then,

Ej1 is the event that zi is strictly on the same side of η as ẑ1. (4.3)

To be precise, the event Ej1 occurs if and only if there is a path in ∆ connecting zi

and ẑ1 which does not intersect η. By [GHS1, Proposition 6.7] (which builds on [BHS,

Theorem 8.7]) the following convergence holds in probability

(1Ej,n
1
,1Ej,n

2
,1Ej,n

3
)! (1Ej

1
,1Ej

2
,1Ej

3
), j=1, ..., k. (4.4)

Here we use the following basic measure theoretic fact.

Lemma 4.2. Let (Xn, Yn)n⩾1 be a sequence of random variables taking values in a

complete separable metric space. Suppose that Xn!X in probability, (Xn, Yn)!(X,Y )

in law, Yn is measurable with respect to Xn for n⩾1, and Y is measurable with respect

to X. Then, Yn!Y in probability.

See [SSh, Lemma 4.5] for Lemma 4.2 with Xn≡X, which also works with little

modification if Xn!X a.s. instead. The case where Xn!X in probability follows from

the a.s. case by extracting subsequences.

For (4.4), we let Xn=(Mn,Υnj , v̂
n
1 , ..., v̂

n
4 , v

n
i ) and X=(∆, h∆,Γj , ẑ1, ..., ẑ4, zi). We

let Yn and Y be the two sides of (4.4). In the continuum, the interfaces and the crossing

events are measurable with respect to (Γj , ẑ1, ..., ẑ4, zi); see the end of [CN, §5].
It follows from (4.4) that, for any fixed k by choosing n (depending on k and ζ)

sufficiently large, we have with probability at least 1−ζ that

1

k

k∑
j=1

(1Ej,n
1
,1Ej,n

2
,1Ej,n

3
)=

1

k

k∑
j=1

(1Ej
1
,1Ej

2
,1Ej

3
). (4.5)
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By the Azuma–Hoeffding inequality for Bernoulli random variables, the following state-

ment holds uniformly in n. For k sufficiently large depending on ζ, with probability at

least 1−ζ,

∣∣∣∣1k
k∑
j=1

(1Ej,n
1
,1Ej,n

2
,1Ej,n

3
)−(BerMn [Ean(v

n
i )]+BerMn [Ebn(v

n
i )]+BerMn [Ecn(v

n
i )])

∣∣∣∣<ζ (4.6)

and ∣∣∣∣1k
k∑
j=1

(1Ej
1
,1Ej

2
,1Ej

3
)−(P[E1

1 ],P[E1
2 ],P[E1

3 ])

∣∣∣∣<ζ. (4.7)

Since P[E1
1 ]+P[E1

2 ]+P[E1
3 ]=1 by Theorem 1.2, on the event that (4.5)–(4.7) are satisfied,

one has

|BerMn [Ean(v
n
i )]+BerMn [Ebn(v

n
i )]+BerMn [Ecn(v

n
i )]−1|< 2ζ. (4.8)

Combining this with (4.5)–(4.7) and the definition of the Cardy embedding, we get that,

with probability at least 1−3ζ, for all sufficiently large n (depending only on ζ),

|Cdyn(vni )−zi|< 50ζ. (4.9)

Since ζ was arbitrary, we obtain (4.2), which concludes the proof that µn∆!µ∆ in prob-

ability.

We prove that ξn∆!ξ∆ in probability, by a very similar argument. As above, it is

sufficient to show that Cdyn(v̂n4 )!ẑ4 in probability for the Euclidean metric, as n!∞.

Again, the result follows by applying [BHS], which give convergence in probability of the

three crossing events Êj1, Ê
j
2, and Êj3 (now defined with v̂n4 instead of vni ). Note that

the convergence result for Êj1, Ê
j
2, and Ê

j
3 in [BHS, Theorem 8.7] is stated for the case

where the four boundary points have deterministic distances along the boundary from

the root, rather than being sampled uniformly and independently at random, but the

proof in [BHS, Theorem 8.7] is identical for the case of random points.

We now establish a modulus of continuity estimate for the Cardy embedding.

Proposition 4.3. We have

lim
r!0

sup
u,v∈V(Mn):dn(u,v)<r

|BerMn [Ean(u)]−BerMn [Ean(v)]|=0. (4.10)

The same holds with Ean replaced by Ebn and Ecn .

Before proving Proposition 4.3, we first recall the notion of percolation interface

following [GHS1]. Let M be a triangulation of a polygon and let e and e′ be two distinct

edges on M . Recall that (e, e′) denotes the counterclockwise arc on ∂M from e to e′.
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The (e, e′)-boundary condition for a site percolation on M is the coloring of ∂M where

vertices on (e, e′) (resp. (e′, e)) are blue (resp. red). Given a site percolation ωM on M ,

regardless of its own boundary condition, if we impose the (e, e′)-boundary condition to

it, then there is a unique edge path (recall §2.2) on M from e to e′, such that each edge

on the path has a red vertex on its left side and a blue vertex on its right side. We

call this path the percolation interface of ωM on (M, e, e′). Note that this percolation

interface only depends on the coloring of the inner vertices.

Proof of Proposition 4.3. Given a percolation interface ηn on (Mn, cn, bn) of a site

percolation on Mn, we call the segment between the last time ηn visits the counterclock-

wise arc (cn, an) and the first time ηn visit the counterclockwise arc (an, bn) the middle

segment of ηn. Here visits means passing through an edge with an endpoint on the arc.

Recall that dn is the graph distance on Mn rescaled by
(
3
4n

)−1/4
. Given a dn-metric ball

B on Mn, let En(B) be the event that the middle segment of ηn is passing though B.

Let

Xn(r) :=max
B

{BerMn(En(B))},

where B ranges over all such balls of radius r. We claim that

lim
r!0

lim sup
n!∞

Xn(r)= 0. (4.11)

Let us first explain that (4.10) follows from (4.11). Let ωn be sampled from BerMn and

ηn be its percolation interface on (Mn, cn, bn). It is elementary to check that the discrete

analog of (4.3) can be used to characterize the crossing events in terms of ηn; see e.g.

[BHS, §6.8]. As a consequence, given u, v∈V(Mn) and r>0 such that dn(u, v)<r, if

Ean(u)△Ean(v) occurs then the middle segment of ηn must cross the dn-ball centered

at u of radius r. Therefore, (4.11) implies (4.10).

We prove (4.11) by contradiction. Let ηi be the interface of Γi on (∆, ẑ3, ẑ2) as

defined in Lemma 2.11. We define the middle segment of ηi to be the segment between

the last time ηi visits the counterclockwise arc (ẑ3, ẑ1) and the first time ηi visit the

counterclockwise arc (ẑ1, ẑ2). Let ωni be the site percolation corresponding to Υni in

Lemma 4.1. If (4.11) does not hold, then there exists ζ>0 and a sequence rn!0 such

that, for each n, with probability at least ζ, there exists a dn-ball B of radius rn such

that En(B) occurs for the each of ωni (1⩽i⩽10). As explained below (4.4), the discrete

interfaces converge in probability in the coupling of Lemma 4.1. Since rn!0, sending

n!∞, we see that in this coupling with positive probability the middle segments of ηi for

1⩽i⩽10 share a common point on ∆̄. This is not possible because SLE6 has dimension
7
4 . More precisely, by the 1-point estimate by Beffara [Bf2, Proposition 4] the probability

that an SLE6 passes through a ball of Euclidean radius s decays like s2−7/4 uniformly

over all balls bounded away from the corners of ∆, and
(
2− 7

4

)
·10>2.
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Proposition 4.4. We have that

lim
n!∞

max
v∈V(Mn)

|BerMn [Ean(v)]+BerMn [Ebn(v)]+BerMn [Ecn(v)]−1|=0

in probability.

Proof. Since µ∆ almost surely assigns positive mass to any open set of ∆, {zi :i∈N}
is dense in ∆̄ for both Euclidean and the d∆-metric. (Recall that the d∆-metric and

the Euclidean metric induce the same topology as they are a.s. bi-Hölder with respect

to each other [MS5, Theorem 2].) Since we are under the coupling in Lemma 4.1, where

the convergence is almost sure, we have that

lim
n!0

sup
v∈V(Mn)

inf
i∈N

dn(v, vni )= 0

in probability. Proposition 4.4 now follows from this observation, inequality (4.8), and

Proposition 4.3.

To conclude the proof of Theorem 1.3, we must show that dn∆ converge in probability

to d∆. For z̄∈∆̄ and ζ>0, let B(z, ζ) denote the Euclidean ball of radius ζ centered at z̄.

As explained in the proof of Proposition 4.4, since µ∆ almost surely has full support on ∆,

{zi :i∈N} is dense in ∆̄, for both the Euclidean metric and the d∆-metric. Combined

with (4.2), we have

lim inf
n!∞

P[for each z̄ ∈ ∆̄ there exists v ∈V(Mn) such that Cdyn(v)∈B(z̄, ζ)]

⩾ 1−ζ.
(4.12)

Therefore,

sup
x∈∆̄

|Cdyn(v(x))−x|! 0 in probability as n!∞. (4.13)

On the other hand, we have

sup
x,y∈∆̄

|dn∆(x, y)−d∆(x, y)|⩽ sup
x,y∈∆̄

|dn(v(x), v(y))−d∆(Cdyn(v(x)),Cdyn(v(y)))|

+ sup
x,y∈∆̄

|d∆(Cdyn(v(x)),Cdyn(v(y)))−d∆(x, y)|.
(4.14)

Since d∆ induces the Euclidean topology, the second term on the right-hand side of (4.14)

converges to zero by (4.13). Therefore, to get the convergence of dn∆, it suffices to show

that

lim
n!∞

sup
v′,v′′∈V(Mn)

|dn(v′, v′′)−d∆(Cdyn(v′),Cdyn(v′′))|=0. (4.15)
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For any ζ>0, by Propositions 4.3 and 4.4, we can choose ρ>0 (depending only on ζ)

sufficiently small, such that, for all sufficiently large n (depending on ζ), the following

holds with probability at least 1−ζ:

sup
v,u∈V(Mn)

dn(u,v)<ρ

|Cdyn(u)−Cdyn(v)|<ζ. (4.16)

In the coupling in Lemma 4.1,

lim
n!∞

dn(vni , v
n
j )= d∆(zi, zj)

a.s. for each i, j∈N. As d∆ is continuous relative to the Euclidean metric, an application

of the triangle inequality and (4.2) give

lim
n!∞

|dn(vni , vnj )−d∆(Cdy
n(vni ),Cdy

n(vnj ))|=0 in probability. (4.17)

Combing (4.16) and (4.17) and using the density of {zi :i∈N} in ∆̄ for d∆, we get (4.15).

Proof of Theorem 1.4. Recall the proof of the convergence of ξn∆. The argument

there implies that Cdyn(v̂n4 ) converge to Cdyn(ẑ4) in probability. Now, conditioning

on the event that v̂4n falls on the arc (cn, an) and on the event that ẑ4 falls into the

counterclockwise arc on ∂∆ from (0, 0, 1) to (1, 0, 0), we obtain Theorem 1.4.

5. The quantum pivotal measure of CLE6

We recall the setting of (1.5). Namely, let h be as in Definition 2.6 so that (D,h, 1)/∼
is a unit boundary length

√
8
3 -LQG disk (Definition 2.4). Let Γ be a CLE6 on D with

monochromatic blue boundary condition (Definition 2.10) which is independent of h. Fix

ε>0. Let Pε be the set of ε-pivotal points of (h,Γ) as in Definition 5.18. The measure

νεh,Γ on Pε was introduced in [BHS, §7] based on the theory of mating of trees [DMS],

and we will review its definition in §5.2. Let Mε
h,Γ be the renormalized scaling limit of

eh/
√
6 d2z restricted to the discrete analog of Pε. We have described the discrete setting

above (1.5) and will describe Mε
h,Γ precisely in Definition 6.24. We now restate (1.5) as

a proposition.

Proposition 5.1. In the setting right above, there exists a deterministic constant

c>0 such that, for each fixed ε>0, we have νεh,Γ=cMε
h,Γ a.s.

We will recall the mating-of-trees theory for SLE6 on
√

8
3 -LQG surfaces in §5.1. In

§5.2, we give a definition of νεh,Γ which is a slight reformulation of the one in [BHS]. The

bulk of this section, §5.3, is devoted to the proof of a local version of Proposition 5.1,

namely Proposition 5.44. As we will show in Lemma 6.14, the set Pε can be covered by

the points of intersection of the so-called 2-SLE6 as defined below.
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Definition 5.2. Let Q be a simply connected domain with simple piecewise smooth

boundary, and a, b, c, and d be four distinct boundary points ordered counterclockwise.

Let ηadQ be a chordal SLE6 on (Q, a, d) conditioned on not hitting the counterclockwise

boundary arc ∂b,cQ from b to c. Conditioned on ηad, let Q′ be the component of Q\ηadQ
whose boundary contains ∂b,cQ, and let ηcbQ be a chordal SLE6 on (Q′, c, b). We call

(ηadQ , η
cb
Q ) a 2-SLE6 on (Q, a, b, c, d).

Proposition 5.44 is the variant of Proposition 5.1, with ηadQ ∩ηcbQ in place of Pε.
Combined with the covering lemma (i.e. Lemma 6.14), this will give Proposition 5.1. We

will explain this part in §6.5. The reader may skip §§5.1–5.3 and proceed directly to §6
if he/she is willing to accept Proposition 5.1 without a proof.

5.1. Mating-of-trees theory for SLE6 on
√

8
3
-LQG surfaces

The definition of νεh,Γ and the proof of Proposition 5.1 both rely on the mating-of-trees

theory for SLE6 on
√

8
3 -LQG surfaces. The general theory is built in the foundational

paper [DMS]. It is further developed in [GM2] and revisited in [BHS, §7]. In this

subsection we review what is needed for Proposition 5.1. See [GHS2] for a thorough

survey.

5.1.1. Quantum wedges and disks

We start by recalling the definition of a family of LQG surfaces which plays a key role

in the mating-of-trees theory, namely the quantum wedges [Sh2], [DMS]. Recall the

notation S=R×(0, π) for the horizontal strip.

Definition 5.3. (Quantum wedge) Fix W> 4
3 and a>0 such that

W = 4
3+

√
8
3a

[DMS, Table 1.1]. Let (Xt)t∈R be such that

• (Xt)t⩾0
d
=(B2t−at)t⩾0, where Bt is a standard linear Brownian motion starting

at zero,

• (X−t)t⩾0 has the law of (B2t+at)t⩾0 conditioned to be positive, and

• (X−t)t⩾0 and (Xt)t⩾0 are independent.

Let h1(t+si)=Xt for each t+si∈S. Let h2 be the random distribution on S in-

dependent of X whose law is the lateral component of the free-boundary GFF on S.



uniform triangulations under the cardy embedding 135

Set h=h1+h2. Then, the law of the
√

8
3 -LQG surface (S, h,+∞,−∞)/∼ is called the

W -quantum wedge.(8)

If in the above definition, the law of X is such that (Xt)t⩾0
d
=(B2t)t⩾0 conditioned to

be negative, and (X−t)t⩾0 has the law of (B2t)t⩾0, then the law of the
√

8
3 -LQG surface

(S, h,+∞,−∞)/∼ is called the 4
3 -quantum wedge.

Remark 5.4. By [DMS, Proposition 4.7], quantum wedges have the following sym-

metry. If (D,hw, a, b)/∼ is a W -quantum wedge, then

(D,hw+c, a, b)/∼ d
=(D,hw, a, b)/∼

for each deterministic c∈R.
By [Sh2, Proposition 1.7], the 2-quantum wedge has an additional symmetry. If

(D,hw, a, b)/∼ is a 2-quantum wedge and s>0, let as∈D be on the left boundary of

(D, a, b) such that the ξhw -length of the left boundary of (D, a, as) equals s. Then,

(D,hw, as, b)/∼ has the law of a 2-quantum wedge.

The following representative of a quantum wedge (i.e., a representative of the equiva-

lence class defining the wedge) will be technically convenient in several of our arguments.

Definition 5.5. Let W be a W -quantum wedge for W⩾ 4
3 and let ϕ(z):=e−z be a

conformal map from S to H. Suppose that hw is the random distribution on H such that

W=(H, hw, 0,∞)/∼ and, moreover, hw�ϕ+Q log |ϕ′| has the law of h in Definition 5.3.

Then, we say that (H, hw, 0,∞) is the circle average embedding of W.

Existence and uniqueness of the circle average embedding is clear from Definition 5.3.

In order to state the mating-of-trees theorem, we need to extend our definition of

the
√

8
3 -LQG disk to allow arbitrary boundary length.

Definition 5.6. Recall the notions in §2.3. Suppose that D is a simply connected

C0 domain, a is a point on ∂D, and h is a free Liouville field on D. Define L:=ξh(∂D).

Recall from Convention 2.2 that γ=
√

8
3 . If (D,h−2γ−1 logL, a)/∼ is independent of L

and has the law of a
√

8
3 -LQG disk with unit boundary length (see Definition 2.4), then

we say that (D,h, a)/∼ is a
√

8
3 -LQG disk and call L the boundary length of the disk.

(8) In [DMS] quantum wedges are parameterized in six different ways. See [DMS, Table 1.1] for

their relations. Our choice in Definition 5.3 is called parametrization by weight. The notion of α-quantum
wedge in [DMS] is different from the one in Definition 5.3, since α refers to the log singularity parameter,

while our W refers to the weight. These are related by W=γ
(
1
2
γ+Q−α

)
, where γ=

√
8
3
and Q=5/

√
6.
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5.1.2. Mating-of-trees theory for SLE6 on a 2-quantum wedge

Recall notions in §2.4. Given (D, a, b)∈D∗,∗, let η be an SLE6 on (D, a, b). Let hw be a

random distribution on D such that W :=(D,hw, a, b)/∼ is a 2-quantum wedge. A set

B⊂D is called a bubble of η if it is a connected component of D\η. Let

tB =sup{t⩾ 0 :B⊂Dt}.

We call xB :=η(tB) the root of B. By [DMS, Theorem 1.18 and Corollary 1.19], we have

the following parametrization of η.

Proposition 5.7. Let X be a Lévy processes with Lévy measure

3

4
√
π
|x|−5/21x<0 dx

and let

J(X)= {t⩾ 0 :Xt−Xt− ̸=0}

be the set of times at which X makes a jump. Conditioned on X, for each t∈J(X)

sample an independent
√

8
3 -LQG disk St with boundary length equal to the jump size

Xt−Xt− of X at time t, and set

E = {(t,St) : t∈ J(X)}.

In the setting of the previous paragraph, there exists a unique parametrization of η such

that the following holds. Let JL⊂R+ be the set of times t at which a bubble Bt is cut off
by η on its left side, let

SL
t =(Bt, h|B, xB)/∼

denote the LQG surface which is cut off at time t, and set

EL = {(t,SL
t ) : t∈ JL}.

Define ER in the same way with left replaced by right. Then, EL and ER are independent,

and each of them have the same law as ER. We call this parametrization the quantum

natural parametrization of η under hw.(9)

Proposition 5.8. Let (D,hw, a, b, η) be as in Proposition 5.7, with η having the

quantum natural parametrization. For a fixed t>0, conditioning on Zw|[0,t], the condi-

tional law of

{(B, h, xB)/∼ :B is a bubble with tB ⩽ t}

(9) In fact, the quantum natural parametrization in [DMS] is defined only up to a multiplicative
constant, which we fix in this paper by specifying the Lévy measure of X.
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is that of independent
√

8
3 -LQG disks with given boundary length, which are also condi-

tionally independent of

(Dt, h, η(t), b, η)/∼.

Furthermore, the conditional law of (Dt, h, η(t), b, η)/∼ equals the law of (D,h, a, b, η)/∼,

where Dt is the connected component of D\η([0, t]) whose boundary contains b.

By the quantum zipper theory of Sheffield [Sh2], given a variant of SLE8/3 coupled

with an independent free Liouville field on the same domain, one can unambiguously

define a notion of quantum length measure on the SLE8/3-type curve, as an extension of

the
√

8
3 -LQG boundary measure. For example, in Proposition 5.7, let U be either Dt

or a bubble of η. Given a segment V of ∂U , since h|U is either a quantum wedge or

a
√

8
3 -LQG disk, the mass of V under the

√
8
3 -LQG boundary measure of h|U is well

defined, which we call the quantum length of V . (Recall by SLE duality that ∂U is either

a variant of SLE8/3 or part of ∂D.) In the rest of §5 there are a few other occasions

where we consider the quantum length along SLE8/3-type curves. At each place, locally

the SLE8/3 curve cuts the domain into two subdomains with the curve lying on their

border. The field restricted to the two subdomains are both free Liouville fields, each of

which induces a notion of quantum length for the curve using the
√

8
3 -LQG boundary

measure. The highly non-trivial fact established in [Sh2] is that the two notions agree.

See Proposition 5.23 for such an instance.

The key observable in the mating-of-trees theory is the so-called boundary length

process. The next proposition follows from [DMS, Corollary 1.19]. See Figure 5.1 for an

illustration.

Proposition 5.9. Suppose we are in the setting of Proposition 5.7. Set Lw
0 =R

w
0 =0.

For t>0, let ηtℓ and ηtr be the left and right, respectively, boundary of (Dt, η(t), b). Let

z be a point on ηtℓ∩∂D. Let Lw
t be the quantum length of the clockwise arc from η(t)

to z on ∂Dt minus the quantum length of the clockwise arc from zero to z on ∂D. (It

is clear that the value of Lw
t does not depend on the choice of z.) Define Rw

t similarly

with z on ηtr∩∂D instead and with counterclockwise instead of clockwise. Then Lw and

Rw are independent and have the same distribution as X in Proposition 5.7. We call

Zw=(Lw, Rw) the boundary length process of (D,hw, a, b, η).

The process Lw (resp. Rw) has a downward jump at time t if and only if t=tB for

some bubble B to the left (resp. right) of η. Moreover, the size of the jump equals the

quantum length of ∂B. By (2.8), Zw is a.s. determined by the
√

8
3 -LQG surface

(D,hw, a, b, η)/∼.
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5.1.3. Mating-of-trees theory for SLE6 on
√

8
3
-quantum disks

We now introduce the quantum natural parametrization for SLE6 on a
√

8
3 -LQG disk

following [GM2]. Given constants ℓ, r>0, let (D, a, b)∈D∗,∗ and let h be a random

distribution on D such that (D,h, a)/∼ is a
√

8
3 -LQG disk with boundary length ℓ+

r and the right boundary length of (D, a, b) equals r. Let η be a chordal SLE6 on

(D, a, b) independent of h. We can define the boundary length process Zd=(Ld, Rd) of

(D,h, a, b, η) in the same way as Zw=(Lw, Rw) in Proposition 5.9. It is easy to see that

Lt+ℓ and Rt+r measure the quantum length of the left and right, respectively, boundary

(Dt, η(t), b).

Proposition 5.10. ([GM2]) In the setting above, there exists a unique parametriza-

tion of η, defined on some random interval [0, σ], such that the law of Zd=(Ld, Rd) can

be characterized as follows. Let Zw=(Lw, Rw) be as in Proposition 5.9 and let

σw = inf{t⩾ 0 :Lw(t)⩽−ℓ or Rw(t)⩽−r}.

Then, for each fixed t>0, the law of Zd|[0,t] ·1t<σ is absolutely continuous with respect

to Zw|[0,t] ·1t<σw with Radon–Nikodym derivative proportional to

(Lw(t)+Rw(t)+ℓ+r)−5/21t<σw .

Moreover,

lim
t!σ

Zd(t)= (−ℓ,−r)

almost surely.

We call this parametrization the quantum natural parametrization of η under h.

Intuitively, the law of Zd is the conditional law of Zw until exiting (−ℓ,∞)×(−r,∞),

conditioning on exiting at (−ℓ,−r).
The following proposition is the disk variant of Proposition 5.8.

Proposition 5.11. ([GM2]) Let (D,h, a, b, η) be as in Proposition 5.10, with η hav-

ing the quantum natural parametrization. For a fixed t>0, conditioning on Zd|[0,t] and
the event Dt ̸=∅, the conditional law of {(B, h, xB)/∼: B is a bubble with tB⩽t} is that

of independent
√

8
3 -LQG disks with given boundary length, which are also conditionally

independent of (Dt, h, η(t), b, η)/∼. Moreover, the conditional law of (Dt, h, η(t), b, η)/∼
equals the law of (D,h, a, b, η)/∼, with (ℓ, r) replaced by (Lt+ℓ, Rt+r).
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η(t)
z

ηt`

b

a

η(t)

b

a

Figure 5.1. Left : Illustration of the boundary length process Zw as defined in Proposition 5.9.
We have that Zw

t is equal to the quantum length of the blue curve minus the quantum length

of the green curve. Right : The boundary touching measure of η at time t (Definition 5.15) is

supported on the purple points.

