
Acta Math., 231 (2023), 205–344
DOI: 10.4310/ACTA.2023.v231.n2.a1
© 2023 by Institut Mittag-Leffler. All rights reserved

On the boundaries of highly connected,
almost closed manifolds

by

Robert Burklund

Massachusetts Institute of Technology
Cambridge, MA, U.S.A.

Jeremy Hahn

Massachusetts Institute of Technology
Cambridge, MA, U.S.A.

Andrew Senger

Harvard University
Cambridge, MA, U.S.A.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

2. The classification of (n−1)-connected 2n-manifolds . . . . . . . . . 213

3. Additional applications . . . . . . . . . . . . . . . . . . . . . . . . . . 219
3.1. The classification of Stein fillable homotopy spheres . . . . . 219
3.2. Calculations of mapping class groups . . . . . . . . . . . . . . 220
3.3. Bounds on the exponent of coker(J) . . . . . . . . . . . . . . 222

4. Calculations with the Goodwillie TAQ tower . . . . . . . . . . . . . 223
5. MO⟨4n⟩ as a homotopy cofiber . . . . . . . . . . . . . . . . . . . . . . 229
6. The remaining problem as a Toda bracket . . . . . . . . . . . . . . . 233
7. The Galatius and Randal-Williams conjecture . . . . . . . . . . . . 239
8. The proof of Theorem 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . 244
9. Synthetic spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
10. A synthetic Toda bracket . . . . . . . . . . . . . . . . . . . . . . . . . 257
11. Vanishing lines in synthetic spectra . . . . . . . . . . . . . . . . . . . 268
12. An Adams–Novikov vanishing line . . . . . . . . . . . . . . . . . . . . 275
13. Banded vanishing lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
14. A banded vanishing line for Y . . . . . . . . . . . . . . . . . . . . . . 289
15. The mod-8 Moore spectrum . . . . . . . . . . . . . . . . . . . . . . . 299
Appendix A. Synthetic homotopy groups . . . . . . . . . . . . . . . . . . 304
Appendix B. Vanishing curves in Adams spectral sequences,

by Robert Burklund . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340



206 r. burklund, j. hahn and a. senger

1. Introduction

For each integer m⩾5, the Kervaire–Milnor [50] group of homotopy spheres Θm is the
group under connected sum of h-cobordism classes of closed, smooth, oriented mani-
folds Σ that are homotopy equivalent to the m-sphere Sm. The Kervaire–Milnor exact
sequence

0−!bPm+1−!Θm−! coker(J)m,

expresses Θm in terms of the finite cyclic group bPm+1 and the mysterious, but amenable
to methods of homotopy theory, finite group coker(J)m. The subgroup bPm+1⊂Θm con-
sists of all homotopy spheres that are the boundaries of parallelizable (m+1)-manifolds.
When m is even, bPm+1 is trivial [50, Theorem 5.1].

A not-necessarily parallelizable, compact, oriented, smooth manifold M is said to
be almost closed if its boundary ∂M is a homotopy sphere. The main theorem of our
work is as follows.

Theorem 1.1. Let k>232 and 0⩽d⩽3 be integers. Suppose that M is a (k−1)-
connected, almost closed (2k+d)-manifold. Then, the boundary ∂M∈Θ2k+d−1 has trivial
image

0= [∂M ]∈ coker(J)2k+d−1.

In particular, ∂M bounds a parallelizable manifold.

Remark 1.2. The bounds k>232 and d⩽3 can likely be improved (cf. §7.1 and
Remark 8.9). However, there are examples (due to Frank [33, Example 1] and Stolz [90,
Satz 12.1], respectively) of

• a 3-connected, almost closed 9-manifold with boundary non-trivial in coker(J)8,
• a 7-connected, almost closed 17-manifold with boundary non-trivial in coker(J)16.

By Theorem 1.1, these examples exhibit fundamentally low-dimensional phenomena.

Remark 1.3. Many special cases of Theorem 1.1 were known antecedent to this work.
Theorem B of [90] summarizes the prior state of the art, and our work can be viewed as
the completion of a program by Stolz to answer questions raised by Wall in [93], [94].
Our theorem is new when d=0 and k≡0 mod 4, when d=1 and k≡1 mod 8, when d=2

and k≡3 mod 4, and when d=3 and k≡0 mod 4.

Theorem 1.1 is most interesting in the case d=0, where it was previously unknown
for k≡0 mod 4. Work of Stolz [90, Lemma 12.5] reduces this case of our main theorem
to the following result.
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Theorem 1.4. (Conjecture of Galatius and Randal-Williams) Let MO⟨4n⟩ denote
the Thom spectrum of the canonical map

τ⩾4n BO−!BO,

where τ⩾4n BO denotes the (4n−1)-connected cover of BO. For all n>31, the unit map

π8n−1 S−!π8n−1 MO⟨4n⟩

is surjective, with kernel exactly the image of the J-homomorphism

π8n−1O−!π8n−1 S .

We label Theorem 1.4 a conjecture of Galatius and Randal-Williams since it is, when
n>31, equivalent to Conjectures A and B of their work [35]. Theorem 1.4 allows us to
improve the bound k>232 in the d=0 case of Theorem 1.1. For details, see Theorem 8.6.

Remark 1.5. Much of Theorem 1.4 is classical: the surjectivity statement follows
from surgery as in [50, Theorem 6.6], while the Pontryagin–Thom correspondence guar-
antees that the image of the J-homomorphism is contained in the kernel of the unit map
π8n−1 S!π8n−1 MO⟨4n⟩. The difficult point is to prove that the kernel of this unit map
contains only the image of J .

A priori, there could be additional elements in this kernel, and the concern has a
geometric interpretation. Let ΣQ∈Θ8n−1 denote the boundary of the manifold obtained
by plumbing together two copies of the 4n-dimensional linear disk bundle over S4n that
generates the image of π4n BSO(4n−1) in π4n BSO(4n). Theorem 1.4 is equivalent to
the claim that, for n>31, the class [ΣQ]∈coker(J)8n−1 is trivial [90, Lemma 10.3].

Our proof of Theorem 1.4 follows a general strategy due to Stolz [90], which he
applied to prove some cases of Theorem 1.1. For each prime number p we compute a
lower bound on the HFp-Adams filtrations of classes in the kernel of the unit map

π8n−1 S−!π8n−1 MO⟨4n⟩.

Our lower bound is given in Theorem 10.8, and it is one of the main technical achieve-
ments of this paper. It is approximately double the bound obtained by Stolz in [90,
Satz 12.7], and we devote §§4–6 and §§9–10 to its proof.

Remark 1.6. A key portion of the argument for Theorem 10.8 takes place in Pstrą-
gowski’s category of synthetic spectra [77] (cf. [37] for an alternative construction of
BP-synthetic spectra). Other users of this category may be interested in our omnibus
Theorem 9.19, which relates Adams spectral sequences to synthetic homotopy groups.
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Let us comment briefly on how synthetic technology allows us to prove stronger
results than we could otherwise. Many of our results, such as Theorem 10.8 and Propo-
sition 13.11, can be stated without reference to synthetic language. While it should in
principle be possible to prove such statements without synthetic technology, in practice
we suspect such proofs would be technically demanding, difficult to verify, and vastly
expand the length of the paper.

The most delicate point in the paper is Construction 10.6, which bounds the Adams
filtration of the class w constructed in Lemma 6.9. To make this construction requires
a simultaneous solution to two difficulties. The first is that we must choose a certain
nullhomotopy to be of sufficiently high Adams filtration. In the synthetic category it is
both simple and natural to maintain control over the Adams filtration of a homotopy.
The second is that we must reason about how E∞ ring structures interact with Adams
filtration, which we cleanly accomplish using the symmetric monoidal structure on Pstrą-
gowski’s category. The authors found it challenging to rigorously address both of these
points, and their interaction, without the synthetic category.

To make effective use of Theorem 10.8, and also to prove the remaining cases of
Theorem 1.1, we need to explicitly understand all elements of π∗(S∧p ) of large HFp-Adams
filtration. This is a problem of significant independent interest in pure homotopy theory,
so we summarize our new results as Theorems 1.7 and 1.9 below. For the definition of
the µ-family, see [2], and note that we write S∧p to denote the p-completion of the sphere
spectrum.

Theorem 1.7. (Burklund, proved as Theorem B.7) For each prime number p>2

and each integer k>0, let Γp(k) denote the largest Adams filtration attained by a class
in πkS∧p that is not in the image of J . Similarly, let Γ2(k) denote the largest Adams
filtration attained by a class in πkS∧2 that is not in the subgroup generated by the image
of J and the µ-family.

(1) For any prime p,

Γp(k)⩽
(2p−1)k

(2p−2)(2p2−2)+o(k),

where o(k) denotes a sublinear error term.
(2) If k>0 is any integer, then

Γ3(k)⩽
25

184
k+20+ℓ(k),

where

ℓ(k)=

{
0, if k+2≡ 1, 2, 3 mod 4,
3-adic valuation of k+2, if k+2≡ 0 mod 4.
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This theorem is due solely to the first author, and is proved in Appendix B at the end
of the work. Part (2) of Burklund’s theorem, at the prime p=3, is essential to our proof
of Theorem 1.4. §11 and §12 of the main paper develop the tools necessary to deduce part
(2) of the theorem from a more precise version of part (1). Experts in Adams spectral
sequences will want to examine the introduction to Appendix B for additional and more
precise results, including a solution to a question of Mathew about vanishing curves in
BP⟨n⟩-based Adams spectral sequences.

Remark 1.8. Previous upper bounds for Γp(k) were proved by Davis and Mahowald
when p=2 [29], and by González [41] for p>3. We make much use of their bounds in
this paper, which complement our own. In particular, while Burklund proves better
asymptotic behavior of Γp(k) than implied by any previous work, the explicit constants
of Davis, Mahowald and González are more useful for our geometric applications. At
p=3, the best prior known bound for Γ3(k) is due to Andrews [5], who in his thesis
computed the entire 3-primary Adams spectral sequence above a line of slope 1

5 . Part
(2) of Burklund’s theorem contains stronger information about the 3-primary E∞-page,
at the cost of having nothing to say about earlier pages.

Our other major result, Theorem 1.9 below, applies only to 8-torsion classes in π∗(S).
When it applies, it is stronger than Theorem 1.7.

Theorem 1.9. (Proved as Theorem 15.1 in the main text) Let C(8) denote the
mod-8 Moore spectrum, and let F sπk(C(8))⊆πk(C(8)) denote the subgroup of elements
of HF2-Adams filtration at least s. Then, for k⩾126, the image of the Bockstein map

F k/5+15πk(C(8))−!πk−1(S)

is contained in the subgroup of πk−1(S) generated by the image of J and the µ-family.

We devote §§13–15 to the proof of Theorem 1.9.

Remark 1.10. At key points in the arguments for [90, Theorems B and D], Stolz
applies an analog, for the mod-2 Moore spectrum, of our Theorem 1.9. This analog is
due to Mahowald. While Mahowald announced the result in [64], and it is also claimed
in [65] and [29, p. 41], to the best of our knowledge no proof has appeared in print. In §15
we prove a version of Mahowald’s result in order to close this gap in the literature. We
then study in turn the mod-4 and mod-8 Moore spectra in order to prove Theorem 1.9,
the full strength of which is necessary to conclude Theorem 1.1.

These Moore spectra results are closely related to Mahowald and Miller’s proofs
[72], [66] of the height 1 telescope conjecture, and we record a quick proof of the height
1 telescope conjecture at p=2 as Corollary 14.26.
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Before launching into our arguments, we use §§2-3 to give four applications of the
above theorems. We briefly describe these applications below.

(1) For n>31, a classification of smooth, (4n−1)-connected, closed 8n-manifolds,
up to diffeomorphism. This completes, away from finitely many exceptional dimensions,
the classification of (n−1)-connected 2n-manifolds sought after in Wall’s 1962 paper [93].

(2) In dimensions larger than 247, a classification of all Stein fillable homotopy
spheres. Away from finitely many exceptional dimensions, this answers a question raised
by Eliashberg [32, §3.8] and proves a conjecture of Bowden, Crowley, and Stipsicz [18,
Conjecture 5.9].

(3) For ℓ>31 and g⩾1, a computation of the mapping class group of the manifold

♯g(S4ℓ−1×S4ℓ−1).

The computation follows from inputting our result into theorems of Kreck and Kran-
nich [55], [52]. With additional input, due to Galatius–Randal-Williams and Krannich–
Reinhold [35], [53], we make further comments about the classifying space

BDiff+(♯g(S4ℓ−1×S4ℓ−1)).

(4) The best known upper bounds for the exponents of the stable stems π∗(S(p)).

1.1. An outline of the paper

The proofs of our main theorems begin in §4. We outline our strategy below.

§§4–6. For n⩾3 an integer, we begin our analysis of π8n−1(MO⟨4n⟩). Our main tool
in these sections is the relative bar construction

MO⟨4n⟩≃S⊗Σ∞
+ O⟨4n−1⟩ S .

The bar construction allows us to reduce our study of the Thom spectrum MO⟨4n⟩ to a
study of the suspension spectrum Σ∞

+ O⟨4n−1⟩. In §4, we study Σ∞
+ O⟨4n−1⟩ by means

of the Goodwillie tower of the identity in augmented E∞-algebras. The idea of applying
the Goodwillie calculus is due to Tyler Lawson, and it neatly resolves the ‘Problem’ that
Stolz identifies in [90, p. XIII]. In §5 we describe a variant of the bar construction that
is equivalent in the metastable range. Finally, in §6, we reduce the calculation of the
unit map π8n−1 S!π8n−1(MO⟨4n⟩) to the calculation of a certain Toda bracket w. We
postpone further analysis of this Toda bracket to §10.

§§7–8. We prove Theorems 1.1 and 1.4 in these two sections, using three results
from later in the paper as black boxes. In §7, we prove Theorem 1.4 using Theorems 1.7
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and 10.8. Theorem 10.8 is the main result of §10, and it consists of a lower bound on the
HFp-Adams filtrations of the Toda bracket w. In §8, we give the proof of Theorem 1.1
assuming Theorem 1.9, as well as some results from Stolz’s book [90]. The arguments
in both §7 and §8 are straightforward analogs of arguments from Stolz’s book, and we
are able to go farther than Stolz only because our three black box theorems are stronger
than the results he references.

§§9–10. In these sections we undertake an analysis of the Toda bracket w. The
definition of w critically hinges on the following fact: given an element x∈π4n−1 S, there
is a canonical nullhomotopy of 2x2 (since S is E∞ there is a canonical witness to the
Koszul sign rule, or a homotopy between x2 and −x2, or a nullhomotopy of 2x2). The
interaction of this nullhomotopy with Adams spectral sequences has some history, going
back to work of Kahn, Milgram, Mäkinen, and Bruner [22, Chapter VI] on ∪1 operations
in the Adams spectral sequence. We do not know how to apply Bruner’s work directly to
our (somewhat more complicated) situation, but it is morally related. Instead of relying
on results of Bruner, we analyze the situation from scratch: here enters for the first time
a major tool in our work, the recently developed category of synthetic spectra.

Synthetic spectra were developed by Piotr Pstrągowski in [77]. They constitute a
homotopy theory, or symmetric monoidal stable ∞-category, of formal Adams spectral
sequences. Lax symmetric monoidal functors ν and τ−1 to and from the ∞-category
Sp of spectra allow for a particularly clear analysis of the interaction between Adams
spectral sequences and E∞-ring structures.

In §9 we recall Pstrągowski’s work and develop a few additional properties of syn-
thetic spectra that we require. In §10 we apply all of the theory thus far to bound the
HFp-Adams filtrations of w for all primes p.

§§11–12. We begin the latter half of the paper, which aims to prove Theorems 1.7
and 1.9. In §11, we give a general discussion of vanishing lines in E-based Adams spectral
sequences. We study the behavior of vanishing lines under extensions, and recover results
of Hopkins–Palmieri–Smith [47] in the language of synthetic spectra. In §12, we combine
the general theory of §11 with concrete computations of Belmont [14] and Ravenel [80]
to deduce vanishing lines in Adams–Novikov spectral sequences.

§§13–15. In §13, we introduce the notion of a v1-banded vanishing line. While Adams
spectral sequences are not zero above v1-banded vanishing lines, elements above such lines
are essentially K(1)-local and hence related to the image of J . We show variants of the
results of §11, in particular demonstrating that v1-banded vanishing lines are preserved
under extensions and cofibers of synthetic spectra. In §14, we apply machinery of Haynes
Miller [72] to prove a v1-banded vanishing line in the HF2-based Adams spectral sequence



212 r. burklund, j. hahn and a. senger

for the spectrum Y =C(2)⊗C(η). In more classical language this result is known to
experts, and follows from combining Miller’s tools with computational results of Davis
and Mahowald [28]. In §15, we establish a v1-banded vanishing line in the modified
HF2-Adams spectral sequence for the Moore spectrum C(8) and conclude, in particular,
Theorem 1.9.

Appendix A. The first part of this appendix is devoted to a technical proof of Theo-
rem 9.19. The theorem provides the means to translate statements about E-based Adams
spectral sequences into statements about E-based synthetic spectra, and vice-versa. The
proofs in this section are mostly a matter of careful book-keeping.

The second part of the appendix contains a computation of the HF2-synthetic ho-
motopy groups of the 2-complete sphere through the Toda range. We find that this
computation illustrates many of the subtleties of Theorem 9.19 and effectively demon-
strates the process of moving between Adams spectral sequence information and synthetic
information.

Appendix B. This appendix, due solely to the first author, proves Theorem 1.7 and
settles Question 3.33 of [69]. Classically, results similar to Theorem 1.7 are proved in
two independent steps via the study of bo-resolutions [29], [41]. The first step establishes
vanishing curves in bo-based Adams spectral sequences. The second (and more tech-
nically difficult) step relates the canonical bo- and HFp-resolutions of the sphere. This
appendix provides an improvement on the vanishing curve of the first step.

The main idea is a new, and surprisingly elementary, method of analyzing vanishing
curves in BP⟨1⟩-based Adams spectral sequences. More generally, using only the fact
that

τ<|vn+1| BP⟨n⟩≃ τ<|vn+1| BP,

Burklund relates BP⟨n⟩-based Adams spectral sequences to BP-based Adams spectral se-
quences. Vanishing curves in BP-based Adams spectral sequences are understood through
a strong form of the nilpotence theorem of Devinatz, Hopkins, and Smith [30], which pro-
vides the key input necessary to prove Theorem 1.7 (1). At the prime 3, the main result
of §12 provides the precise numerical control needed to deduce Theorem 1.7 (2).

1.2. Conventions

Beginning in §5, we fix an integer n⩾3. We use S to denote the sphere spectrum, Sn to
denote the stable n-sphere, and Sn to denote the unstable n-sphere. For integers k>0,
we use Jk to denote the image of J subgroup of πkS. All manifolds are smooth and
oriented, and all diffeomorphisms are orientation-preserving. Throughout the work, we
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freely use the language of ∞-categories as set out in [61], [62]. In particular, all limits
and colimits are taken in the homotopy invariant sense of [61].
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2. The classification of (n−1)-connected 2n-manifolds

Recall our convention that all manifolds are smooth and oriented, and all diffeomorphisms
are orientation-preserving. Interest in the boundaries of highly connected manifolds may
be traced back to the late 1950s and early 1960s, due to relations with the following
question.

Question 2.1. Let n⩾3 be an integer. Is it possible to classify, or roster, all (n−1)-
connected, closed 2n-manifolds, up to diffeomorphism?
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In [74], Milnor explains how his study of Question 2.1 led to the discovery of exotic
spheres. Major strides toward the classification were provided by C.T. C. Wall in [93],
who used Smale’s h-cobordism theorem to classify (n−1)-connected, almost closed 2n-
manifolds. We recall some of that work below.

Recollection 2.2. Suppose that M is an (n−1)-connected, closed 2n-manifold. By
Poincaré duality, the middle homology group

H =Hn(M ;Z)

must be free abelian of finite rank. Associated to this middle homology group is a
canonical bilinear, unimodular form, the intersection pairing

H⊗H −!Z.

The pairing is symmetric if n is even and skew-symmetric if n is odd — in general, one
says that the pairing is n-symmetric.

A slightly more delicate invariant, which depends on the smooth structure of M , is
the normal bundle data

α:H −!πn−1 SO(n).

Following Wall [93], we define this function α via a theorem of Haefliger [43]. If n=3,
then π2 SO(3) is trivial, so there is nothing to define. In general, the Hurewicz theorem
gives a canonical isomorphism H∼=πn(M). For n⩾4, Haefliger’s theorem implies that an
element x∈πn(M) may be represented, uniquely up to isotopy, by an embedded sphere
x:Sn

!M . The normal bundle of this embedding is then n-dimensional, and so classified
by an element α(x):Sn

!BSO(n).

Recollection 2.3. Wall proved universal relationships between the intersection pair-
ing H⊗H!Z and the function α. To describe them, let

HJ :πn−1 SO(n)−!Z

denote the composite of the unstable J-homomorphism πn−1 SO(n)!π2n−1S
n and the

Hopf invariant π2n−1S
n
!Z (this composite may alternatively be described as πn−1 ap-

plied to the projection SO(n)!Sn−1). Furthermore, let τSn∈πn−1 SO(n)∼=πn BSO(n)

denote the map classifying the tangent bundle to the n-sphere. Finally, for x, y∈H, let
xy denote the intersection pairing of x with y, and let x2 denote the intersection pairing
of x with itself.

For all x, y∈H, Wall proved [93, Lemma 2] the following relations:

x2 =HJ(α(x)), (2.1)

α(x+y)=α(x)+α(y)+(xy)(τSn). (2.2)
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Definition 2.4. Following [93, p. 169], we call a triple

I =(H,H⊗H!Z, α)

an n-space whenever H is a free, finite-rank abelian group, H⊗H!Z is a unimodular,
n-symmetric bilinear form, α is a map of pointed sets, and the triple I satisfies the
relations (2.1) and (2.2) of Recollection 2.3.

Definition 2.5. Recollections 2.2 and 2.3 allow us to define a map of sets

{
(n−1)-connected,

closed 2n-manifolds

}/
diffeomorphism Ψ−−! {n-spaces}/isomorphism.

An isomorphism of n-spaces is just an isomorphism of the underlying abelian group H

that respects both the bilinear form H⊗H!Z and the function α.

The theorem below was first proved in [93, p. 170].

Theorem 2.6. (Wall) Suppose that M and N are two (n−1)-connected, closed 2n-
manifolds such that Ψ(M)=Ψ(N). Then, there exists a homotopy sphere Σ∈Θ2n such
that M♯Σ is diffeomorphic to N .

Remark 2.7. Suppose that M is an (n−1)-connected 2n-manifold and that Σ∈Θ2n

is a homotopy sphere not diffeomorphic to S2n. One may ask whether the diffeomor-
phism types of M and M♯Σ differ. Wall proved this to be the case whenever n ̸≡0, 1, 4
mod 8 [94, p. 289] (in other words, when n ̸≡0, 1, 4 mod 8, Wall proved that the inertia
group of M is trivial). Building on work of Kosiński [51], Stolz expanded this to show
that, if n⩾106 and n≡0 mod 4, then the diffeomorphism types of M and M♯Σ differ
[90, Theorem D].

Our theorems settle, at least in large dimensions, the remaining case n≡1 mod 8.
Indeed, work of Wall [94, Theorem 10] proves that, if M and M♯Σ have the same diffeo-
morphism type, then Σ is the boundary of an (n−1)-connected (2n+1)-manifold. Using
Theorem 1.1, we may conclude in dimensions 2n+1>465 that Σ bounds a parallelizable
manifold. However, any Σ∈Θ2n that bounds a parallelizable manifold must be standard,
by [50, Theorem 5.1]. In sufficiently large dimensions, it follows that the preimage un-
der Ψ of any triple is either empty, or consists of exactly |Θ2n| different diffeomorphism
types.

In light of the above theorem and remark, the complete enumeration of (n−1)-
connected 2n-manifolds is reduced, in sufficiently large dimensions, to the following ques-
tion.
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Question 2.8. What is the image of the map Ψ? In other words, what combina-
tions of middle homology group, intersection pairing, and normal bundle data arise from
(n−1)-connected, closed 2n-manifolds?

Remark 2.9. Wall solved Question 2.8 for all n≡6 mod 8 [93, Case 4]. More specif-
ically, the solution may be read off from [93, Proposition 5] together with the fact that
πn−1 SO=0 for n≡6 mod 8 (so χ=0, always). Schultz [84, Corollary 3.2] solved Ques-
tion 2.8 in the case n≡2 mod 8 (cf. the discussion immediately subsequent to [84, Corol-
lary 3.2], about the work of Frank). Stolz [90, Theorems B & C] settled the case n≡1
mod 8 when n⩾113.

Example 2.10. Suppose that n>7 is ≡3, 5, 7 mod 8. In these cases, the function

α:H −!πn−1 SO(n)∼=Z/2Z

satisfies the formula

α(x+y)=α(x)+α(y)+(xy mod 2).

In other words, α is a quadratic refinement of the intersection pairing, and so one can
associate an Arf–Kervaire invariant

Φ(α)∈Z/2Z.

Thus, if one is able to settle Question 2.8, then one is in particular able to answer the
following question.

Question 2.11. Suppose n≡3, 5, 7 mod 8. Does there exist an (n−1)-connected,
closed 2n-manifold of Kervaire invariant 1?

Remark 2.12. Barratt, Jones, and Mahowald constructed a 62-dimensional manifold
of Kervaire invariant 1 [10] (cf. [95]). Such manifolds are also known to exist in dimensions
2, 6, 14, and 30. On the other hand, deep work of Hill– Hopkins–Ravenel [45] proves that
there is no manifold of Kervaire invariant 1 of dimension larger than 126.

Remark 2.13. When n≡3, 5, 7 mod 8, Wall completely reduced [93, Lemma 5] Ques-
tion 2.8 to Question 2.11. Question 2.11 was settled by Brown and Peterson for n≡5
mod 8 [20], by Browder for n≡3 mod 8 [19], and by Hill–Hopkins–Ravenel for n≡7 mod 8

and n>63 [45].

For n⩾113, the above work leaves Question 2.8 open only when n≡0 mod 4, and so
we focus on this case now.
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Recollection 2.14. Suppose n⩾12, n≡0 mod 4, and let M be an (n−1)-connected,
closed 2n-manifold with middle homology group H (the case n=8 has slightly differ-
ent features, because of the existence of Hopf invariant 1 elements and the octonionic
projective plane). Since the intersection pairing

H⊗H −!Z

is unimodular, it provides a canonical isomorphism between H and its dual Hom(H,Z).
Wall notes [93, Case 1] that the composite

H
α−−!πn−1 SO(n)−!πn−1 SO∼=Z

is a homomorphism of abelian groups (by relation (2) in Recollection 2.3 together with the
fact that spheres are stably parallelizable), and so via the intersection pairing determines
a class χ(α)∈H. In fact, the function α is entirely determined by the relations (2.1) and
(2.2) and the class χ(α) [93, p. 174].

Construction 2.15. ([93]) Let n⩾3 denote any integer, and let

I =(H,H⊗H!Z, α)

denote an n-space. From this data, Wall constructs an (n−1)-connected, almost closed
2n-manifold NI [93, p. 170]. Wall further notes that there is an (n−1)-connected, closed
2n-manifold M , with Ψ(M)=I, if and only if ∂NI is diffeomorphic to S2n−1 [93, p. 177].

Suppose now that n⩾12 is a multiple of 4. Given an n-space I, it remains to
understand the boundary ∂NI∈Θ2n−1.

By work of Brumfiel [21], when n≡0 mod 4 the Kervaire–Milnor exact sequence
splits to give a direct sum decomposition

Θ2n−1
∼=bP2n⊕ coker(J)2n−1.

It thus suffices to analyze separately the images of ∂NI within bP2n and coker(J)2n−1.
By applying a formula of Stolz [91] and elaborating on work of Lampe [59], Krannich
and Reinhold [53, Lemma 2.7] determined when the image of ∂NI vanishes in bP2n.

Definition 2.16. Let m>2 denote a positive integer. Following [53], we let
• B2m denote the 2m-th Bernoulli number;
• jm denote

jm =denom

( |B2m|
4m

)
,
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the denominator of the absolute value of B2m/(4m) when written in lowest terms;
• am denote 1 if m is even and 2 if m is odd;
• σm denote the integer

σm = am22m+1(22m−1−1) num
( |B2m|

4m

)
;

• cm and dm denote integers such that

cm num

( |B2m|
4m

)
+dm denom

( |B2m|
4m

)
=1.

If m=2k>4 is an even integer, we additionally follow [53, Lemma 2.7] and let s(Q)2k

denote the integer

s(Q)2k =−
1

8j2k

(
σ2
k+a2kσ2k num

( |B2k|
4k

))(
c2k num

( |B2k|
4k

)
+2(−1)kd2kjk

)
.

Theorem 2.17. (Lampe, Krannich–Reinhold) Suppose n⩾12 is a multiple of 4,
and let I denote an n-space. Then, the boundary ∂NI has trivial image in bP2n if and
only if

sig

8
+
χ(α)2

2
s(Q)n/2≡ 0 mod

σn/2

8
.

Here, sig denotes the signature of the intersection form, and χ(α)2 refers to the product
of χ(α) with itself via the intersection form.

Proof. See [53, §2] and [52, §3.2.2].

We thus obtain, as a consequence of our work in this paper, the following result:

Theorem 2.18. Let n>124 be a multiple of 4. Then, there is an (n−1)-connected,
closed 2n-manifold with middle homology group H, intersection pairing H⊗H!Z, and
normal bundle data α:H!πn−1 SO(n) if and only if both the following conditions hold :

(1) the collection (H,H⊗H!Z, α) forms an n-space in the sense of Definition 2.4;
(2) the relation

sig

8
+
χ(α)2

2
s(Q)n/2≡ 0 mod

σn/2

8

is satisfied, where sig denotes the signature of the intersection pairing and χ(α) is defined
as in Recollection 2.14.

If the conditions hold, so that a manifold exists, then the number of choices of such
a manifold, up to diffeomorphism, is exactly |Θ2n|=|coker(J)2n|, and they form a free
orbit under the Θ2n action by connected sum.
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Proof. The last sentence of the theorem follows, as in Remark 2.7, from Stolz’s
theorem [90, Theorem D]. The remainder of the result follows by combining the above
discussion with Theorem 8.6.

Remark 2.19. Our results also have implications for the classification of (n−1)-
connected, closed (2n+1)-manifolds. For n⩾8, Wall classified all (n−1)-connected, al-
most closed (2n+1)-manifolds [94]. Since bP2n+1 is trivial, our Theorem 1.1 proves that
the boundaries of Wall’s almost closed manifolds are diffeomorphic to S2n whenever
n>232. This was previously unknown for n≡1 mod 8 [90, Theorem B]. There follows a
classification of (n−1)-connected, closed (2n+1)-manifolds up to connected sum with a
homotopy sphere.

The problem of determining the inertia groups is somewhat subtle, but tractable
[90, Theorem D]. In later work which builds on the methods developed in this paper the
authors have analyzed boundary spheres and inertia groups substantially deeper into the
metastable range [23].

3. Additional applications

3.1. The classification of Stein fillable homotopy spheres

Recall that a Stein domain is a compact, complex manifold with boundary, such that
the boundary is a regular level set of a strictly plurisubharmonic function (see, e.g., [18,
pp. 1–3] or [25]). The boundaries of Stein domains are naturally equipped with contact
structures. A contact (2q+1)-manifold M is Stein fillable if it may be realized as the
boundary of a Stein domain.

Eliashberg has raised the question [32, §3.8] of which homotopy spheres Σ∈Θ2q+1

admit Stein fillable contact structures. Eliashberg explicitly noted in [32, §3.8] that such
Σ necessarily bound q-connected, almost closed (2q+2)-manifolds, and that this might
already be restrictive. For the proof that such Σ must bound q-connected, almost closed
(2q+2)-manifolds, see [18, Proof of Theorem 5.4] and [31, Theorem 1.2.2].

Bowden, Crowley, and Stipsicz took up Eliashberg’s question, and applied Wall and
Schultz’s work [93], [94], [84] to settle it when q ̸=9 and q+1 ̸≡0 mod 4 [18, Theorem 5.4].
We offer the following additional theorem, which answers all but finitely many cases of
Conjecture 5.9 from [18].

Theorem 3.1. Suppose that q>123. A homotopy sphere Σ∈Θ2q+1 admits a Stein
fillable contact structure if and only if Σ∈bP2q+2.
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Proof. By the theorem of Bowden, Crowley, and Stipsicz, this is true whenever
q+1 ̸≡0 mod 4 [18, Theorem 5.4]. We therefore suppose that q+1≡0 mod 4. As we
have discussed above, any Stein fillable Σ∈Θ2q+1 must bound a q -connected, almost
closed (2q+2)-manifold. It follows from Theorem 8.6 that, if Σ∈Θ2q+1 is Stein fillable,
then Σ∈bP2q+2. The converse is another result of Bowden, Crowley, and Stipsicz [18,
Proposition 5.3].

3.2. Calculations of mapping class groups

In §2, our theorems were used to classify (n−1)-connected 2n-manifolds up to diffeomor-
phism. We explain here how work of Galatius, Krannich, Kreck, Randal-Williams, and
Reinhold connects our results to the study of diffeomorphisms of the manifold

Wg = ♯g(Sn×Sn),

with g⩾1. This (n−1)-connected 2n-manifold is a higher-dimensional analog of a genus
g surface. As g varies, the Wg play a fundamental role in some approaches to the
moduli spaces of manifolds, as outlined in the survey article [36]. A discussion of how
diffeomorphisms of Wg relate to diffeomorphisms of other (n−1)-connected 2n-maifolds
appears below Theorem G in [52].

We consider in particular the classifying space

Mg =BDiff+(Wg)

of orientation-preserving diffeomorphisms of Wg. The first homotopy group π1(Mg) is an
example of a higher-dimensional mapping class group; it is the group of isotopy classes of
orientation-preserving diffeomorphisms of Wg (so, for example, π1M0

∼=Θ2n+1). The first
homology group H1(Mg;Z) is the abelianization of this mapping class group. Higher
cohomology groups, such as H2(Mg;Z), include Miller–Morita–Mumford characteristic
classes of bundles with fiber Wg. At least for some values of n and g, our theorems have
something to say about each of these groups.

Recollection 3.2. Suppose n⩾3, and consider the mapping class group π1(Mg). This
group was determined up to two extension problems by Kreck [55]. Following Krannich
[52], we write these extensions as

0−!Θ2n+1−!π1(Mg)−!π1(Mg)/Θ2n+1−! 0 (3.1)

and
0−!Hn(Wg)⊗Sπn SO(n)−!π1(Mg)/Θ2n+1−!Gg −! 0. (3.2)
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Here, Θ2n+1 is the Kervaire–Milnor group of homotopy (2n+1)-spheres, and Sπn(SO(n))

is the image of the stabilization map S:πn SO(n)!πn SO(n+1). The group Gg⊂GL2g(Z)
is the subgroup of automorphisms of Hn(Wg)∼=Z2g that are realized by diffeomorphisms.
It is explicitly described in [52, §1.2].

The extension problems (3.1) and (3.2) have proven difficult to resolve, with special
cases studied in [83], [34], [56], [57], [26], [35], [52].

Recent work of Krannich resolves these extensions geometrically, in the case of n odd,
with the answers phrased in terms of certain elements ΣP ,ΣQ∈Θ2n+1. To be precise,
Krannich proves for n>7 odd that the extension (3.2) splits [52, Theorem A], and the
extension (3.1) is classified [52, Theorem B] by a certain element

sgn

8
ΣP +

χ2

2
ΣQ ∈H2(π1(Mg)/Θ2n+1; Θ2n+1).

The element ΣP ∈Θ2n+1 is a generator of bP2n+2. The element ΣQ is zero whenever n≡1
mod 4, and when n≡3 mod 4 it is the boundary of the plumbing discussed in Remark 1.5.
A consequence of our work here is a more explicit description of ΣQ.

Theorem 3.3. Suppose that n>123 is congruent to 3 mod 4, and let s(Q)(n+1)/2

denote the integer defined in Definition 2.16. Then, the element ΣQ∈Θ2n+1 of [52,
Theorem B] is equal to s(Q)(n+1)/2ΣP . In particular, ΣQ is an element of the subgroup
bP2n+2.

Proof. The last sentence of the theorem follows immediately from the definition of
ΣQ (see e.g. the paragraph above [52, Theorem B]) and our Theorem 8.6. The exact
formula ΣQ=s(Q)(n+1)/2ΣP is a consequence of [53, Lemma 2.7].

The original motivation of Galatius and Randal-Williams in conjecturing Theo-
rem 1.4 was to study the homology group H1(Mg;Z). It was understood in [35, The-
orem 1.3] and [52, Corollary E] that Theorem 1.4 would lead to an explicit calculation
of H1(Mg;Z). By combining these results with our work, we conclude the following
corollary.

Corollary 3.4. Suppose that n>123 is congruent to 3 mod 4 and g⩾3. Then,

H1(Mg;Z)∼=(Z/4Z)⊕coker(J)2n+1.

If n>123 is congruent to 3 mod 4 and g=2, then

H1(Mg;Z)∼=(Z/4Z⊕Z/2Z)⊕coker(J)2n+1.

Remark 3.5. For the implications of our result when g=1, see [52, Corollary E].
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Remark 3.6. As pointed out in [36, Remark 6.2], the universal coefficients formula
expresses the finite group H1(Mg;Z) as the torsion subgroup of H2(Mg;Z). In [53],
Krannich and Reinhold calculated the torsion-free quotient of H2(Mg;Z), for g⩾7, in
terms of ΣQ.

It remains an interesting open question to determine the higher homology and coho-
mology groups ofMg. We expect that the methods of this paper have more to say about
these groups, especially when g≫0, so that the work of Galatius and Randal-Williams
[35], [36] applies (when g≫0, Galatius and Randal-Williams prove these groups isomor-
phic to the (co)homology groups of Ω∞ of a Thom spectrum, placing the problem firmly
in the realm of stable homotopy theory).

3.3. Bounds on the exponent of coker(J)

We end by giving an application, to stable homotopy theory, of Burklund’s Theorem 1.7.
Fix a prime number p.

Definition 3.7. For each integer n⩾1, Serre proved [85] that the p-local nth stable
stem πn(S(p)) is a finite p-group. The exponent of the nth stable stem, denoted here by

exp(πn(S(p))),

is the smallest integer a such that all elements of πn(S(p)) are pa-torsion.

Upper bounds for the exponent have been considered in several papers [1], [60], [8],
[42], [68]. For p>3, the best prior bounds are due to González [42, Corollary 4.1.4]. As in
González’s work, our bounds on the exponent are deduced from an upper bound on Γp.

Theorem 3.8. (Burklund) There is an inequality

exp(πn(S(p)))⩽
(2p−1)n

(2p−2)(2p2−2)+o(n),

where o(n) is the sublinear error term appearing in the statement of Theorem 1.7 (1).

Proof. At odd primes, Adams showed that the image of J is a direct summand of
πn(S(p)) [1], [2]. At the prime 2, Adams and Quillen proved that the subgroup generated
by the image of J and the µ-family is a direct summand [78]. These papers also calculate
the order of the image of J , from which it follows that the exponents of these summands
grow logarithmically in n.

Suppose now that x is an element of the complementary summand of πn(S(p)), and
let Γp(n) denote the function from the statement of Theorem 1.7. Since multiplication
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by p raises HFp-Adams filtration by at least 1, Theorem 1.7 implies that pΓp(n)x is either
in the image of J , or, if p=2, in the subgroup generated by the image of J and the
µ-family. Since we assumed that x is in the complementary summand, it follows that
pΓp(n)x=0.

Remark 3.9. Like previous bounds on the torsion exponent of the stable stems,
Theorem 3.8 is a linear bound. By contrast, it is expected that exp(πn(S(p))) grows
sublinearly in n, though it remains unclear what the specific asymptotics of this function
should be. The best known lower bound is logarithmic and comes from the image of J .

4. Calculations with the Goodwillie TAQ tower

An overview of §§4–6. Fix an integer n⩾3. Recall that MO⟨4n⟩ is, by definition, the
Thom spectrum [22], [4] of the composite spectrum map

τ⩾4n ko−! τ⩾1 ko−!Σgl1(S). (4.1)

Here, the spectrum map τ⩾1 ko!Σgl1(S) is the infinite delooping of the real J ho-
momorphism BO!BGL1(S), which exists because the 1-point compactification functor
VectR!Top∗ is symmetric monoidal.

Our first aim in this paper is to prove Theorem 1.4, or equivalently to understand
the unit map

π8n−1 S−!π8n−1 MO⟨4n⟩.

To begin to do so, we fix some notation and recall more precisely how a Thom spectrum
such as MO⟨4n⟩ is defined.

Definition 4.1. Taking Ω∞+1 of the sequence (4.1) gives maps of infinite loop spaces

ΩΩ∞τ⩾4n ko−!O−!GL1(S).

We use the notation O⟨4n−1⟩ to denote the infinite loop space ΩΩ∞τ⩾4n ko. The infinite
loop map

O⟨4n−1⟩−!GL1(S)

gives rise, by the universal property of GL1(S) [4, Theorem 5.1], to a map of E∞-rings

J+: Σ
∞
+ O⟨4n−1⟩−!S .

Here, Σ∞
+ O⟨4n−1⟩ is a spherical group ring, with underlying spectrum the suspension

spectrum of the pointed space O⟨4n−1⟩+. Contracting O⟨4n−1⟩ to a point gives rise to
a second E∞-ring map

ε: Σ∞
+ O⟨4n−1⟩−!S,
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the augmentation map. We use J : Σ∞ O⟨4n−1⟩!S to refer to the composite

Σ∞ O⟨4n−1⟩=fib(ε)−!Σ∞
+ O⟨4n−1⟩ J+−−−!S,

which is a map of non-unital E∞-rings.

Construction 4.2. By Definition 4.1 of [4], the spectrum MO⟨4n⟩ can be presented
as the geometric realization of the 2-sided bar construction

MO⟨4n⟩≃ |Bar(S,Σ∞
+ O⟨4n−1⟩,S)�|,

which computes the relative tensor product S⊗Σ∞
+ O⟨4n−1⟩ S. Here, the action of

Σ∞
+ O⟨4n−1⟩

on the left copy of S is via ε, and the action on the right copy of S is via J+.

One may view our work in the first half of the paper as a computation of the map
π8n−1 S!π8n−1 MO⟨4n⟩ via the associated bar spectral sequence. We will see that the
only possible differentials affecting π8n−1 MO⟨4n⟩ are d1-differentials and a single d2-
differential, so what we need to do may be summarized as follows:

(1) Compute the E1-page in the relevant range;
(2) Compute the relevant d1-differentials;
(3) Compute the single relevant d2-differential.
Later in this section, we study the homotopy of Σ∞ O⟨4n−1⟩ using the Goodwillie

tower in augmented E∞-ring spectra. This is enough to resolve (1) and most of (2) above.
The key to proving Theorem 1.4 is to show that the single relevant d2-differential

vanishes. Rather than using the language of spectral sequences, we will cast the com-
putation of this d2 as a computation of a certain Toda bracket w. One of the main
theorems of this paper, Theorem 10.8, is a lower bound on the HFp-Adams filtration of
w for each prime p. Our goals in §5 and §6 will be to define w, to reduce Theorem 1.4 to
the computation of w, and to express w in as convenient a form as possible. In particular,
Lemma 6.9 will express w in a form amenable to Adams filtration arguments, though we
postpone any serious discussion of Adams filtration to §7 and later.

4.1. The homotopy of Σ∞ O⟨4n−1⟩

The main body of this section is a computation of the homotopy of the reduced suspension
spectrum Σ∞ O⟨4n−1⟩, for n⩾3. To explain our results, it is helpful to assign names to
a few elements in π∗(Σ∞ O⟨4n−1⟩) and π∗(S).
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Definition 4.3. Let
x∈π4n−1(Σ

∞ O⟨4n−1⟩)

denote a generator of the bottom non-zero homotopy group of Σ∞ O⟨4n−1⟩. Since
Σ∞ O⟨4n−1⟩ is a non-unital E∞-ring, we may speak of the class

x2 ∈π8n−2(Σ
∞ O⟨4n−1⟩).

Finally, there is a class
J(x)∈π4n−1(S),

defined as the composite

S4n−1 x−−!Σ∞ O⟨4n−1⟩ J−−!S .

The remainder of this section will consist of proofs of the following facts:
(1) The group π8n−2Σ

∞ O⟨4n−1⟩ is isomorphic to Z/2Z, generated by the element
x2 of Definition 4.3. Furthermore, the group π8n−1Σ

∞ O⟨4n−1⟩ is isomorphic to

π8n ko∼=Z.

(2) The element xJ(x)∈π8n−2Σ
∞ O⟨4n−1⟩, defined using the right π∗(S)-module

structure on π∗(Σ∞ O⟨4n−1⟩), is zero.
(3) Suppose 4n−1⩽ℓ⩽8n−1. Then, the image of the map

πℓ(Σ
∞ O⟨4n−1⟩) J−−!πℓ(S)

is exactly Jℓ.
The first of these facts will be proved as Corollary 4.8, the second as Lemma 4.10,

and the last as Theorem 4.11. Our key tool will be the Goodwillie tower of the identity
in augmented E∞-ring spectra, the basic structure of which was worked out by Nick
Kuhn [58]. We thank Tyler Lawson for suggesting the relevance of this tower.

Definition 4.4. Let X be a spectrum and m⩾1 a natural number. We denote by
Dm(X) the extended power spectrum

Dm(X) := (X⊗m)hΣm
.

Lemma 4.5. Suppose that R is an E∞-ring spectrum, equipped with an augmentation

ε:R−!S .
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Suppose further that the fiber of ε is 0-connected. Then, there is a convergent tower of
E∞-ring spectra

Dm(TAQ(R;S)) D2(TAQ(R;S)) TAQ(R;S) S

R ... Pm(R) ... P2(R) P1(R) P0(R)

≃

such that the composite map R!P0(R) is the augmentation map ε.

Proof. See [58, Theorem 3.10].

Corollary 4.6. There is a convergent tower of non-unital E∞ ring spectra

D3(Σ
−1τ⩾4n ko) D2(Σ

−1τ⩾4n ko) Σ−1τ⩾4n ko

Σ∞ O⟨4n−1⟩ ... Q3 Q2 Q1.

≃

Proof. We apply the previous lemma to R=Σ∞
+ O⟨4n−1⟩ with its augmentation

map ε. Note that, since
R≃Σ∞

+ Ω∞Σ−1τ⩾4n ko,

we learn from [58, Example 3.9] that TAQ(R;S)≃Σ−1τ⩾4n ko. The corollary follows by
setting Qi=fib(Pi!P0).

Lemma 4.7. For n⩾3, the bottom two homotopy groups of D2(Σ
−1τ⩾4n ko) are

π8n−2D2(Σ
−1τ⩾4n ko)∼=Z/2Z

and
π8n−1D2(Σ

−1τ⩾4n ko)∼=0.

Moreover, the generator of Z/2Z∼=π8n−2D2(Σ
−1τ⩾4n ko) survives in the spectral

sequence associated to the tower of Corollary 4.6 to detect x2∈π8n−2Σ
∞ O⟨4n−1⟩.

Proof. There is a 4n-connected map S4n−1
!Σ−1τ⩾4n ko which induces an (8n−1)-

connected map
D2(S4n−1)−!D2(Σ

−1τ⩾4n ko).

Thus, there is an isomorphism

π8n−2D2(S4n−1)∼=π8n−2D2(Σ
−1τ⩾4n ko)
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and a surjective map

π8n−1D2(S4n−1) // // π8n−1D2(Σ
−1τ⩾4n ko).

It therefore suffices to make the desired homotopy group computations for D2(S4n−1).
There is an equivalence D2(S4n−1)≃Σ4n−1RP∞

4n−1, arising from the fact that

D2(S4n−1)≃S(4n−1)ρ
hC2

is the Thom spectrum of the bundle (4n−1)1+(4n−1)γ over BC2≃RP∞, and [22, Propo-
sition V.3.1] computes

RP4n+1
4n−1≃ S4n−1 ∪2e4n∪ηe4n+1.

We therefore determine

π8n−2D2(S4n−1)∼=Z/2Z and π8n−1D2(S4n−1)∼=0,

as desired.
Comparison with the Goodwillie tower of Σ∞

+ Ω∞ S4n−1, which recovers the Snaith
splitting [58], shows that the generator of π8n−2D2(Σ

−1τ⩾4n ko) detects

x2 ∈π8n−2Σ
∞ O⟨4n−1⟩.

Corollary 4.8. For n⩾3, the group π8n−2Σ
∞ O⟨4n−1⟩ is a copy of Z/2Z, gen-

erated by the element x2 of Definition 4.3. Furthermore, the group π8n−1Σ
∞ O⟨4n−1⟩

is isomorphic to π8n ko.

Proof. Note that τ⩽8n−1Dk(Σ
−1τ⩾4n ko) is trivial for k>2. Thus, Corollary 4.6 and

Lemma 4.7 imply the existence of a long exact sequence

0 π8n−1(Σ
∞ O⟨4n−1⟩) π8n−1(Σ

−1τ⩾4n ko)

Z/2Z π8n−2(Σ
∞ O⟨4n−1⟩) π8n−2(Σ

−1τ⩾4n ko).
x2

We now claim that the maps πk(Σ
∞ O⟨4n−1⟩)!πk(Σ

−1τ⩾4n ko) are surjective. To
see this, we note that these maps are πk of the map of spectra

Σ∞ O⟨4n−1⟩−!Σ−1τ⩾4n ko



228 r. burklund, j. hahn and a. senger

that is adjoint to the identity homomorphism

O⟨4n−1⟩ ≃−!Ω∞Σ−1τ⩾4n ko .

Indeed, it follows from the combination of [58, Example 3.9] and [58, Theorem 3.10 (2)]
that the map

hofib(ε:R!S)−!TAQ(R;S)

induced by the tower of Lemma 4.5 agrees for R=Σ∞
+ Ω∞X with the counit Σ∞

+ Ω∞X!X.
In particular, the map Σ∞ O⟨4n−1⟩!Σ−1τ⩾4n ko admits a section after applying Ω∞.

Identifying π8n−2(Σ
−1τ⩾4n ko) with zero, we obtain isomorphisms

π8n−1(Σ
∞ O⟨4n−1⟩)∼=π8n−1(Σ

−1τ⩾4n ko)∼=π8n ko

and

Z/2Z∼=π8n−2(Σ
∞ O⟨4n−1⟩),

with the latter sending the generator to x2, as desired.

Construction 4.9. Recall that the element J(x)∈π4n−1 S was defined, in Defini-
tion 4.3, as the composite

S4n−1 x−−!Σ∞ O⟨4n−1⟩ J−−!S .

The right π∗(S)-module structure on π∗(Σ∞ O⟨4n−1⟩) allows us to define an element

xJ(x)∈π8n−2Σ
∞ O⟨4n−1⟩.

Lemma 4.10. For n⩾3, the element xJ(x)∈π8n−2Σ
∞ O⟨4n−1⟩, defined using the

right π∗(S)-module structure on π∗(Σ∞ O⟨4n−1⟩), is zero.

Proof. By Corollary 4.8, we know that π8n−2Σ
∞ O⟨4n−1⟩ is isomorphic to Z/2Z,

generated by the element x2. It follows that, if xJ(x) ̸=0, then xJ(x)=x2. In Re-
mark 10.22, we determine that the element x2 has HF2-Adams filtration 1. However,
xJ(x) has HF2-Adams filtration at least that of J(x). Note now that

x∈π4n−1Σ
∞ O⟨4n−1⟩

is the suspension of an unstable class, and thus J(x)∈π4n−1S is in J 4n−1. In particular,
since n⩾3, J(x) has HF2-Adams filtration larger than 1.
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4.2. The image of J in π∗(S)

Classically, the phrase “image of J” in πℓ(S) refers to the image of the map

πℓ(O)−!πℓ GL1(S)∼=πℓ(S) for ℓ> 0.