5.2.
√

8
3
-LQG pivotal measure as a local time

In this section we provide a construction of the ε-pivotal measure using the mating-of-

trees theory we reviewed in §5.1. Our construction differs from the one in [BHS, §7],
since we rely heavily on the iterative construction of CLE6 (Lemma 2.11). However, as

explained in Remark 5.19, the two constructions produce the same pivotal measure up

to a multiplicative constant.

We will rely on a natural way of constructing measures supported on fractals.

Definition 5.12. (Occupation measure) Fix a positive integer n and a compact set

A⊂Rn. For r>0, let

Ar = {z ∈C : |z−x|⩽ r for some x∈A}.

For d∈(0, n], let mrA,d be the measure given by rd−n times Lebesgue measure restricted

to Ar. If the limit

mA= lim
r!0

mrA,d

exists for the weak topology on the set of Borel measures and has finite and positive total

mass, we call mA the d-occupation measure of A.

It is clear that there is at most one d such that the d-occupation measure of A exists.

If mA exists, then mA(Rn) is the so-called d-dimensional Minkowski content of A.

We now recall some standard facts from fluctuation theory for Lévy processes and

stable subordinators which can be found in [Ky], [Brt]. For each β∈(0, 1), a Lévy process

(τt)t⩾0 is called a β -stable subordinator if τ is a.s. increasing and τat
d
=a1/βτt for each

a>0. The closure Rτ of {τt :t⩾0} is called the range of τ . Let mτ be the pushforward of

Lebesgue measure on [0,∞) by τ , so that mτ is a measure supported on Rτ . We call mτ
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the local time on Rτ . We will rely crucially on the occupation measure interpretation of

local time.

Lemma 5.13. For a β-stable subordinator (τt)t⩾0, there exists a deterministic con-

stant cβ>0 such that almost surely the β-occupation measure mRτ
of Rτ is well defined,

and

mτ ([0, t]) = cβmRτ
([0, t]) for all t> 0. (5.1)

Proof. This follows by combining e.g. [PY, Proposition 10] and [LP, Theorem 2.2],

as explained in [LvF, §13.4.2].

Lemma 5.14. Let X be as in Proposition 5.7. Then, there exists a 1
3 -subordinator

τ such that

Rτ = {t⩾ 0 :X(t)= inf
s∈[0,t]

X(s)}.

Moreover, let Hs=−X(τs) for s>0. Then, H is a 1
2 -stable subordinator and almost

surely mH equals the pushforward of mτ under −X.

Proof. The existence of τ and the law of H can be found in [Ky, §6], where (X,H)

is called the ladder process. The fact that mH=(−X)∗mτ a.s. follows by definition.

The following definition is the starting point of the construction of νεh,Γ.

Definition 5.15. Let (D, a, b, hw, η) and Zw=(Lw, Rw) be as in Propositions 5.7

and 5.9, where η has the quantum natural parametrization and Zw is the boundary

length process. Let mℓ and mr be defined as mτ in Lemma 5.14 with Lw and Rw,

respectively, in place of X, so that mℓ (resp. mr) is a measure supported on the set of

times at which Lw (resp. Rw) reach a running infimum. Let ν0η :=η∗mℓ+η∗mr, which by

the definition of Zw is a measure supported on η∩∂D. For each t>0, let νtη be defined

as ν0η with D, hw, a, and η replaced by Dt, h
w|Dt

, η(t), and η|[t,∞), respectively. We call

νtη the boundary touching measure of η at time t.

For each t⩾0, the measure νtη is supported on η([t,∞))∩∂Dt. We now show that

νtη is determined by the set η[t,∞)∩∂Dt and the quantum length measure on ∂Dt.

Lemma 5.16. Let (D,hw, a, b, η) be as in Proposition 5.7. Let c1/2 be as in (5.1)

with β= 1
2 . For a fixed t⩾0, let ηtℓ and ηtr be the left and right, respectively, boundary

of (Dt, η(t), b), parameterized by quantum length starting from ηtℓ(0)=η
t
r(0)=η(t). Then,

the 1
2 -occupation measure of {s⩾0:ηtℓ(s)∈η([t,∞))∩∂Dt} on [0,∞) a.s. exists, which we

denote by mt
ℓ. We can define mt

r in the same way with ηtℓ replaced by ηtr. Then,

νtη = c1/2(η
t
ℓ)∗m

t
ℓ+c1/2(η

t
r)∗m

t
r a.s. (5.2)
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Proof. We only prove the case when t=0, since the general case follows from the

stationarity in Proposition 5.8. Since η0ℓ is parameterized by its quantum length, we have

η(u)=η0ℓ (−Lw(u)) for each

u∈{t⩾ 0 :Lw(t)= inf
s∈[0,t]

Lw(s)}.

By Lemmas 5.13 and 5.14, the measures m0
ℓ and m0

r are well defined. By (5.1) and

Lemma 5.14, we have (−Lw)∗mℓ=c1/2m
0
ℓ a.s., and hence (η0ℓ )∗(−Lw)∗mℓ=c1/2(η

0
ℓ )∗m

0
ℓ .

Also, restricted to the support ofmℓ, we have η=η
0
ℓ �(−Lw), and hence η∗mℓ=c1/2(η

0
ℓ )∗m

0
ℓ

a.s. Similarly, we have η∗mr=c1/2(η
0
r )∗m

0
r a.s. Therefore, ν0η=c1/2(η

0
ℓ )∗m

0
ℓ+c1/2(η

0
r )∗m

0
r

a.s. This proves Lemma 5.16 for t=0.

By the relationship between Zd and Zw, we can define the boundary touching mea-

sure for an SLE6-decorated
√

8
3 -LQG disk in the exact same way as in Lemma 5.16

via (5.2).

Definition 5.17. Let (D,h, a, b, η), σ, and Zd=(Ld, Rd) be as in Proposition 5.10,

so that η has the quantum natural parametrization. For each t⩾0, on the event {σ>t},
let dblη,t :=η([t, σ])∩∂Dt. Let ν

t
η be the measure supported on dblη,t defined in the same

way as in Lemma 5.16 in terms of ηtℓ, η
t
r, and η via (5.2). We call νtη the boundary touching

measure of η at time t. The countable collection of measures {νtη}t∈[0,σ)∩Q extends to a

measure νη on the union of their supports, which we call the extended boundary touching

(EBT) measure of η for (D,h).

Given (D, a, b)∈D∗,∗, let η be an SLE6 on (D, a, b) and define

dblη := {p∈D : η(s)= η(t)= p for some s ̸= t} and dblη,D := dblη∪(η∩∂D). (5.3)

Then, νη is supported on dblη,D by definition. We remark (although this fact will not

be used) that the measure νη is a.s. not locally finite and a.s. assigns infinite measure to

any open ball intersecting η. However, νη is a.s. σ-finite and is a.s. finite when restricted

to the set Pε of ε-pivotals (see Definition 5.18 below).

Now we are ready to define the measure νεh,Γ for (D,h, a), where νεh,Γ in Proposi-

tion 5.1 is the special case when (D,h, a)=(D,h, 1). See Figure 5.2 for an illustration.

Definition 5.18. Let D be a Jordan domain and let (D,h, a) be a
√

8
3 -LQG disk

with boundary length L. Let Γ be a CLE6 on D independent of h with monochromatic

blue boundary condition. Let Pε be the set of ε-pivotal points of (h,Γ). The
√

8
3 -LQG

pivotal measure νεh,Γ on Pε is the measure supported on Pε which can be constructed as

follows.
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a

b

D

ηab
xB

x̂B

ηB

a
D

ηab

dblηab,D ∩ Pε dblηB,B ∩ Pε

B

b

Figure 5.2. Illustration of the construction of the pivotal measure νεh,Γ given in Definition 5.18.

The left figure illustrates the construction for a monochromatic domain D (Step 1), while the
right figure considers the case of a dichromatic bubble B (Step 2). The ε-pivotal points which

are captured in each step are shown in red. Note that points of intersection between an SLE6

and ∂D are not ε-pivotal points, while in later iterations points of intersection between an
SLE6 interface and the boundary of some monochromatic bubble B′ could be ε-pivotal points.

Step 1. Let b∈∂D be such that the left boundary of (D, a, b) has quantum length
1
2L. Let Γ

b
a and η

ab be determined by Γ as in Lemma 2.11. Set νεh,Γ=νηab on Pε∩dblηab,D,

where νηab is the EBT measure (see Definition 5.17) of ηab for (D,h).

Step 2. Recalling the notation in the paragraph above Lemma 2.11, for each dichro-

matic bubble B set νεh,Γ=νηB on Pε∩dblηB,B, where νηB is the EBT measure of ηB for

(B, h|B). Here, although the domain B itself is random, Definition 5.17 trivially extends

to (B, h|B, ηB).

Given a connected component B′ of D\Γba, which is a monochromatic bubble, let

a′ be the last point on ∂B′ visited by ηab or one of the ηB’s with B being a dichromatic

bubble. Namely, if ∂B′ does not intersect any of the ηB’s, then a
′ is the last point on ∂B′

visited by ηab. If ∂B′ intersects an ηB, then a
′ is the last point visited by this ηB. We

define the measure νεh,Γ on B′∪∂B′ by repeating Steps 1 and 2 on (B′, h|B′ , a′,Γ|B′) and

then iterate.(10)

The fact that νεh,Γ in Definition 5.18 is well defined requires some justification. Let

dblt be the support of νtηab . As explained in [BHS, Lemma 7.9], there exists a finite set

T such that

Pε∩dblηab,D ⊂
⋃
t∈T

dblt.

Therefore, νεh,Γ restricted to Pε∩dblηab,D is a finite Borel measure. In Step 2, there

are finitely many dichromatic bubbles with Pε∩dblηB,B ̸=∅. On each such bubble, the

same consideration shows that νεh,Γ restricted to Pε∩dblηB,B is a finite Borel measure.

(10) Note that Pε∩D=∅, but with positive probability Pε∩∂B′ ̸=∅, in which case νεh,Γ(∂B′) is
non-trivial.
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Note that a component U of D\Γab with µh-mass smaller than ε has no intersection with

Pε, since it would be either a point of intersection between two loops contained in 
U

or a double point of a loop contained in 
U . Using this and the local finiteness of Γ in

Lemma 2.13, we get that the iteration a.s. exhausts Pε in finitely many steps. By the

no-triple-points property of Γ in Lemma 2.13, the subsets of Pε on which we define νεh,Γ
in different iterative steps are all disjoint. In particular, our definition of νεh,Γ has no

inconsistency in different steps. Moreover, νεh,Γ is almost surely a finite Borel measure

on D.

Remark 5.19. (Equivalent definitions of quantum pivotal measure) We now explain

the equivalence between νεh,Γ in Definition 5.18 and the ε-LQG pivotal measure defined

in [BHS, §7]. The latter measure is denoted by νε in [BHS], and we adopt the same

notation here. We do not provide the detailed construction in [BHS], but only point

out how one can check the equivalence. If we do not employ Lemma 5.16 but only use

the notation in Lemma 5.15 to describe Definitions 5.17 and 5.18, then restricted to

Pε∩dblηab,D as in Step 1 in Definition 5.18, our description of νεh,Γ is identical to that

of c−1
p νε in [BHS, §7], with cp in (1.3). This multiplicative constant is needed because

the normalization of local time in [BHS] is chosen such that νnε,piv!νε. Recall ηB, η
B,

and ℓB as defined in the paragraph above Lemma 2.11. In the notation of [BHS, §7.5],
ηB and ηB are the so-called past and future, respectively, segments of the loop ℓB. This

observation together with a further bookkeeping inspection of [BHS, §7.7] implies that

νε=cpν
ε
h,Γ on Pε∩dblηB,B as in Step 2 in Definition 5.18. By iteration, one can check

that νε=cpν
ε
h,Γ.

5.3.
√

8
3
-LQG pivotal measure as a quantum occupation measure

The main result of this section is Proposition 5.44, which is a preliminary version of

Proposition 5.1. In §5.3.1 and §5.3.2 we provide the necessary background and basic

results on quantum zippers and GMC over occupations measures, respectively. This

allows us to prove a first variant of Proposition 5.1 in §5.3.3, where the ε-pivotal points are
replaced by the points of intersection between two SLE8/3-like curves (see Lemma 5.39).

In §5.3.4 we prove Proposition 5.44 by linking to the setting of §5.3.3.

5.3.1. SLE with force points, 2
3
-quantum wedges, and quantum zippers

We start by recalling a generalization of SLEκ called SLEκ(ρℓ; ρr), where SLEκ is the

special case SLEκ(0; 0). Consider tuples of the form (D, a, b; vℓ, vr), where (D, a, b)∈
D∗,∗, and vℓ (resp. vr) is a point on the left (resp. right) boundary of (D, a, b). The
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points vℓ and vr are allowed to be equal to a, in which case we will denote them by a−

and a+. Given κ>0, ρℓ>−2, and ρr>−2, the (chordal) SLEκ(ρℓ; ρℓ) on (D, a, b; vℓ, vr) is

a probability measure on non-self-crossing curves onD∪∂D from a to bmodulo increasing

reparametrization. Away from ∂D, an SLEκ(ρℓ; ρr) curve looks locally like SLEκ in the

sense that it has the same a.s. properties. The points vℓ and vr are called the force points.

The parameter ρℓ (resp. ρr) is called the weight of vℓ (resp. vr), and governs the behavior

of the curve when it approaches the left (resp. right) boundary. An SLEκ(ρℓ; ρr) curve

a.s. does not touch the left (resp. right) boundary of (D, a, b) except for the ending points

if and only if

ρℓ (resp. ρr) is at least
1
2κ−2. (5.4)

The SLEκ(ρℓ; ρr) has conformal invariance and domain Markov properties similar to

those in §2.4, with the two additional marked points taken into account when applying

conformal maps. See [MS1], [MS2], [DMS], [LSW], [Du], [Z] for more background on

SLEκ(ρℓ; ρr). In the rest of the paper the force points are always assumed to be located

at a− and a+ when we refer to SLEκ(ρℓ; ρr) on (D, a, b).

Let η be an SLEκ(ρℓ; ρr) on (D, a, b) for κ>4. The left (resp. right) boundary of η

is the curve starting at a and ending at b which consists of the points on η which are

either on the left (resp. right) boundary of (D, a, b) or can be connected to the left (resp.

right) boundary of (D, a, b) by a curve which does not intersect ∂D or η, except possibly

at the end-points. Here is a precise variant of the aforementioned SLE duality, see e.g.

[Du], [Z], [MS1].

Proposition 5.20. For ρℓ, ρr>−1, let η be an SLE6(ρℓ; ρr) on (D, a, b). Let ηℓ and

ηr be its left and right boundary, respectively. Then, ηℓ is an SLE8/3(
2
3ρℓ−

4
3 ;

2
3ρr−

2
3 ) on

(D, a, b). If ρr⩾0 so that ηℓ does not touch the right boundary of (D, a, b) by (5.4),

conditioning on ηℓ, the curve ηr is an SLE8/3(− 4
3 ;

2
3ρr−

4
3 ) from a to b on the domain

bounded between ηℓ and the right boundary of (D, a, b), and η itself is an SLE6(−1; ρr)

on the same domain.

A crucial fact in the quantum zipper theory is the conformal removability of

SLE8/3(ρℓ; ρr)

(see e.g. [DMS, Proposition 3.16] and [Sh2, Theorem 1.4], which build on [JS], [RSc]).

Lemma 5.21. Let η be an SLE8/3(ρℓ; ρr) on (D, a, b)∈D∗,∗ with ρℓ, ρr>−2. Suppose

that U⊂D is open and that ϕ:U!C is continuous on U and conformal on U \η. Then,

ϕ is a.s. conformal on U .

We will use an important variant of the quantum wedge called the 2
3 -quantum wedge,

which is an ordered collection of
√

8
3 -LQG surfaces with two marked boundary points.
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Definition 5.22. ( 23 -quantum wedge) Let E={(ℓ, t)} be a Poisson point process on

(0,∞)2 with intensity measure ℓ−3/2 dℓ⊗dt. Conditioning on E , for each (ℓ, t)∈E , sample

an independent
√

8
3 -LQG disk of length ℓ, which we denote by (Dt, ht, at)/∼. Moreover,

for each (Dt, ht, at), sample a point bt on ∂Dt according to the quantum boundary

measure ξht
. Then, {(Dt, ht, at, bt)/∼} in the increasing order of t is called a 2

3 -quantum

wedge.

In [DMS, §4.4], the W -quantum wedge with W∈
(
0, 43

)
is constructed in the spirit

of Definition 5.3. Wedges with W∈
(
0, 43

)
are called thin wedges. Just as the 2

3 -wedge,

they may be described as an ordered chain of finite-volume LQG surfaces. We do not

need the W ̸= 2
3 case in this paper, and therefore omit the construction.

Let (D, a, b)∈D∗,∗ and let η′ℓ and η′r be two simple curves on D∪∂D from a to b

which do not cross each other, such that η′ℓ is between η′r and the left boundary of

(D, a, b). Let D′⊂D∪∂D be the open set with boundary η′ℓ∪η′r. We call D′ the region

bounded by η′ℓ and η
′
r. For each bounded connected component B of D′, let aB, bB∈∂B

be the two points on the intersection of the left and right boundary of (D, a′, b′) such

that aB is visited before bB by η′ℓ and η
′
r. Let {B} be the collection of such components

ordered such that {aB} is in order of visit by η′ℓ and η′r. Given a distribution h on D,

we let (D′, h, a, b)/∼:={(B, h, aB, bB)/∼} be the ordered collection of
√

8
3 -LQG surfaces

with two marked boundary points.

The main fact about the 2
3 -quantum wedge which we will use is the following propo-

sition from quantum zipper theory (see [Sh2] and [DMS, Theorem 1.2]).

Proposition 5.23. Let W ℓ,W r∈
{

2
3

}
∪
[
4
3 ,∞

)
and let (H, hw, 0,∞) be the circle

average embedding of a (W ℓ+W r)-quantum wedge. (Recall Definitions 5.3 and 5.5). Let

η′ be an SLE8/3(W
ℓ−2;W r−2) on (H, 0,∞). Let Dℓ (resp. Dr) be the region bounded

by η′ and the left (resp. right) boundary of (D, a, b).(11) Then the surfaces

(Dℓ, hw, 0,∞)/∼ and (Dr, hw, 0,∞)/∼

are independent and have the law of quantum wedges with weight W ℓ and W r, respec-

tively. Also, (Dℓ, hw, 0,∞)/∼ and (Dr, hw, 0,∞)/∼ almost surely determine hw (and

therefore also the surface (H, hw, 0,∞)/∼). Finally, the
√

8
3 -LQG boundary measure on

η′ obtained by viewing η′ as a boundary arc of (Dℓ, hw)/∼ or (Dr, hw)/∼ agree.

In Proposition 5.23, we say that the surface (H, h, 0,∞)/∼ is the conformal welding

of the surfaces (Dℓ, h, 0,∞)/∼ and (Dr, h, 0,∞)/∼. Let V be a segment of η′. We call

(11) In the remainder of this section we will typically use a prime (′) when we refer to SLE8/3-type
curves while we use no prime when we refer to SLE6-type curves.
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the mass of V under the
√

8
3 -LQG boundary measure the quantum length of V . By the

last assertion of Proposition 5.23, this is unambiguously defined.

By Propositions 5.20 and 5.23, we have the following.

Proposition 5.24. Let W ℓ,W r∈
{

2
3

}
∪
[
4
3 ,∞

)
and let (H, hw, 0,∞) be the circle

average embedding of a
(
W ℓ+W r+ 2

3

)
-quantum wedge. Let η be an

SLE6

(
3
2W

ℓ−1; 3
2W

r−1
)

on (H, 0,∞) which is independent of h. Let Dℓ, Dr, and Dm be the regions in D

bounded by the left boundary of (D, a, b) and the left boundary of η, the right boundary of

(D, a, b) and the right boundary of η, and the left and right boundaries of η, respectively.

Then, (Dℓ, hw, 0,∞)/∼, (Dm, hw, 0,∞)/∼, and (Dr, hw, 0,∞)/∼ are independent
√

8
3 -

LQG surfaces and they have the law of wedges of weights W ℓ, 2
3 , and W r, respectively.

Furthermore, (Dℓ, hw, 0,∞)/∼, (Dm, hw, 0,∞)/∼, and (Dr, hw, 0,∞)/∼ almost surely

determine hw (and therefore also the surface (H, hw, 0,∞)/∼).

Proof. By Proposition 5.20 the left boundary of η has the law of an

SLE8/3

(
W ℓ−2;W r− 4

3

)
.

An application of Proposition 5.23 implies that (Dℓ, hw, 0,∞)/∼ is aW ℓ-quantum wedge

and is independent of (Dm,r, hw, 0,∞)/∼, where Dm,r is the interior of the closure of

Dm∪Dr. We conclude the proof by a second application of Propositions 5.20 and 5.23,

this time using that conditioning on Dm,r, the curve η is an

SLE6

(
−1; 3

2W
r−1

)
on (Dm,r, 0,∞).

5.3.2. Coordinate change for GMC over occupation measures

A key fact we will use in the proof of (1.5) is that the two considered measures transform

in the same way under conformal coordinate changes. In this section, we collect some

basic facts on conformal coordinate changes of a general class of random measures.

Definition 5.25. Let h be a free Liouville field (Definition 2.3) on a domain D and

let µ be a random finite Borel measure on D. For each r>0 and z∈C, let hr(z) be the

average of h over the circle {w∈C:|w−z|=r}, if this circle is contained in D.(12) Let

(12) The process (z, r) 7!hr(z) is well defined as a continuous process on

{(z, r)∈D× : |z−w|>r for all w∈C\D}

(see e.g. [DS]) and is known as the circle average process.
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hr(z)=0 otherwise. For α>0, we define the measure eαhµ by limr!0 r
α2/2eαhrµ if the

limit exists almost surely in the weak topology. (Recall the convention fµ in §2.1).

In Definition 5.25, when h is a Gaussian field, the measure eαhµ is called theGaussian

multiplicative chaos (GMC) over µ in the literature, except that the normalization rα
2

is

sometimes replaced by E[eαhr( ·)]−1. We require limr!0 r
α2/2eαhrµ to exist almost surely

as r!0, rather than considering a limit in probability (or almost surely along dyadic

numbers) as in most other literature on GMC. This will be used in Lemma 5.32.

We are interested in the coordinate change for GMC over occupation measures (see

Definition 5.12) of certain SLE related fractals. We first record a preliminary determin-

istic fact, whose proof is left to the reader.

Lemma 5.26. Let d∈(0, 2) and let A be a compact set on C whose d-occupation

measure mA exists. Let ϕ be a conformal map on a domain containing A. Then, the

d-occupation measure mϕ(A) of ϕ(A) exists and equals |(ϕ−1)′|−d ·(ϕ∗mA). If furthermore∫∫
U×U

dmA(x)dmA(y)

|x−y|d−ε
<∞ for all bounded sets U and ε∈ (0, d), (5.5)

then (5.5) still holds with mA replaced by mϕ(A).

We also record a 1-dimensional variant of Lemma 5.26, which will be used in the

proof of Proposition 5.44. We again leave the elementary proof to the reader.

Lemma 5.27. Let d∈(0, 1) and let A be a compact set on R whose d-occupation

measure mA exists. Let ϕ be a C1 map on an interval containing A such that ϕ′>0.

Then, the d-occupation measure mϕ(A) of ϕ(A) exists and equals |(ϕ−1)′|−d ·(ϕ∗mA).

The following lemma guarantees the existence of GMC over an occupation measure.

The lemma would have followed from e.g. [Brs] if we had considered convergence in

probability instead of a.s. convergence in Definition 5.25. We include its proof in the

appendix.

Lemma 5.28. Fix d∈(0, 2), α∈(0,
√
d ), and a Jordan domain D. Let A be a com-

pact set on D whose d-occupation measure mA exists and satisfies (5.5). Let h be a

free Liouville field on D. Then, ν=eαhmA exists in the sense of Definition 5.25 and is

non-atomic.

We expect that Lemma 5.28 remains true for α∈[
√
d,
√
2d ), but the α∈(0,

√
d ) case

is more straightforward to verify by the L2 argument and is sufficient for our purpose.

We now formulate a coordinate change formula that is convenient for our applica-

tions.
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Definition 5.29. (Coordinate change) Fix d∈(0, 2) and a Jordan domain D. Define

Q(α, d) :=
α

2
+
d

α

and let α∈(0,
√
d) be such that Q(α, d)=5/

√
6. Consider a triple (A, ϕ, h) of random

variables with the following properties: A is a compact subset of D whose d-occupation

measure mA exists and satisfies (5.5), h is a free Liouville field on D such that ν=eαhmA

exists in the sense of Definition 5.25, and ϕ is a conformal map on D. Let

hϕ :=h�ϕ−1+
5√
6
log |(ϕ−1)′|. (5.6)

We say that coordinate change holds for (A, ϕ, h) if eαhϕmϕ(A) exists in the sense of

Definition 5.25 and eαhϕmϕ(A)=ϕ∗ν a.s. Here ϕ∗ν means the pushforward of ν under ϕ.