Recall that we use Jℓ⊆πℓ(S) to denote this subset.
Unfortunately, we have introduced a second possible meaning of the phrase “image

of J”, namely the image of the map

πℓ(Σ
∞ O⟨4n−1⟩) J−−!πℓ(S).

For general ℓ, these two images may be different. We prove here, however, that they
are the same in our range of interest, and so no ambiguity has been introduced.

Theorem 4.11. Suppose n⩾3 and 4n−1⩽ℓ⩽8n−1. Then, the image of the map

πℓ(Σ
∞ O⟨4n−1⟩) J−−!πℓ(S)

is exactly Jℓ.

Proof. This will automatically be true so long as every class in πℓΣ
∞ O⟨4n−1⟩ is the

suspension of an unstable class in πℓ O⟨4n−1⟩. According to Corollary 4.6, there can be
no difficulty unless ℓ=8n−1 or ℓ=8n−2. The case ℓ=8n−1 follows from Corollary 4.8.

To handle the case ℓ=8n−2, we must check that J(x2) is an element of J8n−2=0.
Since J is a non-unital ring map, J(x2)=J(x)2. Now, it is known (by, e.g. [75, Lemma 3])
that Ji ·Jj⊆Ji+j if i, j>7. Using the hypothesis that n⩾3, we have in short that J(x)2

is an element of J8n−2=0.

5. MO⟨4n⟩ as a homotopy cofiber

In Construction 4.2, we recalled that MO⟨4n⟩ can be computed via a 2-sided bar con-
struction. In this section we give a description of the bar construction, valid through a
range of homotopy groups, which is particularly well-suited to the explicit identification
of the d2 in the bar spectral sequence as a Toda bracket. Our main result is Theorem 5.2.

Construction 5.1. Since J is a map of non-unital rings in the homotopy category of
spectra, the following diagram commutes up to homotopy:

Σ∞ O⟨4n−1⟩⊗2 Σ∞ O⟨4n−1⟩

Σ∞ O⟨4n−1⟩ S,

1⊗J

m J

J
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where m is the product map. In the∞-category of spectra, the fact that J is a ring map
is not a property, but actually additional structure. In particular, there is a canonical
homotopy a filling the above square:

Σ∞ O⟨4n−1⟩⊗2 Σ∞ O⟨4n−1⟩

Σ∞ O⟨4n−1⟩ S .

m

1⊗J

J

J

a

This homotopy a may alternatively be viewed as a specific nullhomotopy of J �(1⊗J−m).
Let P denote the homotopy cofiber of the map

Σ∞ O⟨4n−1⟩⊗2 1⊗J−m−−−−−−!Σ∞ O⟨4n−1⟩.

Then, the homotopy a provides a canonical factorization

Σ∞ O⟨4n−1⟩⊗2 Σ∞ O⟨4n−1⟩ P

S.

1⊗J−m

J

The main theorem of this section is the identification of the Thom spectrum MO⟨4n⟩
with the cofiber of the above map P!S in a range.

Theorem 5.2. Let C denote the cofiber of the map P!S constructed above. Then,
there is an equivalence of spectra τ⩽12n−2C≃τ⩽12n−2 MO⟨4n⟩. Furthermore, the unit
map

τ⩽12n−2S−! τ⩽12n−2 MO⟨4n⟩

agrees with the natural map τ⩽12n−2S!τ⩽12n−2C.

Before proving Theorem 5.2, let us recall Construction 4.2. Construction 4.2 says
that the spectrum MO⟨4n⟩ can be calculated as the geometric realization of a 2-sided
bar construction

MO⟨4n⟩= |Bar(S,Σ∞
+ O⟨4n−1⟩,S)�|.

Here, the action of Σ∞
+ O⟨4n−1⟩ on the leftmost S is via ε, and the action on the rightmost

S is via J+.
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We may display this bar construction as a simplicial object,

... Σ∞
+ O⟨4n−1⟩⊗2 Σ∞

+ O⟨4n−1⟩ S,
ε⊗1

m

1⊗J+

ε

J+

where the leftward degeneracy maps are omitted. The key point is that, if we only wish
to study τ⩽12n−2 MO⟨4n⟩, we need only study the partial simplicial diagram

Σ∞
+ O⟨4n−1⟩⊗2 Σ∞

+ O⟨4n−1⟩ S .
ε⊗1

m

1⊗J+

ε

J+

In the language of [62, Lemma 1.2.4.17], this is a diagram ∆op
⩽2!Sp.

Lemma 5.3. Let X denote the colimit of the partial simplicial diagram ∆op
⩽2!Sp

given by Bar(S,Σ∞
+ O⟨4n−1⟩,S)⩽2. Then, there is an equivalence of spectra

τ⩽12n−2 MO⟨4n⟩≃ τ⩽12n−2X.

Proof. Set
Bar⩽k = |Bar(S,Σ∞

+ O⟨4n−1⟩,S)⩽k| .

Then, S=Bar⩽0 and MO⟨4n⟩ is the colimit of the Bar⩽k. We have a diagram

S Bar⩽1 Bar⩽2 Bar⩽3 ... MO⟨4n⟩,

ΣΣ∞ O⟨4n−1⟩ Σ2Σ∞ O⟨4n−1⟩⊗2 Σ3Σ∞ O⟨4n−1⟩⊗3,

where the vertical maps are the cofibers of the horizontal maps. The result now follows
from the fact that, when k⩾3, ΣkΣ∞ O⟨4n−1⟩⊗k is 12n-connective.

Proof of Theorem 5.2. In Lemma 5.3, we established that τ⩽12n−2 MO⟨4n⟩ may be
calculated as τ⩽12n−2 of the colimit X of a simplicial diagram

Σ∞
+ O⟨4n−1⟩⊗2 Σ∞

+ O⟨4n−1⟩ S,
ε⊗1

m

1⊗J+

ε

J+

where we have omitted the degeneracies from the notation. According to the cofinality
statement of [62, Lemma 1.2.4.17], X may be characterized as the lower right corner of
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the following cocartesian cube:

Σ∞
+ O⟨4n−1⟩⊗2 Σ∞

+ O⟨4n−1⟩

Σ∞
+ O⟨4n−1⟩ S

Σ∞
+ O⟨4n−1⟩ S

S X.

1⊗J+

ε⊗1

m

ε

J+J+

ε
J+

ε

We finish the proof by showing that the X appearing in the cube is equivalent to the
spectrum C from the theorem statement. Indeed, taking fibers in the vertical direction,
we learn that X is the total cofiber of the square

fiber(Σ∞
+ O⟨4n−1⟩⊗2 ε⊗1−−−!Σ∞

+ O⟨4n−1⟩) fiber(Σ∞
+ O⟨4n−1⟩ ε−!S)

fiber(Σ∞
+ O⟨4n−1⟩ ε−!S) S,

which simplifies to the square

Σ∞ O⟨4n−1⟩⊕Σ∞ O⟨4n−1⟩⊗2 Σ∞ O⟨4n−1⟩

Σ∞ O⟨4n−1⟩ S.

(1,1⊗J)

(1,m) J

J

1⊕a

The pushout of the arrows (1, 1⊗J) and (1,m) is calculated as the cofiber of the map

Σ∞ O⟨4n−1⟩⊕Σ∞ O⟨4n−1⟩⊗2

(
1 1⊗J

−1 −m

)
−−−−−−−−−!Σ∞ O⟨4n−1⟩⊕Σ∞ O⟨4n−1⟩,

or equivalently the cofiber of the map

Σ∞ O⟨4n−1⟩⊗2 1⊗J−m−−−−−−!Σ∞ O⟨4n−1⟩.
This cofiber is the spectrum P of the theorem statement. To obtain the final sentence of
the theorem, note that the unit map from S to MO⟨4n⟩ is the map from

Bar(S,Σ∞
+ O⟨4n−1⟩,S)0

into the geometric realization of the full bar construction. This factors through the partial
bar construction |Bar(S,Σ∞

+ O⟨4n−1⟩,S)⩽2|≃X, via the map S!X that appears three
times in the above cocartesian cube.
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6. The remaining problem as a Toda bracket

In this section, we will use the theory built up in §4 and §5 to reduce Theorem 1.4 to
a concrete Toda bracket computation. The final result of this section, Lemma 6.9, is
the only statement from §§4–6 that is used later in the paper. The lemma expresses the
Toda bracket in an explicit enough form that we will be able to bound its HFp-Adams
filtrations in §10.

Recall once more the fundamental square

Σ∞ O⟨4n−1⟩⊗2 Σ∞ O⟨4n−1⟩

Σ∞ O⟨4n−1⟩ S .

m

1⊗J

J

J

a

Let P denote the cofiber

P =cofiber(Σ∞ O⟨4n−1⟩⊗2 1⊗J−m−−−−−−!Σ∞ O⟨4n−1⟩).

Then, as explained in Remark 5.1, the homotopy a gives rise to a canonical map P!S.
According to Theorem 5.2, there is a long exact sequence

π8n−1(P )−!π8n−1(S)−!π8n−1(MO⟨4n⟩)−!π8n−2(P )−!π8n−2(S), (6.1)

which we will use to compute π8n−1(MO⟨4n⟩).

Lemma 6.1. The group π8n−2(P ) is trivial.

Proof. Consider the long exact sequence

π8n−2(Σ
∞ O⟨4n−1⟩⊗2) π8n−2(Σ

∞ O⟨4n−1⟩)

π8n−2(P ) π8n−3(Σ
∞ O⟨4n−1⟩⊗2)∼=0.

According to Corollary 4.8, π8n−2(Σ
∞ O⟨4n−1⟩)∼=Z/2Z, generated by x2. We will thus

be done upon showing that x2 is in the image of the map

π8n−2(Σ
∞ O⟨4n−1⟩⊗2)−!π8n−2(Σ

∞ O⟨4n−1⟩).

The class x⊗x in the domain is sent to xJ(x)−x2. By Lemma 4.10, xJ(x)=0.
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To complete the proof of Theorem 1.4, it remains to compute the image of the map

π8n−1(P )−!π8n−1(S).

Note that the definition of P as the cofiber of a map

Σ∞ O⟨4n−1⟩⊗2−!Σ∞ O⟨4n−1⟩

means that there is a canonical map

π8n−1(P )−!π8n−2(Σ
∞ O⟨4n−1⟩⊗2).

Lemma 6.2. Suppose ℓ is any class in π8n−1P which maps to

2(x⊗x)∈π8n−2(Σ
∞ O⟨4n−1⟩⊗2)∼=Z{x⊗x}.

Then, J 8n−1 and the image of ℓ in π8n−1(S) generate the kernel of the map

π8n−1(S)−!π8n−1(MO⟨4n⟩).

Proof. By equation (6.1), it suffices to show that the image of π8n−1(P )!π8n−1(S)
is generated by J 8n−1 and ℓ. We will argue using the cofiber sequence

Σ∞ O⟨4n−1⟩−!P −!ΣΣ∞ O⟨4n−1⟩⊗2.

The composite map
Σ∞ O⟨4n−1⟩−!P −!S

is, by definition, J . Thus, by Theorem 4.11, it has image exactly J8n−1 in degree 8n−1.
What remains is to show that 2(x⊗x) generates the subgroup of elements of

π8n−2(Σ
∞ O⟨4n−1⟩⊗2)

that lift to π8n−1(P ). Consider the map

Z{x⊗x}∼=π8n−2(Σ
∞ O⟨4n−1⟩⊗2)−!π8n−2(Σ

∞ O⟨4n−1⟩)∼=(Z/2){x2}.

The class x⊗x maps to

x2−xJ(x)=x2 ∈π8n−2(Σ
∞ O⟨4n−1⟩),

since xJ(x)=0 by Lemma 4.10. Therefore, 2(x⊗x) is a generator of the subgroup of
elements which lift.
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Unwinding the definition of P , it is helpful to restate Lemma 6.2 in the following
equivalent form.

Construction 6.3. Recall from Corollary 4.8 and Lemma 4.10 that 2xJ(x)=2x2=0

in π8n−2(Σ
∞
+ O⟨4n−1⟩). We may therefore choose (completely arbitrary) nullhomotopies

f and b completing the following diagram:

S8n−2 Σ∞ O⟨4n−1⟩⊗2 Σ∞ O⟨4n−1⟩

Σ∞ O⟨4n−1⟩ S .

2(x⊗x)

0

0

b

f

m

1⊗J

J
a

J

Composing all three of these homotopies yields a homotopy between the map

0:S8n−2−!S

and itself, or equivalently a loop in the pointed mapping space Hom∗(S8n−2,S), or an
element z∈π8n−1 S. This Toda bracket z is well defined up to changing the nullhomo-
topies f and b. The sets of homotopy classes of nullhomotopies f and b are torsors for
π8n−1Σ

∞ O⟨4n−1⟩, and changing either f or b by an element y∈π8n−1Σ
∞ O⟨4n−1⟩ has

the effect of changing the element z by J(y). The class z therefore has indeterminancy
equal to π8n−1J , which is equal to J 8n−1 by Theorem 4.11.

Lemma 6.4. The kernel of the map

π8n−1(S)−!π8n−1(MO⟨4n⟩)

is generated by J 8n−1 and the Toda bracket z of Construction 6.3.

Proof. The nullhomotopies f and b combine to give a nullhomotopy of the composite

S8n−2 2(x⊗x)−−−−−−!Σ∞ O⟨4n−1⟩⊗2 1⊗J−m−−−−−−!Σ∞ O⟨4n−1⟩,

which is exactly the data of a lift of 2(x⊗x) to a class in

π8n−2 fib(Σ
∞ O⟨4n−1⟩⊗2 1⊗J−m−−−−−−!Σ∞ O⟨4n−1⟩)=π8n−2(Σ

−1P )∼=π8n−1(P ).

The conclusion therefore follows from Lemma 6.2.
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Our strategy will be to choose the nullhomotopies f and b, or equivalently the lift ℓ
in Lemma 6.2, as judiciously as possible. It will be because of these choices that we will
be able to establish our HFp-Adams filtration bounds in §10. Let us begin by making a
careful choice of the nullhomotopy b.

Recollection 6.5. Suppose that R is a homotopy commutative ring spectrum, and r

is an element of π2∗+1R. Then, the graded commutativity of π∗(R) ensures that 2r2=0 in
π4∗+2(R). A small part of the data of an E∞-structure on R is a canonical nullhomotopy
of 2r2. Indeed, given r:S2n+1

!R, there is a canonical factorization of r2 as

S4n+2−!D2(S2n+1)−!D2(R)−!R.

The canonical nullhomotopy of 2r2 arises from fixing an identification of the (4n+3)-
skeleton of D2(S2n+1) with Σ4n+2C(2).

Construction 6.6. Let h denote the canonical nullhomotopy of 2J(x)2 that arises
from the fact that J(x)∈π4n−1 S is an element in the odd-degree homotopy of the E∞-
ring S. Let g denote the canonical homotopy J(xJ(x))≃J(x)2 that arises from J being a
map of right S-modules, and let f denote a completely arbitrary nullhomotopy of 2xJ(x).
Then, we may form the following diagram:

S8n−2 S8n−2 Σ∞ O⟨4n−1⟩

S,

2

0

0

h

f

xJ(x)

J(x)2J(x)2 J

g

which composes to give a Toda bracket w∈π8n−1 S.

Lemma 6.7. Let w denote the Toda bracket of Construction 6.6. Then, the kernel
of the map

π8n−1(S)−!π8n−1(MO⟨4n⟩)

is generated by J 8n−1 and w.
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Proof. Composing (whiskering) the homotopy a

Σ∞ O⟨4n−1⟩⊗2 Σ∞ O⟨4n−1⟩

Σ∞ O⟨4n−1⟩ S .

m

1⊗J

J

J

a

along the map S8n−2 x⊗x−−−−!Σ∞ O⟨4n−1⟩⊗2 yields the diagram

S8n−2 Σ∞ O⟨4n−1⟩

Σ∞ O⟨4n−1⟩ S .

x2

xJ(x)

J(x)2J(x)2 J

g

J

c

Here, g is the homotopy from Construction 6.6, and c is the natural homotopy arising
from the structure of J as a ring homomorphism. Consider now the slightly extended
diagram

S8n−2 S8n−2 Σ∞ O⟨4n−1⟩

Σ∞ O⟨4n−1⟩ S .

2

x2

xJ(x)

J(x)2J(x)2 J

g

J

c

To put ourselves in the situation of Lemma 6.4, we must choose a nullhomotopy f of
2xJ(x) as well as a nullhomotopy b of 2x2. The result follows from choosing b to the
canonical nullhomotopy of 2x2 arising from the fact that Σ∞ O⟨4n−1⟩ is a (non-unital)
E∞-ring spectrum. Since J is naturally a map of E∞-rings, and not just of A∞-rings,
this canonical nullhomotopy of 2x2 will compose with c to be the canonical nullhomotopy
h of 2J(x)2.

We record one final technical reduction to end this section.
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Definition 6.8. Let
M −!Σ∞O⟨4n−1⟩

denote the inclusion of an (8n−1)-skeleton of Σ∞O⟨4n−1⟩. By the inclusion of an
(8n−1)-skeleton, we mean in particular that the induced map

H∗(M ;Fp)−!H∗(Σ
∞O⟨4n−1⟩;Fp)

is an isomorphism for ∗<8n−1 and a surjection for ∗=8n−1, and that H∗(M ;Fp)∼=0 for
∗>8n−1. The generator x∈π4n−1(Σ

∞ O⟨4n−1⟩) is the image of some class in π4n−1M ,
which by abuse of notation we also denote by x. We additionally abuse notation by using
J to denote the composite map

M −!Σ∞O⟨4n−1⟩ J−−!S.

Lemma 6.9. Let h denote the canonical nullhomotopy of 2J(x)2 that arises from
the fact that J(x)∈π4n−1 S is an element in the odd-degree homotopy of the E∞-ring S.
Let g denote the canonical homotopy J(xJ(x))≃J(x)2 that arises from J being a map of
right S-modules, and let f denote a completely arbitrary nullhomotopy of 2xJ(x). Then,
we may form the following diagram:

S8n−2 S8n−2 M

S,

2

0

0

h

f

xJ(x)

J(x)2J(x)2 J

g

which composes to give a Toda bracket w∈π8n−1(S). The kernel of the map

π8n−1(S)−!π8n−1(MO⟨4n⟩)

is generated by J 8n−1 and w.

Proof. Since M is an (8n−1)-skeleton, 2xJ(x) is trivial not just in

π8n−2(Σ
∞ O⟨4n−1⟩),

but also in π8n−2(M). A nullhomotopy f of 2xJ(x) inside of π8n−2(M) in particular
induces such a nullhomotopy in π8n−2(Σ

∞ O⟨4n−1⟩). Also, the map M!Σ∞ O⟨4n−1⟩
is a map of right S-modules (as it is a map of spectra), and so the homotopy g from this
lemma composes with the inclusion of M to give the homotopy g of Construction 6.6.
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7. The Galatius and Randal-Williams conjecture

In this section, we will prove Theorem 1.4 assuming two results from later in the paper.
Recall our standing assumption that n⩾3 is a positive integer. In §5 and §6, we studied
the unit map

π8n−1 S−!π8n−1 MO⟨4n⟩.

In Lemma 6.1, we showed that this map is surjective. In Lemma 6.2, we showed that
the subgroup J8n−1 is in the kernel of this map.(1) Furthermore, modulo J8n−1, every
element in the kernel is an integer multiple of a single class, which by Lemma 6.9 is given
by the Toda bracket w.

Our task here is to show that, for n⩾32, this element w is trivial modulo J8n−1.
Our strategy will be to prove, separately for each prime number p, that w is trivial after
p-localization.

Theorem 7.1. Fix a prime number p. The element

w∈ (π8n−1 S)/J 8n−1

is p-locally trivial if any of the following conditions are met :
• p>3;
• n⩾32 and p=3;
• n⩾17 and p=2.

Convention 7.2. For the rest of this section we will work p-locally for a fixed prime
number p. For example, we use π∗ S to denote π∗ S(p).

The proof that w∈J8n−1 will proceed by using two results from later in the paper.
These results, respectively,

(1) establish a lower bound on the HFp-Adams filtration of w, and
(2) exhibit an upper bound on the HFp-Adams filtrations of elements of coker(J).
To explain further, we recall the following definition, which appeared in the state-

ment of Theorem 1.7:

Definition 7.3. For each prime number p>2 and each integer k>0, let Γp(k) denote
the minimal m such that every α∈πk S(p) with HFp-Adams filtration strictly greater
than m is in the image of J . Similarly, let Γ2(k) denote the minimal m such that every
α∈πk S(2) with HF2-Adams filtration strictly greater than m is in the subgroup generated
by the image of J and the µ-family.

(1) We remark that this and the preceeding statement are not original to us and may be proven
using classical tools of geometric topology —see Remark 1.5
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Remark 7.4. At p=2, the elements of π∗ S in the µ family are of degrees 1 or 2

mod 8, and in particular do not occur in degree 8n−1. Thus, an element in π8n−1 S(p)
with HF2-Adams filtration greater than Γp(8n−1) is automatically in the image of J .

If we let AF(w) denote the HFp-Adams filtration of (some choice of) w, then it will
suffice to show that

Γp(8n−1)<AF(w). (7.1)

§10 will be devoted to establishing a lower bound on AF(w). To state this bound, we
establish some additional notation.

Definition 7.5. We define the integer N2 by the formula

N2 =h(4n−1)−⌊log2(8n)⌋+1,

where h(k) is the number of integers 0<s⩽k which are congruent to 0, 1, 2 or 4 mod 8.
For an odd prime p, we define

Np =

⌊
4n

2p−2

⌋
−
⌊
logp(4n)

⌋
.

Theorem 7.6. (Proven as Theorem 10.8) There is a choice of f in the statement of
Lemma 6.9 such that the HFp-Adams filtration of the Toda bracket w is at least 2Np−1.

Remark 7.7. Our use of Adams filtrations in the proof of Theorem 7.1 is inspired by
arguments of Stolz in [90]. In particular, it follows from a theorem of Stolz that there is
a lower bound of size N2 on the HF2-Adams filtration of w [90, Satz 12.7]. The doubling
of Stolz’s lower bound is one of the main contributions of this paper.

Additionally, upper bounds on Γp(8n−1) have been previously studied by Davis–
Mahowald [29] (at the prime 2) and González [41] (at odd primes). At the prime 3, we
will require a novel bound established by the first named author in Appendix B.

Theorem 7.8. We have the following upper bounds on the function Γp(8n−1):
(1) (Davis–Mahowald, [29, Corollary 1.3])

Γ2(8n−1)⩽
3(8n−1)

10
+7+v2(n);

(2) (González, [41, Theorem 5.1]) assuming p ̸=2,

Γp(8n−1)⩽ 3+
(2p−1)(8n−1)

(2p−2)(p2−p−1) ;
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(3) (Burklund, Theorem B.7 (4))(2)

Γ3(8n−1)⩽
25(8n−1)

184
+19+

1133

1472
.

Remark 7.9. Theorems 10.8 and B.7 are the only results from the latter half of
this paper that are required to settle the Galatius and Randal-Williams conjecture. The
paper is structured so that the reader willing to assume Theorem B.7 need not read past
§10 to understand the proof of Theorem 1.4.

At this point, the main work ahead of us in this section is to understand when the
bound of Theorem 7.6 exceeds the bounds of Theorem 7.8. To this end, we introduce
some compact notation.

Notation 7.10. Let

Ap := 2Np−1 and Bp :=



3(8n−1)
10

+7+v2(n), p=2,

25(8n−1)
184

+19+
1133

1472
, p=3,

3+
(2p−1)(8n−1)

(2p−2)(p2−p−1) , p⩾ 5.

Lemma 7.11. The element w∈(π8n−1S)/J 8n−1 is p-locally trivial if Ap>Bp, which
occurs for

• p=2 and n⩾17;
• p=3 and n⩾32;
• p=5 and n⩾16;
• p=7 and n⩾21;
• p⩾11 and n⩾2(2p−2).

Proof. The first claim follows from the preceding discussion. Verifying the remaining
claims is just a matter of checking inequalities between elementary functions. For each
of these, we follow the same basic strategy:

(1) find a smooth function that acts as a lower bound for Ap−Bp;
(2) argue that the derivative of this function is positive;
(3) find a point where this lower bound is positive;
(4) go back and fill in small values of n by directly computing Ap−Bp.

(2) The statement of Theorem B.7 (4) in Appendix B contains a term depending on a function
ℓ(k), but this function vanishes by definition when k=8n−1.
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n A3 B3

31 53 53.33

32 55 54.42

33 57 55.50

n A5 B5

16 11 10.52

17 11 10.99

18 13 11.47

19 13 11.94

20 15 12.41

21 15 12.89

22 17 13.36

23 17 13.84

24 19 14.31

n A7 B7

20 7 7.20

21 9 7.41

22 9 7.62

23 9 7.84

24 11 8.05

Table 1.

We begin with the p=2 case:

A2−B2 =2(h(4n−1)−⌊log2(8n)⌋+1)−1−
(

3

10
(8n−1)+7+v2(n)

)
⩾ (4n−2)−2 log2(8n)+1− 3

10
(8n−1)−7−log2(n)

=
8

5
n−3 log2(n)−13.7.

Since the quantity on the final line is positive for n=17 (it is approximately 1.24) and its
derivative with respect to n is positive for n⩾3 we may conclude that A2>B2 for n⩾17.

Next, we handle the p=3 case, which proceeds in the same fashion as p=2:

A3−B3 =2

(⌊
4n

4

⌋
−⌊log3(4n)⌋

)
−1−

(
25

184
(8n−1)+19+

1133

1472

)
⩾ 2n−2 log3(4n)−1−

200

184
n−20

=
21

23
n−2 log3(4n)−21.

The quantity on the final line is positive for n=33 (it is approximately 0.24) and its
derivative with respect to n is positive for n⩾2, thus we may conclude that A3>B3 for
n⩾33. The inequality for the remaining value of n can now be read off from Table 1.
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We handle the remaining values of p uniformly. Let (p−1)k=n. Then,

Ap−Bp =2

(⌊
4n

2p−2

⌋
−⌊logp(4n)⌋

)
−1−

(
3+

(2p−1)(8n−1)
(2p−2)(p2−p−1)

)
⩾ 2

4n

2p−2−2 logp(4n)−6−
(2p−1)8n

(2p−2)(p2−p−1)

⩾ 4k−2 logp(4(p−1)k)−6−
(2p−1)4k
p2−p−1

⩾ 4k− (2p−1)4k
p2−p−1 −8−2 logp(4k).

Let Cp denote the quantity on the final line. For p⩾5 and k⩾2 we have that

∂

∂k
Cp =4− (2p−1)4

p2−p−1−
2

log(p)k
⩾ 4− 8p

p2−2p−
2

log(p)k
⩾ 4− 8

3
− 2

2 log(5)
> 0

and
∂

∂p
Cp =4k

2p2−2p+3

(p2−p−1)2 +
2 log(4k)

(log(p))2p
=

2k((2p−1)2+5)

(p2−p−1)2 +
2 log(4k)

(log(p))2p
> 0.

When p=5 and k=6 the value of Cp is approximately 0.68 and when p=7 and k=4 the
value of Cp is approximately 0.08. Translating back into terms of p and n, instead of k,
this completes the proof of the lemma for p⩾11 and all but finitely many cases for p=5, 7.
A second consultation with Figure 1 now completes the proof.

Proof of Theorem 7.1. In order to finish the proof of Theorem 7.1 at p⩾5, it will
suffice to show that π8n−1 S0(p) is generated by the image of J for each n below the bound
from Lemma 7.11. Through this range, the E2-page of the Adams–Novikov spectral
sequence is calculated in [80, Theorem 4.4.20] and the spectral sequence degenerates at
the E2-page for degree reasons.

In Table 2 we list the generators of the cokernel of J in degrees below the bound from
Lemma 7.11 at primes 5, 7, 11, 13. None of these generators are in a degree congruent to
−1 mod 8. At primes p⩾17 we argue as follows: again, using [80, Theorem 4.4.20], we
know that the first element of coker(J) at odd primes is β1 in the (2p2−2p−2) stem. On
the other hand, since

8n−1⩽ 16(2p−2)−1< 2p2−2p−2,

the bound from Lemma 7.11 is below this point.
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p Max n Max degree Classes in coker(J)

5 15 119 β1, α1β1, β2
1 , α1β

2
1 , β2, α1β2, β3

1

7 20 159 β1, α1β1

11 39 311 β1, α1β1

13 47 375 β1, α1β1

Table 2.

7.1. A note on the remaining dimensions

Galatius and Randal-Williams conjecture [35, Conjecture A] that the map

π8n−1 S−!π8n−1 MO⟨4n⟩

has kernel equal to J8n−1 for all n⩾1, and not just for n>31.
It is known that the conjecture is true when n=1 and when n=2 [35, p. 13]. Indeed,

the case n=1 follows from the fact that there is nothing in π7 S which is not in the image
of J . When n=2, it follows from direct calculation of π15 MO⟨8⟩=π15 MString as in [39].
The methods of this paper first apply when n⩾3.

The first and third named authors returned to this question in [24] and proved the
following theorem, completely resolving the remaining cases of the Galatius and Randal-
Williams conjecture.

Theorem 7.12. ([24, Theorem 1.4]) The kernel of the map

π2k−1 S−!π2k−1 MO⟨k⟩

is equal to J2k−1 if k ̸=9, 12. When k=9, it is generated by J17 and ηη4∈π17(S). When
k=12, it is generated by J23 and η3κ̄∈π23(S).

In particular, the Galatius and Randal-Williams conjecture is true precisely when

n ̸=3.

8. The proof of Theorem 1.1

In this section, we will prove Theorem 1.1. Our methods are due to Stephan Stolz
[90], and we rely heavily on his work. We are able to improve on Stolz’s results by a
combination of Theorem 1.4 and the following result.
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Theorem 8.1. Suppose that a class α in the (2k+d)-th homotopy group of the
mod-8 Moore spectrum

α∈π2k+d(C(8))

has HF2-Adams filtration at least 1
5 (2k+d)+15. Then, if 2k+d⩾126, the image of α

under the Bockstein map
π2k+d(C(8))−!π2k+d−1(S)

is contained in the subgroup of π2k+d−1(S) generated by J2k+d−1 and Adams’ µ-family.

Theorem 8.1 will be proved as Theorem 15.1 in the subsequent half of the paper.

Remark 8.2. Stolz relied on a similar result for the mod-2 Moore spectrum, which
he attributes to Mahowald [90, Satz 12.9]. Though Mahowald announced such a result
in [64], and again in [65] (the reference that Stolz cites), to the best of our knowledge
no proof has appeared in print. Part of our motivation in proving Theorem 8.1 is to fill
this gap in the literature. The other motivation is that we obtain stronger geometric
consequences from the mod-8 Moore spectrum.

Recall that MO⟨k⟩ denotes the Thom spectrum of the map

τ⩾k BO−!BO .

There is a unit map S!MO⟨k⟩, which may be extended to a cofiber sequence

S−!MO⟨k⟩−!MO⟨k⟩/S ∂−−!S1.

Stolz constructed [90, Satz 3.1] a spectrum A[k] together with a map

b:A[k]−!MO⟨k⟩/S

such that the following is true.

Theorem 8.3. ([90, Lemma 12.5]) Let k>2 and d⩾0 be integers. Suppose that, for
every element α∈π2k+d(A[k]), the image of α under the composite

π2k+d(A[k])
b∗−−−!π2k+d(MO⟨k⟩/S) ∂∗−−−!π2k+d(S1)∼=π2k+d−1(S)

is in J2k+d−1. Then, the boundary of any (k−1)-connected, almost closed (2k+d)-
manifold also bounds a parallelizable manifold.

Stolz then proved the following two theorems. The first is contained in the proof of
[90, Satz 12.7].
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Theorem 8.4. ([90, Proof of Satz 12.7]) Suppose that k>2 and d⩾0, and let
M2k+d+1

� � // A[k] denote a (2k+d+1)-skeleton of A[k]. Then, the composite

M2k+d+1
� � // A[k]−!MO⟨k⟩/ S−!S1

has HF2-Adams filtration at least

h(k−1)−⌊log2(2k+d+1)⌋+1,

where h(k−1) is the number of integers of s with 0<s⩽k−1 and s≡0, 1, 2, 4 mod 8.

The second follows from [90, Theorem A] along with the equivalences A[k]≃A[k+1]

for k≡3, 5, 6, 7 mod 8 [90, Satz 3.1 (ii)].

Theorem 8.5. ([90, Theorem A]) Suppose that k⩾9 and 0⩽d⩽3. Then, unless one
of the following conditions are met, every element of π2k+dA[k] is 8-torsion:

• k≡0 mod 4 and d=0;
• k≡3 mod 4 and d=2.

We now proceed with our proof of Theorem 1.1.

Theorem 8.6. Let k>124 and 0⩽d⩽3 be integers. Suppose that k≡0 mod 4

and d=0, or k≡3 mod 3 and d=2. Then, the boundary of any (k−1)-connected, almost
closed (2k+d)-manifold also bounds a parallelizable manifold.

Proof. We need to show that the image of the composite

π2k+dA[k]−!π2k+d(MO⟨k⟩/S)−!π2k+d(S1)

contains only classes in J2k+d−1. In fact, we will show that this is already true of the
image of

π2k+d(MO⟨k⟩/S)−!π2k+d(S1),

or equivalently that the unit map

π2k+d−1S−!π2k+d−1 MO⟨k⟩

has kernel consisting only of classes in J2k+d−1. If d=0 and k≡0 mod 4, this follows
from Theorem 1.4. If d=2 and k≡3 mod 4, then MO⟨k⟩≃MO⟨k+1⟩, and so

π2k+2 MO⟨k⟩∼=π2k+2 MO⟨k+1⟩,

and this again follows from Theorem 1.4.



on the boundaries of highly connected, almost closed manifolds 247

Theorem 8.7. Let k>232 and 0⩽d⩽3 be integers. Suppose that k and d satisfy
neither of the exceptional conditions under which Theorem 8.5 fails and Theorem 8.6
applies. Then, the boundary of any (k−1)-connected, almost closed (2k+d)-manifold
also bounds a parallelizable manifold.

Proof. We construct an argument very similar to that found on [90, p. 107]. Namely,
consider the diagram

Σ−1C(8)⊗M2k+d+1 Σ−1C(8)⊗A[k] Σ−1C(8)⊗S1

M2k+d+1 A[k] S1,

1⊗ι 1⊗(∂�b)

ι ∂�b

where M2k+d+1!A[k] is a (2k+d+1)-skeleton.
Let α denote a map S2k+d

!A[k]. Then, we may factor α through an 8-torsion map
S2k+d

!M2k+d+1 by Theorem 8.5, and thus we may choose a lift

ᾱ:S2k+d−!Σ−1C(8)⊗M2k+d+1.

Since
M2k+d+1

ι−−!A[k]
∂�b−−−!S1

is of HF2-Adams filtration at least

h(k−1)−⌊log2(2k+d+1)⌋+1

by Theorem 8.4, so is

Σ−1C(8)⊗M2k+d+1
1⊗ι−−−!Σ−1C(8)⊗A[k]

1⊗(∂�b)−−−−−−!Σ−1C(8)⊗S1.

It follows that
(1⊗∂)�(1⊗b)�(1⊗ι)�ᾱ∈π2k+d(C(8))

is too. Thus, by Theorem 8.1, so long as

2k+d⩾ 126 and h(k−1)−⌊log2(2k+d+1)⌋+1⩾
2k+d

5
+15,

the image of α in π2k+d−1S must be in the subgroup generated by J2k+d−1 and Adams’
µ-family. In Lemma 8.8, we show that both of these conditions are satisfied under our
assumptions k>232 and 0⩽d⩽3. Now, we claim that the image of α in π2k+d−1S must
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actually be in the subgroup generated by J2k+d−1, without Adams’ µ-family. This follows
simply from the fact that this class is in the image of the map

π2k+d MO⟨k⟩/S−!π2k+dS1,

and therefore in the kernel of the map

π2k+d−1S−!MO⟨k⟩.

Recall that the Atiyah–Bott–Shapiro orientation [9] determines a unital map

MO⟨3⟩=MSpin−!KO.

The composite map

π2k+d−1S−!π2k+d−1 MO⟨k⟩−!π2k+d−1 MO⟨3⟩−!π2k+d−1KO

has the effect of killing J2k+d−1 without killing any of Adams’ µ-family. Thus, any class
in the kernel of the map

π2k+d−1S−!π2k+d−1 MO⟨k⟩

cannot be a sum of a class in J2k+d−1 and a non-trivial element of the µ-family.

Proof of Theorem 1.1. This follows by combining Theorems 8.6 and 8.7.

Lemma 8.8. The inequality

h(k−1)−⌊log2(2k+d+1)⌋+1⩾
2k+d

5
+15

holds for k>232 and 0⩽d⩽3.

Proof. Without loss of generality we may assume d=3. Then, using the inequality
h(k−1)⩾ 1

2k−1, it will suffice to show that

k

10
⩾

3

5
+15+log2(2k+4). (8.1)

Taking derivatives, we see that the left-hand side increases faster than the right-hand
side, as soon as k⩾13. Using a computer, we find that equation 8.1 holds for k=246, so
the lemma holds for k⩾246. For the remaining values of k, we compute each side of the
desired inequality

h(k−1)−⌊log2(2k+d+1)⌋+1⩾
2k+d

5
+15

for d=3, and display their difference, ∆, in the following table:

k 233 234 235 236 237 238 239 240 241 242 243 244 245
∆ 0.2 0.8 1.4 1.0 1.6 1.2 0.8 0.4 1.0 1.6 2.2 1.8 2.4



on the boundaries of highly connected, almost closed manifolds 249

Remark 8.9. In §7.1 we discussed possible improvements to Theorem 8.6. We have
spent comparatively little effort optimizing Theorem 8.7, and it would be interesting to
see an improvement of the bounds k>232 and d⩽3.

For a fixed dimension m, it would be interesting to know the largest integer ℓ such
that a smooth, ℓ-connected, almost closed m-manifold bounds an element non-trivial in
coker(J)m−1. Conjecture B.10 suggests that this ℓ should be closer to 1

3m than to 1
2m.

9. Synthetic spectra

At this point, we have reduced our main theorems to three technical results, which will
appear as Theorems 10.8, 15.1 and B.7. Additionally, in §4, we referred to Remark 10.22.
Each of these results relies on an analysis of Adams filtration.

First, we focus on Theorem 10.8, which bounds the Adams filtration of the Toda
bracket w∈π8n−1 S defined in Lemma 6.9. To understand why Toda brackets have con-
trollable Adams filtration, it is helpful to consider the following facts:

(1) Adams filtration is super-additive under function composition, i.e.

AF(fg)⩾AF(f)+AF(g);

(2) Toda brackets are a kind of secondary composition operation.
These facts suggest that we should be able to compute lower bounds for the Adams

filtration of a Toda bracket. In practice, this can be subtle, since such bounds require us
to keep track not only of the Adams filtrations of maps but also of the Adams filtrations
of homotopies.

We believe that questions involving the Adams filtrations of homotopies are greatly
clarified by recent work of Piotr Pstrągowski, and in particular his development of the
category of synthetic spectra [77]. For E an Adams-type homology theory, E -based
synthetic spectra form an∞-category SynE of formal E -based Adams spectral sequences.
We devote this section to a review of the basic properties of SynE , some of which have
not appeared in the literature.

Definition 9.1. Suppose that E is a homotopy associative ring spectrum such that
E∗ and E∗E are graded commutative rings. Following [77, Definition 3.12], we say that
a finite spectrum X is finite E∗-projective (or simply finite projective if E is clear from
context) if E∗X is a projective E∗-module. We say that E is of Adams type if E can be
written as a filtered colimit of finite projective spectra Eα such that the natural maps

E∗Eα−!HomE∗(E∗Eα, E∗)

are isomorphisms.
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Example 9.2. In this paper, we will make use only of the examples E=BP and
E=HFp for some prime p, both of which are of Adams type.

Construction 9.3. (Pstrągowski) Let E denote an Adams-type homology theory.
Then, there is a stable, presentably symmetric monoidal∞-category SynE together with
a functor

νE : Sp−!SynE ,

which is lax symmetric monoidal and preserves filtered colimits [77, Lemma 4.4]. How-
ever, νE does not preserve cofiber sequences in general. When E is clear from context,
we will often denote νE by ν.

Remark 9.4. The tensor product in synthetic spectra preserves colimits in each
variable separately.

Remark 9.5. If X and Y are any two spectra, then the lax symmetric monoidal
structure on ν provides us with a natural comparison map

ν(X)⊗ν(Y )−! ν(X⊗Y ).

In some cases this comparison map is actually an equivalence. For example, ν is symmet-
ric monoidal when restricted to the full subcategory of finite projectives. More generally,
[77, Lemma 4.24] proves that the comparison map is an equivalence whenever X is a
filtered colimit of finite projectives. Note that this condition is only on X, and Y may
be arbitrary.

If E=HFp, then every finite spectrum is finite projective, and so every spectrum X

satisfies the condition above. Thus, νHFp
is symmetric monoidal, rather than merely lax

symmetric monoidal.

Remark 9.6. As proved in [77, Lemma 3.18], the full subcategory of spectra spanned
by the finite projective spectra is rigid symmetric monoidal. Furthermore, [77, Re-
mark 4.14] proves that the set of ΣkνP , with k∈Z and P finite projective, is a family of
compact generators of SynE . The fact that ν is symmetric monoidal when restricted to
finite projective spectra implies that this is a family of dualizable compact generators.

If X is a spectrum, then νX records detailed information about the E-based Adams
tower for X. A first hint of this is found in the following proposition.
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Lemma 9.7. ([77, Lemma 4.23]) Suppose that

A−!B−!C

is a cofiber sequence of spectra. Then,

νA−! νB−! νC

is a cofiber sequence of synthetic spectra if and only if

0−!E∗A−!E∗B−!E∗C −! 0

is a short exact sequence of E∗E-comodules.(3)

To precisely relate νX to the E-based Adams spectral sequence for X, we must
introduce bigraded spheres and the canonical bigraded homotopy element τ .

Definition 9.8. ([77, Definitions 4.6 and 4.9]) The bigraded sphere Sn,n is defined
to be ν(Sn). Since SynE is stable, we more generally define Sa,b to be Σa−b Sb,b, which
makes sense even if a−b<0. For any synthetic spectrum X, the bigraded homotopy groups
πa,b(X) are defined to be the abelian groups

πa,b(X)=π0 Hom(Sa,b, X).

Remark 9.9. The fact that ν is symmetric monoidal when restricted to finite pro-
jectives (such as Sb) implies that each of the bigraded spheres Sa,b is ⊗-invertible. Thus,
bigraded homotopy groups are particular instances of Picard-graded homotopy groups.

Remark 9.10. Recall that, if F :C!D is any functor of pointed, cocomplete ∞-
categories, the definition of Σ as a pushout gives natural comparison morphisms

ΣF (c)−!F (Σc).

Definition 9.11. ([77, Definition 4.27]) The natural comparison map

S0,−1 =Σν(S−1)−! ν(Σ S−1)=S0,0

is denoted by τ . In short, τ is a canonical element of π0,−1 S0,0. The symbol Cτ denotes
the cofiber of τ . A synthetic spectrum X is said to be τ -invertible if the map

τ : Σ0,−1X −!X

is an equivalence.

(3) The condition that a cofiber sequence become short exact on E-homology is exactly the con-
dition under which there is a long exact sequence on the level of Adams E2-pages.
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Using τ we can now give a global description of the category of synthetic spectra. Al-
though the description given in Theorem 9.12 is concise and powerful, we will ultimately
trade it in for the more computationally precise Theorem 9.19.

Theorem 9.12. (Pstrągowski)
(1) The localization functor given by inverting τ is symmetric monoidal.
(2) The full subcategory of τ -invertible synthetic spectra is equivalent to the category

of spectra.
(3) The composite τ−1

�ν is equivalent to the identity functor on Sp.
(4) The object Cτ admits the structure of an E∞-ring in SynE.
(5) Suppose that E is homotopy commutative. Then, there is a natural fully faithful,

monoidal functor
ModCτ −!StableE∗E ,

where the target is Hovey’s stable ∞-category of comodules and the composition of

ν(−)⊗Cτ

with this functor is equivalent to E∗(−).
We can construct the following diagram, where every arrow except ν and E∗(−) is

a left adjoint :

Sp

Sp SynE ModCτ StableE∗E .

1
ν

E∗(−)

τ−1 −⊗Cτ

Before proving Theorem 9.12, we record the following useful corollary.

Corollary 9.13. ([77, Lemma 4.56]) For any spectrum X, there is a natural iso-
morphism of bigraded abelian groups

πt−s,t(Cτ⊗νX)∼=Exts,tE∗E
(E∗, E∗X).

Note that the latter object is the E2-page of the E-based Adams spectrum sequence for X.

Proof of Theorem 9.12. Except for the claim that the functor in (5) is symmetric
monoidal, this theorem is just a combination of citations to [77]: (1) is [77, Theorem 4.36
and Proposition 4.39], (2) is [77, Theorem 4.36], (3) is [77, Proposition 4.39], (4) is [77,
Corollary 4.45] and most of (5) is [77, Theorem 4.46 and Remark 4.55].
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We finish by proving the remaining claim. By [77, Lemma 4.43] the left adjoint

ε∗: SynE −!StableE∗E

is symmetric monoidal because E is homotopy commutative.(4) Then, by [63, Corol-
lary I.2.5.5.3] and [77, Lemma 4.44], there is a factorization of lax symmetric monoidal
right adjoints

StableE∗E −!ModCτ −!SynE .

In particular, this means that the left adjoint

ModCτ −!StableE∗E

canonically acquires the structure of an oplax symmetric monoidal functor [44, Proposi-
tion A]. It remains to check that the comparison maps provided by the oplax structure
are equivalences. Because the tensor products on

SynE and StableE∗E

are cocontinuous in each variable, it suffices to check this on compact generators. This
follows from [77, Lemma 4.43] and the fact that ModCτ is compactly generated by objects
of the form Cτ⊗M .

Remark 9.14. Altogether, Theorem 9.12 suggests the following geometric picture of
synthetic spectra. Synthetic spectra form a Gm-equivariant family over A1, where τ is
the coordinate on A1. The special fiber of this family is a category of comodules, while
the generic fiber is the category of spectra. We will not pursue this perspective further
in the present paper.

Lemma 9.15. If a map f :X−!Y of spectra has E-Adams filtration k, then there
exists a factorization

Σ0,−kν(Y )

ν(X) ν(Y )

τk
f̃

ν(f)

Proof. Any map which is of Adams filtration k can be factored into a composite of
k maps each of Adams filtration 1. Then, by pasting diagrams as shown below it will

(4) While [77, Lemma 4.43] as written does not state that E needs to be homotopy commutative,
this hypothesis is necessary: we refer the reader to Lemma 4.44 in the second arXiv version of [77].
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suffice to prove the lemma for k=1:

Σ0,−a−bν(C)

Σ0,−aν(B) Σ0,−aν(C)

ν(A) ν(B) ν(C).

τb

ν(h)

τa τa

ν(g) ν(h)

Using the associated cofiber sequence

Σ−1Y
g−−!Z

h−−!X
f−−!Y,

we can build the diagram below:

ν(Σ−1Y ) 0 Σν(Σ−1Y ) ν(Y )

ν(Z) ν(X) cof(ν(h)) ν(cof(h)).

ν(g)

τ

ν(h)

ν(f)

In this diagram, the first pair of maps in each row form cofiber sequences and the
rightmost map in each row is an assembly map. Now, since f has positive Adams
filtration, it is zero on E-homology, and therefore g and h satisfy the conditions of
Lemma 9.7. This implies that the leftmost square is cocartesian and the third vertical
map is an equivalence, which provides the desired factorization of ν(f).

Before we can relate the bigraded homotopy groups of νX to the E-based Adams
spectral sequence of X, we must engage in a brief discussion of completion and conver-
gence.

Definition 9.16. A spectrum X is said to be E-nilpotent complete if the E-based
Adams resolution for X converges to X. In this paper we will make use of two instances
of this:

• Any bounded below, p-local spectrum X is BP-nilpotent complete (this is
[17, Theorem 6.5]).

• Any bounded below, p-complete spectrum X is HFp-nilpotent complete (this is
[17, Theorem 6.6]).
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Definition 9.17. Following Boardman [16, Defintion 5.2], we will say that the E-
based Adams spectral sequence for a spectrum X is strongly convergent if the following
conditions hold:

• the E-Adams filtration F �π∗(X) of the homotopy groups of X is complete and
Hausdorff;

• there are isomorphisms F sπt−s(X)/F s+1πt−s(X)∼=Es,t
∞ (X), where Es,t

∞ (X) is the
E∞-page of the E-Adams spectral sequence for X.

Remark 9.18. Definitions 9.16 and 9.17 have obvious analogs for synthetic spectra,
and we will make use of these analogs without further mention.

Our strongest result concerning the relationship between synthetic spectra and
Adams spectral sequences is Theorem 9.19 (stated below). This theorem provides a dic-
tionary between the structure of the E-Adams spectral sequence for X and the structure
of the bigraded homotopy groups of νX. The proof of Theorem 9.19 is quite technical,
and we defer it to §A.1. We have structured the paper so that the reader willing to
assume Theorem 9.19 need not read Appendix A.1.

In order to highlight many of the subtleties which can arise in applying Theorem 9.19,
we give example calculations of π∗,∗(νHF2

S∧2 ) through the Toda range in Appendix A.2.
We strongly recommend that any reader seeking to understand Theorem 9.19 examine
Appendix A.2.

Theorem 9.19. Let X denote an E-nilpotent complete spectrum with strongly con-
vergent E-based Adams spectral sequence. Then, we have the following description of the
bigraded homotopy groups of νX.

Let x denote a class in topological degree k and filtration s of the E2-page of the
E-based Adams spectral sequence for X. The following conditions are equivalent :

(1a) each of the differentials d2,...,dr vanishes on x;
(1b) x, viewed as an element of πk,k+s(Cτ⊗νX), lifts to πk,k+s(Cτ r⊗νX);
(1c) x admits a lift to πk,k+s(Cτ r⊗νX) whose image under the τ -Bockstein

Cτ r⊗νX −!Σ1,−rCτ⊗νX

is equal to −dr+1(x).

If we moreover assume that x is a permanent cycle, then there exists a (not neces-
sarily unique) lift of x along the map πk,k+s(νX)!πk,k+s(Cτ⊗νX). For any such lift,
x̃, the following statements are true:

(2a) if x survives to the Er+1-page, then τ r−1x̃ ̸=0;
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(2b) if x survives to the E∞-page, then the image of x̃ in πk(X) is of E-Adams
filtration s and detected by x in the E-based Adams spectral sequence.(5)

Furthermore, there always exists a choice of lift x̃ satisfying additional properties:
(3a) if x is the target of a dr+1-differential, then we may choose x̃ so that τ rx̃=0;
(3b) if x survives to the E∞-page, and α∈πkX is detected by x, then we may choose

x̃ so that τ−1x̃=α; in this case, we will often write α̃ for x̃.
Finally, the following generation statement holds:
(4) Fix any collection of x̃(not necessarily chosen according to (3)) such that the x

span the permanent cycles in topological degree k. Then, the τ -adic completion of the
Z[τ ]-submodule of πk,∗(νX) generated by those x̃ is equal to πk,∗(νX).(6)

The proof is somewhat involved, so we postpone it to Appendix A.1. We extract
below some more digestible corollaries of the above omnibus theorem.

Corollary 9.20. Let X denote an E-nilpotent complete spectrum with strongly
convergent E-based Adams spectral sequence. Suppose, for fixed integers a and b, that

πa,b+s(Cτ⊗νX)= 0

for all integers s⩾0. Then, it is also true that πa,b+s(νX)=0 for all s⩾0.