Proposition 5.30. Let (A, ϕ, h) be as in Definition 5.29. If (ϕ,A) is independent

of h, then coordinate change holds for (A, ϕ, h).

Proof. The proposition follows from [GHPR, Proposition 2.2] for the case where

h is a GFF. (Here we use the assumption that (ϕ,A) is independent of h.) Adding a

continuous function does not change the result, since the continuous function can be

locally approximated by a constant. Finally, since coordinate change is an a.s. property,

reweighting the probability measure does not change the result.

Remark 5.31. (KPZ) With Q as in Definition 5.29, the equation Q(α, d)=Q(γ, 2)

is a version of the KPZ formula for fractals with Euclidean dimension d on a γ -LQG

surface. Heuristically, α describes the magnitude of the logarithmic singularity of the

field at a point z sampled according to the γ -LQG area measure “conditioned on z being

on the fractal”. We require Q(α, d)=5/
√
6 in Definition 5.29 due to Convention 2.2. For

the pivotal points the relevant dimension is d= 3
4 , which gives α=1/

√
6. This explains

why we consider GMC with α=1/
√
6 in §5.3.3 and §5.3.4.

We will apply coordinate change to various settings where the independence in

Proposition 5.30 does not hold. Lemmas 5.32 and 5.33 below are what we use in those

cases.

Lemma 5.32. In the setting of Definition 5.29, suppose coordinate change holds for

(A, ϕ, h). Let C∈R and s>0 be two random numbers coupled with (A, ϕ, h). (Here C

and s are not necessarily independent of (A, ϕ, h).) Then, coordinate change holds for

(A, sϕ, h+C).
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Proof. Almost surely, for any C∈R replacing h by h+C changes both the measures

eαhmA and eαhϕmϕ(A) by a factor of eαC . Therefore coordinate change will hold for

(A, ϕ, h+C) if it holds for (A, ϕ, h). It remains to show that coordinate change holds for

maps of the form

z 7−! sz.

This property holds since we required the limit in Definition 5.25 to be almost sure

(rather than e.g. a limit in probability or a limit along powers of 2).

Lemma 5.33. Fix W> 4
3 . Let hw be the random distribution on H such that

(H, hw, 0,∞)

is the circle average embedding of a W -quantum wedge (recall Definition 5.5). Let D

be a Jordan domain such that D∪∂D⊂H. Let A be a random compact on D whose

d-occupation measure mA exists and satisfies (5.5). Let ϕ be a random conformal map

on D. If (A, ϕ) is conditionally independent of hw|D given hw|Dc , then coordinate

change holds for (A, ϕ, hw).

Lemma 5.33 is an immediate consequence of Proposition 5.30 and the following

lemma.

Lemma 5.34. In the setting of Lemma 5.33, by enlarging the probability space, hw|D
can be written as hD+g, where hD is a zero-boundary GFF on D independent of hw|Dc

and g is an almost surely continuous function on D.

Proof. We can write hw=hℓ+hc uniquely such that hℓ has average zero along all

circles centered at the origin and hc is radially symmetric. Let h̄c be independent of hw

and have the law of the radially symmetric component of a free-boundary GFF on H.
Here we fix the additive constant for h̄c by letting its value on ∂D∩H be equal to zero.

Then, h̄:=hℓ+h̄c is a free-boundary GFF independent of hc. In particular, h̄|D can be

written as a zero-boundary GFF hD plus the harmonic extension of h̄|Dc . Now hD is

independent of hw|Dc because hD is independent of (h̄, hc)|Dc . Moreover, g :=hw|D−hD
is a.s. continuous on D.

5.3.3. Measure equivalence I: Brownian cut points

In this section we prove a first version of Proposition 5.1 (see Lemma 5.39), which is based

on a variant of planar Brownian motion called the Brownian excursion in the upper half-

plane. It is defined as the planar Brownian motion starting from zero conditioned to stay

inside H forever. See e.g. [L, §5.3] for how to make this conditioning precise.
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The following proposition extracted from [LSW] is an example of the deep relation

between planar Brownian motion and SLE6.

Proposition 5.35. Let (Bs)s⩾0 be a Brownian excursion in the upper half-plane.

Let η be an SLE6(2; 2) on (H, 0,∞). Let the hull of 	B (resp. η) be the closure of the

set of points z∈H for which we can find a t>0 such that z is disconnected by B([0, t])
(resp. η([0, t])) from infinity. Then, the hulls of B and η have the same law.

Let η′ℓ and η′r denote the left and right, respectively, boundary of the SLE6(2; 2)

curve η. Then, the interior of the hull of η is bounded by η′ℓ and η′r. The rest of this

section is devoted to the study of the set C′ :=η′ℓ∩η′r.
A point p on the trace of B is called a cut point if removing p disconnects the

trace. By Proposition 5.35, C′ has the same law as the set of cut points of (Bs)s⩾0.

The occupation measure of Brownian cut points is thoroughly studied in [HLLS]. In

particular, we have the following.

Proposition 5.36. Let U be a bounded domain with piecewise smooth boundary

satisfying U⋐H (namely, U∪∂U⊂H). Set A=C′∩U . Then, the 3
4 -occupation measure

(see Definition 5.12) mA of A exists and, for each ε∈
(
0, 34

)
,∫∫

U×U

dmA(x) dmA(y)

|x−y|3/4−ε
<∞ a.s.

Proof. Since C′ has the same law as the cut points of (Bs)s⩾0, Proposition 5.36

follows from [HLLS, Theorem 4.12].

The following fact allows us to ignore the domain boundary when considering C′.

For technical convenience we focus on a particular class of domains. A Jordan domain

D with piecewise smooth boundary is called a dyadic polygon if ∂D is contained in⋃
k∈N

{(x, y)∈R2 : 2kx∈Z or 2ky ∈Z}.

Lemma 5.37. For each fixed dyadic polygon U⋐H, we have C′∩∂U=∅ a.s.

Proof. We first prove that

P[C′∩{z : Im z= y} ≠∅] = 0 for each y > 0.

By scaling invariance of C′, P[C′∩{z :Im z=y}≠∅] does not depend on y. By way of

contradiction, assume that the probability is positive. Let Z be the Lebesgue measure

of the set {y∈(0, 1):C′∩{z :Im z=y}≠∅}. Then E[Z]>0, hence P[Z>0]>0. Let

A= C′∩{z : Im z ∈ (0, 1)}.
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Using the notation in Lemma 5.12, we have mr
A,1(A)⩾Z for each r>0. This contradicts

the fact that

lim
r!0

mr
A,1(A)= 0 a.s.

by Proposition 5.36. By the same argument we have

P[C′∩{z : Re z=x} ≠∅] = 0 for each x∈R.

This concludes the proof.

In our proof of Proposition 5.1 in §6.5, Pε will be covered by a finite union of

pieces that look like C′∩U . By Proposition 5.36 and Lemma 5.37, there exists a non-

atomic measure m′ supported on C′ such that for each fixed dyadic polygon U⋐H, the
3
4 -occupation measure of C′∩U a.s. equals m′|U . For more general domains, we only need

the following.

Lemma 5.38. For each bounded set V ⊂H we have E[m′(V )]<∞.

Proof. This is an immediate consequence of the estimate for Gcut
H in [HLLS, Theo-

rem 4.12].

Let h′ be a random distribution on (H, 0,∞) independent of η′ℓ and η′r such that

(H, h′, 0,∞)/∼ is a 14
3 -quantum wedge. Given a dyadic polygon U⋐H, by Lemma 5.28

and Proposition 5.36, eh
′/
√
6(m′|U ) exists in the sense of Definition 5.25 and is non-

atomic. We abuse notation and let eh
′/
√
6m′ denote the random measure supported on

C′ such that, for each U , (eh
′/
√
6m′)|U=eh

′/
√
6(m′|U ) a.s.

Now we are ready to state the preliminary version of Proposition 5.1 for C′.

Lemma 5.39. With the notation introduced above, suppose η′ℓ is parameterized by

quantum length. Then (η′ℓ)
−1(C′) has the law of the range of a 1

2 -stable subordinator.

Let ν′ be the pushforward under η′ℓ of the 1
2 -occupation measure of (η′ℓ)

−1(C′). Then,

ν′=ceh
′/
√
6m′ a.s. for some deterministic constant c>0.

Proof. Using results in [DMS], there are several ways to see that (η′ℓ)
−1(C′) can be

realized as the range of a 1
2 -stable subordinator, which by Lemma 5.13 has 1

2 -occupation

measure. For example, we can apply Proposition 5.24 to the setting of Propositions 5.7

to 5.9, which means W ℓ=W r= 2
3 in Proposition 5.24. Since η′ℓ is parameterized by the

quantum length, we see that (η′ℓ)
−1(C′) has the same law as

{s⩾ 0 : η0ℓ (s)∈ η([0,∞))∩∂D}

in Lemma 5.16.
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η′` η′r

η′`(t
′)

D`
Dr

D̃m
t

Dm
t

φt

xt

Figure 5.3. Illustration of the proof of Lemma 5.39. The green region is D̃m
t and the purple

region in the right figure is Dm
t . The blue point xt on the left figure is such that the ht-

quantum boundary length of [xt, 0] equals 1+t′.

It remains to prove that ν′=ceh
′/
√
6m′ a.s. for some deterministic constant c>0. The

idea of our proof is to use the ergodic theorem and scaling properties to argue that that

the ratio of the measures ν′ and eh
′/
√
6m′ is constant a.s. We advise the reader to look

at Figure 5.3 while reading the rest of the proof.

Without loss of generality,+ we assume that (H, h′, 0,∞) is the circle average em-

bedding of (H, h′, 0,∞)/∼. Let Dm be the region bounded by η′ℓ and η
′
r. Let D

ℓ and Dr

be the interior of the left and right, respectively, connected components of H\Dm. Let

Wℓ
0=(Dℓ, h′, 0,∞, )/∼, Wr

0=(Dℓ, h′, 0,∞)/∼, and Wm
0 =(Dm, h′, 0,∞)/∼. By Proposi-

tion 5.24, (h′, η′ℓ, η
′
r) is determined by (Wℓ

0,Wm
0 ,Wr

0).

For each fixed t>0, let t′=inf{s⩾0:m′([0, s])=t}, where m′ is the 1
2 -occupation

measure of (η′ℓ)
−1(C′). Let Dm be the closure of Dm, let Dm

t be the interior of the

unbounded component of Dm\{η′ℓ(t′)}, and D̃m
t be the closure of the bounded com-

ponent of Dm\{η′ℓ(t′)}. Let Wℓ
t=(Dℓ, h′, η′ℓ(t

′),∞)/∼, Wr
t=(Dr, h′, η′ℓ(t

′),∞)/∼, and

Wm
t =(Dm

t , h
′, η′ℓ(t

′),∞)/∼. By Proposition 5.24, Wm
0 is a weight- 23 wedge.

We claim that Wm
t
d
=Wm

0 , i.e., Wm
t also has the law of a weight- 23 wedge. Recall the

notation of Definition 5.22, in particular the p.p.p. E with intensity measure ℓ−3/2 dℓ⊗dt.
Let E ′ denote the collection of pairs (ℓ′, s) such that ℓ′ is the left boundary length of the

LQG disk associated with (ℓ, s)∈E . Since the two marked points of the LQG disks

constituting Wm
0 have the law of uniform and independent points sampled from the

boundary measure ([DMS, Proposition A.8]), we get that E ′ has the law of a p.p.p. with

intensity measure 2
3ℓ

−3/2 dℓ⊗dt. It follows that the process defined by

τu :=
∑

(ℓ′,s)∈E′

s⩽u

ℓ′

is a 1
2 -stable subordinator. Recall that Lemma 5.13 relates the time set and the 1

2 -



uniform triangulations under the cardy embedding 153

occupation measure of the range of a stable subordinator. Since m′ is defined to be the
1
2 -occupation measure on the range of τ , the lemma implies that, for some deterministic

constant c1/2>0, we have m′([0, τu])=c1/2u for all u>0 a.s. By definition, Wm
t con-

tains precisely the surfaces for which the point (ℓ′, s)∈E ′ satisfies m′([0, τs])>t. Using

m′([0, τu])=c1/2u, we get that Wm
t contains precisely the surfaces for which the point

(ℓ, s)∈E satisfies s>c1/2t. By the definition of a Poisson point process

{(ℓ, s−c1/2t)∈E : s> c1/2t}
d
= E ,

which implies that Wm
t (consisting of the disks corresponding to (ℓ, s) with s>c1/2t) is

equal in law to Wm
t (consisting of the disks corresponding to (ℓ, s) with s>0), i.e.,

Wm
t

d
=Wm

0 .

Since Wℓ
0 and Wr

0 are 2-quantum wedges independent of Wm
0 and t′ is determined

by Wm
0 , we see that t′ is independent of Wℓ

0 and Wr
0. Therefore, by Remark 5.4,

(Wℓ
t ,Wr

t )
d
=(Wℓ

0,Wr
0),

so, by Proposition 5.24, (H\D̃m
t , h, η

′
ℓ(t

′),∞)/∼ is a 14
3 -quantum wedge. Let Wm

0 \Wm
t

be the collection of LQG surfaces in Wm
0 but not in Wm

t , ordered in the same way as

in Wm
0 . Then, Wm

0 \Wm
t and (Wℓ

t ,Wm
t ,Wr

t ) are independent.

Let ϕt:H!H\D̃m
t be the conformal map such that

ht :=h′�ϕt+Q log |ϕ′t|

has the same law as h′. Namely, (H, ht, 0,∞) is the circle average embedding of

(H\D̃m
t , h, η

′
ℓ(t

′),∞)/∼.

Then, the set ϕ−1
t (C′), the field ht, and Wm

0 \Wm
t are independent.

For a dyadic polygon U⋐H, set A=ϕ−1
t (C′)∩U . We claim that ϕt can be written

as sϕ, where s is a random positive scaling constant and ϕ is determined by ht|Uc and

Wm
0 \Wm

t . We postpone the proof of this claim and proceed to conclude the proof of

Lemma 5.39. By Lemma 5.33 and this claim, the coordinate change in Definition 5.29

holds for (A, ϕ, ht). By Lemma 5.32, the same coordinate change holds for (A, ϕt, h
t). Let

Xt be the e
h′/

√
6m′-mass of D̃m

t , which is almost surely finite by Lemma 5.38. For a fixed

s>0, let Dm
t,s be the closure of D̃m

t+s\D̃m
t , so that Xt+s−Xs equals the eh

′/
√
6m′-mass

of Dm
t,s. Varying U , we see that Xt+s−Xt equals the eh

t/
√
6m′

t-mass of ϕ−1
t (Dm

t,s) a.s.,

where m′
t and e

ht/
√
6m′

t are defined in the same way as m′ and eh
′/
√
6m′, with ϕ−1

t (Dm
t )
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and ht in place of Dm and h′, respectively. Thus, the process (Xt+s)s⩾0 is determined by

(Wℓ
t ,Wm

t ,Wr
t ) in the same way as (Xs)s⩾0 is determined by (Wℓ

0,Wm
0 ,Wr

0), and hence

(Xs)s⩾0 has stationary increments.

By adding constants to h′ and using Remark 5.4 and (2.7), we see that the law of

Xt/t does not depend on t. For M∈(0,∞), let YMi =(Xi−Xi−1)∧M for i∈N. Then, by
the ergodic theorem,

lim
n!∞

n−1
n∑
i=1

YMi

exists almost surely. We realize Dm as the hull of a Brownian excursion B independent of

h′. Then, the limit belongs to the σ -algebra of h′ and B′ restricted to H\(RD). Taking
R!∞, the tail triviality of (h′,B) yields that

lim
n!∞

n−1
n∑
i=1

YMi =E[YM1 ] =E[X1∧M ] a.s.

On the other hand, since

n−1
n∑
i=1

YMi ⩽n−1Xn

and n−1Xn
d
=X1, we have

P[X1 ⩾E[X1∧M ]] = 1.

Letting M!∞, we get X1=E[X1]<∞ a.s. Therefore Xt=E[X1]t a.s. for all t⩾0. This

proves Lemma 5.39 with c=E[X1]
−1∈(0,∞).

It remains to prove the above mentioned claim that ϕt=sϕ. We can let s be such

that the quantum length of [−1, 0] with respect to the field hs( ·):=h′(s ·)+Q log s equals

1. Let ϕ=s−1ϕt, so that

ht=hs�ϕ+Q log |ϕ′|.

Let xt=ϕ
−1(−1). Then, the quantum length of [xt, 0] with respect to ht equals t′+1,

which means that xt is determined by ht|Uc and Wm
0 \Wm

t . Conditioning on ht|Uc and

Wm
0 \Wm

t , let ϕ̂ be a conditionally independent sample of ϕ. It suffices to show that ϕ=ϕ̂

a.s. Note that the surface (H, h′, 0,∞)/∼ can be obtained by identifying boundary arcs

of the surfaces (H, ht, 0,∞)/∼ and Wm
0 \Wm

t according to the quantum length. This

defines a bijective map ψ:H!H such that ϕ̂=ψ�ϕ (in particular, ψ is conformal on the

image of ϕ, which equals H\(s−1(D̃m
t ∪∂D̃m

t ))), ψ is conformal inside s−1D̃m
t , and ψ is

continuous everywhere. By the conformal removability of s−1(η′ℓ∪η′r) (Lemma 5.21), ψ

is conformal on the entire H.(13) Since ψ(∞)=∞, ψ(0)=0, and ϕ(xt)=ϕ̂(xt)=−1, we

have that ψ is the identity, and hence ϕ=ϕ̂ a.s.

(13) The way we apply conformal removability first appeared in the proof of [Sh2, Theorems 1.3
and 1.4]. See also [DMS, Theorem 1.4].



uniform triangulations under the cardy embedding 155

5.3.4. Measure equivalence II: intersections of bi-chordal SLE6

Recall the setting of Definition 5.2. In this section we formulate and prove a variant of

Proposition 5.1 with ηadQ ∩ηcbQ in place of Pε, namely, Proposition 5.44 below. We will use

Lemma 5.39 and that the two measures considered in that lemma transform in the same

manner when we add a continuous function to the field. We first introduce a degenerate

version of 2-SLE6 with an extra scaling invariance.

Definition 5.40. Let η1 be an SLE6(0; 2) on (H, 0,∞). Let H′ denote the component

of H\η1 whose boundary contains (0,∞). Conditioned on η1, let η2 be an SLE6 on

(H′, 0,∞).

Remark 5.41. To see why Definition 5.40 gives a degenerate notion of 2-SLE6, let

τ := inf{t⩾ 0 : Im η(t)= 1}.

Let η̄i be the reversal of ηi for i=1, 2. Let τ̄ be the first time such that the un-

bounded component Q̂ of H\(η1([0, τ ])∪η̄1([0, τ̄ ])) can be conformally mapped to Q

with (η1(τ), 0,∞, η̄1(τ̄)) mapped to (a, b, c, d). It is argued in [HLS, Lemma 4.4] that

P[τ<∞]>0 and moreover, on the event E={τ<∞}, the remainder of η1 has the law of

an SLE6 conditioned not to hit the real line. Denote the conformal map from Q̂ to Q

by ψ. (See Figure 5.4.) By the choice of τ and τ , the image of the remainder of η1 under

ψ has the law of a chordal SLE6 on (Q, a, d) conditioning on avoiding ∂b,cQ. Therefore,

the image of the remainder of η1 and η̄2 under ψ, as a pair of curves, have the law of

(ηadQ , η
cb
Q ).

We first prove the variant of Proposition 5.44 in the degenerate case.

Lemma 5.42. Let (η1, η2) be as in Definition 5.40. Let hw be a field independent of

(η1, η2) such that (H, hw, 0,∞) is the circle-average embedding of a 10
3 -quantum wedge.

Let P :=η1∩η2. Then, Proposition 5.36 and Lemma 5.37 hold with P in place of C′,

so that we can define the measures mP and eh
w/

√
6mP in the same way as m′ and

eh
w/

√
6m′, respectively, in Lemma 5.39. Let ηr1: [0,∞)!H∪∂H be the right boundary

of η1 (recall Proposition 5.20) parameterized by quantum length, starting from ηr1(0)=0.

Then, (ηr1)
−1(P) has the law of the range of a 1

2 -stable subordinator. Moreover, we have

ν=ceh
w/

√
6mP , where ν is the pushforward of the 1

2 -occupation measure of (ηr1)
−1(P)

and c is as in Lemma 5.39.

Proof. Consider two 2
3 -quantum wedges W1 and W2 which are independent of each

other and of hw. Recall Lemma 5.23. Let W ′ be the 14
3 -quantum wedge obtained by

conformally welding W1, W :=(H, hw, 0,∞)/∼, and W2, such that W1 (resp. W2) is to

the left (resp. right) of W. Let (H, h′, 0,∞) be the circle average embedding of W ′. Let
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η1 η2

P
H′

φ
η′` η′r

C′

Figure 5.4. Illustration of the statement and proof of Lemma 5.42.

η2

ηbcQηadQ

η1(τ) η1(τ)

PQ

a b

cd

ψP Q̂

Q
η′

Figure 5.5. Illustration of Definition 5.40 and the proof of Proposition 5.44. The domain Q′

(not indicated in the figure) is the subset of Q to the right of η′.

H′⊂H be such that W=(H′, h′|H′ , 0,∞)/∼, and let ϕ:H!H′ be the conformal map such

that hw=h′�ϕ+Q log |ϕ′| on H. See Figure 5.4 for an illustration.

Let ηℓ2 be the left boundary of η2. Applying Proposition 5.24 twice, we see that ηr1
and ηℓ2 cutW into three independents quantum wedges of weight 4

3 ,
2
3 , and

4
3 , respectively.

Let η′ℓ=ϕ�η
r
1 and η′r=ϕ�η

ℓ
2. Then, η′r and η′ℓ cut W ′ into three independents quantum

wedges of weights 2, 2
3 , and 2, respectively. Namely, Lemma 5.39 applies to (h′, η′ℓ, η

′
r)

defined here. Let C′=ϕ(P)=η′ℓ∩η′r. Then (ηr1)
−1(P)=(η′ℓ)

−1(C′) has the law of the range

of a 1
2 -stable subordinator. By Lemma 5.26, Proposition 5.36 holds with P in place of C′.

Moreover, note that the argument for Lemma 5.37 still applies if C′ is replaced by P,

since it is scaling invariant.

Define ν′, m′, and eh
′/
√
6m′ as in Lemma 5.39. Then, ν=ϕ∗ν

′. To conclude our

proof, we must show that eh
w/

√
6mP=ϕ∗(e

h′/
√
6m′). It is sufficient to show that the

coordinate change in Definition 5.29 applies to (P∩U, ϕ, hw) for each dyadic polygon

U⋐H. Recall that in Lemma 5.39 the same is proved for (A, ϕt, h
t) based on the theory

of quantum zippers in §5.3.1, as well as Lemmas 5.32 and 5.33. A similar argument

applies to (P∩U, ϕ, hw), where we need the conformal removability of ∂H′. We leave the

details to the reader.
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In the rest of this section, let η1, η2, η̄2, Q̂, ψ, E, and (Q, a, b, c, d) be as in Defini-

tion 5.40 and Remark 5.41. Also, we condition on the positive probability event E. We

identify the image under ψ of the part of (η1, η̄2) inside Q̂ as (ηadQ , η
cb
Q ) in Definition 5.2.

Let hw and P be as in Lemma 5.42. Let h̃ be the field on Q such that

(Q, h̃)∼ψ (Q̂, hw|Q̂).

Also, recall Q′ from Definition 5.2. Proposition 5.44 follows from Lemma 5.42 and the

observation below.

Lemma 5.43. Let h be a free Liouville field (Definition 2.3) which is independent of

(ηadQ , η
cb
Q ). Then, we can enlarge the probability space generated by (h, ηadQ , η

cb
Q ) to a bigger

probability space (Ω,F ,P) satisfying the following properties. There exists a random

continuous function g measurable with respect to (Ω,F) and a probability measure P̃ such

that the P̃-law of h−g is that of h̃ defined right above and P is absolutely continuous

with respect to P̃.
We abuse notation and set h̃:=h−g. Let η′ :=∂Q′∩ηadQ , and let ξ′h and ξ′

h̃
be the

quantum length measure on η′ induced by h and h̃, respectively. Then, P-almost surely

ξ′h= e2g/
√
6ξ′
h̃
.