Proof. This is a combination of the vanishing assumption and Theorem 9.19 (4).

We next note that the filtration by “divisibility by τ ” coincides with the Adams
filtration.

Corollary 9.21. Let X denote an E-nilpotent complete spectrum with strongly
convergent E-based Adams spectral sequence. Then, the filtration of πk(X) given by

F sπk(X) := im(πk,k+s(νX)!πk(X))

coincides with the E-Adams filtration on πk(X).

Proof. We show that each filtration contains the other. Lemma 9.15 provides an
inclusion in one direction: if x∈πk(X) has E-Adams filtration ⩾s, then x∈F sπk(X).

Suppose now that x∈F sπk(X), so that we may find some x̃∈πk,k+s(νX) that maps
to x. We may assume without loss of generality that s was chosen maximally. Let y be
the image of x̃ in πk,k+s(Cτ⊗νX).

(5) The image of x̃ in πk(X) refers to the image of x̃ under the map

πk,k+s(νX)−!πk(τ
−1νX)∼=πk(X)

induced by the functor τ−1 of Theorem 9.12.
(6) We consider πk,∗(νX) as a graded abelian group with an operation τ which decreases the

grading by 1.
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Suppose that y is a boundary in the E-Adams spectral sequence. Then, by Theo-
rem 9.19 (3a), there exists a τ -power torsion element ỹ lifting y. It follows that x̃−ỹ=τ z̃

for some z̃∈πk,k+s+1(νX). But then z̃ maps to x∈πk(X) under τ−1, which implies that
x∈F s+1πk(X). This contradicts the maximality assumption on s.

We conclude that y cannot be a boundary. Then, Theorem 9.19 (2b) finishes the
proof.

Let πk,k+s(νX)tor denote the subgroup of τ -power torsion elements. We obtain the
following τ -power torsion order bound.

Corollary 9.22. Let X denote an E-nilpotent complete spectrum with strongly
convergent E-based Adams spectral sequence. Then, the τ -torsion order of πk,k+s(νX)tor

is equal to the maximum of
(1) one less than the τ -torsion order of πk,k+s+1(νX)tor,
(2) one less than the length of the longest Adams differential entering Es,k+s

∗ .

Proof. Suppose x∈πk,k+s(νX)tor, and let y denote the image of x in

πk,k+s(Cτ⊗νX).

Choose a lift ỹ of y as in Theorem 9.19 (3).
Suppose that y is not a boundary in the E-Adams spectral sequence. Then, ỹ−x is

divisible by τ , while τ−1(ỹ−x)=τ−1ỹ is detected by y, which contradicts Corollary 9.21.
We conclude that y must be a boundary in the E-Adams spectral sequence. Let r

denote the length of the differential that hits y. Then, ỹ−x is divisible by τ and ỹ is
τ r−1-torsion, so the desired bound on the τ -torsion order of x follows.

10. A synthetic Toda bracket

In this section, we will prove Theorem 7.6, which we used in §7 to prove Theorem 1.4.
That is to say, we provide for each prime p a bound on the HFp-Adams filtration of the
Toda bracket w of Lemma 6.9.

To accomplish this, we will lift the Toda bracket along the functor

τ−1: SynHFp
−!Sp

in such a way that Corollary 9.21 implies the existence of the desired bound on the
HFp-Adams filtration.

The first ingredient that we will need is a bound on the HFp-Adams filtration of the
map

J : Σ∞O⟨4n−1⟩−!S,
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at least when restricted to a skeleton of Σ∞O⟨4n−1⟩. We must restrict to a skeleton
because the map J does not otherwise have high HFp-Adams filtration.

Convention 10.1. In the remainder of this section, we fix a prime p and implicitly
p-complete all spectra. Furthermore, all synthetic spectra will be taken with respect
to HFp.

Remark 10.2. Recall from Definition 6.8 that

M −!Σ∞O⟨4n−1⟩

denotes the inclusion of an (8n−1)-skeleton of Σ∞O⟨4n−1⟩. In particular, the induced
map

H∗(M ;Fp)−!H∗(Σ
∞O⟨4n−1⟩;Fp)

is an isomorphism for ∗<8n−1 and a surjection for ∗=8n−1, and we have H∗(M ;Fp)∼=0

for ∗>8n−1.

Notation 10.3. Let h(k) denote the number of integers 0<s⩽k which are congruent
to one of 0, 1, 2, 4 mod 8. Then, we set

N2 =h(4n−1)−⌊log2(8n)⌋+1

and, for p odd,

Np =

⌊
4n

2p−2

⌋
−⌊logp(4n)⌋.

Note that this notation suppresses the dependence of N2 and Np on n.

Lemma 10.4. The HFp-Adams filtration of the composite map of spectra

M −!Σ∞O⟨4n−1⟩ J−−!S

is at least Np.

We will prove Lemma 10.4 in §10.1. Using Lemma 10.4, we proceed to construct a
lift of the diagram defining the Toda bracket w to SynHFp

. We take the first step of this
construction below.

Construction 10.5. By Lemma 9.15, Lemma 10.4 implies the existence of a factor-
ization in SynHFp

,

S0,−Np

νM S0,0,

τNp

J
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which we will prefer to view as a morphism

J̃ : Σ0,NpνM −!S0,0 .

As in Definition 6.8, we view x as an element of π4n−1M . We may then obtain a class y

as the composition

y:S4n−1,4n+Np−1 ν(x)−−−−!Σ0,NpνM
J̃−−!S0,0 .

This element y is a member of the bigraded homotopy group π4n−1,4n+Np−1 S0,0.

Before constructing our lift of the Toda bracket w, we reproduce the relevant dia-
gram, which appeared in Lemma 6.9, for the convenience of the reader:

S8n−2 S8n−2 M

S.

2

0

0

h

f

xJ(x)

J(x)2J(x)2 J

g

The homotopies f , g, and h are chosen as follows:
• f is an arbitrary nullhomotopy;
• g is the canonical homotopy associated to the fact that J is a map of S-modules;
• h is the canonical nullhomotopy given by the E∞-ring structure on S.

Construction 10.6. We may form the following diagram of morphisms and homo-
topies in SynHFp

:

S8n−2,8n+2Np−2 S8n−2,8n+2Np−2 Σ0,Npν(M)

S0,0,

2

0

0

h̃

f̃

ν(x)y

y2
J̃

g̃
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where the homotopies f̃ , g̃, and h̃ are chosen as follows:
• f̃ is an arbitrary nullhomotopy, which exists as a consequence of Proposition 10.7:
• g̃ is the canonical homotopy that expresses the fact that J̃ is a map of right

S0,0-modules;
• h̃ is the canonical nullhomotopy that comes from the fact that S0,0 is an E∞-ring

in the symmetric monoidal ∞-category SynHFp
.

Proposition 10.7. The bigraded homotopy group π8n−2,8n+Np−2(νM) is trivial
for n⩾3.

We will prove Proposition 10.7 in §10.2. By construction, the diagram of Construc-
tion 10.6 maps under the symmetric monoidal functor τ−1 to the diagram of Lemma 6.9.
We are therefore able to read off the following HFp-Adams filtration bound on the re-
sulting Toda bracket.

Theorem 10.8. There exists a choice of f in the statement of Lemma 6.9 such that
the HFp-Adams filtration of the Toda bracket w is at least 2Np−1.

Proof. On the one hand, applying τ−1 to the diagram of Construction 10.6 yields
the diagram of Lemma 6.9. On the other hand, the Toda bracket presented by Con-
struction 10.6 is given by an element of π8n−1,8n+2Np−2 S0,0. Therefore, Corollary 9.21
implies that it realizes to an element of Adams filtration at least

(8n+2Np−2)−(8n−1)=2Np−1.

Remark 10.9. As mentioned in the introduction, this is an improvement on a bound
of Stolz (cf. [90, Satz 12.7]), who works at p=2, and bounds the HF2-Adams filtration of
w by approximately N2.

In the rest of this section, we will prove Lemma 10.4 and Proposition 10.7.

10.1. Proof of Lemma 10.4

Our proof of Lemma 10.4 is similar to Stolz’s proof of [90, Satz 12.7].
At the prime 2, our argument will be based on Stong’s computation of the cohomol-

ogy of BO⟨m⟩ in [92]. At an odd prime, we base our argument on Singer’s computation
of the cohomology of U⟨2m−1⟩ in [87]. We begin with some notation.

Notation 10.10. Given a prime p and an integer n with p-adic expansion n=
∑

i aip
i,

we let σp(n)=
∑

i ai.
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Notation 10.11. Let θi∈Hi(BO;F2) for i⩾1 denote the polynomial generators fixed
by Stong in [92], so that Hi(BO;F2)∼=F2[θi :i⩾1].

Moreover, let Gm denote the image of the canonical map

H∗(K(πm BO⟨m⟩,m);F2)−!H∗(BO⟨m⟩;F2).

Theorem 10.12. ([92, Theorem A and Corollary on p. 542]) There is an isomor-
phism

H∗(BO⟨m⟩;F2)∼=F2[θi :σ2(i−1)⩾h(m)]⊗Gm.

Moreover, Gm is a polynomial algebra.

Notation 10.13. Fix an odd prime p. We let µ2i+1∈H2i+1(U;Fp) for i⩾0 denote the
exterior generators fixed by Singer in [87], so that

H∗(U;Fp)∼=ΛFp(µ2i+1 : i⩾ 0).

Theorem 10.14. ([87, equations (4.14n) and (4.15n)]) Let p be an odd prime. Then,
there is an isomorphism

H∗(U⟨2m−1⟩;Fp)∼=
H∗(U;Fp)

(µ2i+1 :σp(i)<m−1)⊗Hm,

where Hm⊆H∗(U⟨2m−1⟩;Fp) is a sub-Hopf algebra.
Moreover, the image of the map

H∗(U⟨2m−2p+1⟩;Fp)−!H∗(U⟨2m−1⟩;Fp)

is
H∗(U;Fp)

(µ2i+1 :σp(i)<m−1)⊗1.

From the above results we can read off the behavior of mod-p cohomology under the
maps in the Whitehead tower of O.

Corollary 10.15. Assume that m≡0, 1, 2, 4 mod 8. Then, the map

O⟨m⟩−!O⟨m−1⟩

induces zero on H∗(−;F2) for 0<∗<2h(m)−1.

Proof. It follows from Theorem 10.12 that the mod-2 cohomology of BO⟨m⟩ is poly-
nomial. It therefore follows from [88, Part II, Corollary 3.2] that the Eilenberg–Moore
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spectral sequence for H∗(O⟨m−1⟩;F2) collapses at the E2-page with E2-term an exterior
algebra on the transgressions of polynomial generators for H∗(BO⟨m⟩;F2).

Since H∗(K(πm BO,m);F2) is also polynomial by [86, Théorèmes 2 and 3], the
Eilenberg–Moore spectral sequence for H∗(K(πm BO,m−1),F2) similarly degenerates
at the E2-page, with E2-term an exterior algebra on the transgressions of polynomial
generators for H∗(K(πm BO,m);F2).

As
BO⟨m⟩−!K(πm BO,m)

induces a surjective map on H∗(−;F2) for ∗<2h(m), we find by the above that it induces
a surjective map on E2 and therefore E∞ page of the Eilenberg–Moore spectral sequence
through degree 2h(m)−2. We conclude that the bottom Postnikov map

O⟨m−1⟩−!K(πm BO,m−1)

induces a surjection on cohomology through degree 2h(m)−2, and therefore that

O⟨m⟩!O⟨m−1⟩

induces zero on H∗(−;F2) in the desired range.

As we will need it later, we state the following corollary to the proof of Corol-
lary 10.15.

Corollary 10.16. Assume that m≡0, 1, 2, 4 mod 8. Then, the map

O⟨m−1⟩−!K(πm BO,m−1)

induces a surjective map on H∗(−;F2) for ∗⩽2h(m)−2.

Corollary 10.17. Let p be an odd prime. Then, the map

O⟨4m+2p−3⟩−!O⟨4m−1⟩

induces zero on H∗(−;Fp) for

0< ∗< 2p2m/(p−1)−1.

Proof. We begin by noting that, since O⟨n⟩ is a summand of U⟨n⟩ compatibly in n

(recall that we have implicitly completed at an odd prime), it suffices to prove that the
map

U⟨4m+2p−3⟩−!U⟨4m−1⟩
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induces zero on H∗(−;Fp) for

0< ∗< 2p2m/(p−1)−1.

By Theorem 10.14, the image of the map

H∗(U⟨4m−1⟩;Fp)−!H∗(U⟨4m+2p−3⟩;Fp)

is of the form
H∗(U;Fp)

(µ2i+1 :σp(i)< 2m+p−2) .

It follows that the lowest positive-degree element of the image is µ2j+1, where j is the
smallest integer such that σp(j)=2m+p−2.

This implies that

j⩾
⌊(2m−1)/(p−1)⌋+1∑

i=1

(p−1)pi−1 = p⌊(2m−1)/(p−1)+1⌋−1⩾ p2m/(p−1)−1,

so that
2j+1⩾ 2p2m/(p−1)−1,

from which the result follows.

We are now able to prove the desired Adams filtration bounds.

Lemma 10.18. Let Mk!Σ∞O⟨m−1⟩ denote the inclusion of a k-skeleton for k⩾1.
Then, the composite map

Mk −!Σ∞O⟨m−1⟩ J−−!S

has HF2-Adams filtration at least

h(m−1)−⌊log2(k+1)⌋+1.

Proof. Factoring the map

Σ∞O⟨m−1⟩−!Σ∞O⟨1⟩=Σ∞ SO

through the Whitehead tower and taking k-skeleta, we find that the resulting map has
HF2-Adams filtration at least

|{s∈N : s≡ 0, 1, 2, 4 mod 8, 2⩽ s⩽m−1 and k < 2h(s)−1}|

by Corollary 10.15. Since k⩾1, this is bounded below by

h(m−1)−|{s∈N : s≡ 0, 1, 2, 4 mod 8 and log2(k+1)⩾h(s)}|,
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which is equal to
h(m−1)−⌊log2(k+1)⌋.

Since J : Σ∞ SO!S is also zero on H∗(−;F2), we conclude that the HF2-Adams
filtration of

Mk −!Σ∞O⟨m−1⟩ J−−!S

is at least
h(m−1)−⌊log2(k+1)⌋+1.

Lemma 10.19. Let p be an odd prime. Then, if Mk!Σ∞O⟨4m−1⟩ denotes the
inclusion of a k-skeleton, the composite map

Mk −!Σ∞O⟨4m−1⟩ J−−!S

has HFp-Adams filtration at least⌊
4m

2p−2

⌋
−
⌊
logp

(
k+1

2

)⌋
.

Proof. Again, factoring the map Σ∞O⟨4m−1⟩!Σ∞ SO through the Whitehead
tower and taking k-skeleta, we find that Corollary 10.17 implies that the resulting map
has HFp-Adams filtration at least

|{s∈N : s≡ 0 mod 2p−2, 2⩽ s⩽ 4m−2p−2 and k < 2p
s

2p−2−1}|.

This is at least as large as⌊
4m−2p−2

2p−2

⌋
−
∣∣∣∣{s∈N : s≡ 0 mod 2p−2 and logp

(
k+1

2

)
⩾

s

2p−2

}∣∣∣∣,
which is equal to ⌊

4m

2p−2

⌋
−1−

⌊
logp

(
k+1

2

)⌋
.

Since
J : Σ∞ SO−!S

is also zero on H∗(−;Fp), we conclude that the HFp-Adams filtration of

Mk −!Σ∞O⟨4m−1⟩ J−−!S

is at least ⌊
4m

2p−2

⌋
−
⌊
logp

(
k+1

2

)⌋
.

Proof of Lemma 10.4. Set m=4n and k=8n−1 in Lemma 10.18 and set m=n and
k=8n−1 in Lemma 10.19.
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10.2. Proof of Proposition 10.7

We will prove Proposition 10.7 by using Corollaries 9.13 and 9.20 to reduce it to a
statement about the vanishing of certain bidegrees in the E2-page of the Adams spectral
sequence for Σ∞O⟨4n−1⟩. Thus, our task is to compute this E2-page in a range. We
begin with the proof in the odd-primary case.

Proof of Proposition 10.7 for odd p. We will show that

π8n−2,8n−2+k(νM)= 0

for all k⩾0. Since M is finite and implicitly p-completed, its HFp-based Adams spectral
sequence converges strongly [17, Theorem 6.6], and we may apply Corollary 9.20. It
therefore suffices to show that

π8n−2,8n−2+k(Cτ⊗νM)= 0

for all k⩾0. By Corollary 9.13,

π8n−2,8n−2+k(Cτ⊗νM)∼=Ek,8n−2+k
2 (M).

We prove this last group is zero by comparison with the E2-page of the HFp-Adams
spectral sequence for ko. First, we note that it follows from the definition of M , Corol-
lary 4.6 and Lemma 4.7 that

M −!Σ∞ O⟨4n−1⟩−!Σ−1τ⩾4n ko

is (8n−1)-connected at an odd prime. It therefore suffices to show that

Ek,8n−1+k
2 (τ⩾4n ko)=0.

This follows from the structure of the HFp-Adams spectral sequence for τ⩾4n ko, which
is equivalent to Σ4n ko, since we are working at an odd prime. The structure of this
spectral sequence may be deduced from [80, Theorem 3.1.16] and the fact that ko is a
summand of ku at odd primes.

We begin the proof for p=2 with the following lemma.

Lemma 10.20. The canonical map

Σ∞O⟨4n−1⟩−!Σ−1τ⩾4n ko

is surjective on H∗(−;F2) for ∗⩽8n−1 whenever n⩾3.
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Proof. Consider the following diagram:

Σ∞O⟨4n−1⟩ Σ−1τ⩾4n ko

Σ∞K(Z, 4n−1) Σ4n−1HZ,

where the vertical maps come from taking the first non-zero Postnikov sections of

O⟨4n−1⟩ and Σ−1τ⩾4n ko .

The left vertical map is surjective on H∗(−;F2) for ∗⩽2h(4n)−2 by Corollary 10.16.
Therefore, under our assumption that n⩾3, it suffices to show that the bottom horizontal
map is surjective on H∗(−;F2) for ∗⩽8n−1. The algebra H∗(K(Z, 4n−1);F2) is gener-
ated as an algebra by the image of H∗(Σ4n−1HZ) by [86, Théorème 3]. Letting i4n−1∈
H4n−1(K(Z, 4n−1);F2) denote the fundamental class, it follows that the only classes in
the relevant range that might not be in the image are i24n−1 and (Sq1 i4n−1)(i4n−1). But
i24n−1=Sq4n−1 i4n−1 and Sq1 i4n−1=0, so the result follows.

Proposition 10.21. Assume that n⩾3. In the range t−s⩽8n−3, there is an iso-
morphism of E2-pages of HF2-Adams spectral sequences

Es,t
2 (Σ∞O⟨4n−1⟩)∼=Es,t

2 (Σ−1τ⩾4n ko).

Moreover, for t−s=8n−2, we have an isomorphism

Es,t
2 (Σ∞O⟨4n−1⟩)∼=Es−1,t

2 (ΣD2(Σ
−1τ⩾4n ko))∼=

{
0, if (s, t) ̸=(1, 8n−1),
Z/2Z, if (s, t)= (1, 8n−1).

Proof. By Lemma 10.20 and the tower of Corollary 4.6, there is a short exact se-
quence

0−!H∗(ΣD2(Σ
−1τ⩾4n ko))−!H∗(Σ−1τ⩾4n ko)−!H∗(O⟨4n−1⟩)−! 0

for ∗⩽8n−1.
By Lemma 4.7, the bottom homotopy group of ΣD2(Σ

−1τ⩾4n ko) is

π8n−1ΣD2(Σ
−1τ⩾4n ko)∼=Z/2Z.

It follows that

Es,t
2 (ΣD2(Σ

−1τ⩾4n ko))∼=
{

0, if t−s⩽ 8n−1 and (s, t) ̸=(0, 8n−1),
Z/2Z, if (t, s)= (0, 8n−1).

The desired result now follows from the long exact sequence on E2-terms induced
by the short exact sequence on cohomology, since non-trivial connecting maps are ruled
out for bidegree reasons.
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Adams spectral sequence of Σ∞O〈15〉 in the range 0 ≤ t− s ≤ 30

0 4 8 12 16 20 24 28

0
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x
x2

1

Figure 1. Adams spectral sequence of Σ∞O⟨15⟩ in the range 0⩽t−s⩽30.

Remark 10.22. Since we know by Corollary 4.8 that π8n−2Σ
∞O⟨4n−1⟩∼=Z/2Z is

generated by the class x2, the non-zero class in E1,8n−1
2 (Σ∞O⟨4n−1⟩)∼=Z/2Z must rep-

resent x2 on the E∞ page.

To illustrate the result of Proposition 10.21, we include (Figure 1) a picture of the
Adams spectral sequence for Σ∞O⟨15⟩ in the range determined by Proposition 10.21.
Note that the spectral sequence must collapse in this range for sparsity reasons.

Proof of Proposition 10.7 when p=2. We will show that

π8n−2,8n−2+k(νM)= 0

for all k⩾2, which is sufficient since N2⩾3 for n⩾3. Since M is finite and implicitly 2-
completed, its HF2-based Adams spectral sequence converges strongly [17, Theorem 6.6],
and we may apply Corollary 9.20. It therefore suffices to show that

π8n−2,8n−2+k(Cτ⊗νM)= 0

for all k⩾2. By Corollary 9.13,

π8n−2,8n−2+k(νM⊗Cτ)∼=Ek,8n−2+k
2 (M)∼=Ek,8n−2+k

2 (Σ∞O⟨4n−1⟩),

which is zero for k⩾2 by Proposition 10.21.
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11. Vanishing lines in synthetic spectra

This section begins our study of vanishing lines in Adams spectral sequences, which
is subject of §§11-15 and Appendix B. In this section, our main concern will be the
genericity properties of various notions of vanishing lines in synthetic spectra. A key
feature of our methods is that they make clear how the intercepts of such vanishing lines
change in cofiber sequences. Our results are used in §12 to obtain an explicit vanishing
line in the Adams–Novikov spectral sequence for the p-local sphere, for each p⩾3. In
Appendix B the results of §§11 and 12 are used to deduce Theorem 1.7 (2).

Our genericity results recover versions of the genericity results of Hopkins, Palmieri
and Smith [47] for finite-page vanishing lines in E-Adams spectral sequences. One side
effect of our use of synthetic spectra is that we only prove results for E of Adams type.

Definition 11.1. A thick subcategory C of Sp (resp. SynE) is a full subcategory which
satisfies the following properties:

• it is closed under suspensions Σn (resp. Σp,q) for n, p, q∈Z;
• it is closed under retracts;
• if X!Y!Z is a cofiber sequence and any two of X0, Y , and Z are in C, then so

is the third.
Following [47, Definition 1.1], we say that a property of (synthetic) spectra is generic

if the full subcategory of (synthetic) spectra satisfying that property is thick.

We now define four notions of vanishing line.

Definition 11.2. Given a synthetic spectrum X, we will say that
(1) X has a vanishing line of slope m and intercept c if πk,k+s(X)=0 whenever

s>mk+c.
(2) X has a strong vanishing line of slope m and intercept c if X⊗νE(Y ) has a

vanishing line of slope m and intercept c for every connective spectrum Y ∈Sp⩾0.
(3) X has a finite-page vanishing line of slope m, intercept c and torsion level r if

every class in πk,k+s(X) is τ r-torsion when s>mk+c.
(4) X has a strong finite-page vanishing line of slope m, intercept c and torsion level

r if X⊗νE(Y ) has a finite-page vanishing line of slope m, intercept c and torsion level r
for every Y ∈Sp⩾0.

Remark 11.3. The compatibility of νE with filtered colimits implies that the presence
of a strong (finite-page) vanishing line need only be checked on finite Y ∈Sp⩾0.

Remark 11.4. A (strong) vanishing line of slope m and intercept c is equivalent to
a (strong) finite-page vanishing line of slope m, intercept c and torsion level zero.
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k-axis

s-axis

c

slope-m line

Figure 2. In this figure we display a picture of what the Er+2-page of the E-Adams spectral
sequence of an E-nilpotent complete spectrum that admits a finite-page vanishing line of
slope m, intercept c and torsion level r looks like. Namely, the region strictly above the
vanishing line must consist of zero groups on the Er+2-page.

Remark 11.5. Given an E-nilpotent complete spectrum X, we will say that the E-
based Adams spectral sequence for X admits a (strong) (finite-page) vanishing line if
νE(X) does. This is justified by the following proposition.

Proposition 11.6. Given an E-nilpotent complete spectrum Y , νE(Y ) admits a
finite-page vanishing line of slope m, intercept c and torsion level r if and only if

Es,k+s
r+2 =0 for s>mk+c.

We will need the following technical lemmas in the proof of Proposition 11.6.

Lemma 11.7. Given an E-nilpotent complete spectrum Y , the E-based Adams spec-
tral sequence for Y converges strongly if νE(Y ) admits a finite-page vanishing line of
positive slope.

Proof. By Proposition A.16, it suffices to show that the τ -Bockstein spectral se-
quence for νE(Y ) converges strongly. By Theorem A.17, to show strong convergence it
will suffice to show that there are only finitely many differentials exiting each tridegree.
But the finite-page vanishing line for νEY implies that every dτ−BSS

s with s>r+1 and
target above the vanishing line must be zero. This implies that each group in the τ -
Bockstein spectral sequence may only be the source of only finitely many differentials,
as required.
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Lemma 11.8. Let Y denote an E-nilpotent complete spectrum, and suppose that
there exist numbers m>0, c and r for which the E-Adams spectral sequence of Y satisfies
Es,k+s
r =0 for s>mk+c. Then, the E-Adams spectral sequence for Y converges strongly.

Proof. It follows from the assumption that each group in the spectral sequence
can only have finitely many differentials originating from it, so the result follows from
Theorem A.17.

Proof of Proposition 11.6. Let Y denote an E-nilpotent complete spectrum satisfy-
ing one of the conditions in the statement of the proposition. By either Lemma 11.7 or
Lemma 11.8, the E-Adams spectral sequence for Y converges strongly. We are therefore
free to invoke Theorem 9.19 in the following.