Proof. To prove the first assertion, we first assume that h is a zero-boundary Gauss-

ian free field (GFF) on Q. By Definition 5.3, hw can be written as the sum of a free-

boundary GFF and a continuous function. Note that hw is independent of Q̂. By the

conformal invariance and domain Markov property of GFF, there exists a coupling of

a random continuous function g with h such that h̃
d
=h−g. Setting P̃=P gives the first

assertion in this case. The general case follows from the definition of a free Liouville field

and the fact that a free-boundary GFF can be decomposed as a zero-boundary GFF plus

a harmonic function.

To prove the second assertion, let ϕQ′ :H!Q′ be a conformal map. Let h1 and h2

be two random distributions on H such that

(Q′, h̃|Q′)∼ϕQ′ (H, h1) and (Q′, h|Q′)∼ϕQ′ (H, h2).

Let f=h1−h2. Then, f is continuous on ϕ−1
Q′ (η′). It is clear that h1 is a free Liouville

field, and hence so is h2. Restricted to ϕ−1
Q′ (η′), we have

e2h1/
√
6 dx= e2f/

√
6e2h2/

√
6 dx a.s.

This concludes the proof.
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Proposition 5.44. Let PQ=ηadQ ∩ηcbQ . Let h be a free Liouville field (Definition 2.3)

which is independent of (ηadQ , η
cb
Q ). Let I=(η′)−1(PQ), where

η′ = ∂Q′∩ηadQ

as in Lemma 5.43, parameterized by the quantum length induced by h. Then, almost

surely the following hold.

(1) The 3
4 -occupation measure of PQ exists, which we denote by mQ.(

14) The mea-

sure eh/
√
6mQ exists as in Definition 5.25. The 1

2 -occupation measure of I exists. Let

νI denote the pushforward of this measure by η′.

(2) We have

νI = ceh/
√
6mQ,

with c as in Lemma 5.39.

Proof. Note that there almost surely exists a dyadic polygon U⋐H such that

ψ−1(PQ)⊂U.

Since P∩∂U=∅ a.s. in Lemma 5.42, the existence of mP in Lemma 5.42 combined with

Lemma 5.26 implies that mQ exists, and∫∫
Q×Q

dmQ(x) dmQ(y)

|x−y|3/4−ε
<∞

a.s. for ε∈
(
0, 34

)
. Therefore, eh/

√
6mQ exists.

Let η̃′ be η′ reparameterized by the quantum length induced by h̃ from Lemma 5.43.

Then, Lemma 5.42 implies that the 1
2 -occupation measure mĨ of Ĩ :=(η̃′)−1(PQ) exists.

Let νĨ :=(η̃′)∗mĨ denote the pushforward of mĨ by η̃′. Then, Lemmas 5.33 and 5.42

further imply that νĨ=ce
h̃/

√
6mQ, with c as in Lemma 5.39. When we apply Lemma 5.33

here, we use in particular that ψ and P are independent of hw.

By Lemma 5.43, it suffices to prove Proposition 5.44 in the case when h has the form

h̃+g, where g:Q!R is a random continuous function coupled with h̃ in an arbitrary

manner. Note that PQ⊂η̃′(I) for some closed interval I. Without loss of generality,

we assume that I=[0, A] for some A>0. Recall that η′ is parameterized according to

the quantum length measure induced by h̃+g. By Lemma 5.43, η′(s(t))=η̃′(t) for each

t∈[0, A], where

s(t)=

∫ t

0

e
√

2/3 g(η̃′(u)) du for t∈ [0, A]. (5.7)

(14) The existence of mQ is also proved in [HLS, Proposition 1.8]. We include the proof here for
completeness.
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Set B :=s(A). Since s: [0, A]![0, B] is a C1 function with s′>0, and s(Ĩ)=I, we have

that, by Lemma 5.27, the 1
2 -occupation measure mI of I exists and equals |(s−1)′|−1/2 ·

(s∗mĨ). By (5.7), for each x∈η′([0, B]), we have that

|(s−1)′((η′)−1(x))|−1/2 =(e−
√

2/3 g(x))−1/2 = eg(x)/
√
6.

Therefore,

(η′)∗mI = eg/
√
6((η′)∗(s∗mĨ))= eg/

√
6((η̃′)∗mĨ)

= eg/
√
6νĨ = ceg/

√
6eh̃/

√
6mQ= ceh/

√
6mQ.

Now,

νI =(η′)∗mI = ceh/
√
6mQ

as desired.

6. Liouville dynamical percolation

In this section we prove Lemmas 3.2 and 3.3. This concludes the proof of Theorem 1.6.

Lemma 3.2 is a relatively easy consequence of (1.5) and an ingredient (Proposition 6.34)

from [GHS1] and [BHS]. For Lemma 3.3, neither the convergence nor the ergodicity

seems easy to access from random planar maps and mating-of-trees perspective. To

prove this lemma, we use the Liouville dynamical percolation introduced in [GHSS]. We

review this object in §6.1 and §6.2, and prove Lemma 3.3 in §6.3, with certain ingredients

supplied in later subsections.

We will use the following notions and conventions. CLE6 in this section will be

assumed to have monochromatic blue boundary condition; see Definition 2.10. Given a

finite measure µ, if z is sampled from µ normalized to be a probability measure, we will

simply say that z is sampled from µ. For a metric space (X, d), recall that a process

taking values in X is called càdlàg if it is right-continuous and has left limits everywhere.

In this section we will often consider convergence of càdlàg processes in the Skorokhod

topology. For functions fj : Ij!X defined on bounded intervals Ij⊂R for j=1, 2, this

topology is generated by the metric

dSk(f1, f2) := inf
ϕ

sup
t∈I1

(d(f1(t), f2(ϕ(t)))+|t−ϕ(t)|),

where the infimum is taken over all increasing bijections ϕ: I1!I2. If f1 and f2 are

defined on [0,∞), then we define dSk similarly; more precisely,

dSk(f1, f2) :=

∞∑
k=1

inf
ϕ

sup
t∨ϕ(t)∈[0,2k]

2−k∧(d(f1(t), f2(ϕ(t)))+|t−ϕ(t)|),

where the infimum is taken over all increasing bijections ϕ: [0,∞)![0,∞).
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6.1. Quad-crossing space

We start by recalling a metric space due to Schramm and Smirnov [SSm] as a method

of describing the scaling limit of planar percolation other than loop ensembles. We will

omit the detailed construction of the metric and only review materials necessary for this

paper.

A quad is a homeomorphism Q from [0, 1]2 into C, where two homeomorphisms Q1

and Q2 are identified as the same quad if Q1([0, 1]
2)=Q2([0, 1]

2), and Q1(z)=Q2(z) for

z∈{(0, 0), (0, 1), (1, 0), (1, 1)}. Let

∂1Q :=Q({0}×[0, 1]), ∂2Q :=Q([0, 1]×{0}),

∂3Q :=Q({1}×[0, 1]), ∂4Q :=Q([0, 1]×{1}).

A crossing of a quad Q is a closed set in C containing a connected closed subset of

Q([0, 1]2) that intersects both ∂1Q and ∂3Q. A natural partial order ⩽ can be defined

on QD by saying that Q1⩽Q2 if and only if every crossing of Q1 is also a crossing of Q2.

Let D be a bounded domain. Let QD denote the space of all quads satisfying

Q([0, 1]2)⊂D. We say that a subset S⊆QD is hereditary if, whenever Q∈S and Q′∈QD

satisfy Q′⩽Q, we have Q′∈S. We call a closed hereditary subset of QD a quad-crossing

configuration on D, and denote the space of quad-crossing configurations by H(D). For

ω∈H(D) we may identify it with a function ω:QD!{0, 1} such that ω−1(1) is closed in

QD and such that, for any Q1, Q2 with Q1⩽Q2 and ω(Q1)=1, we have ω(Q2)=1. (Here,

we abuse notation and let ω denote both the element of H(D) and the function from QD

to {0, 1}.) By [SSm], H(D) can be endowed with a metric dH such that (H(D), dH) is a

compact separable metric space. For each Q∈QD, the function ω 7!ω(Q) is measurable

with respect to the Borel σ -algebra of (H(D), dH). Moreover, there exists a countable

set {Qn}n∈N⊂QD such that Qn([0, 1]
2) has piecewise smooth boundary and

{ω(Qn)}n∈N generates the Borel σ-algebra of (H, dH). (6.1)

We now focus on the setting relevant to the remainder of the paper. For δ>0, let

ωδ be a site percolation on Dδ (see the paragraph above Theorem 2.9 for the definition).

For each Q∈QD, let ω
δ(Q)=1 if and only if the union of all red hexagons on the dual

lattice of Dδ gives a crossing of Q. This identifies ωδ with an element in H(D). If ωδ is

sampled from Bernoulli- 12 site percolation, then ωδ converges in law to a random variable

ω in H(D) for the dH-metric [CN], [GPS2]. Let 
QD be the collection of quads such that

Q([0, 1]2)⊂D∪∂D. For each Q∈
QD we can still define ωδ(Q) as before. In this section,

we use the following lemma to extend ω from QD to 
QD.
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Lemma 6.1. Almost surely ω admits an extension to 
QD such that, for each fixed

Q∈
QD, limn!∞ ω(Qn)=ω(Q) in probability, where Qn is obtained by restricting Q to

[n−1, 1−n−1]2. Suppose that we are in a coupling such that limδ!0 ω
δ=ω almost surely

as elements in H(D). Then, limδ!0 ω
δ(Q)=ω(Q) in probability for each fixed Q∈
QD.

Proof. Suppose ω̂δ is defined as ωδ with 2D in place of D. We further require that

ω̂δ converge almost surely as elements in H(2D) and that ωδ is obtained by restricting

ω̂δ to D. Let ω̂=limδ!0 ω̂
δ in the dH-metric. By [SSm, Lemma A.1],

lim sup
δ!0

P[ω̂δ(Q) ̸= ω̂δ(Qn)] = on(1).

By [SSm, Corollary 5.2], limδ!0 ω
δ(Q)=ω(Q) in probability for each fixed Q∈
QD. There-

fore, ω̂ restricted to 
QD is the desired extension of ω as described in Lemma 6.1.

6.2. Liouville dynamical percolation

We first specify the setting under which we will prove Lemmas 3.2 and 3.3 in §6.3. Let

γ=
√

8
3 , Q=5/

√
6, and a=Q−γ=1/

√
6. We consider a probability space (Ω,F ,P) with

random variablesXt, h
1, h2, and hs whose laws are as described in Definition 2.4. Namely,

(Xt)t⩾0 has the law of B2t−at, where Bt is a standard Brownian motion, (X−t)t⩾0

is independent of (Xt)t⩾0, and (X−t)t⩾0 has the law of B2t−at conditioned on being

negative. Moreover, hs=h1+h2, where h1(z)=Xt for each z∈S and t∈R with Re z=t.

Finally, h2 is independent of Xt with the law of the lateral component of the free-

boundary GFF on S. Let Pd be the probability measure obtained from normalizing

e−γM/4ξhs(∂S)1/2 dP, where M=supt∈RXt. (Recall from (2.9) that (Q−γ)M= 1
4γM

and 4/γ2−1= 1
2 .) Let

hd :=hs−2γ−1 log ξhs(∂S),

so that under the Pd-measure hd is the field of a unit boundary length
√

8
3 -LQG disk by

definition. Now let ϕ:D!S be the conformal map in Definition 2.6. Let h be the field

as in Definition 2.6, i.e.,

h=hd�ϕ+Q log |ϕ′|.

Let h=hs�ϕ+Q log |ϕ′|. Then, the fields h and h are related by a shift:

h= h−2γ−1 log ξh(∂D). (6.2)

We are mainly interested in h because, under the Pd-measure, it is the field considered

in Lemmas 3.2 and 3.3. However, most technical work in this section will be done for h

instead because of the following lemma.
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Lemma 6.2. In the setting above, h can be written as Φ+g, where the P-law of Φ is

a free boundary GFF as in Theorem 6.4 and g is a random continuous function on D.
Moreover,

g(z)⩽Q log |ϕ′(z)|−a|Reϕ(z)| for all z ∈D. (6.3)

Proof. Let hf be the free boundary GFF on S with average zero along i[0, π]. In the

definition of hs in Definition 2.4, if the law of Xt were set to be the 2-sided Brownian

motion (B2t)t∈R without drift or conditioning, then the law of hs would be given by hf .

Since there exists a coupling of (B2t)t⩾0 and (Xt)t⩾0 such that Xt=B2t−at for t⩾0 and

Xt⩽B−2t+at for all t⩽0, we can couple hf and hs on the same probability space such

that the following conditions hold:

(1) the lateral component of hf (see the paragraph above Definition 2.4) equals h2;

(2) hs=hf−aRe z on S∩{z :Re z⩾0};
(3) hs⩽hf+aRe z on S∩{z :Re z<0}.
Since h=hs�ϕ+Q log |ϕ′|, taking Φ=hf �ϕ and g=h−Φ, and using that ϕ maps

i[−1, 1] to [0, iπ], we obtain (6.3).

The following immediate corollary of Lemma 6.2 will be useful in §6.4 and §6.8.

Corollary 6.3. For h and Φ in Lemma 6.2, given any r∈(0, 1), there exists a

deterministic constant cr such that h⩽Φ+cr on rD:={z :|z|<r}.

We now review Liouville dynamical percolation in the setting specified above. Let

µ′
h := eh/

√
6 d2z= lim

ε!0
ε1/12eh/

√
6 d2z

be as defined in Definition 5.25 with α=1/
√
6. Fix δ>0 and consider the lattice Dδ. For

each vertex v on Dδ, let µ′
h(v) be the µ′

h-mass of the hexagon on the dual lattice of Dδ

corresponding to v. Let αδ4(δ, r) be the probability of that Bernoulli- 12 site percolation

on δT possesses four disjoint monochromatic paths of alternating color from the origin

to the boundary of the box [−r, r]2.
We now enlarge the probability space (Ω,F ,P) to contain random variables de-

fined as follows. For δ>0, let ωδ0 be an instance of Bernoulli- 12 site percolation on Dδ

with monochromatic blue boundary condition. We assume that the loop ensembles cor-

responding to ωδ0 converge P-almost surely (see Theorem 2.9). We further require h

and {ωδ0}δ>0 to be independent under P. Consider a clock for each inner vertex of Dδ

such that conditioning on (h, ωδ0), these are independent exponential clocks with rate

µ′
h(v)α

δ
4(δ, 1)

−1. Namely, the set of times when the clock at v rings is a Poisson process

on (0,∞) of intensity µ′
h(v)α

δ
4(δ, 1)

−1. Now, we define a dynamic on the space of site

percolation configurations on Dδ as follows. Letting the initial coloring be ωδ0, when the
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clock rings at an inner vertex v, we flip the color at v. This defines a stationary process

(ωδt )t⩾0, which by §6.1 can be viewed as taking values in H(D). We call (ωδt )t⩾0 the

discrete Liouville dynamical percolation (LDP) on Dδ driven by eh/
√
6. We will use the

following key input from [GHSS].

Theorem 6.4. There exists a probability space (Ω,F ,P) with random variables h,

{(ωδt )t⩾0 :δ∈(0, 1)}, and (ωt)t⩾0 satisfying the following.

• The joint law of h and {(ωδt )t⩾0 :δ∈(0, 1)} is as described right above.

• (ωt)t⩾0 is a stationary process taking values on H(D) with following mixing prop-

erty. For any two events A and B in the Borel σ-algebra of (H(D), dH),

lim
t!∞

P[1ω0∈A1ωt∈B | h] =P[A]P[B]

almost surely.

• For each r∈(0, 1) and t⩾0, let ωδt |rD (resp. ωt|rD) be ωδt (resp. ωt) restricted to

QrD, where rD:={z∈C:|z|<r}. Then, for each r∈(0, 1), (ωt|rD)t⩾0 is a càdlàg process

and

lim
δ!0

(ωδt |rD)t⩾0 =(ωt|rD)t⩾0

in probability in the Skorokhod topology.

Proof. Note that Φ in Lemma 6.2 under the probability measure P is a Gaussian

field on rD with kernel of the form

− log |x−y|+C(x, y),

where C( · , ·) is continuous up to the boundary of rD. Therefore, if g were equal to zero

in Lemma 6.2 so that h=Φ, Theorem 6.4 would fall into the framework of [GHSS]. The

third assertion of Theorem 6.4 would follow from [GHSS, Theorem 1.3]. For the second

assertion, if A and B are in the Borel σ -algebra of (H(rD), dH), then the second assertion

would follow from [GHSS, Theorem 1.4]. Since the Borel σ -algebra of (H(D), dH) is the

minimal σ -algebra containing the Borel σ -algebra of (H(rD), dH) for all r∈(0, 1), we

would have the second assertion of Theorem 6.4 without the constraint to rD.
Now, although g ̸=0, since g is uniformly bounded from above and below on rD, as

explained in [GHSS, Remark 1.6], the non-quantitative results of [GHSS, Theorems 1.3

and 1.4] still hold and give Theorem 6.4.

We call (ωt)t⩾0 the continuous Liouville dynamical percolation driven by eh/
√
6. The

boundary condition of (ωδt )t⩾0 is irrelevant for Theorem 6.4. We impose the monochro-

matic boundary condition and restrict the update of colors only to inner vertices in order

to mimic the dynamic (Mn, ωnt )t⩾0 in §1.4.2.



164 n. holden and x. sun

6.3. Proof of Lemmas 3.2 and 3.3

In this section we prove Lemmas 3.2 and 3.3 with a few ingredients whose proofs are

postponed to later subsections. The idea of the proof of Lemma 3.2 is to mimic the

definition of (Mn,
Υε,ni )i∈N in Lemma 3.2 using a cut-off version of the discrete LDP and

show that their transition kernels as Markov processes are identical in the continuum.

Once Lemma 3.2 is proved this way, the desired ergodicity in Lemma 3.3 follows from

the corresponding ergodicity of the continuum LDP from Theorem 6.4. We will consider

a probability space (Ω,F ,P) satisfying the properties described in Theorem 6.4. Let

h be defined as in (6.2) and let Pd be as above (6.2), so that the Pd-law of h is as in

Lemmas 3.2 and 3.3.

Fix a site percolation configuration ω on Dδ with monochromatic blue boundary

condition. Let Γ(ω) be the loop ensemble of ω. Given ℓ∈Γ(ω), by our convention in §2.2,
ℓ is viewed as an edge path on the triangulation Dδ. Given each edge e in ℓ, let e∗ be

its dual edge obtained by rotating e around its midpoint by 90 degrees. The collection

of such dual edges forms an oriented simple loop, where the orientation is such that the

red vertex of each edge e is on the left side. We call the domain bounded by this simple

loop the region enclosed by ℓ. Given ℓ∈Γ(ω), similarly as in Definition 2.14, we call the

µh-mass of the region enclosed by ℓ the µh-area of ℓ. Given an inner vertex v of Dδ, let
ωv be the coloring of V(Dδ) such that, for each v′∈V(Dδ), ωv(v′)=ω(v′) if and only if

v′ ̸=v. Let Lv be the symmetric difference between Γ(ω) and Γ(ωv). For ε>0, we call v

an ε-pivotal point of (h, ω) if there are at least three loops in Lv with µh-area at least ε.

For ε>0, let (ωε,δt )t⩾0 be the following modification of the discrete LDP (ωδt )t⩾0

on Dδ driven by eh/
√
6: when the clock at an inner vertex v rings at time t, the color

of v is flipped if and only if v is an ε-pivotal point of (h, ωε,δt− ). Note that (ωε,δt )t⩾0 is

defined similarly as (�ωε,nt )t⩾0 in Lemmas 3.1, i.e., by rejecting updates of vertices which

are not ε-pivotal. Let Γε,δt =Γ(ωε,δt ) for each t⩾0. Then, (Γε,δt )t⩾0 is the lattice analog

of (Mn,
Υε,nt )t⩾0. Our next lemma shows that (Γε,δt )t⩾0 converges in law for each fixed

ε>0.

Lemma 6.5. In the setting of Theorem 6.4, for each ε>0 let (ωε,δt )t⩾0 and (Γε,δt )t⩾0

be defined as above. Then, there exists a process (Γεt )t⩾0 coupled with h such that

(h,Γε,δt )t⩾0 converge in law to (h,Γεt )t⩾0 as δ!0 in the Skorokhod topology as càdlàg

processes taking values in H−1(D)×L(D). Conditioned on h, (Γεt )t⩾0 is a stationary

Markov process, where the conditional law of Γε0 is that of a CLE6 on D. Moreover,

almost surely (Γεt )t⩾0 either stays constant or has infinitely many jumps. In the latter

case, it has finitely many jumps in any finite interval.
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We will prove Lemma 6.5 in §6.7. The proof will also provide a recipe for sam-

pling (h,Γεt )t⩾0 without referring to the lattice approximation. Before describing it in

Lemma 6.7, we give a purely continuum description of the limiting pivotal measures in-

volved. Given a subset S of δDδ and a measure µ on C, by µ restricted to S, we mean

µ restricted to the union of hexagons in the dual lattice whose vertex is in S. We also

recall the definition of ε-pivotal points (Definition 2.14) for a CLE6 coupled with an

independent Liouville field.

Lemma 6.6. There exists a constant c′>0 such that the following holds. In the

setting of Theorem 6.4, for each ε>0, αδ4(δ, 1)
−1 times Lebesgue measure restricted to the

set of ε-pivotal points of (h, ωδ0) converge to a measure mε in probability. Moreover, there

exists a random set A⊂D measurable with respect to (h,Γ0) such that mε=(c′mA)|Pε ,

where mA is the 3
4 -occupation measure of A and Pε is the ε-pivotal points of (h,Γ0).

We will prove Lemma 6.6 in §6.4.6, where we will see that the set A can be chosen

to be the so-called ρ-important points (Definition 6.15) of Γ0 for small enough ρ. In fact,

mε is c′ times the 3
4 -occupation measure of Pε, but we omit the proof of this fact since

we do not need it.

Given Lemma 6.6, let Mε
h,Γ0

:=(c′eh/
√
6mA)|Pε

. Since A is measurable with respect

to (h,Γ0), so is the measure Mε
h,Γ0

. Recall the measure Mε
h,Γ from Proposition 5.1,

where the law of (h,Γ) is the same as that of (h,Γ0) considered here, and the precise

definition of Mε
h,Γ was postponed to this section. In fact, we will simply define Mε

h,Γ by

applying the measurable function on H−1(D)×L(D) defining (h,Γ0) to (h,Γ) instead.

This will be made precise as Definition 6.24 in §6.5 after the set A is described more

concretely. Given this definition, the content of Proposition 5.1 is that νεh,Γ=cMε
h,Γ a.s.,

where Mε
h,Γ is the quantum natural measure on the ε-pivotal points of (h,Γ) constructed

from the mating-of-trees theory. We will conclude the proof of Proposition 5.1 in §6.5.
We now use Mε

h,Γ0
to describe the Markov process (Γεt )t⩾0.

Lemma 6.7. The law of (h,Γεt )t⩾0 in Lemma 6.5 can be described as follows. Con-

ditioning on (D, h,Γε0), an exponential clock rings with rate (ξh(∂D))1/2Mε
h,Γ0

(D). Here,

we make the convention that an exponential clock with rate zero never rings. Once the

clock rings, sample an ε-pivotal point z from Mε
h,Γ0

. The process jumps to the loop

ensemble obtained from Γε0 (i.e. Γ0) by flipping the color at z. (Recall the notion of

color flipping for CLE6 above Definition 2.14.) The remaining jumps in the process, are

sampled iteratively.

Since (Γεt )t⩾0 is stationary and has finitely many jumps in any finite interval by

Lemma 6.5, modulo a probability-zero event, Mε
h,Γt

is well defined simultaneously for

all (h,Γεt ). Therefore, the iterative sampling in Lemma 6.7 makes sense.
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Recall the constants cp in (1.3) (see also Proposition 6.34 below), where cpMε
h,Γ

describes the scaling limit of the discrete pivotal measure on random planar maps. Recall

c in Proposition 5.1 such that νεh,Γ=cMε
h,Γ a.s. In the setting of Lemmas 6.5 and 6.7, let

�Γεt :=Γεccptξh(∂D)−1/2 for each t⩾ 0. (6.4)

Since νεh,Γ=cMε
h,Γ, by Lemma 6.7, conditioning on (h,Γ0), the first time at which the

process (�Γεt )t⩾0 jumps has the law of an exponential random variable with rate cpν
ε
h,Γ0

(D),
where νεh,Γ0

is as νεh,Γ in Proposition 5.1 with Γ0 in place of Γ.

Recall that Pd is the probability measure obtained from a reweighing of the probabil-

ity measure P in Theorem 6.4 as above (6.2), so that the Pd-law of h is as in Lemmas 3.2

and 3.3. Let (Y εt )t⩾0 be a sample of (D,h, �Γεt )t⩾0 according to its Pd-law, where

(D,h, �Γεt ) is viewed as a random variable in MGHPUL, as in Remark 2.15. We will prove

Lemma 3.2 by showing that (Y εt )t⩾0 is the scaling limit of (Mn,
Υε,nt )t⩾0. The following

lemma is the only input from random planar maps that we need for this proof.