Assume that νE(Y ) admits a finite-page vanishing line of slope m, intercept c and
torsion level r, and suppose that there exists 0 ̸=x∈Es,k+s

r+2 with s>mk+c. If x is the
source of a differential, we may replace it by its target and therefore assume without loss
of generality that x is a permanent cycle. Let y∈Es,k+s

2 be a representative of x. Invoking
Theorem 9.19, we conclude that there exists ỹ∈πs,k+s(νEY ) which is not τ r-torsion, a
contradiction.

Now suppose that Es,k+s
r+2 =0 when s>mk+c. Applying Theorem 9.19, we see that

every element of the form x̃ above the vanishing line is τ r-torsion. Theorem 9.19 also
implies that the τ -adic completion of the Z[τ ]-submodule of the bigraded homotopy
generated by such x̃ is exactly π∗,∗(νEY ). From the uniform bound on the τ -torsion
order, we learn that the completion was unnecessary. It follows that every class in
πk,k+s(νEY ) is τ r-torsion when s>mk+c, i.e. that νEY admits a finite-page vanishing
line of slope m, intercept c and torsion level r.

We now state the main result of this section.

Theorem 11.9. Given a slope m>0, the following four conditions on a synthetic
spectrum X are generic:

(1) X has a vanishing line of slope m;
(2) X has a strong vanishing line of slope m;
(3) X has a finite-page vanishing line of slope m;
(4) X has a strong finite-page vanishing line of slope m.

The proof of this theorem will be given over the course of two lemmas.

Lemma 11.10. Let X be a synthetic spectrum with (strong) (finite-page) vanishing
line of slope m, intercept c and torsion level r. Then, the following statements hold :

(1) Any retract of X has a (strong) (finite-page) vanishing line of slope m, intercept
c and torsion level r;
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(2) Σk,kX has a (strong) (finite-page) vanishing line of slope m, intercept c−mk

and torsion level r;
(3) Σ0,sX has a (strong) (finite-page) vanishing line of slope m, intercept c+s and

torsion level r.

Proof. The first claim follows from the fact that the bigraded homotopy groups of a
retract of X are a retract of the bigraded homotopy groups of X. The second and third
claims follow from keeping track of the change in indexing of the bigraded homotopy
groups under bigraded suspensions.

Lemma 11.11. Given a cofiber sequence of synthetic spectra

A
f−−!B

g−−!C

such that the following conditions hold :
(1) A has a (strong) (finite-page) vanishing line of slope m, intercept c1 and torsion

level r1;
(2) C has a (strong) (finite-page) vanishing line of slope m, intercept c2 and torsion

level r2.
Then, the synthetic spectrum B has a (strong) (finite-page) vanishing line of slope m,

intercept max(c1+r2, c2) and torsion level r1+r2.

Proof. Remark 11.4 implies that it will suffice to prove the finite-page versions of
this lemma. One can also easily see that the strong versions follow from the weak versions
applied to all cofiber sequences of the form

A⊗νE(Y )−!B⊗νE(Y )−!C⊗νE(Y ),

where Y ∈Sp⩾0.
We finish the proof by proving the statement for finite-page vanishing lines. Suppose

that α∈πk,k+s(B), with s>mk+max(c1+r2, c2). From the finite-page vanishing line
for C the class g(α) is τ r2 -torsion. Thus, there is a class α′∈πk,k+s−r2(A) such that
f(α′)=τ r2α. By assumption, s−r2>mk+c1, so the finite-page vanishing line for A tells
us that α′ is τ r1 -torsion. In particular, τ r1+r2α=0, as desired.

Combining Lemmas 11.10 and 11.11 gives the proof of Theorem 11.9. We record the
following corollary, which will find use in §12.

Corollary 11.12. The synthetic spectrum CτM has a strong finite-page vanishing
line of slope m, intercept c and torsion level M for every slope m and intercept c.
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Proof. We proceed by induction on M . The base case follows from the fact that Cτ

is a ring [77, Corollary 4.45], and therefore every Cτ -module has homotopy groups which
are simple τ -torsion. For M>1, we apply Lemma 11.11 to the cofiber sequences

Σ0,−1CτM−1−!CτM −!Cτ.

Next, we prove a version of [47, Theorem 1.3].

Theorem 11.13. Given a slope m>0, the following conditions on an E-local spec-
trum X are generic:

(1) νE(X) admits a finite-page vanishing line of slope m;
(2) νE(X) admits a strong finite-page vanishing line of slope m.

Remark 11.14. Specializing to the case where X is E-nilpotent complete, Proposi-
tion 11.6 and Theorem 11.13 (1) together recover a version of [47, Theorem 1.3 (i)].

Our assumptions on E in Theorem 11.13 differ from those given in [47, Condi-
tion 1.2]. We assume that E is of Adams type, whereas [47] assumes, among other
things, that E is connective.

To deduce Theorem 11.13 from Theorem 11.9, we need to bound the extent to which
νE fails to preserve cofiber sequences.

Lemma 11.15. Let X!Y!Z be a cofiber sequence of E-local spectra. Moreover,
let C denote the cofiber of νE(X)!νE(Y ). Then, the cofiber D of the induced map
C!νE(Z) is a Cτ -module.

Proof. We may build a commutative diagram

νE(X) νE(Y ) C Σ1,0νE(X) Σ1,0νE(Y )

νE(X) νE(Y ) νE(Z) νE(ΣX) νE(ΣY )

idνE(X) idνE(X) τ τ

out of the comparison maps between colimits before applying νE and after. By [77,
Remark 4.61], there is a natural isomorphism

(νE)k,k+∗(νE(W ))∼=Ek(W )[τ ]

for any spectrum W . This is an isomorphism of bigraded groups if Ek(W ) is considered
to have bidegree (k, k) and τ is given bidegree (0, 1). Applying νE∗,∗(−), we obtain a
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diagram

Ek(X)[τ ] Ek(Y )[τ ] νEk,k+∗(C) Σ0,−1Ek−1(X)[τ ] Σ0,−1Ek−1(Y )[τ ]

Ek(X)[τ ] Ek(Y )[τ ] Ek(Z)[τ ] Ek−1(X)[τ ] Ek−1(Y )[τ ],

id id ·τ ·τ

where both the top and bottom rows are exact: the top is exact because it arose from
applying νE∗,∗ to a cofiber sequence, and the bottom is exact because it is obtained by
adjoining τ to an exact sequence. Letting f :Ek(X)!Ek(Y ) denote the map induced by
X!Y , we find that

0−! νEk,k+∗(C)−!Ek(Z)[τ ]−! ker(f)k−1−! 0

is exact. Recalling that we defined D to be the cofiber of C!νE(Z), we conclude that

νEk,k+ℓ(D)=

{
ker(f)k−1, if ℓ=0,
0, otherwise.

This is sufficient to conclude that D is a Cτ -module, from our assumptions that X, Y ,
and Z are E-local. Indeed, this is a combination of citations to [77]. In the language of
that paper D is hypercomplete [77, Propositions 5.4 and 5.6]. Therefore, [77, Theorem
4.18] implies that D lies in the heart of the natural t-structure on SynE , which is discussed
in [77, §4.2]. By [77, Lemmas 4.42 and 4.43], there is an adjunction

ε∗: SynE StableE∗E :ε∗,

with ε∗ lax symmetric monoidal and which induces an equivalence on the hearts. It
follows that D≃ε∗(ε∗(D)). Since Cτ≃ε∗(E∗) as E∞-rings [77, Corollary 4.45], we have
that D≃ε∗(ε∗(D)) is a Cτ -module by lax symmetric monoidality of ε∗.

Corollary 11.16. Let A!B!C be a cofiber sequence of E-local spectra and sup-
pose that

(1) νE(A) has a (strong) finite-page vanishing line of slope m, intercept c1 and
torsion level r1;

(2) νE(C) has a (strong) finite-page vanishing line of slope m, intercept c2 and
torsion level r2.

Then, we have that νE(B) has a (strong) finite-page vanishing line of slope m,
intercept max(c1+r2, c2)+1 and torsion level r1+r2+1.
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Proof. By Lemma 11.11, the cofiber X of νE(ΣC)!νE(A) has a (strong) finite-
page vanishing line of slope m, intercept max(c1+r2, c2) and torsion level r1+r2. By
Lemma 11.15, the cofiber Y of X!νE(B) is a Cτ -module. It follows that Y has a strong
finite-page vanishing line of slope m, arbitrary negative intercept and torsion level 1.

Applying Lemma 11.11 to X!νE(B)!Y , we obtain the desired result.

Proof of Theorem 11.13. This follows from Corollary 11.16, Lemma 11.10 and the
fact that νE sends retracts to retracts and suspensions to bigraded suspensions.

Finally, we record a lemma which is useful in establishing (strong) vanishing lines.
We say that a synthetic spectrum is τ -complete if the natural map X!lim←−X⊗Cτn is
an equivalence.

Lemma 11.17. A τ -complete synthetic spectrum X has a vanishing line (resp. strong
vanishing line) of slope m⩾0 and intercept c if and only if X⊗Cτ does.

Proof. The “only if” direction is easy and follows from considering the exact sequence

πa,b(X)−!πa,b(X⊗Cτ)−!π1,−1(X).

For the “if” direction we first note by induction that X⊗Cτn admits a (strong)
vanishing line of slope m and intercept c. For this, it suffices to apply Lemmas 11.10
and 11.11 to the cofiber sequences

Σ0,−nCτ −!Cτn+1−!Cτn.

In the non-strong case, the result now follows from the τ -completeness of X. The
potential lim1 vanishes because of the assumed vanishing line.

In the strong case, we must also prove that X⊗νE(Y ) is τ -complete for finite Y . We
will show that the collection of Y for which X⊗νE(Y ) is τ -complete is thick. Since it
contains S0, it will then contain all finite spectra. It is clearly closed under suspensions
and retracts. Suppose that Z1!Z2!Z3 is a cofiber sequence with the property that
X⊗νE(Z1) and X⊗νE(Z2) are τ -complete. We will show that X⊗νE(Z3) is τ -complete.

Write C for the cofiber of νE(Z1)!νE(Z2). Then, X⊗C is τ -complete, and there
is a cofiber sequence

X⊗C −!X⊗νE(Z3)−!X⊗D,

where D is a Cτ -module by Lemma 11.15. It follows that X⊗D is τ -complete, and hence
that X⊗νE(Z3) is τ -complete, as desired.
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12. An Adams–Novikov vanishing line

Using ideas from §11, we prove a strong finite-page vanishing line on νBP(S0). This line
is not visible on the E2-page of the spectral sequence. The vanishing line will be used
in Appendix B to provide the explicit numerical control over the function Γ(k) required
in §7.

Convention 12.1. In this section, we will fix a prime p and implicitly p-localize all
spectra. Furthermore, all synthetic spectra will be taken with respect to BP.

Theorem 12.2. For p⩾3, the BP-synthetic sphere νBP(S0) has a strong finite-page
vanishing line of slope m, intercept c and torsion level r, where

m=
1

p3−p−1 , c=2p2−4p+9− 2p2+2p−10
p3−p−1 , and r=2p2−4p+2.

Remark 12.3. The key content of Theorem 12.2 is not the slope of the vanishing
line, but rather the explicit values for the intercepts and torsion levels.(7)

Notation 12.4. We let

β̃1 ∈π2p2−2p−2,2p2−2p(νBP(S0))

denote a synthetic lift of β1∈π2p2−2p−2(S0) as in Theorem 9.19 (3).

The proof of Theorem 12.2 consists of two main steps:
(1) We show that C(β̃1) admits a strong vanishing line of slope 1/(p3−p−1) and

explicit intercept.
(2) Using the fact that β1 is nilpotent topologically, we apply Step (1) and the

results of §11 to show that νBP(S0) admits the desired strong finite-page vanishing line.
Our proof of (1) will be based on the homological algebra of P∗-comodules, where

P∗ is the polynomial part of the dual Steenrod algebra.

Recollection 12.5. Let r denote the map of Hopf algebroids

(BP∗,BP∗ BP)
r−−! (Fp, P∗).

Thinking in terms of the associated stacks we have a pullback/pushforward adjunction
between the associated categories of sheaves

ε∗: StableBP∗ BP StableP∗ : ε∗.

(7) Indeed, an argument of Hopkins and Smith shows that the Devinatz–Hopkins–Smith nilpotence
theorem is equivalent to the following statement: given any positive slope ε>0, the Adams–Novikov
spectral sequence for S0 admits a vanishing line of slope ε at some finite page (see [69, Theorem 3.30]
for a published account of this argument). By Proposition 11.6, this is equivalent to saying that νBPS0
has a finite-page vanishing line of slope ε for every positive ε.
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Concretely, at the level of comodules, r∗ sends a BP∗ BP-comodule M to the tensor
product Fp⊗BP∗M viewed as P∗-comodule.

From [77, Proposition 4.53] we know that the symmetric monoidal embedding

ModCτ −!StableBP∗ BP

of Theorem 9.12 is an equivalence. As such, we will abuse notation by applying r∗ directly
to Cτ -modules.

The reduction to P∗-comodules is carried out by the following lemma whose main
input is an algebraic lemma of Krause [54, Proposition 4.22]. For the statement of this
lemma, we use the notion of vanishing lines in Ext groups (which are a sort of bigraded
homotopy groups) from §4 of Krause’s work.

Lemma 12.6. If X is a compact and τ -complete object of SynBP with the property
that r∗(Cτ⊗X) admits a vanishing line of slope m and intercept c, then X admits a
strong vanishing line of the same slope and intercept.

Proof. By Lemma 11.17, it suffices to show that Cτ⊗X⊗νBP(A) admits a vanishing
line of slope m and intercept c for all A∈Sp⩾0. The vanishing statements we wish to
prove are compatible with filtered colimits (as is νBP), therefore it suffices to restrict to
the case where A is finite.

The symmetric monoidal equivalence of ModCτ and StableBP∗ BP provides us with
a derived BP∗ BP-comodule �X associated to Cτ⊗X, and equivalences

πt−s,t(Cτ⊗X⊗νBP(A))∼=Exts,tBP∗ BP(BP∗,�X⊗BP∗BP∗ A).

Let us now show that it suffices to address the case when A=S0. The category of
connective comodules over the Hopf algebroid (BP∗,BP∗ BP) has enough projectives
by the main result of [82], so we may fix a resolution A� of BP∗ A whose associated
graded consists of positive shifts of BP∗. We will prove that the desired vanishing line
already exists on the first page of the spectral sequence associated to the filtered object
�X⊗BP∗A�. By our choice of filtration this reduces to showing that Exts,tBP∗ BP(BP∗,�X)

has the desired vanishing line, as we wanted.
By our assumption that X is compact, �X is compact as an object of StableBP∗ BP.

It therefore follows from the proof of [54, Proposition 4.22] that �X and r∗�X admit the
same vanishing lines, as desired.

As a corollary to the above, we obtain the following well-known vanishing line. We
will make use of it in our proof of Theorem 12.2.
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Proposition 12.7. Let p be an odd prime. Then, νBP(S0) is τ -complete and has a
vanishing line of slope m and intercept c, where

m=
1

p2−p−1 and c=1− 2p−3
p2−p−1 .

Proof. Since S0 is BP-nilpotent complete, Proposition A.13 implies that νBP(S0) is
τ -complete. Hence, by Lemma 12.6, it suffices to show that the desired vanishing line is
present in

Exts,tP∗
(Fp,Fp).

This vanishing line is already visible in the E1-page of the May spectral sequence for Ext
over P∗.

We now establish the desired vanishing line for C(β̃1).

Lemma 12.8. The synthetic spectrum C(β̃1) has a strong vanishing line of slope m

and intercept c, where

m=
1

p3−p−1 and c=8− 4p2−11
p3−p−1 .

Proof. We begin by noting that C(β̃1) is τ -complete by Proposition 12.7 and the
fact that τ -completeness is closed under finite colimits. Thus, by Lemma 12.6, it suffices
to show that Exts,tP∗

(Fp, C(β1)) has the desired vanishing line, where C(β1) is the cofiber

of the element β1∈Ext2,2p
2−2p

P∗
(Fp,Fp) in StableP∗ .

In [14, §3] Belmont shows that C(β1) satisfies the conditions of [76, Theorem 2.3.1]
with Palmieri’s parameter d equal to p3−p. While this theorem is stated for A∗ in [76],
the proof carries over for P∗. Thus, we learn that

Exts,tP∗
(Fp, C(β1))= 0 for all s>

1

d−1(t−s+α(d))+1,

where n is the minimal integer such that 2(p−1)pn>d (in our case n=2) and

α(d) :=

( ∑
s+t⩽n|ξpst |⩽d

d+(p−1)|ξp
s

t |
)
.

The above calculation of the intercept is (the P∗ version of) [76, Remark 2.3.4]. We note
that the +1 term at the end of the above inequality for s comes from the i1 term in [76,
Remark 2.3.4]. We calculate that

α(p3−p)= 7p3−4p2−7p+4,

and thereby see that Cβ̃1 has the desired vanishing line.
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We now move on to Step (2) of our proof of Theorem 12.2. Since β1 is not nilpotent
on the E2-page of the Adams–Novikov spectral sequence, the synthetic class β̃1 is not
nilpotent. It follows that we cannot complete Step (2) through a direct application of
the genericity results of §11. Instead, Theorem 9.19 will show that β̃N

1 τM=0 for some
large N and M . In this situation, we have the following lemma.

Lemma 12.9. Suppose that X is a synthetic spectrum with a self map

b: Σu,u+vX −!X

such that the following conditions hold :
• bNτM=0;
• Σ−|b|C(b) has a (strong) vanishing line of slope m and intercept c;
• v/u⩾m.
Then, X has a (strong) finite-page vanishing line of slope m, intercept c′ and torsion

level M , where
c′ = c+min(N(v−mu),M+m+1).

Proof. Consider the family of cofiber sequences

Σ−|b|C(b)−!Σ−n|b|C(bn)−!Σ−n|b|C(bn−1)

as n varies. We will prove by induction that Σ−n|b|C(bn) has a (strong) vanishing line of
slope m and intercept c. The base case is one of our hypotheses. In order to handle the
induction step, we apply Lemma 11.11 to the cofiber sequence above. By assumption
(and Lemma 11.10), we have that Σ−n|b|C(bn−1) has a (strong) vanishing line of slope
m and intercept c+mu−v. Thus, Σ−n|b|C(bn) has a (strong) vanishing line of slope m

and intercept max(c, c+mu−v)=c.
Next, we apply Lemmas 11.11 and 11.12 to the cofiber sequence

CτM
f−−!Σ−N |b|C(bNτM )

g−−!Σ−N |b|C(bN )

in order to conclude that Σ−N |b|C(bNτM ) has a (strong) finite-page vanishing line of
slope m, intercept c and torsion level M . Finally, using the splitting

C(bNτM )≃X⊕Σ(1,−M)+N |b|X,

we obtain the desired (strong) finite-page vanishing line.

To apply this lemma to prove Theorem 12.2, we need to determine the constants
that we have called N and M for X=νBP(S0) and b=β̃1. By Theorem 9.19, this comes
down to the following lemma.
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Lemma 12.10. (Ravenel) There are differentials

d9(α1β4)=β6
1 at p=3 and d33(γ3)=β18

1 at p=5

in the Adams–Novikov spectral sequence. Also, we have βp2−p+1
1 =0 at any odd prime p.

The Adams–Novikov differential with target βp2−p+1
1 has length at most

2p2−4p+3.

Proof. The 3-primary differential is part of [80, Theorem 7.5.3] and the 5-primary
differential is [80, Theorem 7.6.1]. The general bound on the order of nilpotence of β1

is proven shortly after the statement of Theorem 7.6.1 in [80], where Ravenel recounts
a classical argument of Toda for this relation. Finally, the bound on the length of the
differential follows from sparsity and the fact that there are no differentials off the 1-line
of the Adams–Novikov spectral sequence at odd primes.

Proof of Theorem 12.2. In order to prove Theorem 12.2, we apply Lemma 12.9 to
X=νBP(S0) and b=β̃1. The remainder of the proof is just a matter of computing m, c,
u, v, N , and M .

The element β̃1 has bidegree (2p2−2p−2, 2p2−2p), so u=2p2−2p−2 and v=2. By
Lemmas 12.8 and 11.10, we know Σ−|β̃1|Cβ̃1 has a strong vanishing line of slope

m=
1

p3−p−1

and intercept

c=

(
8− 4p2−11

p3−p−1

)
−
(
2− 2p2−2p−2

p3−p−1

)
=6− 2p2+2p−9

p3−p−1 .

Suppose that there exists an a in the Er+1-term of the Adams–Novikov spectral
sequence such that dr+1(a)=βN

1 . Then, by Theorem 9.19 there exists a β̃N
1 such that

β̃N
1 τ r=0. A priori it may not be true that β̃N

1 =β̃N
1 , though we do know their difference

maps to zero in Cτ and is therefore divisible by τ . In this case, we can then use Propo-
sition 12.7 to conclude that this “difference divided by τ ” is zero —seeing as it lives in a
bigrading which is zero. To summarize, we learn that if βN

1 is hit by a dr+1-differential
in the Adams–Novikov spectral sequence, then β̃N

1 τ r=0.
We may therefore cite Lemma 12.10 to obtain the values of N and M . We summarize

the values we have computed in the Table 3.
At the prime 3, the intercept is

6− 15

23
+min

(
6

(
2− 10

23

)
, 9+

1

23

)
=14+

9

23
.
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prime m u v N M

3
1

23
10 2 6 8

5
1

119
38 2 18 32

⩾7
1

p3−p2−1
2p2−2p−2 2 p2−p+1 2p2−4p+2

Table 3.

At the prime 5, the intercept is

6− 51

119
+min

(
18

(
2− 38

119

)
, 33+

1

119

)
< 38+

69

119
.

At primes ⩾7, the intercept is

6− 2p2+2p−9
p3−p−1 +min

(
(p2−p−1)

(
2− 2p2−2p−2

p3−p−1

)
, 2p2−4p+3+

1

p3−p−1

)
=2p2−4p+9− 2p2+2p−10

p3−p2−1 .

Note that the bound we write down for all primes is in fact equal to

2p2−4p+9+
2p2+2p−10
p3−p2−1 .

13. Banded vanishing lines

An overview of §§13–15. This and the following two sections are devoted to the proof
of Theorem 8.1, which will be proven as Theorem 15.1. To prove Theorem 15.1, we will
show that there exists a line of slope 1

5 on some finite page of the modified HF2-Adams
spectral sequence of the mod-8 Moore spectrum C(8) above which the only classes are
those detecting the K(1)-local homotopy of C(8).(8)

In this section, we will axiomatize this property into the defintion of a v1-banded
vanishing line on a synthetic spectrum. We will then show that the property of having a

(8) For the notion of a modified Adams spectral sequence, see [13, §3].
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v1-banded vanishing line is generic, i.e. it is closed under retractions, bigraded suspensions
and cofiber sequences of synthetic spectra. In §14, we will show that

νHF2
(Y )= νHF2

(C(2)⊗C(η))

admits a v1-banded vanishing line. In §15, we will establish a v1-banded vanishing line on
C(8̃), and use this line to prove Theorem 15.1.(9) The proof of the v1-banded vanishing
line of C(8̃) is a genericity argument, building from the case of νHF2

(Y ). As in §11
and §12, we will sedulously keep track of intercepts and torsion levels throughout.

Definition 13.1. Given a Z[τ ]-module M , we let Mtor⊂M denote the subgroup of
τ -power torsion elements and Mtf the torsion free quotient M/Mtor. When there are
other subscripts present, we will sometimes find it convenient to write M tor and M tf in
place of Mtor and Mtf , respectively.

Definition 13.2. Given a synthetic spectrum X, we let F sπk(τ
−1X)⊂πk(τ

−1X) de-
note the image of πk,k+sX!πk(τ

−1X). This defines a descending filtration on πk(τ
−1X),

which is natural in X.

Remark 13.3. The natural map πk,k+s(X)tf!F sπk(τ
−1X) is an isomorphism.

Remark 13.4. Let Y be a E-nilpotent complete spectrum whose E-Adams spectral
sequence converges strongly. By Corollary 9.21, the filtration F sπk(τ

−1νE(Y )) coincides
with the E-Adams filtration on πk(Y )∼=πk(τ

−1νE(Y )).

Convention 13.5. In the remainder of this section, we will fix a prime p and work
exclusively with the category SynHFp

of synthetic spectra with respect to HFp.

Definition 13.6. We say that a synthetic spectrum X has a v1-banded vanishing line
with

• band intercepts b⩽d,
• range of validity v,
• line of slope m<1/(2p−2) and intercept c,
• torsion bound r,

if the following conditions hold:
(i) every class in πk,k+s(X)tor is τ r-torsion for s⩾mk+c and k⩾v;
(ii) the natural map

F 1/(2p−2)k+bπk(τ
−1X)−!Fmk+cπk(τ

−1X)

(9) The synthetic spectrum C(8̃) is defined in §15. It encodes the modified HF2-Adams spectral
sequence of C(8).
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is an isomorphism for k⩾v;
(iii) the composite

F 1/(2p−2)k+bπk(τ
−1X)−!πk(τ

−1X)−!πk(LK(1)τ
−1X)

is an equivalence for k⩾v;
(iv) πk,k+s(X)=0 for s>k/(2p−2)+d.
More concisely, we will say that that X has a v1-banded vanishing line with param-

eters (b⩽d, v,m, c, r).

Remark 13.7. Given an HFp-nilpotent complete spectrum X, we will say that the
HFp-Adams spectral sequence of X admits a v1-banded vanishing line with parameters
(b⩽d, v,m, c, r) if νHFp(X) admits one. This is justified by the following proposition.