Lemma 6.8. Fix ε>0. Let Sn=(Snt )t⩾0 be the Markov process (Mn,
Υε,nt )t⩾0 in

Lemma 3.2 and let (Y εt )t⩾0 be as above. For i∈N, let τni and τi be the i-th time that Snt
and Y εt , respectively, jump. If no jump occurs we set all the jumping times to be ∞. Then,

(Snτn
1
, Snτn

2
, τn1 , τ

n
2 ) and the event {τn1 <∞} jointly converge in law to (Y ετ1 , Y

ε
τ2 , τ1, τ2) and

{τ1<∞}.

We postpone the proof of Lemma 6.8 to §6.7 and proceed to the proof of Lemma 3.2.

Proof of Lemma 3.2. Suppose that we are in the setting of Lemma 6.8. By that

lemma, Sn|[0,τn
2 ) converges to Y ε|[0,τ2) in the Skorokhod topology. Given s>0, let τs,ni

be defined in the same way as τni , with (Snt )t⩾0 replaced by (Ss,nt )t⩾0 :=(Snt+s)t⩾0. Let

Q+ be the set of positive rationals. Then, at least along a subsequence of N, there is

a coupling of (Sn)n∈N and a family of processes {(Y ε,st )t⩾0 :s∈Q+} such that, for each

s∈Q+, it holds that Ss,n|[0,τs,n
2 ) converges to Y ε,s|[0,τs

2 )
a.s. in the Skorokhod topology,

where each (Y ε,st )t⩾0 has the same law as (Y εt )t⩾0 above. Given a rational s∈(τ1, τ2),
for n large enough τs,ni +s=τni+1 for all i∈N. In particular, Sn|[s,τn

3 )=S
s,n|[0,τs,n

2 ). This

implies that in our coupling along the chosen subsequence Sn|[0,τn
3 ) converges almost

surely in the Skorokhod topology and the law of the limiting object is given by Y ε|[0,τ3).
Therefore, Sn|[0,τn

3 ) converges in law to Y ε|[0,τ3) in the Skorokhod topology, without

passing to a subsequence. By induction, the same convergence holds with τn3 and τ3

replaced by τni and τi, respectively, for any i∈{4, 5, ... }. By Lemma 6.5, limi!∞ τi=∞
a.s. Therefore (Snt )t⩾0 converges to (Y εt )t⩾0 in the Skorokhod topology.

Since every càdlàg function has countably many discontinuous points and (Y εt )t⩾0

is stationary, for all fixed t⩾0, we have that Y ε is almost surely continuous at t. This

gives Lemma 3.2.
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Although the convergence in Lemma 6.5 is only in law, the following proposition,

which we will prove in §6.8, upgrades it to convergence in probability. This will be

important to the proof of Lemma 3.3.

Proposition 6.9. There exists a probability space (Ω,F ,P) satisfying Theorem 6.4

and Lemma 6.5 such that, for each ε>0, (Γε,δt )t⩾0 converge in probability as δ!0.

For δ>0, let ωδ be the Bernoulli- 12 site percolation on Dδ with monochromatic blue

boundary condition. Let Γδ :=Γ(ωδ). As explained in [GPS2], ωδ and Γδ jointly converge

in law. Suppose that (ω,Γ) is a sample from the limiting joint law. Then, the quad

crossing configuration ω is a.s. determined by Γ [CN], [GPS2]. In §6.6 we prove the

inverse measurability statement conjectured in [SSm].

Theorem 6.10. Γ is almost surely determined by ω.

From now on, we work on the probability space (Ω,F ,P) in Proposition 6.9 and let

(Γεt )t⩾0 be the in-probability limit of (Γε,δt )t⩾0 as δ!0. This way, (Γεt )t⩾0 for different

ε’s in Lemma 6.5 are coupled together. To prove Lemma 3.3, we would like to take

the ε!0 limit of (Γεt )t⩾0. However, this convergence is hard to establish directly in

L(D). Theorem 6.10 allows us to reduce Lemma 3.3 to the following proposition on

quad-crossing elements.

Proposition 6.11. For each ε>0 and t⩾0, let ωεt :=ω(Γ
ε
t ) be the element of H(D)

corresponding to Γεt . Recall (ωt)t⩾0 in Theorem 6.4. Then, for each r∈(0, 1),

lim
ε!0

(ωεt |rD)t⩾0 =(ωt|rD)t⩾0

in probability in the Skorokhod topology as càdlàg processes in H(rD), where ωεt |rD is ωεt
restricted to QrD.

The proof of Proposition 6.11 will be given in §6.8.

Proof of Lemma 3.3. Recall (�Γεt )t⩾0 in (6.4) defined in terms of (Γεt )t⩾0. Since the

Pd-law of (D,h, �Γεi )i∈N equals the law of (Y εi )i⩾0 in Lemma 3.3, it suffices to show that

under Pd, as ε!0, (�Γεi )i∈N converge to an ergodic sequence.

For each t⩾0, let �ωεt :=ω
ε
ccptξh(∂D)−1/2 be the element in H(D) corresponding to �Γεt .

Let �ωt :=ωccptξh(∂D)−1/2 . Restricted to rD, both (�ωεt )t⩾0 and (�ωt)t⩾0 are stationary càdlàg

processes. As in the last paragraph in the proof Lemma 3.2, for each fixed t⩾0, Propo-

sition 6.11 implies that

lim
ε!0

�ωεt |rD = �ωt|rD

in probability. Varying r, we see that

lim
ε!0

�ωεt = �ωt
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in probability.

In light of Theorem 6.10, for each fixed t⩾0, �ωt a.s. determines an instance of CLE6

on D, which we denote by �Γt. Since

lim
ε!0

(�Γεt , �ω
ε
t )= (�Γ, �ω)

in law, Theorem 6.10 implies that limε!0
�Γεt=

�Γt in probability under P. Here, we use

again the measure theoretic fact Lemma 4.2 which upgrades joint converge in law to

convergence in probability given measurability.

By absolutely continuity, limε!0
�Γεt=�Γt in probability under Pd. By (6.1), the mixing

property for (ωt)t⩾0 in Theorem 6.4 also holds for �ωt, under both P and Pd. In particular,

(�ωi)i∈N is ergodic under Pd. By Theorem 6.10, (�Γi)i∈N is ergodic under Pd as well.

In the rest of §6, we first prove Proposition 5.1, Lemma 6.6, and Theorem 6.10,

and provide tools on percolation without dynamics in §§6.4–6.6. Then, in §6.7 and

§6.8, we study the various dynamics considered in §6.3 and prove Lemmas 6.5–6.8 and

Propositions 6.9 and 6.11.

6.4. Lattice approximation of the pivotal measure

In this section we introduce a cutoff on the set of pivotal points. The cutoff is different

from the one we use when defining ε-pivotal points, and we call the set of macroscopic

pivotal points for the new cutoff ρ-important points. The concept of ρ-important points

has also been used in [GPS3], [GHSS] (see the beginning of §6.8 for further discus-

sion). Although lacking a natural connection to random planar maps, this cutoff is more

amenable for technical analysis.

Recall that Dδ is a subset of the rescaled triangular lattice δT approximating D.
Throughout this subsection, ωδ denotes a sample of Bernoulli- 12 site percolation on Dδ for
δ>0. Moreover, {ωδ}δ>0 are coupled such that the loop-ensembles Γδ :=Γ(ωδ) converge

to a CLE6 Γ in L(D) almost surely (see Theorem 2.9). We parameterize loops in Γ and

Γδ such that, when listed in decreasing order according to the (Euclidean) area of the

enclosed region, the kth loop converges a.s. in the uniform topology for each k∈N. We

enlarge our coupling to include a sample of h, and hence h, as in Lemma 6.2, which

is independent of {ωδ}δ>0. Let νδ be the renormalized weighted counting measure on

Dδ, where each vertex x is assigned mass µ′
h(x)α

δ
4(δ, 1)

−1, where we recall from above

Theorem 6.4 that µ′
h(x) is the mass assigned by eh/

√
6d2z to the hexagon associated with

x on the dual lattice of Dδ. Note that the law of {ωδ0}δ>0 and h in Theorem 6.4 satisfies

the description of the law of {ωδ}δ>0 and h in this section.
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This subsection is organized as follows. In §6.4.1, we recall some results from [HLS]

concerning 2-SLE6. Then, we introduce ρ-important points and prove its basic properties

in §§6.4.2–6.4.4, and establish its relation with ε-pivotal points in §6.4.5. Finally, we prove
Lemma 6.6 in §6.4.6. We encourage the reader to skip the technical proofs in the first

reading, but keep in mind the definitions and results for later applications.

6.4.1. Percolation interfaces and the discrete analog of 2-SLE6

In this subsection we recall that, for a quad (Q, a, b, c, d), a certain pair of interfaces

connecting a, b, c, adn d pairwise in Q is given by a 2-SLE6 (Lemma 6.12) and that the

points of intersection between these interfaces have a well-defined 3
4 -occupation measure

which describes the scaling limit of the corresponding discrete measure for percolation

on the triangular lattice (Proposition 6.13).

Let U⊂D be a Jordan domain. For x∈∂U , let xδ be the edge on ∂Uδ closest to

x (if there is a tie, choose one arbitrarily). We always assume that δ is small enough

such that aδ ̸=bδ. Let ηabU,δ be the percolation interface of ωδ (see the definition below

Proposition 4.3) on (U δ, aδ, bδ). Since the triangular lattice is canonically embedded in

C, we identify each edge with its dual edge on the hexagonal lattice so that ηabU,δ and

loops in Γδ are simple curves.

As proved in [CN, §5], in our coupling, for a fixed (U, a, b), ηabU,δ converges in probabil-

ity to a chordal SLE6 on (U, a, b) which we denote by ηabU . Moreover, ηabU is a.s. determined

by Γ in an explicit way. We call ηabU the interface of Γ on (U, a, b). In particular, when

U=D, then ηabU is the interface of Γ on (D, a, b) as defined in Lemma 2.11.

Given a quad Q, we call Q((0, 1)2) the domain of Q. Abusing notation, we denote

the domain of Q by Q for simplicity. Let a, b, c, and d be Q(0, 0), Q(1, 0), Q(1, 1), and

Q(0, 1), respectively.

Recall the notions in Lemma 6.1. Suppose that Q⊂
QD and ∂Q is piecewise smooth.

Recall the notation ∂a,bD in §2.1. Let E be the event that ηacQ hits ∂b,dQ at a point on

∂c,dQ. As explained in [HLS, §1.2], we have the following. See the left part of Figure 6.1

for an illustration of the event E, and see the right part of Figure 5.5 for an illustration

of the 2-SLE6 (ηadQ , η
cb
Q ).

Lemma 6.12. The event E equals {ω(Q)=0} a.s., where ω is viewed as an ele-

ment in HD. Moreover, the conditional joint law of (ηadQ , η
cb
Q ) given E is a 2-SLE6 (see

Definition 5.2).

Let PQ=ηadQ ∩ηcbQ on E and PQ=ηabQ ∩ηcdQ on ¬E (i.e. the complement of E). Let

ηadQ,δ∩ηcbQ,δ be the set of vertices such that v∈ηadQ,δ∩ηcbQ,δ if both ηadQ,δ and ηcbQ,δ traverse
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an edge with v as an endpoint. Let Eδ :={ωδ(Q)=0} and PQδ be defined in a similar

way as PQ. As explained in [HLS, §1.2], PQδ is the set of pivotal points for the crossing

event Eδ. The following result is extracted from [HLS, Theorem 1.7, Proposition 1.8,

Theorem 1.9].

Proposition 6.13. ([HLS]) The 3
4 -occupation measure mQ of PQ exists a.s. More-

over, αδ4(δ, 1)
−1 times Lebesgue measure restricted to PQδ (recall this notion from above

Lemma 6.6) converge to c′mQ in probability, where c′>0 is a deterministic constant not

depending on Q.

6.4.2. A-important points and ρ-important points

In this subsection we introduce two sets of pivotal points: A-important points and ρ-

important points. Furthermore, we argue in Lemma 6.14 that the A-important points

can be written as the disjoint union of sets PQ∩B for finitely many quads Q and a fixed

square B.
Let B be a square of side length ρ for some ρ>0, and let B̃ be the square of side

length 3ρ centered around B. Let A=AB :=B̃\(B∪∂B). For B∩D ̸=∅, let

ΓA := {ℓ∈Γ : ℓ∩B ≠∅ and ℓ∩(C\B̃) ̸=∅}.

By local finiteness of CLE6 (see §2.4), ΓA contains finitely many loops a.s. Given ℓ, ℓ′∈ΓA,
if ℓ ̸=ℓ′, let PA(ℓ, ℓ′):=ℓ∩ℓ′∩B, and if ℓ=ℓ′, let

PA(ℓ, ℓ′) := {z ∈B : ℓ\{z} has two connected components, each of which intersects C\B̃}.

Let

PA :=
⋃

(ℓ,ℓ′)∈ΓA×ΓA

PA(ℓ, ℓ′).

A point z is called A-important for Γ if and only if z∈PA. A vertex v on B∩Dδ is called
A-important for ωδ if and only if there are four arms from v to ∂B̃ with alternating

colors. Here an arm refers to a connected monochromatic path. Let PAδ be the set of

A-important points for ωδ.

The following lemma says that A-important points for Γ and ωδ are covered by

finitely many sets of the form PQ and PQδ from §6.4.1, respectively.

Lemma 6.14. Let B be a square of side length ρ for some ρ>0 such that B∩D ̸=∅
and let A=AB. Let C be a countable dense subset of ∂B̃. Then, almost surely there exist

δ0>0 and quads Q1, ..., Qn, with domain equal to B̃∩D and marked points contained in

C, such that PA is the disjoint union of {PQi∩B}1⩽i⩽n, and PAδ is the disjoint union

of {PQi

δ ∩B}1⩽i⩽n for δ∈(0, δ0).



uniform triangulations under the cardy embedding 171

Proof. For ℓ∈Γδ, let V(ℓ) be the set of vertices which are endpoints of edges traversed

by ℓ. Let

Γδ,A= {ℓ∈Γδ : V(ℓ)∩B ≠∅ and V(ℓ)∩(C\B̃) ̸=∅}.

Then, PAδ ⊂
⋃
ℓ∈Γδ,A V(ℓ). We write ΓA and Γδ,A as {ℓ1, ..., ℓK} and {ℓ1δ , ..., ℓ

Kδ

δ }, respec-
tively, where loops are listed by decreasing enclosed Euclidean area. By the definition of

our coupling and the way ΓA and Γδ,A are parameterized, almost surely

lim
δ!0

Kδ =K and lim
δ!0

ℓiδ! ℓi

in the uniform topology, for all 1⩽i⩽Kδ. For each 1⩽i⩽K, let (si,1, ti,1), ... (si,m
i

, ti,m
i

)

be the list of intervals of the form

{(s, t) : ℓi(s), ℓi(t)∈ ∂B̃, ℓi((s, t))⊂ B̃, ℓi([s, t])∩∂B ̸=∅}

ordered by increasing left end-point. Since ℓi is a continuous closed curve, we havemi<∞
a.s. Let (si,1δ , ti,1δ ), ..., (s

i,mi
δ

δ , t
i,mi

δ

δ ) be defined similarly for Γδ. Define ℓi,jδ :=ℓiδ|[si,jδ ,ti,jδ ]

and ℓi,j :=ℓi|[si,j ,ti,j ]. Then, almost surely, mi
δ!mi and ℓi,jδ !ℓi,j for all 1⩽i⩽K and

1⩽j⩽mi. This convergence follows from the fact that SLE6 a.s. crosses a (fixed) smooth

curve upon hitting it. (See e.g. [HLS, Lemma 2.2]).

For 1⩽i, i′⩽K, 1⩽j⩽mi, and 1⩽j′⩽mi′ such that (i, j) ̸=(i′, j′), let

PA(i, j; i′, j′)= ℓi,j([si,j , ti,j ])∩ℓi
′,j′([si

′,j′ , ti
′,j′ ]).

Let V(ℓiδ([s
i,j
δ , t

i,j
δ ])) be the vertex set defined as V(ℓ) above with ℓ replaced by ℓiδ([s

i,j
δ , t

i,j
δ ],

and let

PAδ (i, j; i′, j′)=V(ℓiδ([s
i,j
δ , t

i,j
δ ]))∩V(ℓi

′

δ ([s
i′,j′

δ , ti
′,j′

δ ])).

By the no-triple-point property of CLE6 (see §2.4), the sets PA(i, j; i′, j′) are disjoint.

Therefore PA is the disjoint union of PA(i, j; i′, j′)∩B for all (i, j) ̸=(i′, j′). A similar

statement holds for PAδ for small enough δ.

If (i, j) ̸=(i′, j′) are such that PA(i, j; i′, j′) ̸=∅, by the parity property of CLE6

(Lemma 2.13), we may assume that ℓi,j(si,j), ℓi,j(ti,j), ℓi
′,j′(si

′,j′), and ℓi
′,j′(ti

′,j′) are

in cyclic order on ∂B̃, either counterclockwise or clockwise. We focus on the former

case, since the latter case can be treated similarly. Let Q be a quad with domain B̃∩D
and marked points a, b, c, and d in C that are to be determined. Choose a, b, c, d∈C
counterclockwise aligned such that

∂ℓi,j(si,j),ℓi,j(ti,j)Q⊂ ∂a,bQ and ∂ℓi′,j′ (si′,j′ ),ℓi′,j′ (ti′,j′ )Q⊂ ∂c,dQ.
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a b

cd

Q

`1

`2

`3

`1,1

`1,2

`2,1

`3,1

PA(1, 1; 1, 2)

PA(2, 1; 3, 1)

B Q = B̃

`i,j

`i
′,j′

PA(i, j; i′, j′) = PQ

Q = B̃

a

b

d

c

Figure 6.1. Left : Illustration of the event E. We have that ηacQ is the concatenation of the

orange curve and the gray curve, while ηadQ is the concatenation of the orange curve and the

purple curve. Middle: Illustration of objects defined in the proof of Lemma 6.14. In the case

shown, we have B̃⊂D so that Q=B̃. The annulus A=AB is shown in blue. The disk D is not
drawn. Right : The points a, b, c, d∈C⊂∂B̃ are chosen such that PA(i, j; i′, j′)=PQ.

For a, b, c, and d sufficiently close to ℓi,j(si,j), ℓi,j(ti,j), ℓi
′,j′(si

′,j′), and ℓi
′,j′(ti

′,j′),

respectively, we have PA(i, j; i′, j′)=PQ. For small enough δ, we also have

PAδ (i, j; i′, j′)=PQδ .

This concludes the proof.

We say that B is a square on ρZ2 if it is a square of side length ρ such that all four

vertices lie on ρZ2.

Definition 6.15. For each ρ>0, let

Pρδ :=
⋃
B
PAB
δ for each δ > 0 and Pρ :=

⋃
B
PAB ,

where the union is over all squares B on ρZ2 with B∩D ̸=∅. Points in Pρδ and Pρ are

called ρ-important points of ωδ and Γ, respectively.

6.4.3. Scaling limit of discrete pivotal measures

We now gather some facts concerning the scaling limit of measures on PAδ and Pρδ . We

will see in Proposition 6.16 and Lemma 6.17 that various measures (both Euclidean and

quantum) defined on these points converge to their continuum counterparts defined in

terms of the 3
4 -occupation measure. Recall that νδ is the measure on Dδ where each

vertex x is assigned mass µ′
h(x)α

δ
4(δ, 1)

−1, where µ′
h(x) is the mass assigned by eh/

√
6 d2z

to the hexagon associated with x on the dual lattice of Dδ.
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Proposition 6.16. In the setting of Lemma 6.14, the 3
4 -occupation measure of PA

exists a.s., which we denote by mA. Let mA
δ be αδ4(α, 1)

−1 times Lebesgue measure re-

stricted to PAδ . Let νAδ be the measure νδ restricted to PAδ . Then, limδ!0m
A
δ =c

′mA

and limδ!0 ν
A
δ =c′eh/

√
6 mA in probability in the weak topology, where c′ is as in Propo-

sition 6.13. If A⋐D (i.e. A∪∂A⊂D), then

lim
δ!0

mA
δ (D)= c′mA(D) and lim

δ!0
νAδ (D)= c′

∫
D
eh/

√
6 mA

in L2.

Proof. We obtain the existence of mA and the convergence ofmA
δ in probability from

Proposition 6.13 and Lemma 6.14. If A⋐D, the L2 convergence of mA
δ (D) follows from

the moment bounds of mA
δ (D) given in [GPS2, Lemma 4.5].

Recall h=Φ+g as in Lemma 6.2. If g were equal to zero, then, by [GHSS, Proposi-

tions A.1 and A.2],

lim
δ!0

νAδ = c′eh/
√
6 mA

in probability, and if A⋐D then

lim
δ!0

νAδ (D)= c′
∫
D
eh/

√
6 mA

in L2. Although g ̸=0, Corollary 6.3 yields the same conclusion.

Let νρδ be the restriction of νδ to Pρδ . The next lemma concerns the scaling limit

of νρδ . Both in the proof of the lemma and later in this section, we will use the quasi-

multiplicativity of αδ4 (see e.g. [SWe]), namely the fact that, for some constant c>0 and

δ⩽r1⩽r2⩽r3,

cαδ4(r1, r2)α
δ
4(r2, r3)⩽αδ4(r1, r3)⩽αδ4(r1, r2)α

δ
4(r2, r3). (6.5)

Lemma 6.17. Fix ρ>0. The 3
4 -occupation measure of Pρ exists a.s. We denote

this measure by mρ. Then, limδ!0 ν
ρ
δ=c

′eh/
√
6mρ in probability, where c′ is the constant

in Proposition 6.13. Moreover,

lim
δ!0

νρδ (D)= c′
∫
D
eh/

√
6mρ in L1.

Proof. Since the sets PAB
δ ⊂B are disjoint for distinct squares B on ρZ2, the existence

of mρ and the convergence in probability in Lemma 6.17 follows from Proposition 6.16.

It remains to prove the L1 convergence of νρδ (D). For k∈N, set r:=1− 1
2e

−k. By Propo-

sition 6.16, for each k∈N and ρ>0,

lim
δ!0

νρδ (rD)= c′
∫
rD
eh/

√
6mρ



174 n. holden and x. sun

in L2.

It suffices to prove that

lim
k!∞

lim sup
δ!0

E[νρδ (D\rD)] = 0. (6.6)

For each x∈Dδ, let Ex be event that x is ρ-important. Recall that

νδ(x)=µ′
h(x)α

δ
4(δ, 1)

−1,

where µ′
h(x) is the µ

′
h-mass of the hexagon corresponding to x in the dual lattice. There-

fore,

E[νδ(x)1Ex
] =P[Ex]αδ4(δ, 1)−1E[µ′

h(x)].

For r2>r1>0, let α̃δ4(r1, r2) be the probability that Bernoulli- 12 site percolation on

Hδ has four alternating arms in the semi-annulus (r2D∩H)\r1D. We claim that

P[Ex]⩽Cαδ4(δ, 1−|x|)α̃δ4(1−|x|, ρ),

where C is a constant not depending on δ, r, and ρ. It is sufficient to consider the case

|x|>0.9 and ρ∈(10(1−|x|), 0.1), as this implies the general case. Let E′
x denote the event

that x has four arms to distance 0.5(1−|x|), and let E′′
x denote the event that there are

four alternating arms in the annulus of radii 3(1−|x|) and 0.7ρ centered at x/|x|. Then,
Ex⊂E′

x∩E′′
x , P[E′

x]⩽C
′αδ4(δ, 1−|x|), and P[E′′

x ]⩽C
′′α̃δ4(1−|x|, ρ) for constants C ′, C ′′>0.

The claim follows from this and independence of E′
x and E′′

x :

P[Ex]⩽P[E′
x]P[E′′

x ]⩽Cαδ4(δ, 1−|x|)α̃δ4(1−|x|, ρ).

From here on, we use Cρ to denote a constant only depending on ρ that can vary

from place to place. By [SWe], the half-plane four-arm exponent is 10
3 , while the plane

alternating four-arm exponent is 5
4 . By this and quasi-multiplicativity (6.5), we have the

following, for some C>0:

αδ4(δ, 1−|x|)αδ4(δ, 1)−1 ⩽Cαδ4(1−|x|, 1)−1 =(1−|x|)−5/4+o(1),

and moreover α̃δ4(1−|x|, ρ)=(1−|x|)10/3+o(1). Therefore,

E[νδ(x)1Ex ]⩽Cαδ4(δ, 1−|x|)α̃δ4(1−|x|, ρ)αδ4(δ, 1)−1E[µ′
h(x)]

⩽Cρ(1−|x|)2E[µ′
h(x)].

(6.7)

Here we have (1−|x|)2 because 2< 10
3 − 5

4 .
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Let ϕ:D!S be as in Lemma 6.2, i.e., it is the conformal map from D to S satisfying

ϕ(0)= 1
2πi and ϕ(1)=+∞. Let B̃n=ϕ−1([n, n+1]×(0, π)), where ϕ is as in Lemma 6.2.

For n⩾k, define

A+

n :=
{
z ∈D : Re z⩾ 0, 1−|z| ∈

(
1
2e

−n−1, 12e
−n), ϕ(z)∈ [0, k]×(0, π)

}
.

Recall that a=Q−γ=1/
√
6 in Lemma 6.2. Since e(B2t−at)/

√
6 (with B as in Defini-

tion 2.4) is a martingale, the value of E[µ′
h(B̃n)] does not depend on n∈N. By (6.7), for

n⩾k we have

E[νρδ (A
+

n)]⩽Cρe
−2nE[µ′

h(A
+

n)]⩽Cρe
−2nE[µ′

h(ϕ
−1([0, k]))]⩽Cρke

−2n.

By the definition of ϕ, we have eϕ(z)=i(1+z)/(1−z) for each z∈D. Thus, 1−|z|⩽2e−n

for all n∈N and z∈B̃n. Now, by (6.7), E[νρδ (B̃n)]⩽Cρe−2n for all n⩾k. Since

(D\rD)∩{z : Re z⩾ 0}⊂
⋃
n⩾k

(A+

n∪B̃n),

we have that (6.6) holds with (D\rD)∩{z :Re z⩾0} in place of D\rD.
For the remaining part of D\rD, we recall from Definition 2.4 that (X−t)t>0 has

the law of B2t−at conditioned to stay negative, which is stochastically dominated by the

unconditional law of B2t−at. Therefore, (6.6) holds with (D\rD)∩{z :Re z<0} in place

of D\rD.

6.4.4. Convergence of loop ensemble after flipping a ρ-important point

The main result of this subsection is the following lemma, which gives convergence of

the loop ensemble after flipping a ρ-important point. See Figure 6.2 for an illustration

of the proof idea.

Lemma 6.18. Let ρ>0. Suppose zδ and z are random points such that zδ∈Pρδ ,
z∈Pρ, and limδ!0 z

δ=z in probability. Let Γ̂δ and Γ̂ be the loop ensembles obtained

after flipping the color of zδ and z for Γδ and Γ, respectively. Then, limδ!0 Γ̂
δ=Γ̂ in

probability in L(D).

Proof. Let B be the box on ρZ2∩D such that z∈B, let A:=AB, and fix a small r0>0.

We retain the notation in the proof of Lemma 6.14, including the parametrizations of

loops in Γδ and Γ. Then, z must belong to some PA(i, j; i′, j′). Since limδ!0 z
δ=z a.s., we

have zδ∈PAδ (i, j; i′, j′) with probability 1−oδ(1). Here and below, the implicit constant

in oδ(1) may depend on ρ and r0, but is independent of all other parameters. From now
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`δ `δ`δ `δ

`′δ `′δ
`
′
δ `

′
δ

`′′δ`
′′
δ

Figure 6.2. Illustration of the proof of Lemma 6.18. The left (resp. right) figure shows two of
the percolation interfaces before (resp. after) the color of the ρ-important point zδ (marked in

orange) has been flipped from blue to red. We show that the percolation interfaces after the

flip converge by using that the orange paths ℓ′′δ and ℓ̄′′δ have diameter oδ(1) with probability
1−oδ(1).

on, whenever we declare an event Eδ to have probability 1−oδ(1), we will work on Eδ

thereafter without explicitly mentioning it. Without loss of generality, we assume that

ωδ(zδ) is blue. Let B(zδ, r0) be the Euclidean ball of radius r0 centered at zδ. Let ℓδ

be the segment of ℓi,jδ from si,jδ until the first edge that has zδ as an endpoint, excluding

this edge. Let ℓ̄δ be the segment of the time reversal of ℓi,jδ from ti,jδ to the first edge that

has zδ as an endpoint, excluding this edge. Define (ℓ′δ, ℓ̄
′
δ) in the same way as (ℓδ, ℓ̄δ)

with ℓi
′,j′

δ in place of ℓi,jδ . Since the alternating five-arm exponent for Bernoulli- 12 site

percolation on T is strictly smaller than the four-arm exponent [SWe], with probability

1−oδ(1), after the color of zδ is flipped to red, we have that ℓδ, an edge path ℓ′′δ contained

in B(zδ, r0), and ℓ̄
′
δ form a segment of a loop in Γ̂δ. The same statement holds for ℓ̄δ,

an edge path ℓ̄′′δ , and ℓ
′
δ. The two segments ℓ′′δ and ℓ̄′′δ trace small red clusters of ωδ in

B(zδ, r0) which have a vertex adjacent to zδ but have no vertex in V(ℓi,jδ )∪V(ℓi
′,j′

δ ). See

Figure 6.2 for an illustration.

Let

Γδ(r0)= {γδ ∈Γδ : γδ ̸⊂B(zδ, r0), ℓ
i,j
δ ̸⊂ γδ, ℓi

′,j′

δ ̸⊂ γδ}.

By the no-triple-point property (see §2.4) of CLE6, with probability 1−oδ(1), zδ /∈V(γδ)

for any loop γδ∈Γδ(r0). Thus, Γδ(r0)⊂Γ̂δ. On the other hand, with probability 1−oδ(1),
ℓi,jδ ([si,jδ , t

i,j
δ ])\(ℓδ∪ℓ̄δ) and ℓi

′,j′

δ ([si
′,j′

δ , ti
′,j′

δ ])\(ℓ′δ∪ℓ̄′δ) are contained in B(zδ, r0); this

follows by symmetry in red and blue, and the exact same argument as we used above

to argue that ℓ′′δ , ℓ̄
′′
δ⊂B(zδ, r0) with probability 1−oδ(1). By the convergence Γδ!Γ

a.s., the segments ℓδ, ℓ̄δ, ℓ
′
δ, and ℓ̄′δ converge a.s., and we denote the limits by ℓ, ℓ̄,

ℓ′, and ℓ̄′, respectively. In the continuum, the loop ensemble Γ̂ is obtained from Γ by

concatenating ℓ with ℓ̄′, and ℓ̄ with ℓ′, while keeping other loops unchanged. Therefore,

there is vanishing function or0(1) such that for any fixed r0>0, with probability 1−oδ(1),
dL
d (Γ̂, Γ̂

δ)⩽or0(1). This concludes the proof.
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Remark 6.19. Lemma 6.18 remains true if the assumption that Γδ!Γ almost surely

is weakened to convergence in probability. This observation will be used in §6.8.

6.4.5. Mutual inclusion of ε-pivotal points and ρ-important points

Recall h from (6.2) and the notion of ε-pivotal point for (h,Γ) and (h, ωδ) in §6.3.
The next three lemmas give certain mutual inclusion relations of ε-pivotal points and

ρ-important points, allowing us to study the former through the latter.

Lemma 6.20. Fix ε>0. There almost surely exists b>0 such that µh(B)<ε for all

squares with side length less than b. Let bε be the supremum of all such b’s and set

ρε=0.01bε. Then, each ε-pivotal point of (h,Γ) (resp. (h, ωδ)) is ρ-important for Γ

(resp. Γδ) for ρ∈(0, ρε) and δ∈(0, ρ).

Proof. Since µh is a.s. non-atomic, we obtain the existence of b with the desired

property. Given ρ∈(0, ρε) and an ε-pivotal point z for (h,Γ), let B be a box of ρZ2

such that z∈B. Set A:=AB. Recall Γ
A in the proof of Lemma 6.14. If z∈ℓ∩ℓ′ for some

distinct loops ℓ, ℓ′∈Γ, then we must have ℓ, ℓ′∈ΓA. Similarly, if z is a double point on

some ℓ∈Γ, then the two new loops ℓ′ and ℓ′′ which we get after flipping the color of z

must intersect both boundaries of A. Therefore, z is ρ-important for Γ. The statement

for ωδ follows from the same argument.

Lemma 6.21. Fix ρ>0. There almost surely exists ε′>0 such that Pρ⊂Pε′ .

Proof. Recall the setting of Lemma 6.14 and its proof. It suffices to prove that,

for sufficiently small ε′, PA(i, j; i′, j′)⊂Pε′ for all i, j, i′, j′. Suppose i, j, i′, j′ are such

that PA(i, j; i′, j′) ̸=∅. Consider the segment of ℓi,j starting from ℓi,j(si,j) until the first

time when it hits ℓi
′,j′ . Then, the complement of this segment in D contains a countable

collection of components with clockwise boundary orientation. Let ε1(i, j; i
′j′) be the

largest µh-area of components in this collection. Let ε2(i, j; i
′j′) be similarly defined

with counterclockwise in place of clockwise. We define ε3(i, j; i
′j′) and ε4(i, j; i

′j′) in the

same way as ε1(i, j; i
′j′) and ε2(i, j; i

′j′), respectively, where we trace ℓi,j in the reverse

direction until it hits ℓi
′,j′ . Define εk(i, j; i

′j′), with k=5, 6, 7, 8, in the same way where

the roles of ℓi,j and ℓi
′,j′ are swapped. Let

Eε= {εk(i, j; i′j′)>ε for k=1, ..., 8, if PA(i, j; i′j′) ̸=∅}.

On the event Eε, if v is an A-important point for Γ, there exists a PA(i, j; i′j′) contain-
ing v. For each loop ℓ∈Lv, one of the eight types of bubbles in the definition of εk(i, j; i

′j′)

must be contained in the region enclosed by ℓ. Therefore v∈Pε. Since εk(i, j; j′j′)>0 a.s.
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for all k, i, j, i′, and j′ such that PA(i, j; i′, j′) ̸=∅, and since PA(i, j; i′, j′)=∅ except

for finitely many i, j, i′, and j′, this concludes the proof.

The next lemma says that, for a vertex v away from the boundary and for s suf-

ficiently small, conditioning on v being s-important, it is ε-pivotal with probability

1−oε(1).

Lemma 6.22. Let r∈(0, 1). For each s∈(0, 0.1(1−r)) and ζ ′∈(0, 1), there exists

ε>0 and δ0>0 only depending on s, ζ ′, r such that, for all δ∈(0, δ0) and v∈Dδ∩rD,

P[v is not ε-pivotal for (h, ωδ) | v is s-important for ωδ ]⩽ ζ ′.

Proof. For z∈rD, let Bz be the square of side length s centered at z and set the

annulus A=ABz . Consider the set of pairs (ω, v), where ω is a site percolation config-

uration on Dδ with monochromatic boundary condition and v is an A-important point.

Suppose (ωδ,vδ) is uniformly chosen from this set. Here we use the same symbol ωδ as in

Lemma 6.22, although the law of ωδ here is not uniform. One way to sample (ωδ,vδ) is

the following. First sample a Bernoulli- 12 site percolation ωδ on Dδ with monochromatic

boundary condition. Then reweight the law of ωδ by the number of A-important points.

Finally, conditioning on ωδ, sample the point vδ according to the uniform measure on

A-important points of ωδ.

Let Γδ=Γ(ωδ) be the associated loop ensemble. By Proposition 6.16, (Γδ,vδ) jointly

converge to a pair (Γ,v) that can be sampled as follows. First sample a CLE6 Γ in D.
Define PA as in Lemma 6.14. Then reweight the law of Γ by mA(D), where mA is the 3

4 -

occupation measure of PA. Note that this is well defined, since the measure we reweight

by has finite expectation by Proposition 6.16. Finally, conditioning on Γ, sample the point

v according to mA. By the Skorokhod representation theorem, we may assume that the

convergence above holds almost surely. We enlarge the sample space by considering an

independent sample of the field h from (6.2). Denote this probability measure by P̂.
Recall Eε in the proof of Lemma 6.21. From that proof, we see that on the event

Eε, each A-important point is ε-pivotal for (h,Γ). Moreover,

lim
ε!0

P̂[Eε] = 1.

Let Eδε be the exact analog of Eε defined for ωδ. By the scaling limit result, for each

ζ>0, there exist ε>0 and δ0>0 small enough only depending on s and ζ such that, for

each δ∈(0, δ0), on the event Eδε every A-important point for ωδ is ε-pivotal for (h, ωδ)

and, moreover,

P̂[Eδε ]> 1−ζ for all δ ∈ (0, δ0). (6.8)
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Now, let us sample (ωδ,vδ) in another way. We first sample vδ according to its

marginal law. Then, we sample the Bernoulli- 12 site percolation ωδ on Dδ conditioned on

the event F δs that vδ is A-important. Let ¬Eδε be the complement of Eδε . For the choice

of ζ and ε in (6.8),

P[¬Eδε |F δs ] = P̂[¬Eδε ]⩽ ζ for all δ ∈ (0, δ0). (6.9)

For each v∈Dδ∩Bz,

αδ4(δ, 10s)⩽P[v is s-important for ωδ ]⩽αδ4(δ, s).

By the quasi-multiplicativity of αδ4( · , ·) (6.5), there is a constant C>0 not depending on

z and s such that, for all δ∈(0, 0.1) and v∈Dδ∩Bz,

P[F δs ]⩽CP[v is s-important for ωδ]. (6.10)

If v∈Dδ∩Bz is s-important for ωδ, then v must be A-important for ωδ. On the event

Eδε , we further have that v is ε-pivotal for (h, ωδ). Therefore, for all δ∈(0, δ0),

P[v is not ε-pivotal for ωδ while v is s-important for ωδ ]⩽P[¬Eδε , F δs ].

By (6.9) and (6.10), for small enough ζ the upper bound in Lemma 6.22 holds for v∈
Dδ∩Bz. We can choose finitely many zi’s such that Bzi cover rD. This concludes the

proof of Lemma 6.22.

6.4.6. Measures on ε-pivotal points and the proof of Lemma 6.6

In §6.4.3 we proved that the natural Euclidean and quantum measure defined on the

ρ-important points converge in the scaling limit to their continuum counterparts. In this

subsection we prove a similar result for the ε-pivotals, and we prove that the measures

on the ε-pivotals can be obtained via a restriction of the measures on the ρ-important

points. This allows us to conclude the proof of Lemma 6.6.

Proposition 6.23. Fix ε>0. As δ!0, αδ4(δ, 1)
−1 times the Lebesgue measure re-

stricted to Pδε converge to a measure mε in probability. The restriction of νδ to Pδε
converge to a measure Mε(h,Γ) in probability. Recall the constant c′>0 in Proposi-

tion 6.13 and ρε in Lemma 6.20. For each fixed u∈(0, 1), almost surely

mε= c′mρ|Pε
and Mε(h,Γ)= (c′eh/

√
6mρ)|Pε

, with ρ=uρε. (6.11)
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Proof. Conditioning on h and ωδ, let zδ be sampled uniformly from Pρδ . By Propo-

sition 6.16, we may assume that zδ converge almost surely to a random point z∈Pρ.
Moreover, conditioning on (h,Γ), the conditional law of z is (mρ(D))−1mρ. Let A(zδ, ε)

(resp. A(z, ε)) be the event that zδ (resp. z) is ε-pivotal for (h, ωδ) (resp. (h,Γ)). We

claim that, ifA(z, ε) occurs, then almost surely there exists ε′>ε such that A(z, ε′) occurs.

In fact, if ℓ∈Γ is chosen in a manner independent of h, then it is clear from the definition

of GMC that µh(reg(ℓ)) is a non-atomic random variable. Thus, ε /∈{µh(reg(ℓ)):ℓ∈Γ}
a.s., which proves the claim.

If A(z, ε) occurs, due to the existence of ε′>ε above, Lemma 6.18 implies that

A(zδ, ε) occurs for sufficiently small δ. If A(z, ε) does not occur, again by Lemma 6.18,

A(zδ, ε) does not occur for sufficiently small δ. Therefore,

lim
δ!0

1A(zδ,ε) =1A(z,ε).

Hence, for any bounded continuous function f :C!R, we have

lim
δ!0

E[f(zδ)1A(zδ,ε) | (h, ωδ,Γ)]=E[f(z)1A(z,ε) | (h, ωδ,Γ)] a.s. (6.12)

Since limδ!0 m
ρ
δ(D)=mρ(D), we have that αδ4(δ, 1)

−1 times Lebesgue measure restricted

to Pδε converge to some limiting measure mε in probability, and we have mε=c
′mρ|Pε

a.s.

Therefore, mε=c
′mρ|Pε

a.s.

The results concerning νδ,Mε(h,Γ), and eh/
√
6mρ follow from the exact same argu-

ment, where we assume that zδ is sampled according to νδ|Pρ
δ
and invoke Lemma 6.17

instead Proposition 6.16.

Proof of Lemma 6.6. The coupling of (ωδ,h,Γ0) in Lemma 6.6 is exactly as (ωδ,h,Γ)

in Proposition 6.23. Now, Lemma 6.6 follows from Proposition 6.23. Moreover, the set

A in Lemma 6.6 can be taken to be Pρ for small enough ρ.

6.5. Proof of Proposition 5.1

We now conclude the proof of Proposition 5.1 using results of the previous subsection.

We first provide a precise definition of the measure Mε
h,Γ in Proposition 5.1.

Definition 6.24. Fix ε>0. Recall h, Γ in Proposition 5.1 and c′ in Proposition 6.13.

Let ρε be defined as in Lemma 6.20 in terms of h. We set Mε
h,Γ :=(c′eh/

√
6mρ)|Pε

, where

ρ=0.5ρε.

Recall from §1.4.3 that m is the renormalized scaling limit of Lebesgue measure

restricted to macroscopic pivotal points. To be more precise, we define the measure m to
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be the unique measure such that m|Pρ=c′mρ for each ρ>0. Similarly, we define eh/
√
6m

to be the unique measure such that (eh/
√
6m)|Pρ=eh/

√
6mρ for each ρ>0. (Note that m

itself is not locally finite as a Borel measure on R2, so we cannot directly define a GMC

on it.) In this sense, we may write Mε
h,Γ=(eh/

√
6m)|Pε

as we did above (1.5).

Recall the definition of νδ and Pδε from §6.4. By Proposition 6.23 and (6.2), the

measure Mε
h,Γ can be obtained as the renormalized scaling limit of eh/

√
6d2z restricted

to Pδε (viewed as a collection of hexagons). Moreover, Mε(h,Γ) from (6.11) equals

ξh(∂D)1/2Mε
h,Γ almost surely.

Proof of Proposition 5.1. Given ρ in Definition 6.24, by Lemma 6.14, we can find

quads Q1, ..., Qn such that Pρ=
⋃n
i=1 PQi , and the sets PQi are disjoint. By Lemma 6.21,

we can find ε′∈(0, ε) small enough such that Pρ⊂Pε′ . In Proposition 5.44, let h=h and

Q=Qi for some 1⩽i⩽n. By Definition 5.18, νI from Proposition 5.44 then agrees with

νε
′

h,Γ|PQ . Therefore, eh/
√
6mQ=cν

ε′

h,Γ|PQ
, with c as in Proposition 5.44 (and Lemma 5.39).

Thus, eh/
√
6mρ=cνε

′

h,Γ|Pρ . By Definition 5.18, νεh,Γ=ν
ε′

h,Γ|Pε
. Hence, (c′)−1Mε

h,Γ=cν
ε
h,Γ,

so Mε
h,Γ=cνεh,Γ for c=cc′.

6.6. The quad-crossing configuration determines the CLE6

By the iterative construction of CLE6 in Lemma 2.11, Theorem 6.10 can be deduced

from the following single interface variant.

Proposition 6.25. In the setting of Theorem 6.10, let η be the interface of Γ on

(D,−i, i). Then, η is a.s. determined by ω.

Proof of Theorem 6.10 given Proposition 6.25. Let a=−i and b=i. By Proposi-

tion 6.25, ηab is a.s. determined by ω. Let B be a dichromatic bubble of ηab. Recall

xB, x̂B and ηB as defined above Lemma 2.11. Let ϕ:B!D be a conformal map with

ϕ(xB)=−i and ϕ(x̂B)=i. Let ϕ∗ω∈H(D) be defined by ϕ∗ω(Q)=ω(ϕ−1
�Q) for each

Q∈QD. Then, (ϕ∗ω, ϕ�ηB)
d
=(ω, ηab), where ϕ�ηB and ηab are viewed as curves modulo

increasing reparametrization. Thus, ϕ�ηB is a.s. determined by ϕ∗ω, and hence ηB is a.s.

determined by ω. Therefore, ω a.s. determine Γba. In light of Lemma 2.11, Theorem 6.10

follows by iterating this argument.

It remains to prove Proposition 6.25. In the following proof, given a quad Q, we

write Q=(U, a, b, c, d) if Q((0, 1)2)=U and the four marked points are a, b, c, and d in

counterclockwise order from Q(0, 0)=a.

Proof of Proposition 6.25. We first argue that the range of η is determined by ω.

Let ρ: [0, 1]!D∪∂D be a simple smooth curve such that ρ(0) and ρ(1) are on the left
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Figure 6.3. Illustration of the proof of Lemma 6.25. Left : The quad-crossing configuration
ω determines whether the quad (U, a, ρ(1), ρ(s), ρ(0)) (in light yellow, with marked points in

red) is crossed, and therefore whether η′ hits ρ([0, s]) or ρ([s, 1]) first. Right : Illustration of

the event E(B, ρℓ, ρr). By varying ρℓ and ρr, we can determine whether η′∩B=∅.

and right boundary of (D,−i, i) (not including endpoints), respectively, and ρ((0, 1))⊂D.
Let

τ = inf{t : η(t)∈ ρ}.

Let U be the connected component of D\ρ whose boundary contains −i. Then, for each
fixed s∈(0, 1), we claim that it is a.s. the case that

η(τ)∈ ρ([0, s]) if and only if ω(Q)= 1, with Q=(U,−i, ρ(1), ρ(s), ρ(0)).

Given this claim, since Q∈Q
D, by Lemma 6.1, η(τ) is a.s. determined by ω.

To prove the claim above, we write a=−i, b=i, and c=ρ(s). Recall the discussion

about percolation interfaces and crossing events above Lemma 6.12. For δ>0, let ωδ

be the Bernoulli- 12 site percolation on Dδ with monochromatic blue boundary condition.

Let ηabδ be the percolation interface of ωδ on (Dδ, aδ, bδ). Let ηacU,δ be the percolation

interface of ωδ on (U δ, aδ, cδ). Then, ηabδ , ηacU,δ, ω
δ, and Γ(ωδ) jointly converge. Denoting

the joint limit by (ηab, ηacU , ω,Γ), the joint law of (ω, ηab) is the same as that of (ω, η) in

Proposition 6.25. Moreover, before hitting ρ([0, 1]), the curves ηab and ηacU a.s. coincide.

Thus, it is a.s. the case that η(τ)∈ρ([0, s]) if and only if ηacU hits ρ([0, 1]) at a point on

ρ([0, s]). The latter event equals {ω(Q)=1} a.s. by Lemma 6.12. This proves the claim

above.

Let B be a ball contained in D. For �∈{ℓ, r}, let ρ�: [0, 1]!D∪∂D be a simple

smooth curve such that ρ�(0)∈∂B, ρ�(t)∈D\∂B, and ρ�(1) is on the left (resp. right)

boundary of (D,−i, i), when � equals ℓ (resp. r). Furthermore, we require ρℓ∩ρr=∅.
By the previous paragraph the location where η hits B∪ρℓ∪ρr is a.s. determined by ω.

In particular, the event E(B, ρℓ, ρr) that η hits B before ρℓ∪ρr is a.s. determined by ω.
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Note that η∩B ̸=∅ if and only if there exists ρℓ and ρr such that E(B, ρℓ, ρr) occurs.

Furthermore, if E(B, ρℓ, ρr) occurs for some ρℓ and ρr, then it holds a.s. that E(B, ρℓ, ρr)

occurs for ρℓ and ρr chosen from some countable set. This implies that the event η∩B ̸=∅
is a.s. determined by ω. Therefore, the range of η is determined by ω.

Now recall ρ, U , and τ as defined above. Since η([0, τ ]) is the intersection of the

range of the percolation interfaces of Γ on (U,−i, ρ(0)) and (U,−i, ρ(1)), by the previous

paragraph η([0, τ ]) is a.s. determined by ω. We assume that ψ(η) is parameterized by its

half-plane capacity, where

ψ(z)=
z+i

1+iz

maps (D,−i, i) to (H, 0,∞). Then, for a fixed t>0, the event {η([0, t])⊂U}={τ>t} is

a.s. determined by ω. Using the inclusion-exclusion principle and varying U , we see that

η([0, t]) is a.s. determined by ω, and hence η is a.s. determined by ω.

Remark 6.26. Based on [GPS2, §2.4], it was essentially known to Garban, Pete, and

Schramm that the quad crossing configuration determines the range of SLE6. However,

since the range of SLE6 does not determine its order [MSW], those authors considered

Proposition 6.25 as an open question; see Question 2.14 there. The novel step in our

proof as compared to [GPS2, §2.4] is the observation that, due to the target invariance

property of SLE6, we can determine the range in every domain, which allows us to recover

the ordering.