Proposition 13.8. Given an HFp-nilpotent complete spectrum X, νHFp
(X) admits

a v1-banded vanishing line with parameters (b⩽d, v,m, c, r) if and only if the HFp-based
Adams spectral sequence for X satisfies the following conditions:

(1′) Es,k+s
r+2 =Es,k+s

∞ for s⩾mk+c and k⩾v;
(2′) Es,k+s

r+2 =0 for mk+c⩽s<k/(2p−2)+b and k⩾v;
(3′) F k/(2p−2)+bπk(X)!πk(LK(1)X) is an isomorphism for k⩾v, where F is the

HFp-Adams filtration;
(4′) Es,k+s

2 =0 for all s>k/(2p−2)+d.

Proof. It follows from Lemmas 11.7 and 11.8 that the HFp-based Adams spectral
sequence for X converges strongly; therefore, we may use Theorem 9.19 and its corollaries.
By Proposition 11.6, we know that (4) and (4′) are equivalent. Using (4) to ground
the induction started by Corollary 9.22 we learn (1) and (1′) are equivalent. Using
Corollary 9.21, we may identify the filtration appearing in the definition of a banded
vanishing line with the Adams filtration. This allows us to conclude that (2) and (3) are
equivalent to (2′) and (3′), respectively.

In Figure 4 we use Proposition 13.8 to illustrate the meaning of a banded vanishing
line on νX. As we shall see, Definition 13.6 captures the behavior of the modified Adams
spectral sequence of a type-1 spectrum. Moreover, it is formulated in such a way that it is
a generic condition, i.e. the full subcategory of synthetic spectra satisfying Definition 13.6
for a fixed m and varying (b⩽d, v, c, r) is closed under retracts, bigraded suspensions and
cofiber sequences. We prove this genericity in Lemma 13.10 and Proposition 13.11. A key
feature of our approach is that we keep explicit track of how the constants (b⩽d, v, c, r)

change under retracts, bigraded suspensions and cofiber sequences.
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k-axis

s-axis

b

d

c

v

slope-m line

slope-
1

2p−2
band

Figure 4. In this figure we display a picture of what the Er+2-page of the HFp-Adams spectral
sequence of an HFp-nilpotent complete spectrum that admits an v1-banded vanishing line with
parameters (b⩽d, v,m, c, r) might look like. We highlight the following features:
(1) The top region is already empty at the E2-page.
(2) The region indicated with lightning flashes is the band (it is depicted this way since this
is how it appears for S /2) and contains all classes detected K(1)-locally.
(3) The empty region below the band vanishes by the Er+2-page.
(4) In the dotted region no conditions are imposed.

Example 13.9. The main result of [72] implies that the HFp-Adams spectral sequence
for the mod-p Moore spectrum C(p) admits a v1-banded vanishing line of slope

1

p2−p−1
for p odd. In §14, we will show that the methods of [72] may also be used to obtain a v1-
banded vanishing line of slope 1

5 in the HF2-Adams spectral sequence of Y =C(2)⊗C(η).

We begin with the behavior of Definition 13.6 under retracts and suspensions.

Lemma 13.10. (Banded genericity (part 1)) Suppose that a synthetic spectrum X

has a v1-banded vanishing line with parameters (b⩽d, v,m, c, r). Then,
(1) any retract of X has a v1-banded vanishing line with the same parameters as X;
(2) Σk,kX has a v1-banded vanishing line with parameters(

b− 1

2p−2k⩽ d− 1

2p−2k, v+k,m, c−mk, r

)
;

(3) Σ0,sX has a v1-banded vanishing line with parameters

(b+s⩽ d+s, v,m, c+s, r).
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Proof. This lemma is a version of Lemma 11.10 for banded vanishing lines. As with
the earlier lemma it follows from tracking how bigraded homotopy groups change under
retracts and bigraded suspensions.

Proposition 13.11. (Banded genericity (part 2)) Let

A
f−−!B

g−−!C
δ−−!ΣA

be a cofiber sequence of synthetic spectra such that the following two conditions hold :
• A has a v1-banded vanishing line with parameters (bA⩽dA, vA,m, cA, rA);
• C has a v1-banded vanishing line with parameters (bC⩽dC , vC ,m, cC , rC).

Then, B has a banded vanishing line with parameters (bB⩽dB , vB ,m, cB , rB), where

bB =min(bA, bC−rA)⩽max(dA, dC)= dB ,

vB =max

(
vA+1, vC ,

cB−bB
(2p−2)−1−m

)
,

cB =max(cA+rC , cC),

rB = rA+max

(
rC ,

⌊
max(dA,min(dA+rC , dC))−bC−

1

2p−2

⌋)
.

In order to prevent expressions such as F k/(2p−2)+bAπk(τ
−1A) from cluttering the

proof of Proposition 13.11, we introduce the following compact notation (which will not
appear outside this section):

λ := (2p−2)−1, L :=LK(1), Ā := τ−1A, 
B := τ−1B, 
C := τ−1C

Before starting the proof of Proposition 13.11, we prove two lemmas.

Lemma 13.12. Suppose that A
f−!B

g−!C is a cofiber sequence of synthetic spectra,
where every τ -power torsion element of πk,k+s(C) is τ r-torsion. Then, the indicated lift
exists in the diagram below:

F sπk(A) Im(F sf) ker(F sg) F sπk(B) F sπk(C)

F s−rπk(A) Im(F s−rf) ker(F s−rg) F s−rπk(B) F s−rπk(C)

Proof. Let Dc denote the long exact sequence of bigraded homotopy groups for
A!B!C considered as an acyclic chain complex such that πk,k+c(B) is placed in de-
gree zero. The complex Dc fits into a level-wise short exact sequence Dtor

c !Dc!Dtf
c ,



on the boundaries of highly connected, almost closed manifolds 285

where Dtor
c and Dtf

c are given by the same decorations applied level-wise. This lemma is
equivalent to the statement that the map

H0(D
tf
s )

τr

−−−!H0(D
tf
s−r)

is zero. Using the cofiber sequence of chain complexes above this map is isomorphic to
the map

H−1(D
tor
s )

τr

−−−!H−1(D
tor
s−r).

The latter map is zero because the map

πk,k+s(C)tor
τr

−−!πk,k+s−r(C)tor

is zero.

Lemma 13.13. Under the hypotheses and notation of Proposition 13.11, the sequence

Fκ−1πk+1(
C)−!Fκπk(Ā)−!Fκπk(
B)−!Fκπk(
C)−!Fκ+1πk−1(Ā)

is exact for any κ such that mk+cB⩽κ⩽λk+bB. Moreover, this sequence is exact at
Fκπk(Ā) under the weaker condition that

mk+cA ⩽κ⩽λ(k+1)+bC+1.

Proof. This sequence is a subsequence of the long exact sequence on homotopy
groups for the cofiber sequence Ā!
B!
C, and is therefore automatically a chain com-
plex.

Exactness at Fκπk(Ā). Consider the diagram

Fλ(k+1)+bCπk+1(
C)

Fκ−1πk+1(
C) Fκπk(Ā) Fκπk(
B)

πk+1(L
C) πk(LĀ) πk(L
B),

where the top left diagonal map exists because

κ−1⩽λk+bB−1⩽λ(k+1)+bC ,



286 r. burklund, j. hahn and a. senger

and the middle vertical map is injective because

mk+cA ⩽mk+cB ⩽κ.

Exactness at Fκπk(
B). Consider the diagram

Fκπk(Ā) Im(Fκf) ker(Fκg) Fκπk(
B)

Fκ−rCπk(Ā) Im(Fκ−rCf) ker(Fκ−rCg) Fκ−rCπk(
B),

where the dashed arrow exists by Lemma 13.12, which applies because

mk+cC ⩽mk+cB ⩽κ,

and the leftmost vertical arrow is an isomorphism because

mk+cA ⩽mk+cB−rC ⩽κ−rC ⩽κ⩽λk+bB ⩽λk+bA.

Exactness at Fκπk(
C). Consider the diagram

Fκ+rAπk(
B) Im(Fκ+rAg) ker(Fκ+rAδ) Fκ+rAπk(
C)

Fκ−rAπk(
B) Im(Fκg) ker(Fκδ) Fκπk(
C),

where the dashed arrow exists by Lemma 13.12, which applies because

m(k−1)+cA ⩽mk+cB ⩽κ+rA+1,

and the middle right vertical arrow is an isomorphism because

mk+cC ⩽mk+cB ⩽κ⩽κ+rA ⩽λk+bB+rA ⩽λk+bC .

Proof of Proposition 13.11. We will prove properties (1)–(4) of Definition 13.6 in
reverse order. Property (4) is obvious from the long exact sequence on bigraded homotopy
groups.
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Assuming that
mk+cB ⩽λk+bB ,

which is true whenever k⩾vB , we can construct the following diagram:

Fλ(k+1)+bCπk+1(
	C) Fλk+bAπk(Ā) Fλk+bCπk(

	C)

Fλk+bB−1πk+1(
	C) Fλk+bBπk(Ā) Fλk+bBπk(


B) Fλk+bBπk(
	C) Fλk+bB+1πk−1(Ā)

Fmk+cB−1πk+1(
	C) Fmk+cBπk(Ā) Fmk+cBπk(


B) Fmk+cBπk(
	C) Fmk+cB+1πk−1(Ā)

Fmk+cAπk(Ā) Fmk+cCπk(
	C) Fm(k−1)+cAπk−1(Ā)

πk+1(
	C) πk(Ā) πk(


B) πk(
	C) πk−1(Ā)

πk+1(L
	C) πk(LĀ) πk(L


B) πk(L
	C) πk−1(LĀ)

The second and third rows are exact by Lemma 13.13. The fifth and sixth rows are also
exact. The indicated equalities follow easily from the hypotheses.

Proof of (3). We wish to show that

Fλk+bBπk(
B)−!πk(L
B)

is an isomorphism for k⩾vB . The vertical maps from the top row to the bottom row of
the previous diagram are isomorphisms by hypothesis. The vertical maps from the fourth
row to the bottom row are also isomorphisms by hypothesis. Thus, we may apply the
five lemma to the maps between the second and the bottom rows in order to conclude.

Proof of (2). We wish to show that

Fλk+bBπk(
B)−!Fmk+cBπk(
B)

is an isomorphism for k⩾vB . This map is automatically injective, so it suffices to apply
the four lemma to the maps between the second and third rows of the previous diagram.

Proof of (1). Let w∈πk,k+s(B)tor and assume that s⩾mk+cB and k⩾vB . We
would like to bound the τ -torsion order of w.
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Step 1. We have w∈πk,k+s(B)tor such that

mk+cB ⩽ s⩽λk+max(dA, dC).

If s>λk+dA+rC , then g(τ rCw)=0 so τ rCw lifts to πk,k+s−rC (A)=0 and thus τ rCw=0,
hence τ rBw=0. On the other hand, if s⩽λk+dA+rC , we move on to Step 2.

Step 2. We have w∈πk,k+s(B)tor such that

mk+cB ⩽ s⩽λk+max(dA,min(dA+rC , dC)).

Find the smallest N such that g(τNw)=0 and an x∈πk,k+s−N (A) such that f(x)=τNw.
We have a bound N⩽rC coming from the fact that mk+cC⩽mk+cB⩽s. From this, we
may conclude that s−N⩾mk+cB−rC⩾mk+cA.

Step 3. We have a x∈πk,k+s−N (A) such that f(x)=τNw. If

λ(k+1)+bC+1<s−N,

we replace x by τLx, where L satisfies

mk+cA ⩽ s−N−L⩽λ(k+1)+bC+1.

This is possible because

mk+cA ⩽λk+bB ⩽λ(k+1)+bC ,

which holds since k⩾vB .

Step 4. We have a y∈πk,k+κ(A) such that f(y)=τMw, where

mk+cA ⩽κ⩽λ(k+1)+bC+1.

Consider the diagram

πk+1,k+κ(C) πk,k+κ(A) πk,k+κ−rA(A)

Fκ−1πk+1(
C) Fκπk(Ā) Fκπk(
B),

τrA

where the second row is exact by Lemma 13.13, and the dashed arrow exists because
any τ -torsion element of πk,k+κ(A) has torsion order bounded by rA. The image of y in
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Fκπk(
B) is zero by hypothesis, so we can use exactness and surjectivity to produce a lift
z∈πk+1,k+κ(C) such that τ rAδ(z)=τ rAy. From this, we may conclude that τ rA+Mw=0.
We may now read off that

rA+M ⩽ rA+max(rC , ⌊λk+max(dA,min(dA+rC , dC))⌋−⌊λ(k+1)+bC+1⌋)
⩽ rA+max(rC , λk+max(dA,min(dA+rC , dC))−λ(k+1)−bC)
⩽ rA+max(rC ,max(dA,min(dA+rC , dC))−bC−λ)
= rB .

14. A banded vanishing line for Y

In Example 13.9 we observed that Miller’s computation of the T (1)-local homotopy of a
Moore spectrum at odd primes [72] can be summarized by saying that C(p) admits a v1-
banded vanishing line of slope 1/(p2−p−1). The corresponding calculation at the prime 2
is Mahowald’s computation of the T (1)-local homotopy of the spectrum Y :=C(2)⊗C(η)

[66]. Unfortunately, Mahowald’s proof does not provide a v1-banded vanishing line. In
this section, we adapt Miller’s methods to the prime 2 in order to obtain a v1-banded
vanishing line on Y .

Theorem 14.1. The HF2-Adams spectral sequence for Y has a v1-banded vanishing
line with parameters

(
− 3

2⩽0, 15, 1
5 ,

13
5 , 1

)
.

To prove Theorem 14.1, we apply the Miller square technique of [72] (10) to compute
the HF2-Adams spectral sequence of Y above a line of slope 1

5 . The Miller square
technique relates the differentials in the HF2-Adams spectral sequence to those in the
algebraic Novikov spectral sequence. We will use this relation to prove Theorem 14.1 by
producing many differentials in the HF2-Adams spectral sequence for Y . Another major
input to this section is a computation of Davis and Mahowald [28] that determines the
E2-page of this spectral sequence above a line of slope 1

5 .

Remark 14.2. In classical language, Theorem 14.1 is likely well-known to experts
(though no proof appears in print) and the authors thank Mark Behrens for a helpful
conversation on the subject.

Although the statement of Theorem 14.1 involves synthetic spectra, its proof is
essentially classical. In fact, the bulk of this proof is simply a collation of statements
from [72] and [28].

(10) See [6, §9] for a corrected and improved exposition of this technique.
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Remark 14.3. More recently, work of Gheorghe, Wang and Xu has identified the
Miller square as arising via the motivic Adams spectral sequence [38].(11) In their for-
mulation, the algebraic Novikov spectral sequence is identified with the motivic Adams
spectral sequence for the motivic cofiber of τ . The link between the two sides of the Miller
square is then provided by the motivic Adams spectral sequence for the sphere which has
maps out to both the classical Adams spectral sequence (by inverting τ) and the motivic
Adams spectral sequence for the cofiber of τ (by modding out by τ). We encourage the
reader interested in extending the computations from this section to read [38].

Remark 14.4. At the end of this section, we will show in Corollary 14.26 that The-
orem 14.1 implies the height-1 prime-2 telescope conjecture, recovering the main result
of [66].

Notation 14.5. Throughout this section, we will fix a prime p and write H∗(X) for
the mod-p homology of a spectrum X.

Let us begin by describing the Miller square technique, which applies to certain
spectra X, as we recall below. The Miller square consists of the following diagram of
spectral sequences:

Exts,i,tE0 BP∗ BP(E0 BP∗, E0 BP∗(X)) Exts,tP∗
(Fp,Ext

i,∗
E∗

(Fp,H∗(X)))

Exts,tBP∗ BP(BP∗,BP∗(X)) Exts+i,t+i
A∗

(Fp,H∗(X))

πt−s(X).

Algebraic Novikov

∼=

Cartan–Eilenberg

Adams–Novikov HFp−Adams

The reader will of course notice that, as we have drawn it, the diagram is not a
square. This is because we want to emphasize the fact that the E2-pages of the algebraic
Novikov and Cartan–Eilenberg spectral sequences do not agree in general, but only under
the assumption that X is (BP,HFp)-good as defined below.

(11) One could equally well phrase things in terms of the νHF2-based Adams spectral sequence in
BP-synthetic spectra.
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Definition 14.6. We say that a spectrum X is (BP,HFp)-good if the HFp-Adams
spectral sequence for BP⊗X converges strongly and collapses on the E2-page,(12) and
the HFp-Adams filtration on BP∗(X) agrees with the (p, v1, v2, ... )-adic filtration.

Example 14.7. The mod-p Moore spectrum C(p) is (BP,HFp)-good for any prime p.
The spectrum Y is (BP,HF2)-good.

Let us now recall from [72] the definitions of the spectral sequences labeled algebraic
Novikov and Cartan–Eilenberg in the above diagram.

Before we describe the algebraic Novikov spectral sequence, we require some nota-
tion.

Notation 14.8. Let I=(p, v1, ... )⊂BP∗. Given a BP∗ BP-comodule M , we let E0M

denote the associated graded of M with respect to the I-adic topology. We equip E0M

with the bigrading (i, t), where i is the I-adic grading and t is the grading inherited
from M .

Example 14.9. In the grading above, we have

E0 BP∗∼=Fp[q0, q1, ... ] with |qi|=(1, 2(pi−1))

and

E0 BP∗ BP∼=E0 BP∗[t0, t1, ... ] with |ti|=(0, 2(pi−1)).

To obtain the algebraic Novikov spectral sequence for a BP∗ BP-comodule M , equip
the cobar complex Ω∗(BP∗ BP,M) by the tensor product filtration determined by the
I-adic filtrations on BP∗ BP and M . This makes Ω∗(BP∗ BP,M) into a filtered complex,
and the algebraic Novikov spectral sequence is the associated spectral sequence.

Fact 14.10. ([72, Remark 8.4]) The algebraic Novikov spectral sequence converges
strongly under the assumption that M is of finite type as a BP∗-module.

On the other hand, the Cartan–Eilenberg spectral sequence in the above diagram is
that associated to the extension of Hopf algebras

P∗−!A∗−!E∗,

where, for an odd prime p, P∗∼=Fp[ξ1, ξ2, ... ] and E∗∼=ΛFp [τ0, τ1, ... ]. At the prime 2, one
has P∗∼=F2[ζ

2
1 , ζ

2
2 , ... ] and E∗∼=F2[ζ1, ζ2, ... ]/(ζ

2
1 , ζ

2
2 , ... ).

(12) Note that under this collapse assumption, strong convergence is implied by conditional conver-
gence.



292 r. burklund, j. hahn and a. senger

Convention 14.11. Here we follow Milnor [73] in calling the polynomial generators
of the mod-2 Steenrod algebra ζi rather than the now more common notation ξi, which
conflicts with the notation for an odd prime.

Let us now explain the top horizontal arrow in the above diagram.

Lemma 14.12. If X is (BP,HFp)-good, then there exists a natural isomorphism

Exts,i,tE0 BP∗ BP(E0 BP∗, E0 BP∗(X))∼=Exts,tP∗
(Fp,Ext

i,∗(Fp,H∗(X))).

Proof. First, one notes that E0 BP∗ BP is a split Hopf algebroid in the sense of
[72, §7]. Indeed, E0 BP∗ BP∗ splits as E0 BP∗ ⊗̃P∗ [72, p. 305], which implies by [72,
Proposition 7.6] that

Exts,i,tE0 BP∗ BP(E0 BP∗, E0 BP∗(X))∼=Exts,i,tP∗
(Fp, E0 BP∗(X)).

Now, since Ext∗,∗E∗
(Fp,H∗(X)) is the E2-page of the HFp-Adams spectral sequence

converging to BP∗(X), the desired isomorphism follows from the definition of (BP,HFp)-
good.

The main tool that we use from [72] is the following theorem, which relates the
d2-differentials in the algebraic Novikov spectral sequence to those in the HFp-Adams
spectral sequence, under the assumption that the Cartan–Eilenberg spectral sequence
collapses. We first state a piece of notation, and then the theorem.

Notation 14.13. We let F � Exts,tA∗
(Fp,H∗(X)) denote the filtration induced by the

Cartan–Eilenberg spectral sequence on Exts,tA∗
(Fp,H∗(X)).

Theorem 14.14. ([72, Theorem 6.1]) Let X denote a (BP,HFp)-good spectrum,
and let s and t be integers such that the Cartan–Eilenberg spectral sequence converging
to Exts,tA∗

(Fp,H∗(X)) collapses at the E2-page in total degrees (s, t) and (s+2, t+1).
Then, the d2-differential dHF2−ASS

2 induces a map

dHF2−ASS
2 :F � Exts,tA∗

(Fp,H∗(X))−!F �+1 Exts+2,t+1
A∗

(Fp,H∗(X)),

and hence a map

dHF2−ASS
2 :

F � Exts,tA∗
(Fp,H∗(X))

F �+1 Exts,tA∗
(Fp,H∗(X))

−!
F �+1 Exts+2,t+1

A∗
(Fp,H∗(X))

F �+2 Exts+2,t+1
A∗

(Fp,H∗(X))
.

Moreover, this associated-graded map may be identified with −d alg−Nov
2 , where d alg−Nov

2

is the d2-differential in the algebraic Novikov spectral sequence.
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Miller’s main application is to the mod-p Moore spectrum X=C(p) for an odd
prime p. In this case, the Cartan–Eilenberg spectral sequence automatically collapses,
so Theorem 14.14 applies. Miller is therefore able to compute the HFp-Adams spectral
sequence above a line of slope 1/(p2−p−1) by studying the algebraic Novikov spectral
sequence.

The main obstacle to carrying out Miller’s program at the prime 2 is that the
Cartan–Eilenberg spectral sequence no longer collapses. What allows us to proceed is a
computation of Davis and Mahowald [28] that implies that the Cartan–Eilenberg spectral
sequence for Y collapses above a line of slope 1

5 .
The main steps in the proof of Theorem 14.1 are as follows:
(1) Using Davis and Mahowald’s computation [28] of v−1

1 Exts,tA∗
(F2,H∗(Y )), deduce

that the v1-localized Cartan–Eilenberg spectral sequence collapses for Y .
(2) Recall from [72] the structure of the v1-localized algebraic Novikov spectral

sequence for Y .
(3) Show that the v1-local computations above agree with those before v1-localizing

above a line of slope 1
5 .

(4) Use Theorem 14.14 to compute the HF2-Adams spectral sequence for Y above
a line of slope 1

5 . Conclude that Theorem 14.1 holds.
We begin by recalling some basic facts about Y .

Proposition 14.15. ([27, Theorem 1.2]) There is a v1-self map v1: Σ
2Y!Y of Y ,

which is of HF2-Adams filtration 1.

Lemma 14.16. There is a non-zero element w1∈π5(Y ) which is represented in the
Adams spectral sequence of Y by the cocycle h2,1=[ζ22 ].

Proof. This follows immediately from calculating the first five stems of the E2-page
of the Adams spectral sequence for Y . See, for example, the chart on [27, p. 620].

We now collect the computation of some v1-inverted Ext groups.

Theorem 14.17. There are algebra isomorphisms

v−1
1 Ext∗,∗A∗

(F2,H∗(Y ))∼=F2[v
±1
1 ][hj,1 : j⩾ 2], (1)

q−1
1 Ext∗,∗,∗P∗

(F2, E0 BP∗(C(2)))∼=F2[q
±1
1 ][hj,1 : j⩾ 1], (2)

q−1
1 Ext∗,∗,∗P∗

(F2, E0 BP∗(Y ))∼=F2[q
±1
1 ][hj,1 : j⩾ 2], (3)

where
|hj,1|=(1, 2j+1−2) in (1),

and
|hj,1|=(1, 0, 2j+1−2) in (2) and (3).
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Proof. We first need to justify that these localized Ext groups admit the struc-
ture of algebras. In the case of the second listed group, this follows from the fact that
BP∗(C(2))∼=BP∗ /2 is a comodule algebra over BP∗ BP. The case of the first group is
[28, Theorem 3.1], and that of the third follows from its proof.

Now, the first isomorphism is [28, Theorem 1.3]. The second isomorphism follows
from [71, Corollary 3.5]. Finally, the third isomorphism is obtained from the second
because the self-map η of C(2) induces multiplication by h1,1 on localized Ext groups.

We next recall from [72] the computation of the the v1-localized algebraic Novikov
spectral sequence for C(2), from which we deduce it for Y .

Theorem 14.18. ([72, equation (9.20)]) The d2-differentials in the v1-localized al-
gebraic Novikov spectral sequence for C(2),

q−1
1 Exts,i,tP∗

(F2, E0 BP∗(C(2))) =⇒ v−1
1 Exts,tBP∗ BP(BP∗,BP∗(C(2))),

are derivations and are determined by

d2(hn,1)= q1h
2
n−1,1 for n⩾ 3.

The spectral sequence collapses at the E3-term with E3=E∞-page

F2[q
±1
1 ][h1,1, h2,1]/(h

2
2,1).

Corollary 14.19. The d2-differentials in the v1-localized algebraic Novikov spectral
sequence for Y ,

q−1
1 Exts,i,tP∗

(F2, E0 BP∗(Y )) =⇒ v−1
1 Exts,tBP∗ BP(BP∗,BP∗(Y ))

are derivations and are determined by

d2(hn,1)= q1h
2
n−1,1 for n⩾ 3.

The spectral sequence collapses at the E3-term with E3=E∞-page

F2[q
±1
1 ][h2,1]/(h

2
2,1).

This gives rise to a convenient computation of the K(1)-local homotopy of Y .

Corollary 14.20. The K(1)-local homotopy of Y is

π∗(LK(1)Y )∼=F2[v
±1
1 ][w1]/(w

2
1)

as a Z[v1]-module.
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Proof. The v1-localized Adams–Novikov spectral sequence for Y converges to the
homotopy of LK(1)Y by the localization theorem [81, Theorem 7.5.2]. By Corollary 14.19,
the E2-page is concentrated in filtrations 0 and 1, so the spectral sequence collapses to
the desired isomorphism.

Our next goal is to show that the v1-localized computations above are in fact valid
above a line of slope 1

5 .