6.7. Proof of Lemmas 6.5, 6.7, and 6.8

In this section, we first prove in §6.7.1 the existence of a probability space (Ω,F ,P) where
Theorem 6.4 holds and, moreover, the Poisson point process corresponding to the updates

in the discrete LDP converge in a strong sense. In §6.7.2, we put h and (ωε,δt )t⩾0 into the

framework of continuous-time finite-state Markov chains. Then, in §6.7.3, we show that

(Ω,F ,P) from §6.7.1 satisfies Lemma 6.5, which asserts that (Γε,δt )t⩾0 converge in law to

a process (Γεt )t⩾0. Moreover, we prove Lemma 6.7 which describes the law of (h,Γεt )t⩾0.

Finally, in §6.7.4, we prove Lemma 6.8 which gives convergence of the ε-dynamics on the

planar map until the second jump.

6.7.1. Assumptions on (Ω,F , P)

Let (Ω,F ,P) be a probability space satisfying Theorem 6.4. Recall that limδ!0 Γ
ε,δ
0 =Γε0

a.s. Let (ωδ,Γδ,Γ):=(ωδ0,Γ
ε,δ
0 ,Γε0), so that (ωδ,Γδ,Γ, h) satisfies the conditions in §6.4.

Recall νδ at the beginning of §6.4. Let νρδ and mρ be as in Lemma 6.17. Conditioning
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on h, the ringing locations and times for the clocks in the discrete LDP (ωδt )t⩾0 is a

Poisson point process (p.p.p.) with intensity νδ⊗dt, which we denote by PPPδ. If we

only look at updates in Pρδ , namely, ρ-important points of ωδ, then we get a p.p.p. with

intensity νρδ⊗dt, which we denote by PPPρδ . For t>0 and x∈Dδ, we write (x, t)∈PPPδ
if the clock at x rings at time t. The same convention applies to other p.p.p.’s. In the

rest of this section, we further require that the probability space (Ω,F ,P) satisfies the

property in the following lemma.

Lemma 6.27. There exists (Ω,F ,P) satisfying both Theorem 6.4 and the following

condition. For each fixed ρ>0, PPPρδ converge almost surely to a p.p.p. PPPρ with

intensity c′eh/
√
6mρ⊗dt in the following sense. For each T>0, as δ!0, we have that

{(x, t)∈PPPρδ : t∈[0, T ]} converge to {(x, t)∈PPPρ :t∈[0, T ]} almost surely.

Proof. Let (Ω,F ,P) be a probability space satisfying Theorem 6.4. In particular,

(ωδ,Γδ,Γ, h) satisfies the conditions in §6.4. Fix k∈N and set s=10−k. By Lemma 6.17,

limδ!0 ν
s
δ=c

′eh/
√
6ms in probability. By [GPS3, Lemma 7.5 and Corollary 7.6], we

can find a coupling of (ωδ,Γδ, h) and PPPδ such that PPPsδ converge almost surely

to a p.p.p. PPPs with intensity c′eh/
√
6ms⊗dt, in the sense specified in Lemma 6.27.

By Definition 6.15 and elementary geometric considerations, for each ρ⩾10s, we have

Pρ⊂Ps, and Pρδ ⊂Psδ for small enough δ. Fix T>0. By Lemma 6.14, there almost

surely exists ρ′∈(s, ρ) and ρ′′>ρ sufficiently close to ρ, such that, for each (x, t)∈PPPs

with t∈[0, T ], if x∈Pρ, then x∈Pρ′′ , otherwise x /∈Pρ′ . By the convergence of loops, we

have that {(x, t)∈PPPρδ :t∈[0, T ]} converge to {(x, t)∈PPPρ :t∈[0, T ]} almost surely. In

particular, the convergence holds for ρ=10−k+1.

By the Skorokhod embedding theorem, we can further require (Ω,F ,P) to be such

that PPPsδ converge to PPPs a.s. for s∈{10−k :k∈N}. In such a coupling, for a fixed

ρ>0, by considering s=10−k with ρ⩾10s and repeating the argument in the previous

paragraph, we see that PPPρδ converge to PPPρ a.s. This concludes the proof.

6.7.2. A continuous time Markov chain

To prove Lemmas 6.5 and 6.7, we put h and (ωε,δt )t⩾0 into the framework of continuous

time finite-state Markov chains. Let Sδ be the space of site percolation configurations

of Dδ with monochromatic blue boundary condition. Then, conditioning on h, (ωε,δt )t⩾0

is a continuous-time Markov chain on the state space Sδ whose initial distribution is the

uniform measure. Let Qh :=(qij)i,j∈Sδ be the transition rate matrix of (ωε,δt )t⩾0. For any

two distinct states i and j in Sδ, if
(1) the colorings of i and j only differ at one vertex v∈Dδ, and
(2) v is an ε-pivotal point for i, or, equivalently, for j,
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then

qij = qji=µ′
h(v)α

δ
4(δ, 1)

−1.

Otherwise, qij=0. Since Qh is symmetric, the uniform measure on Sδ is a stationary

distribution. Namely, (ωε,δt )t⩾0 is stationary conditioning on h.

For each state i∈Sδ, let Nε
δ (i):=

∑
µ′
h(v)α

δ
4(δ, 1)

−1, where the summation ranges

over ε-pivotal points of (h, i). Let Sδ+ :={i∈Sδ :Nε
δ (i)>0}. If ωε,δ0 /∈Sδ+, then ωε,δt =ωε,δ0

for all t⩾0. On the event ωε,δ0 ∈Sδ+, the process (ωε,δt )t⩾0 evolves as a stationary Markov

chain on Sδ+. Let (Jε,δk )k∈N be the discrete skeleton of (ωε,δt )t⩾0. Namely, on the event

ωε,δ0 ∈Sδ+, (Jε,δk )k∈N is the discrete-time Markov chain on Sδ+ keeping track of the jumps

of (ωε,δt )t⩾0. If ω
ε,δ
0 /∈Sδ+, then Jε,δk =ωε,δ0 for each k∈N.

Conditioning on h, we can sample (ωε,δt )t⩾0 in a 2-step procedure:

(1) run (Jε,δk )k∈N with its P-law (conditioning on h);

(2) conditioning on h and (Jε,δk )k∈N, the time spent in each state Jε,δk is an inde-

pendent exponential random variable with rate Nε
δ (J

ε,δ
k ).

Let Ph be the transition matrix of (Jε,δk )k∈N conditioning on h. It is elementary to

see that the uniform measure on Sδ reweighted by Nε
δ is a stationary measure for Ph. In

other words, define N ε
δ :=N

ε
δ (ω

ε,δ
0 ). Then, (Jε,δk )k∈N is stationary under the probability

measure obtained by normalizing N ε
δ dP.

6.7.3. Proof of Lemmas 6.5 and 6.7

We now prove Lemma 6.5 and 6.7. Given the Markov chain description of (ωε,δt )t⩾0,

hence (Γε,δt )t⩾0, in §6.7.2, the convergence in law for (Γε,δt )t⩾0 asserted in Lemma 6.5

to the desired limit desired described in Lemma 6.7 is quite straightforward. We just

need to show that the exponential clocks and the skeleton of (Γε,δt )t⩾0 converges to the

desired distribution. For the skeleton convergence, we will use the fact that under the

reweighted measure N ε
δ dP at the end of §6.7.2, the skeleton (Jε,δk )k∈N is stationary. If N ε

δ

converge in L1, then given all the work done in §6.4, this convergence would be trivial.

The main difficulty that we face in this final step is that N ε
δ may not converge in L1, at

least this is not clear to us. Most of the technical work in this subsection is devoted to

circumventing this issue. We start by some basic limiting properties of N ε
δ .

Lemma 6.28. Recall Mε(h,Γ) in Proposition 6.23. Fix an ε>0. Let N ε be the

Mε(h,Γ)-mass of ε-pivotal points of (h,Γ). Then,

lim
δ!0

N ε
δ =N ε and lim

δ!0
1N ε

δ =0 =1N ε=0

in probability.
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Proof. Note that N ε
δ is the total νδ-mass of the ε-pivotal points of (h, ωδ). Setting

f≡1 in (6.12), we get limδ!0 N ε
δ =N ε. For the second assertion, recall PPPρδ and PPPρ

in Lemma 6.27. For each fixed T and ρ>0, we query whether points in

{x : (x, t)∈PPPρδ , t∈ [0, T ]}

are ε-pivotal for (h, ωδ). By Lemma 6.18, the answer converges to its counterpart for

PPPρ. Sending T!∞ and ρ!0, we conclude.

Recall ρε from Lemma 6.20. Namely, ρε>0 is a random number such that each

ε-pivotal point of (h,Γ) (resp. (h, ωδ)) is ρ-important for Γ (resp. Γδ) for ρ∈(0, ρε) and
δ∈(0, ρ). The following variant of Lemma 6.18 is immediate from Lemma 6.20.

Lemma 6.29. Let

τ δ := inf{t> 0 :ωε,δt ̸=ωδ0}

be the first time (ωε,δt )t⩾0 jumps. Let

Γ̂δ :=

{
Γε,δ
τδ , if τ δ <∞,

Γε,δ0 , if τ δ =∞.

Then, the limit Γ̂=limδ!0 Γ̂
δ exists in probability for the L(D)-metric.

Proof. The case N ε ̸=0 is immediate, so we focus on the event that N ε ̸=0. By

Lemma 6.28, on this event for small enough δ we have N ε
δ >0, and hence τ δ<∞. Define

ω̂δ :=ωε,δ
τδ , so that Γ̂δ=Γ(ω̂δ). Let zδ∈Dδ be such that ω̂δ(zδ) ̸=ωδ(zδ). Then, zδ must be

ε-pivotal for (h, ωδ). Therefore, (zδ, τ δ)∈PPPρδ for ρ∈(0, ρε) and δ∈(0, ρ). By the almost

sure convergence of PPPρδ for arbitrary ρ from Lemma 6.27, we see that zδ converge

almost surely to a random point z∈D. Now, the convergence Γ̂=limδ!0 Γ̂
δ follows from

Lemma 6.28.

For a fixed ρ>0, let Pρ=P[ρ<ρε]−11ρ<ρεP, with ρε as in Lemma 6.20. We intro-

duce Pρ because under Pρ every ε-pivotal point of also ρ-important, and we do have

convergence of N ε
δ in L1.

Lemma 6.30. N ε
δ converge to N ε in L1 under Pρ.

Proof. Since N ε
δ 1ρ<ρε⩽ν

ρ
δ (D), by Lemma 6.17, {N ε

δ }δ>0 is uniformly integrable

under Pρ. As N ε
δ converge to N ε in Pρ-probability by Lemma 6.28, we are done.

Let P̃ρδ be the probability measure obtained by normalizing N ε
δ Pρ, and let P̃ρ be

the probability measure obtained by normalizing N εPρ. We first prove the variant of

Lemmas 6.5 and 6.7 (i.e., Lemma 6.31) under these truncated and reweighted measures.

Then, we use Lemma 6.30 to remove the truncation and reweighting.
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Lemma 6.31. Fix ε>0 and ρ>0. We can enlarge the sample space (Ω,F , P̃ρ) to

admit a process (Γεt )t⩾0 such that the P̃ρδ-law of (h,Γε,δt )t⩾0 weakly converge to the P̃ρ-
law of (h,Γεt )t⩾0 as δ!0. Moreover, the law of (h,Γεt )t⩾0 can be described as follows.

Conditioned on h, (Γεt )t⩾0 is a stationary Markov process, where Γε0 is a CLE6 on D.
Moreover, almost surely (Γεt )t⩾0 has infinitely many jumps, but only has finitely many

in any finite interval. Conditioning on (D, h,Γε0), an exponential clock rings with rate

(ξh(∂D))1/2Mε
h,Γε

0
(D). Once the clock rings, sample an ε-pivotal point z from Mε

h,Γε
0
.

The process (Γεt ) jumps to the loop ensemble obtained from Γε0 by flipping the color at z.

The remaining jumps in the process are sampled iteratively.

Proof. Recall that (Jε,δk )k⩾0 is the discrete skeleton of (ωε,δt )t⩾0. In this proof we

abuse notation and identify Jε,δk with its loop ensemble Γ(Jε,δk ). As P̃ρδ [N ε
δ >0]=1, due to

the reweighting of N ε
δ in P̃ρδ , the skeleton chain is stationary and a.s. non-trivial (i.e., it is

not constant in time). We will carry out the proof of Lemma 6.31 in three steps. In Step 1,

we show that in any coupling where (h, Jε,δ0 ) converge in probability, we can enlarge the

coupling such that Jε,δ1 converge in probability as well. In Step 2, we use the stationarity

of (Jε,δk )k⩾0 to inductively show that there exists a coupling where (h, Jε,δ0 , ..., Jε,δn ) con-

verge in probability for all n⩾0. In Step 3, we deal with the convergence of the waiting

time between jumps and their local finiteness in the continuum. Putting these three

steps together, we get the desired description of the limiting process (Γεt )t⩾0.

Step 1. From Jε,δ0 to Jε,δ1 . Let Jε0=Γ0. As (h, Jε,δ0 ) converge almost surely to

(h, Jε0 ) under P, the same convergence holds under Pρ. By the L1 convergence of the

Radon-Nykodim derivative in Lemma 6.30, the P̃ρδ -law of (h, Jε,δ0 ) converge to the P̃ρ-
law of (h, Jε0 ). Recall the measure νδ from §6.4 where each vertex x is assigned mass

µ′
h(x)α

δ
4(δ, 1)

−1. Let νε,δ0 be νδ restricted to the set of ε-pivotal points for (h, Jε,δ0 ).

Then, by Proposition 6.23, νε,δ0 converge in probability to the measure

Mε(0, Jε0 )=Mε(h,Γ).

Again by Lemma 6.30, the P̃ρδ -law of (h, Jε,δ0 , νε,δ0 ) converge to the P̃ρ-law of

(h, Jε0 ,Mε(h,Γ)).

Let hδ=h for each δ>0. Suppose that we are under an arbitrary coupling of the

P̃ρδ -law of (hδ, Jε,δ0 ) and the P̃ρ-law of (h, Jε0 ) such that (hδ, Jε,δ0 ) converge to (h, Jε0 ) in

probability. We claim that the sample space of this coupling can be enlarged to become

a coupling of the P̃ρδ -law of (hδ, Jε,δ0 , Jε,δ1 ), where Jε,δ1 converge in probability as well.

Note that Mε(h,Γ) can be viewed as a measurable function from H−1(D)×L(D) to
the space of Borel measures on D, which is well defined modulo a P-probability zero event.



188 n. holden and x. sun

Therefore, by Lemma 4.2, under the coupling in the previous paragraph, νε,δ0 converge to

Mε(h, Jε0 ) in probability, so we can enlarge the sample space for this coupling to contain

random points zδ0 and z0 sampled according to νε,δ0 and Mε(h, Jε0 ), respectively, such

that zδ0!z0 in probability. By the definition of P̃ρδ and P̃ρ, almost surely each ε-pivotal

point is ρ-important. Therefore, zδ0 (resp. z) is ρ-important for Jε,δ0 (resp. Jε0 ). Let J
ε,δ
1

be the loop ensemble obtained from Jε,δ0 by flipping the color at zδ1. By Lemma 6.18 and

Remark 6.19, Jε,δ1 converge in probability to the loop ensemble Jε1 obtained by flipping

the color of Jε0 at z0. Although Lemma 6.18 is proved under P, given the L1-convergence

from Lemma 6.30, the proof of Lemma 6.18 works in this setting. This gives a coupling

of the P̃ρδ -law of (hδ, Jε,δ0 , Jε,δ1 ) that converge in probability.

Step 2. Convergence of the full skeleton. We perform the following induction. Sup-

pose that, for some n⩾0, there exists a coupling of the P̃ρδ -law of (hδ, Jε,δ0 , ..., Jε,δn ) such

that the convergence holds in probability. We write (h0, Jε0 , ..., J
ε
n) as the in-probability

limit. By the 2-step sampling procedure for {Jε,δk }k∈N at the end of §6.7.2, we see that

the P̃ρδ -conditional law of (Jε,δk )k⩾0 given hδ is a stationary Markov chain. In particular,

under this coupling, the law of (hδ, Jε,δn ) equals the P̃ρδ -law of (hδ, Jε,δ0 ) and the law of

(h0, Jεn) equals the P̃ρ-law of (h, Jε0 ). Then, we can enlarge the sample space of this cou-

pling to admit zδn and zn, such that zδn!zn in probability, and zδn and zn are sampled in

the same way as zδ0 and z0 in Step 1 with Jε,δn and Jεn in place of Jε,δ0 and Jε0 , respectively.

Define Jε,δn+1 and Jεn+1 in the same way as Jε,δ1 and Jε1 by flipping colors. Then, by the

same argument as in Step 1, Jε,δn+1 converge to Jεn+1 in probability. We also note that,

conditioning on (h0, Jε0 , ..., J
ε
n), the point zn is sampled according to Mε(h0, Jεn), and

Jεn+1 is obtained from Jεn by flipping color at zn.

By the above induction, we see that, for each n⩾0, the P̃ρδ -law of (hδ, Jε,δ0 , ..., Jε,δn )

weakly converge. Since the law of the field equals the P̃ρ-law of h, we can enlarge the

sample space of (Ω,F , P̃ρ) to admit random variables (Jε0 , ..., J
ε
n) such that the weak limit

is the P̃ρ-law of (h, Jε0 , ..., J
ε
n). Also, from the above induction, we see that conditioning

on h, the conditional law of (Jεk)k∈N is a Markov chain whose transition kernel is as

described in Lemma 6.31, i.e., first sample an ε-pivotal point and then flip the color.

Step 3. Convergence of jumping times and their local finiteness. Recall the enlarged

sample space (Ω,F , P̃ρ) at the end of Step 2. We further enlarge it as follows. Let Mk be

the total mass of Mε(h, Jεk) for k⩾0. Conditioned on (h, Jεk)k⩾0, sample an independent

sequence (θi)i⩾1 such that τk has the law of the ringing time of an exponential clock with

rate Mi−1 for each i⩾1. Let N ε,δ
k be defined as N ε

δ , with (h, Jε,δk ) in place of (h,Γε,δ0 ).

Then, N ε,δ
k convergence in law to (Mk)k⩾0. Moreover, the convergence holds jointly

with (h, Jεk)k⩾0. For k⩾1, let τ δk be the kth jumping time of (Γε,δt )t⩾0 and τk=
∑k
i=1 θi.
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Then, by the 2-step sampling procedure at the end of §6.7.2 and the conclusion of Step 2,

the P̃ρδ -law of h, (Jε,δk )k⩾0, and (τ δk )k⩾1 converge to the P̃ρ-law of h, (Jεk)k⩾0, and (τk)k⩾1.

Since (h, Jεk)k⩾0 is stationary, so is (Mk)k⩾0. On the other hand,

P̃ρ[Mk ∈ (0,∞)] = 1,

due to the N ε-reweighting in P̃ρ. Now, the ergodic theorem yields that

∞∑
i=1

M−1
i =∞, P̃ρ-a.s. (6.13)

Therefore,
∑∞
i=1 θi=∞ almost surely under P̃ρ. We now define Γεt=J

ε
k if t∈[τk, τk+1).

Then, (Γεt )t⩾0 makes finitely many jumps in any bounded interval P̃ρ-a.s. Moreover, the

P̃ρ-law of (h,Γεt )t⩾0 is the weak limit of the P̃ρδ -law of (h,Γε,δt )t⩾0. Recall from §6.5 that

Mε(h,Γ)=ξh(∂D)1/2Mε
h,Γ. Therefore, the rate of (θk)k⩾1 given h and (Jεk)k⩾0 is exactly

as described in Lemma 6.31. Combined with the description of the law of (h, Jε0 , ..., J
ε
n)

from Step 2, we see that the P̃ρ-law of (h,Γεt )t⩾0 is as described in Lemma 6.31.

Proof of Lemmas 6.5 and 6.7. It suffices to show that, in the setting of Lemma 6.31,

for a fixed ρ>0, as δ!0, the Pρ-law of (h,Γε,δt ) weakly converge to the Pρ-law of

(h,Γεt )t⩾0. Once this is done, Lemma 6.31 shows that the Pρ-law of (h,Γεt )t⩾0 is as

described in Lemma 6.7 with the further condition {ρε>ρ}. So, sending ρ!0, we will

conclude the proof of Lemmas 6.5 and 6.7.

For n∈N, define

gn(x)=n2x1x<n−1+x−11x>n−1 for x∈ [0,∞).

Let f be a bounded continuous function on the space of H−1(D)×L(D)-valued processes

on [0,∞) under Skorokhod topology. Let EP̃ρ

be the expectation with respect to P̃ρ.
Define EPρ

and EP̃ρ
δ similarly. For a fixed n, we see that gn is a bounded continuous

function on [0,∞). Therefore,

lim
δ!0

EP̃ρ
δ [f((h,Γε,δt )t⩾0)gn(N ε

δ )] =EP̃ρ

[f((h,Γεt )t⩾0)gn(N ε)] for each n∈N.

Since

N ε
δ Pρ=EPρ

[N ε
δ ]P̃

ρ
δ , N εPρ=EPρ

[N ε]P̃ρ, and lim
δ!0

EPρ

[N ε
δ ] =EPρ

[N ε],

for each n∈N we have

lim
δ!0

EPρ

[f((h,Γε,δt )t⩾0)gn(N ε
δ )N ε

δ ] = lim
δ!0

EPρ

[N ε
δ ]EP̃ρ

δ [f((h,Γε,δt )t⩾0)gn(N ε
δ )]

=EPρ

[N ε]EP̃ρ

[f((h,Γεt )t⩾0)gn(N ε)]

=EPρ

[f((h,Γεt )t⩾0)gn(N ε)N ε].

(6.14)
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Since 0⩽gn(x)x⩽1 for all x>0, we have

|EPρ

[f((h,Γε,δt )t⩾0)gn(N ε
δ )N ε

δ ]−EPρ

[f((h,Γε,δt )t⩾0)1N ε
δ>0]|

⩽ ∥f∥∞Pρ[0<N ε
δ <n

−1].
(6.15)

Moreover, (6.15) remains true if Γε,δt and N ε
δ are replaced by Γεt and N ε, respectively.

Therefore,

lim
n!∞

EPρ

[f((h,Γεt )t⩾0)gn(N ε)N ε] =EPρ

[f((h,Γεt )t⩾0)1N ε>0].

This, combined with (6.14) and (6.15), gives that

lim
δ!0

EPρ

[f((h,Γε,δt )t⩾0)1N ε
δ>0] =EPρ

[f((h,Γεt )t⩾0)1N ε>0]. (6.16)

On the event that N ε
δ =0, we have Γε,δt =Γε,δ0 for t>0. Combined with Lemma 6.28

and (6.16), the Pρ-law of (h,Γε,δt ) weakly converge as δ!0 to the Pρ-law of (h,Γεt )t⩾0 as

desired.

The content of Lemmas 6.5 and 6.7 is the existence and a description of the weak

limit of the P̃ρδ -law of (h,Γε,δt )t⩾0. The enlargement of the sample space in the statement

of Lemma 6.5 is not essential. Since the marginal law of the field stays the same, for

convenience we just use the field h to generate a sample of the limiting dynamic. On

the other hand, in the proof of Proposition 6.9 we will show that in a sample space

satisfying Lemma 6.27, the convergence already holds in probability. Proving this requires

additional input from LDP which we will provide in §6.8.

6.7.4. Convergence after the first flip: planar map case

We now turn our attention to Lemma 6.8. Suppose we are in the setting of Lemma 6.29

and the proofs of Lemmas 6.5 and 6.7 in §6.7.3. Let PVε (resp. P̂Vε) be the set of ε-

pivotal points of (h,Γ) (resp. (h, Γ̂)). Let PVδε and P̂V
δ

ε be their counterpart for (h, ωδ)

and (h, ω̂δ), respectively. The following lemma is extracted from [BHS, §8.3].(15)

Lemma 6.32. For ε>0, there exists a measure νε
h,Γ̂

supported on P̂Vε such that for

each fixed ε′>0, νε
h,Γ̂

=νε
′

h,Γ on PVε′∩P̂Vε a.s.

Since ⋃
ε>0

PVε=
⋃
ε>0

P̂Vε

(15) With cp as in Proposition 6.34, cpνε
h,Γ̂

is the measure ν̂D,ε in [BHS, §8.3].
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almost surely, Lemma 6.32 characterizes ν̂εh,Γ modulo a probability-zero event. Recall

that in §6.7.3 we view Mε(h,Γ) as a measurable function from H−1(D)×L(D) to the

spaces of Borel measures on D. In particular, the measure Mε(h, Γ̂) is well defined and

supported on P̂Vε. In light of Definition 6.24 and the discussion below it, we set

Mε
h,Γ̂

:= ξh(D)−1/2Mε(h, Γ̂).

Lemma 6.33. νε
h,Γ̂

=cMε
h,Γ̂

a.s., with the constant c as in Proposition 5.1.

Proof. By a reweighting consideration as in the proof of Lemmas 6.5 and 6.7, the

νδ-measure restricted to P̂V
δ

ε converge in probability to Mε(h, Γ̂). For ε, ε′>0, the νδ-

measure restricted to PVδε′∩P̂V
δ

ε converge in probability to both

Mε′(h,Γ)|
PVε′∩P̂Vε

and Mε(h, Γ̂)|
PVε′∩P̂Vε

.

The first convergence can be shown by the same argument as in Proposition 6.23. The

second convergence follows from the first one and the stationarity of {Jε,δk }k∈N under the

measure P̃ρδ for arbitrarily small ρ>0. Therefore, Mε′(h,Γ)=Mε(h, Γ̂) on PVε′∩P̂Vε.
Lemma 6.33 now follows from (6.2), Definition 6.24, and Proposition 5.1.

Now, let us consider (h,Γ, Γ̂) on the probability space (Ω,F ,Pd), where (D,h, 1) is
a
√

8
3 -LQG disk. For n∈N, let (Mn,Υn) be as in Theorem 1.9. Let zn be a uniformly

sampled ε-pivotal point of Υn, and let Υ̂n be the loop ensemble obtained by flipping

the color of zn. Let νεn and ν̂εn be n−1/4 times the counting measure of ε-pivotal points

of Υn and Υ̂n, respectively. We view (Mn,Υn, Υ̂n, νεn, ν̂
ε
n) as a metric space decorated

with one boundary curve, two loop ensembles, and three measures. In the continuum,

similarly as (D,h,Γ) in Remark 2.15, we view (D,h,Γ, Γ̂, νεh,Γ, νεh,Γ̂) as a metric space

with the same kind of decorations. We straightforwardly extend the GHPUL distance

in §2.2 to this setting. With these notation, the following proposition is a restatement

of [GHS1, Proposition 6.4].

Proposition 6.34. In the setting right above, there exists a constant cp>0 sat-

isfying the following. For each ε>0, there exists a coupling of (Mn,Υn, Υ̂n)n∈N and

(h,Γ, Γ̂) such that almost surely (Mn,Υn, Υ̂n, νεn, ν̂
ε
n) converge to

(D,h,Γ, Γ̂, cpνεh,Γ, cpνεh,Γ̂)

in the GHPUL topology.

In the original statement of [GHS1, Proposition 6.4], the limiting measures cpν
ε
h,Γ

and cpν
ε
h,Γ̂

are as defined using the terminology of [BHS]; see [BHS, Proposition 8.12].
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As explained in Remark 5.19 and Lemmas 6.32 and 6.33, these measures agree with

the ones considered in our paper. Therefore, Proposition 6.34 is equivalent to [GHS1,

Proposition 6.4].

Proof of Lemma 6.8. By Proposition 6.34, we have

lim
n!∞

νεn(Mn)= cpν
ε
h,Γ(D)= ccpMε

h,Γ(D)

and

lim
n!∞

ν̂εn(Mn)= cpν
ε
h,Γ̂

(D)= ccpMε
h,Γ̂

(D),

by Proposition 5.1 and Lemma 6.33. The 2-step sampling procedure in §6.7.2 applies to

(Mn,Υε,nt )t⩾0. Recall the definition of (Y εt )t⩾0. Lemma 6.8 follows from the sampling

recipe for (Y εt )t⩾0 prescribed by Lemma 6.7.

6.8. Stability of the cutoff and proof of Propositions 6.9 and 6.11

In this section, we identify a site percolation configuration on Dδ with an element in H(D)
(see §6.2) as needed. We will first show that (Ω,F ,P) in §6.7.1 satisfies Proposition 6.9,

and then prove Propositions 6.11.

Our proofs rely on some stability results established in [GPS3], [GHSS], asserting

that the importance of a vertex is rather stable in time. Before stating them formally,

we point out that our definition of ρ-important pivotal points is slightly different from

the definition in [GPS3], [GHSS]. In [GPS3] ρ-important pivotal points are defined in

terms of how far the alternating four arms starting at the pivotal point can reach. For

a square B, recall the annulus A=AB in §6.4.2. Our notion of A-important point agrees

with the one in [GPS3], [GHSS], as long as A⊂D. There is a small deviation in definition

when A∩∂D ̸=∅, but this is irrelevant as the results we will use from [GPS3], [GHSS] are

about ρ-important points in rD with r∈(0, 1). In this case, as explained in [GPS2, §4.7],
these two notions of ρ-importance are effectively equivalent. In particular, the results we

will be relying on hold for both notions.

Having the clarification above, the following stability result is an immediate conse-

quence of [GHSS, Lemma 3.7] and [GPS3, Proposition 3.9]. Intuitively, it says that, with

probability 1−oρ(1) uniform in δ, the influence to the quad-crossing configuration of the

updates in the dynamics (ωδt )t⩾0 is captured by the updates on the ρ-important points.

Lemma 6.35. Fix T>0 and r∈(0, 1). Let Xδ be the set of vertices on Dδ which are

updated for the dynamics (ωδt )t∈[0,T ]. Let Ωδ be the set of percolation configurations ω′

on Dδ such that ω′(v)=ωδ0(v) for all v /∈Xδ. Let Pρδ be the set of ρ-important points

for ωδ0. Given ω′, ω′′∈H(D), let dr(ω′, ω′′) be the dH-distance of the restriction of ω′
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and ω′′ to QrD. For all ζ∈(0, 1), there exist constants ρ1>0 and δ0>0 depending only

on r, T , and ζ such that, for all ρ∈(0, ρ1) and δ∈(0, δ0), one has

P[max{dr(ω′, ω′′) :ω′(v)=ω′′(v) for v ∈Pρδ andP ω′, ω′′ ∈Ωδ}>ζ]<ζ.

We also need the following variant of stability which is also essentially from [GHSS].

In terms of notation in Lemma 6.35, it says that, for each ρ>0, with probability 1−
os(1) uniform in δ, each ρ-important point in Pρδ that is updated during [0, T ] remains

s-important with respect to all configurations in Ωδ.

Lemma 6.36. In the setting of Lemma 6.35, with r∈(0, 1) and ρ, T >0 fixed, let

Zδ(v) := inf{ρ′> 0 : there exists ω′ ∈Ωδ such that v is ρ′-important for ω′}

for v∈rD, and
Nδ(ρ, s) :=#{v ∈Pρδ ∩Xδ∩rD :Zδ(v)⩽ s}

for s>0, where # means the cardinality. Then, for all ζ∈(0, 1), there exist constants

s>0 and δ0>0 depending only on ρ, r, T , and ζ, such that

P[Nδ(ρ, s)= 0]> 1−ζ for all δ ∈ (0, δ0).

Proof. By [GHSS, Lemma 3.5], there exists an almost surely finite random number

C(h, T ) such that, for every δ, s, and ρ satisfying

2δ < s< 24s<ρ⩽ 1

and every vertex v∈Dδ∩rD, one has

P[v ∈Pρδ , Zδ(v)⩽ s | h]⩽C(h, T )sβαδ4(δ, ρ),

where β>0 is a constant and αδ4(δ, ·) is defined as above Theorem 6.4. Therefore,

E[Nδ(ρ, s) | h] =
∑

v∈Dδ∩rD

P[v ∈Pρδ ∩Xδ, Zδ(v)⩽ s | h]

⩽C(h, T )sβαδ4(δ, ρ)E[#(Xδ∩rD) | h]

⩽
∑

v∈Dδ∩rD

C(h, T )sβαδ4(δ, ρ)·Tµ′
h(v)α

δ
4(δ, 1)

−1.

Here, we recall that µ′
h(v) is the µ

′
h-mass of the hexagon corresponding to v in the dual

lattice of Dδ. By the quasi-multiplicativity of αδ4( · , ·) (see e.g. [SWe]),

αδ4(δ, 1)
−1αδ4(δ, ρ)⩽ cρ5/4,

so αδ4(δ, 1)
−1αδ4(δ, ρ) is upper bounded by a constant ĉ only depending on ρ. Therefore,

E[Nδ(ρ, s) | h]⩽ ĉTµ′
h(D)C(h, T )sβ .

Now, Lemma 6.36 follows from Markov’s inequality.
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We are now ready to prove Proposition 6.9, which upgrades the convergence in law

of (Γε,δt )t⩾0 from Lemma 6.5 to convergence in probability simultaneously for all ε>0. In

the proof, we will retain the setting from §6.7.3, where we proved Lemmas 6.5 and 6.7.

The key idea to use the stability results above to prove that, with probability 1−os(1),
if a jump of (ωε,δt )t⩾0 occurs at location x and time t, where x is ε-pivotal for (h, ωε,δt ),

then x must be s-important for ωε,δ0 ; see (6.17) below.

Proof of Proposition 6.9. We claim that, for (Ω,F ,P) as in Lemma 6.27, (Γε,δt )t⩾0

converge in probability rather than just in law. Fix ρ0>0. Let Pρ0 , P̃ρ0δ , and P̃ρ0 be

defined as Pρ, P̃ρδ , and P̃ρ in §6.7.3 with ρ=ρ0. We denote a jump of (Γε,δt )t⩾0 by (x, t),

where t is the jumping time and x is the pivotal point being flipped at t. For each s>0

and T>0, let Esδ (T ) be the event that for each jump (x, t) of (Γε,δt )t⩾0 with t⩽T , if x

is ε-pivotal for (h, ωε,δt ) then x is s-important for ωε,δ0 . We claim that, for all ζ∈(0, 1),
there exist δ0>0 and s>0 only depending on ζ and T such that

P̃ρ0 [Esδ (T )]> 1−ζ for all δ ∈ (0, δ0). (6.17)

We first explain why (6.17) is sufficient to conclude the proof. Let τ δk denote the time

of the kth jump of (Γε,δt )t⩾0. By Lemma 6.29, (Γε,δt )t∈[0,τδ
2 )

converge in P̃ρ0 -probability.
Let us write Γ̂=limδ!0 Γ

ε,δ

τδ
1

as in Lemma 6.29. Let zδ be such that (zδ, τ δ2 ) is the second

jump of (Γε,δt )t⩾0. By (6.17) and the convergence of PPPsδ for each s (see Lemma 6.27),

zδ converge in P̃ρ0-probability to a point z. On the other hand, the P̃ρ0-laws of Γ and Γ̂

are the same. Observe that Lemma 6.18 applies to (Γε,δ
τδ
1
, zδ) under P̃ρ0 , by absolute con-

tinuity. Therefore, (Γε,δt )t∈[τδ
1 ,τ

δ
3 )

converge in P̃ρ0 -probability. (Since Γ̂=limδ!0 Γ
ε,δ

τδ
1
, we

in fact need Remark 6.19 here.) We can repeat the same argument to get (Γε,δt )t∈[τδ
k ,τ

δ
k+2)

converge in P̃ρ0-probability for each k⩾1. This gives the convergence in P̃ρ0-probability
of (Γε,δt )t⩾0. Therefore, the same convergence holds under Pρ0 , if we further condition on

{N ε ̸=0}. On the event N ε=0, the dynamic is trivial. We conclude that (Γε,δt )t⩾0 con-

verge in Pρ0-probability. Sending ρ0!0 gives the desired convergence in Proposition 6.9.

It remains to prove (6.17). We first argue that P̃ρ0 and P̃ρ0δ are close in total varia-

tional distance, when δ is small. For any event E∈F , we have that

|Eρ0 [N ε
δ 1E ]−Eρ0 [N ε1E ]|⩽Eρ0 [|N ε

δ −N ε|],

where Eρ0 is the expectation corresponding to Pρ0 . By Lemma 6.30, there exists a

function ζρ0(δ) not depending on E such that limδ!0 ζ
ρ0(δ)=0 and

|P̃ρ0δ [E]−P̃ρ0 [E]|⩽ ζρ0(δ) for all E ∈F . (6.18)
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We now fix K∈N large enough and δ0>0 small enough such that

P̃ρ0δ [τ δK+1>T ]> 1−0.1ζ

for δ∈(0, δ0). Let G1
δ(r) be the event that, if (x, τ δk ) is a jump of (Γε,δt )t⩾0 for 1⩽k⩽K,

then x∈rD. By possibly shrinking δ0, we can find r∈(0, 1) such that

P̃ρ0δ [G1
δ(r)]⩾ 1−0.1ζ

for δ∈(0, δ0). For 1⩽k⩽K and ρ>0, let G2
δ(k; ρ) be the event that every ε-pivotal point

of (h,Γε,δ
τδ
k
) is ρ-important for Γε,δ

τδ
k
. Set

G2
δ(ρ) :=

K⋃
k=1

G2
δ(k; ρ).

Recall Lemma 6.20. By choosing ρ small enough and possibly shrinking δ0, we can have

min
1⩽k⩽K

P̃ρ0δ [G2
δ(k; ρ)]⩾ 1−0.1K−1ζ,

and hence

P̃ρ0δ [G2
δ(ρ)]⩾ 1−0.1ζ

for δ∈(0, δ0).
For i, j∈{0, 1, ...,K}, let Gδ(i, j; ρ, s) be the event that every ρ-important point for

ωε,δ
τδ
i
is s-important for ωε,δ

τδ
j
, where we set τ δ0=0. By Lemma 6.36 and (6.18), after possibly

shrinking δ0, we can find s small enough such that

P̃ρ0δ [Gδ(0, k; ρ, s)]⩾ 1−K−10.01ζ

for each 1⩽k⩽K. Since {ωε,δ
τδ
k
} is reversible under P̃ρ0 , we have

P̃ρ0δ [Gδ(k, 0; ρ, s)]⩾ 1−K−10.01ζ

as well. On the event

({τ δK+1>T}∩G1
δ(r)∩G2

δ(ρ))\Esδ (T ),

there exists 1⩽k⩽K such that Gδ(k, 0; ρ, s) does not occur. Therefore,

P̃ρ0δ [Esδ (T )]⩾ 1−0.5ζ.

By possibly shrinking δ0 such that ζρ0(δ0)<0.5ζ, we get (6.17) from (6.18).
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The following lemma is the key to the proof of Proposition 6.11. It says that, for

a fixed ρ>0, with probability 1−oε(1) uniform in δ, each point in Pρδ that is updated

during [0, T ] must also be updated for the ε-cutoff dynamic (ωε,δt )t⩾0. The main idea is

to use Lemma 6.22 to show that, for a fixed s>0, with probability 1−oε(1) uniform in δ,

if a vertex is s-important for (ωε,δt )t⩾0 at the time it rings, it must be ε-pivotal at the

same time; see (6.19). Once this is done, together with Lemma 6.36 we will conclude the

proof.

Lemma 6.37. In the setting of Lemma 6.35, for each ε>0, let Xε
δ be set of vertices

on Dδ where update occurs for the dynamic (ωε,δt )t∈[0,T ]. Then, for all ζ, ρ∈(0, 1), there
exist ε>0 and δ0>0, depending only on ρ, r, T , and ζ, such that

P[Pρδ ∩Xδ ⊂Xε
δ ]> 1−ζ

for δ∈(0, δ0).

Proof. Suppose we are in the setting of Lemma 6.35, with r∈(0, 1) and T>0 fixed.

For each v∈Dδ, let τv be the time when the clock of v rings for the first time so that

Xδ={v∈Dδ :τv⩽T}. For s>0 and ε>0, let

N ′
δ(s, ε) :=#{v ∈Xδ∩rD : v is s-important for ωε,δτv but not ε-pivotal for (h, ωε,δτv )}.

We claim that, for all ζ∈(0, 1), there exist ε>0 and δ0>0 depending only on s, r, T ,

and ζ, such that

P[N ′
δ(s, ε)= 0]> 1− 1

3ζ for δ ∈ (0, δ0). (6.19)

Given (6.19), we first choose s such that P[Nδ(ρ, s)=0]>1− 1
3ζ, with Nδ(ρ, s) as

defined in Lemma 6.36. Then, we choose ε such that P[N ′
δ(s, ε)=0]>1− 1

3ζ. Let Eδ be

the event that the clock at each ρ-important vertex in rD rings at most once. By a first

moment calculation and possibly shrinking δ0 depending on ζ, we can have

P[Eδ]⩾ 1− 1
3ζ for δ ∈ (0, δ0). (6.20)

More precisely, given each v∈Dδ∩rD, the probability that v is a ρ-important and the

clock at v rings at least twice during [0, T ] is of order o(δ2). Thus, the expected number

of such vertices is of order oδ(1). Hence, by Markov’s inequality, (6.20) holds. On

Eδ∩{Nδ(ρ, s)= 0, N ′
δ(s, ε)= 0},

each v in Pρδ ∩Xδ must be s-important for ωε,δτv , hence be ε-pivotal for (h, ωε,δτv ). Therefore

v∈Xε
δ , which concludes the proof of Lemma 6.37.
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It remains to prove (6.19). Fix v∈Dδ∩rD. Given a percolation configuration ω

on Dδ, whether v is ε-pivotal for (h, ω) only depends on ω|Dδ\{v} and h. The same

statement holds for s-importance without involving h. For t⩾0, let Svt (u)=ω
ε,δ
t (u) for u∈

Dδ\{v} and Svt (v)=ω
ε,δ
0 (v). In other words, (Svt )t⩾0 is the same dynamics as (ωε,δt )t⩾0,

except that the color of v never changes. Then, τv is independent of (Svt )t⩾0. Note

that (Svt )t⩾0 is still stationary. Thus, Svτv has the same law as ωδ0. Fix ζ ′∈(0, 1) to be

determined later, and choose ε and δ0∈(0, 0.1) such that Lemma 6.22 holds with s and ζ ′

here. Since Svτv and ωε,δτv agree on Dδ\{v}, for δ∈(0, δ0), we have

P[v ∈Xδ∩rD, v is s-important for ωε,δτv but not ε-pivotal for (h, ωε,δτv )]

=P[τv ⩽T, v is s-important for Svτv but not ε-pivotal for (h, Svτv )]

=P[τv ⩽T ]P[v is s-important for Svτv but not ε-pivotal for (h, Svτv )]

=P[τv ⩽T ]P[v is s-important for ωδ0 but not ε-pivotal for (h, ωδ0)]

⩽P[τv ⩽T ]P[v is s-important for ωδ0]ζ
′

= ζ ′P[τv ⩽T, v is s-important for ωδ0].

The purpose of introducing Svt can be seen in the third step of this equality, where we

use the independence of two events. By the definition of N ′
δ(s, ε), we have

E[N ′
δ(s, ε)]

=
∑

v∈Dδ∩rD

P[v ∈Xδ∩rD, v is s-important for ωε,δτv but not ε-pivotal for (h, ωε,δτv )]

⩽ ζ ′
∑

v∈Dδ∩rD

P[τv ⩽T, v is s-important for ωδ0]

= ζ ′E[#(Psδ ∩Xδ∩rD)]

⩽ ζ ′TE[νδ(Psδ ∩rD)].

By Lemma 6.17, limδ!0 ν
s
δ (D) exists in L1, where νsδ is the restriction of νδ to Psδ . This

yields that

max
δ∈(0,0.1)

E[νδ(Psδ ∩(rD))]<∞.

Therefore, we can choose ζ ′ small enough depending on s, r, T , and ζ such that

max
δ∈(0,0.1)

E[N ′
δ(s, ε)]⩽

1
3ζ.

Now, (6.19) follows from Markov’s inequality.
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(ωδt )OO

��

(ωε,δt )
OO

��

(ω0,ρ,δ
t ) oo // (ωε,ρ,δt )

Figure 6.4. Proof of Proposition 6.11. By Lemma 6.35, for ρ sufficiently small, we know

that the two processes to the left (resp. right) connected by a vertical arrow are close with
high probability for the metric dr at any time t∈[0, T ]. By Lemma 6.37, we know that

(ω0,ρ,δ
t )t∈[0,T ]=(ωε,ρ,δ

t )t∈[0,T ] with high probability for ε sufficiently small compared to ρ.

Proof of Proposition 6.11. We refer to Figure 6.4 for an illustration of the proof. Let

(ω0,ρ,δ
t )t⩾0 be defined just as (ωδt )t⩾0, except that, when the clock at a vertex v rings,

we do not flip its color unless v∈Pρδ . We define (ωε,ρ,δt )t⩾0 similarly, with (ωε,δt )t⩾0 in

place of (ωδt )t⩾0. More precisely, if the clock at a vertex v rings at some time t, the color

of v is flipped along the (ωε,ρ,δt )t⩾0 dynamic if and only if v∈Pρδ and v is an ε-pivotal for

(h, ωε,δt ). Recall dr in Lemma 6.35. For any t∈[0, T ], by the triangle inequality,

dr(ω
ε,δ
t , ωδt )⩽ dr(ω

ε,δ
t , ωε,ρ,δt )+dr(ω

ε,ρ,δ
t , ω0,ρ,δ

t )+dr(ω
0,ρ,δ
t , ωδt ).

Fix ζ∈(0, 1). Recall ρ1 and Xδ in Lemma 6.35. For ρ∈(0, ρ1), with probability at least

1−ζ,

max
t∈[0,T ]

dr(ω
ε,δ
t , ωε,ρ,δt )+dr(ω

0,ρ,δ
t , ωδt )⩽ 2ζ.

Recall Xε
δ in Lemma 6.37. On the event {Pρδ ∩Xδ⊂Xε

δ}, we have

(ω0,ρ,δ
t )t∈[0,T ] =(ωε,ρ,δt )t∈[0,T ].

By Lemma 6.37, this occurs with probability as least 1−ζ, if ε is small enough. For

such ε, we have

P
[
max
t∈[0,T ]

dr(ω
ε,δ
t , ωδt )> 2ζ

]
< 2ζ. (6.21)

Sending δ!0, we have

P
[
max
t∈[0,T ]

dr(ω
ε
t , ωt)> 2ζ

]
< 2ζ,

which concludes the proof.
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Appendix A. Proof of Lemma 5.28

We will prove Lemma 5.28 using ideas from [SWa], where related results for the case

of mA equal to Lebesgue measure are proved. By the definition of a free Liouville field

(Definition 2.3), it is sufficient to consider the case where h is a zero-boundary Gaussian

free field. Let νr=r
α2/2eαhrmA. By the argument in [Brs, §6], in order to prove that

eαhmA exists, it is sufficient to prove that, for a fixed set U⋐D (recall that U⋐D means

U∪∂U⊂D), νr(U) has an a.s. limit as r!0.

Define h̄r(z)=αhr(z)+
1
2α

2 log r. For any s∈(0, r),

E[(νr(U)−νs(U))2] =

∫∫
U×U

E[(eh̄r(z)−eh̄s(z))(eh̄r(w)−eh̄s(w))] dmA(z) dmA(w). (A.1)

Let G:
U×
U!R denote the Green’s function, and for z∈U let C(z;U) denote the con-

formal radius of z in U . Recall that

Var(hr(z))= log r−1+logC(z;U),

and that

Cov[hr(z), hs(w)] =G(z, w)

if |z−w|>r+s. Using these identities, we get that the integrand on the right-hand side

of (A.1) is zero when |z−w|>2r. Furthermore,

h̄s(z)−h̄r(z)
d
= aN−0.5a2

for a standard normal random variable N and

a :=α

√
log

r

s
,

which gives that, for some c>0

E[(eh̄r(z)−eh̄s(z))2] =E[e2h̄r(z)]·E[(1−eh̄s(z)−h̄r(z))2]

= cE[(1−eaN−0.5a2)2] = c

((
r

s

)α2

−1

)
.

Therefore, for any d̂∈(0, d) and some constant c>0,

E[(νr(U)−νs(U))2]⩽
∫∫

U×U
|z−w|<2r

E[(eh̄r(z)−eh̄s(z))2] dmA(z) dmA(w)

⩽ c

((
r

s

)α2

−1

) ∫∫
U×U

|z−w|<2r

dmA(z) dmA(w)

⩽ c

((
r

s

)α2

−1

)
(2r)d̂

∫∫
U×U

dmA(z) dmA(w)

|z−w|d̂
.
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The integral on the right-hand side is finite, by (5.5). We see from this estimate that, for

any N∈N, we have a.s. convergence of νr(U) as r!0 along integer powers of 2−1/N . To

obtain a.s. convergence as r!0 (without requiring that r is a power of 21/N ), we proceed

similarly as in the proof of [SWa, Theorem 1.1], and the argument is thus omitted.

We can find a small δ>0 such that

E
[∫∫

U×U

dν(z) dν(w)

|z−w|δ

]
<∞.

Therefore, ν is a.s. non-atomic.

References

[Ab] Abraham, C., Rescaled bipartite planar maps converge to the Brownian map. Ann.
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