Lemma 14.21. We have

Exts,i,tP∗
(F2, E0 BP∗(Y )/q1)= 0,

when s+i> 1
5 (t−s)+ 4

5 and

Exts,tA∗
(F2,H∗(cof(Y

v1−−!Y )))= 0

for s> 1
5 (t−s)+ 4

5 . As a consequence, the maps

Exts,i,tP∗
(F2, E0 BP∗(Y ))−! q−1

1 Exts,i,tP∗
(F2, E0 BP∗(Y ))

and

Exts,tA∗
(F2,H∗(Y ))−! v−1

1 Exts,tA∗
(F2,H∗(Y ))

are isomorphisms for s+i> 1
5 (t−s)+ 7

5 and s> 1
5 (t−s)+ 7

5 , respectively. Moreover, they
are surjections for s+i> 1

5 (t−s)+ 1
5 and s> 1

5 (t−s)+ 1
5 , respectively.

Proof. We begin with the vanishing statement for Exts,i,tP∗
(F2, E0 BP∗(Y )/q1). Let

M denote the sub-comodule of P∗ spanned by 1 and ζ21 , and recall that there is a
degree-doubling isomorphism A∗∼=P∗ which sends ζi to ζ2i . Under this isomorphism, M
corresponds to the A∗-comodule H∗(C(2)). By [3, Theorem 2.1], Exts,tA∗

(F2,H∗(C(2)))

vanishes for s> 1
2 (t−s)+1. It follows that Exts,tP∗

(F2,M) vanishes for s> 1
2 (

1
2 t−s)+1, i.e.

for s> 1
5 (t−s)+ 4

5 .

We now note that E0 BP∗(Y )/q1∼=M⊗F2
F2[q2, q3, ... ]. There are therefore a se-

ries of Bockstein spectral sequences starting from Exts,i,tP∗
(F2,M) and converging to

Exts,i,tP∗
(F2, E0 BP∗(Y )/q1). Since each of the qi for i⩾2 lies below the plane of inter-

est, this implies the result.

The vanishing result for Exts,tA∗
(F2,H∗(cof(Y

v1−−!Y ))) follows from the above van-
ishing result and the Cartan–Eilenberg spectral sequence.
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The translation of these vanishing results into the desired isomorphisms and surjec-
tions follows from the long exact sequences

... Exts−1,i+1,t+2
P∗

(F2, E0 BP∗(Y )/q1) Exts,i,tP∗
(F2, E0 BP∗(Y ))

Exts,i+1,t+2
P∗

(F2, E0 BP∗(Y )) Exts,i+1,t+2
P∗

(F2, E0 BP∗(Y )/q1) ...

·q1

and

... Exts,t+3
A∗

(F2,H∗(cof(Y
v1−!Y ))) Exts,tA∗

(F2,H∗(Y ))

Exts+1,t+3
A∗

(F2,H∗(Y )) Exts+1,t+3
A∗

(F2,H∗(cof(Y
v1−−!Y ))) ... .

·v1

Corollary 14.22. For s+i> 1
5 (t−s)+ 7

5 , the Cartan–Eilenberg spectral sequence

Exts,i,tP∗
(F2, E0 BP∗(Y )) =⇒ Exts+i,t+i

A∗
(F2,H∗(Y ))

collapses at the E2-page.

Proof. It suffices to show that the E2-page and the target are of the same finite
dimension as bigraded F2-vector spaces in this range. This follows from Theorem 14.17
and Lemma 14.21.

Corollary 14.23. For s+i> 1
5 (t−s)+ 18

5 , the algebraic Novikov spectral sequence

Exts,i,tP∗
(F2, E0 BP∗(Y )) =⇒ Exts,tBP∗ BP(BP∗,BP∗(Y ))

agrees with the v1-localized algebraic Novikov spectral sequence.

Proof. There is a map from the algebraic Novikov spectral sequence to its v1-
localized version, which by Lemma 14.21 is an equivalence on E2-pages for

s+i> 1
5 (t−s)+ 7

5 .

We may therefore lift all d2-differentials that lie entirely in this range, which shows that
the map from the E3-page of the algebraic Novikov spectral sequence to the v1-localized
algebraic Novikov spectral sequence is an equivalence for s+i> 1

5 (t−s)+ 18
5 , since all

entering d2-differentials in this range originate in the range s+i> 1
5 (t−s)+ 7

5 .
The classes left on the E3-page in the region s+i> 1

5 (t−s)+ 18
5 cannot be the source

of higher differentials by sparsity, and they cannot be the targets of higher differentials
because they are detected in the v1-localized Ext groups. It follows that E3=E∞ in the
region s+i> 1

5 (t−s)+ 18
5 , as desired.
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Finally, we are able to combine the above results with Theorem 14.14 to compute the
HF2-Adams spectral sequence of Y above a line of slope 1

5 , at least up to an associated
graded. From this, we will deduce Theorem 14.1.

Proposition 14.24. For s> 1
5 (t−s)+ 12

5 , the HF2-Adams spectral sequence

Exts,tA∗
(F2,H∗(Y )) =⇒ πt−s(Y )

collapses at the E3-page. Moreover, the map

F k/5+13/5πk(Y )−!πk(LK(1)Y )

is an isomorphism for k⩾15.

Proof. Note that, in the range s> 1
5 (t−s)+ 29

5 , all entering d2-differentials originate
in the range s> 1

5 (t−s)+ 18
5 . Thus, it follows from Theorem 14.14 and Corollaries 14.19,

14.22, and 14.23 that at most the elements vi1 and vi1h2,0 survive to the E3-page of the
spectral sequence in this range. These elements do in fact survive to represent non-zero
elements of the E∞-page by Proposition 14.15, Lemma 14.16, and Corollary 14.20. It
follows that, for s> 1

5 (t−s)+ 29
5 , the spectral sequence collapses at the E3-page, and the

vi1 and vi1h2,0 are all of the non-zero classes on the E3-page.
We may in fact extend the above description to the range s> 1

5 (t−s)+ 12
5 as follows.

Since v1 lifts to a self-map of Y by Proposition 14.15, multiplying by v1 commutes with
differentials in the HF2-Adams spectral sequence. Now, it follows from Lemma 14.21
that multiplication by v1 induces an isomorphism on im(d2) for any d2 with target in
the range s> 1

5 (t−s)+ 12
5 , hence source in the range s> 1

5 (t−s)+ 1
5 . This is because the

source lies in the v1-surjectivity region and the target lies in the v1-periodic region. It
follows that the description of the spectral sequence appearing in the previous paragraph
applies in fact to the range s> 1

5 (t−s)+ 12
5 .

We conclude that the only classes in πk(Y ) detected in Adams filtration at least
1
5k+

13
5 are vi1 and vi1w1. By Corollary 14.20, these classes map isomorphically to the

homotopy of LK(1)Y . Thus, to check that

F k/5+13/5πk(Y )−!πk(LK(1)Y )

is an isomorphism, it suffices to check that the classes vi1 and vi1h2,1 are in the range
s⩾ 1

5 (t−s)+ 13
5 . A short calculation shows that this happens when i⩾5, hence when the

total degree is at least 15.

Proof of Theorem 14.1. By Proposition 13.8, we see that there are two things left
to check beyond Proposition 14.24. The first is that Exts,tA∗

(F2,H∗(Y ))=0 for s> 1
2 (t−s),

which follows from the computation

Exts,tA(1)∗
(F2,H∗(Y ))∼=ExtF2[ζ2]/(ζ

2
2)
(F2,F2)∼=F2[v1]



298 r. burklund, j. hahn and a. senger

and [70, Proposition 3.2]. The second is that the classes vi1 and vi1h2,1 lie in the region
s⩾ 1

2 (t−s)− 3
2 , which is easily verified.

Finally, we note down a proof of the telescope conjecture at chromatic height 1 and
the prime 2, based on Theorem 14.1. It is similar to Miller’s proof at an odd prime [72]
and different from the 2-primary proof of Mahowald [66], which uses bo-resolutions. We
begin with the following proposition.

Proposition 14.25. Let X be a type-1 finite spectrum(13) whose HFp-Adams spec-
tral sequence admits a v1-banded vanishing line with parameters (b⩽d,w,m, c, r), and
suppose v: Σn(2p−2)X!X is a v1-self map of HFp-Adams filtration n. Then, the map

v−1π∗X −!π∗(LK(1)X)

is an isomorphism.

Proof. Inverting v in the HFp-Adams spectral sequence gives rise to the v -periodic
HFp-Adams spectral sequence, which converges to v−1π∗(X) by [67, Theorem 2.13]. This
theorem applies by the assumption on the Adams filtration of v, as well as the fact that
νHFp

(X) has a finite-page vanishing line of slope 1/(2p−2) by definition of v1-banded
vanishing line.

By the assumption on the HFp-Adams filtration of v,⊕
k

Fmk+cπk(X)

is a Z[v]-submodule of πk(X), so that we have a factorization

Fmk+cπk(X)−! v−1Fmk+cπk(X)−! v−1πk(X)−!πk(LK(1)X).

Since both v−1πk(X) and πk(LK(1)X) are v-periodic, it suffices to show that

v−1πk(X)−!πk(LK(1)X)

is an equivalence for k≫0. By the assumption that the HFp-Adams spectral sequence of
X admits a v1-banded vanishing line, the map

Fmk+cπk(X)−!πk(LK(1)X)

is an equivalence for k⩾w. This implies that

Fmk+cπk(X)−! v−1Fmk+cπk(X)

(13) A finite spectrum X is said to be of type 1 if H∗(X;Q)=0 and K(1)∗(X) ̸=0.
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is an equivalence for k⩾w. Therefore, it suffices to show that

v−1Fmk+cπk(X)−! v−1πk(X)

is an equivalence, which follows from the fact that v acts nilpotently on

πk(X)/(Fmk+cπk(X)),

since m<1/(2p−2).

Corollary 14.26. (Telescope conjecture at height 1 and the prime 2) Suppose that
the prime is 2. Then, the Bousfield classes of K(1) and v−1X are equal for any type-1
spectrum X with v1-self map v: Σn(2p−2)X!X.

Proof. Since v1: Σ
2Y!Y has HF2-Adams filtration one, Theorem 14.1 and Proposi-

tion 14.25 imply that v−1Y!LK(1)Y is an equivalence, so this follows as in [17, §4] and
the proof of [79, Theorem 10.12].

15. The mod-8 Moore spectrum

Our main goal in this section is to prove Theorem 15.1, which was a key input to our
proof of Theorem 1.1 in §8.

Theorem 15.1. Let F sπk(C(8))⊆πk(C(8)) denote the elements of HF2-Adams fil-
tration at least s. Then, for k⩾126, the image of the map

F k/5+15πk(C(8))−!πk−1(S)

is contained in the subgroup of πk−1(S) generated by the image of J and the µ-family.

We will prove Theorem 15.1 by combining the banded genericity techonology of §13
with the main result of §14. Before we explain further, let us fix some notation.

Convention 15.2. In this section, synthetic spectra will always be taken with respect
to HF2, and we will denote Σ∗,∗νHF2(S

∧
2 ) by S∗,∗2 . Similarly, we will let S2 denote the

2-complete sphere.

Notation 15.3. By the calculations of Proposition A.20, we see that that there
are classes 2̃∈π0,1 S0,02 , η̃∈π1,2 S0,02 , and ν̃∈π3,4 S0,02 which satisfy relations τ 2̃=ν(2)=2,
τ η̃=ν(η), and τ ν̃=ν(ν). Moreover, we let 2̃n=2̃n.
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Lemma 15.4. The natural map

[Sa,b2 ,S0,02 ]−!πa,b(S0,02 )

is an isomorphism for all a and b. Furthermore, for any n⩾0, there is an equivalence

νC(2n)≃ cof(S0,12
τn−12̃n−−−−−!S0,02 ).

Proof. The first claim follows from [77, Proposition 5.6], which implies that S0,02 is
the νHF2-localization of S0,0.

To prove the second claim, we note that the cofiber sequence S02!C(2n)!S12 is short
exact on HF2-homology, so by Lemma 9.7 it induces a cofiber sequence

S0,02 −! νC(2n)−!S1,12 .

Thus, νC(2n) is the cofiber of a map S0,12 !S0,02 whose image under the functor τ−1 is
2n. The result therefore follows from the fact that π0,∗(S2) is τ -torsion free.

Notation 15.5. For convenience, we will use the following notation:

C(τa2̃b) :=Cof(S0,b−a
2

τa2̃b−−−!S0,02 ).

Remark 15.6. The synthetic spectrum C(2̃n) encodes the modified HF2-Adams spec-
tral sequence for C(2n). See [13, §3] for the notion of a modified Adams spectral sequence.

Our next goal will be to establish a v1-banded vanishing line of slope 1
5 for C(8̃)

with explicit parameters. We will do this via a thick subcategory argument.

Lemma 15.7. There is a splitting of synthetic spectra

C(2̃)⊗C(η̃3)≃C(2̃)⊕Σ4,6C(2̃).

Proof. After inverting τ this splitting becomes the classical fact that

C(2)⊗C(η3)≃C(2)⊕Σ4C(2)

and the proof we give simply lifts this argument to the synthetic setting.
The splitting follows two statements: that η̃3=4̃ν̃ as self-maps of C(2̃) and that 4̃ is

null as a self-map of C(2̃). The first fact follows from Proposition A.20, which shows that
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the relation η̃3=4̃ν̃ holds in the homotopy of S0,02 . To prove that 4̃ is null as a self-map
of C(2̃), we examine the following commutative diagram:

S0,02 C(2̃) S1,12

S0,02 C(2̃) S1,12

S0,02 C(2̃) S1,12 ,

2̃ 2̃ 2̃

2̃ 2̃ 2̃

where the rows are cofiber sequences and the dashed arrows exist because of the canonical
nullhomotopies of

C(2̃)−!S1,12
2̃−−!S1,12 and S0,02

2̃−−!S0,02 −!C(2̃).

We wish to show that the composite of the middle two vertical arrows is null. Using the
dashed arrows, we may factor this through the composition of the middle two horizontal
arrows, which is null because they form a cofiber sequence.

Proposition 15.8. The synthetic spectra X in the table below admit v1-banded
vanishing lines of slope 1

5 and remaining parameters as follows:

X b d v c r

C(2̃)⊗C(η̃) −1.5 0 15 2.6 1

C(2̃)⊗C(η̃2) −2.5 0.5 23 4.4 2

C(2̃)⊗C(η̃3) −3.5 1 32+ 1
3 6.2 4

C(2̃) −3.5 1 28+ 1
3 5 4

C(4̃) −7.5 2 58+ 1
3 10 9

C(8̃) −12.5 3 91+ 2
3 15 15
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Proof. Inductively apply Lemma 13.10 and Proposition 13.11 to the Bockstein cofiber
sequences

Σ1,2C(2̃)⊗C(η̃)−!C(2̃)⊗C(η̃2)−!C(2̃)⊗C(η̃),

Σ1,2C(2̃)⊗C(η̃2)−!C(2̃)⊗C(η̃3)−!C(2̃)⊗C(η̃),

Σ0,1C(2̃)−!C(4̃)−!C(2̃),

Σ0,1C(4̃)−!C(8̃)−!C(2̃)

using Theorem 14.1 as a base case and Lemma 15.7 to go from the second to the third
sequence.

Remark 15.9. The numbers in Proposition 15.8 can likely be improved by more
carefully accounting for the behavior of the classes in the band under the cofiber sequences
used in the proof. In particular, we believe that one could improve the torsion order
bound in the v1-banded vanishing line for C(2̃) to 3. This would imply by Proposition 13.8
that the v1-localized Adams spectral sequence for C(2) collapses at the E5-page. This
result was announced by Mahowald [64, Theorem 5], but to the best of our knowledge a
proof has never appeared in the literature.

Proposition 15.10. If C(2̃n) admits a banded vanishing line with parameters

(m, c, r, b, d, v),

then the image of the map

Fmk+cπkC(2n)−!πk−1(S)

is contained in the subgroup of πk−1(S) generated by the image of J and the µ-family
as long as k⩾v and

1
2k+b−n+1⩾ 3

10 (k−1)+4+v2(k+1)+v2(k).

Recall that v2(k) denotes the 2-adic valuation of k.

Proof. First, we note that the conclusion holds trivially for k⩽1. Next, using that
πk−1(S)∼=πk−1(S2) for k>1 and that the HF2-Adams filtrations on each group agree, we
may replace S in the theorem statement by S2.

Consider the diagram below, where each row is a cofiber sequence and the middle
and right vertical maps are projection onto the top cell:

Σ0,nCτn−1 C(τn−12̃n) C(2̃n)

Σ0,nCτn S1,12 S1,n2 .τn
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By Lemma 15.4, there is an equivalence νC(2n)≃C(τn−12̃n). Note that, under τ−1, the
map νC(2n)!S1,n becomes projection onto the top cell. This implies that projection to
the top cell induces maps

F sπk(C(2n))−!F sπk(τ
−1C(2̃n))−!F s−n+1πk−1 S,

where F sπk(τ
−1C(2̃n)) is as in Definition 13.2.(14) We finish by using the hypothesis

that C(2̃n) has a banded vanishing line. It follows that, for k⩾v, the maps induced by
projection to the top cell factor as

Fmk+cπk(C(2n))−!Fmk+cπk(τ
−1C(2̃n))=F

1
2k+bπk(τ

−1C(2̃n))

−!F k/2+b−n+1πk−1 S2 .

It therefore suffices to find a k⩾v large enough so that every element of πk−1 S which
has HF2-Adams filtration at least 1

2k+b−n+1 is in the subgroup generated by the image
of J and the µ-family.

Theorem 7.8 (1) states that every element in πk−1 S which has HF2-Adams filtration
at least 3

10 (k−1)+4+v2(k+1)+v2(k) is in the subgroup generated by the image of J

and the µ-family. The result follows.

Proof of Theorem 15.1. Using Propositions 15.8 and 15.10, it will suffice to show
that the following inequality holds for all k⩾126:

1
2k−14.5⩾ 3

10 (k−1)+4+v2(k+1)+v2(k).

Rearranging, clearing denominators and applying the bound

log2(k+1)⩾ v2(k+1)+v2(k),

we find that it suffices to show that

k⩾ 91+5log2(k+1).

Taking derivatives, we find that the left-hand side increases faster than the right-hand
side as soon as k⩾9. Thus, to show the inequality holds for k⩾126 it suffices to note
that

126⩾ 91+5 log2(127)≈ 125.94.

(14) Remark 15.6 allows us to identify this filtration with the modified HF2-Adams filtration.



304 r. burklund, j. hahn and a. senger

Appendix A. Synthetic homotopy groups

In this appendix, we provide the technical details of the proof of Theorem 9.19, as well
as a computation of the HF2-synthetic bigraded homotopy groups in the Toda range.
The computation of synthetic homotopy groups highlights many of the subtleties within
the statement of Theorem 9.19. We have tried to make this appendix as self-contained
as possible. Understanding the techniques introduced in this appendix is not necessary
in order to read the remainder of the paper. For convenience, we recall the statement of
Theorem 9.19.

Theorem A.1. (Theorem 9.19) Let X denote an E-nilpotent complete spectrum
with strongly convergent E-based Adams spectral sequence. Then, we have the following
description of the bigraded homotopy groups of νX.

Let x denote a class in topological degree k and filtration s of the E2-page of the
E-based Adams spectral sequence for X. The following are equivalent :

(1a) Each of the differentials d2, ..., dr vanish on x;
(1b) x, viewed as an element of πk,k+s(Cτ⊗νX), lifts to πk,k+s(Cτ r⊗νX);
(1c) x admits a lift to πk,k+s(Cτ r⊗νX) whose image under the τ -Bockstein

Cτ r⊗νX −!Σ1,−rCτ⊗νX

is equal to −dr+1(x).
If we moreover assume that x is a permanent cycle, then there exists a (not neces-

sarily unique) lift of x along the map

πk,k+s(νX)−!πk,k+s(Cτ⊗νX).

For any such lift x̃, the following statements are true:
(2a) If x survives to the Er+1-page, then τ r−1x̃ ̸=0;
(2b) If x survives to the E∞-page, then the image of x̃ in πk(X) is of E-Adams

filtration s and detected by x in the E-based Adams spectral sequence.
Furthermore, there always exists a choice of lift x̃ satisfying additional properties:
(3a) If x is the target of a dr+1-differential, then we may choose x̃ so that τ rx̃=0;
(3b) If x survives to the E∞-page, and α∈πkX is detected by x, then we may choose

x̃ so that τ−1x̃=α; in this case we will often write α̃ for x̃.
Finally, the following generation statement holds:
(4) Fix any collection of x̃ (not necessarily chosen according to (3)) such that the

x span the permanent cycles in topological degree k. Then, the τ -adic completion of the
Z[τ ]-submodule of πk,∗(νX) generated by those x̃ is equal to πk,∗(νX).
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Remark A.2. As a foreward to the proof, we provide some commentary on the
provenance of Theorem 9.19. Through the equivalence between (SynevBP)p and SH(C)cellp

(see [77, Theorem 1.4]) this theorem specializes to provide a translation between the
p-complete, bigraded motivic stable stems over C and the Adams–Novikov spectral se-
quence. In fact, the proof we give was directly inspired by the literature on motivic stable
stems and their connection to the Adams–Novikov spectral sequence.

The core argument originates in [48, Lemma 15], where is it observed that at the
prime 2 the differentials in the motivic Adams–Novikov spectral sequence can be formally
deduced from those in the classical Adams–Novikov spectral sequence.(15) The corre-
sponding result in our setting is Theorem A.8, where we identify the νE-based Adams
spectral sequence for νX in terms of the E-based Adams spectral sequence for X.

Building on knowledge from extensive calculations of motivic stable stems, Isaksen
then recognized that not only do these spectral sequences determine one another, but the
motivic stable stems and Adams–Novikov spectral sequence (with its hidden extensions)
contain essentially equivalent information (see the introduction to [49, Chapter 6]). The
remainder of the proof of Theorem 9.19 involves formalizing these ideas and dealing with
questions of convergence.

A.1. The proof of Theorem 9.19

This subsection is generally organized in order of increasing strength of hypotheses and
some results are proved in greater generality than stated in Theorem 9.19. Before we
begin, we will need to recall more material from [77].

Recollection A.3. In [77, §4.2, Lemma 4.29 and Proposition 4.35], Pstragowski in-
troduces a t-structure on SynE which satisfies the following properties:

(1) The heart, Syn♡E , is equivalant to the abelian category of E∗E-comodules.
(2) Given a spectrum X, the zeroth homotopy object of νX with respect to this

t-structure is naturally equivalent to E∗X as an E∗E-comodule and naturally equivalent
to Cτ⊗ν(X) as an object of SynE .

(3) If we let Y (−) denote the right adjoint to inverting τ , then we have a natural
equivalence between the connective cover of Y (X) and νX.

(4) This t-structure is right complete and compatible with filtered colimits.

Notation A.4. In view of (2), we will refer to the t-structure introduced above as the
homological t-structure on SynE . For notational brevity, we will use subscripts to denote

(15) See [89, Proposition 5.6] for a version at odd primes.
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truncation with respect to this t-structure, so that A⩾n refers to the n-connective cover
of a synthetic spectrum A in the homological t-structure.

Convention A.5. For the remainder of this subsection, X will denote a spectrum.

Our analysis of the relation between the bigraded homotopy groups of νX and the
E-based Adams spectral sequence for X will hinge on an understanding of the νE-based
Adams spectral sequence for νX. We begin by considering the canonical E-Adams tower
for X, constructed below:

... X2 X1 X0 X.

E⊗X2 E⊗X1 E⊗X0.

f2

i2

f1

i1 i0

Each of the fi is zero on E-homology. Therefore, using Remark 9.5 and Lemma 9.7, we
may identify the canonical νE-Adams tower of νX as

Σ0,2νX3 Σ0,1νX2 νX1

... Σ0,2νX2 Σ0,1νX1 νX0 νX.

νE⊗Σ0,2νX2 νE⊗Σ0,1νX1 νE⊗νX0.

ν(f3)τ ν(f2)

τ

ν(f1)

τ

f̃2

ν(i2)

f̃1

ν(i1) ν(i0)

Notation A.6. The above tower gives rise to a spectral sequence

Es,k,w
1 :=πk,k+w(νE⊗Σ0,sνXs) =⇒ πk,k+w(νX),

with differentials of tridegree (r,−1, 1). Note that multiplication by τ lowers the w

grading by 1, but preserves the s and k gradings. We use the notation Es,k,w
r for page r

of this spectral sequence.
Analogously, we use Es,k

r to refer to the groups in the E-Adams spectral sequence
for X:

Es,k
1 :=πk(E⊗Xs) =⇒ πk(X),

with differentials of bidegree (r,−1).(16)
(16) Our grading choices do not agree with the usual conventions for Adams spectral sequences.

However, we prefer them because each of the indices has a clear interpretation: k is the topological
degree, w is the weight, and s is the filtration.
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Note that inverting τ determines a map of spectral sequences

Es,k,w
r −!Es,k

r .

Notation A.7. Let Bs,k
r denote the subgroup of Es,k

2 generated by the images of the
differentials d2 through dr. Let Zs,k

r denote the larger subgroup of Es,k
2 given by those

classes on which d2 through dr vanish. Then,

Es,k
r+1
∼=Zs,k

r /Bs,k
r .

Theorem A.8. The νE-based Adams spectral sequence for νX is determined by the
E-based Adams spectral sequence for X in the following way :

(1) Es,k,w
1
∼=Es,k

1 ⊗Z[τ ], where Es,k
1 is considered to be in tridegree (s, k, s);

(2) Es,k,w
2
∼=Es,k

2 ⊗Z[τ ], where Es,k
2 is considered to be in tridegree (s, k, s);

(3) Given a differential dr,top(x)=y, there is a differential dr(x)=τ r−1y. Moreover,
all differentials arise in this way.

Proof. The proof is very similar to that of [48, Lemma 15]. Statement (1) follows
from [77, Proposition 4.21]. Statement (2) follows from (3). We now prove (3) by
induction. Suppose that we have proved the statement through the Er-page. To prove
it for the Er+1-page, we calculate the differential

dr: E
s,k,w
r −!Es+r,k−1,w+1

r .

Note that, by the inductive hypothesis, the Er-page in every tridegree which can be the
target of a dr differential consists of τ -torsion free elements. On the other hand, upon
inverting τ , we must obtain the differential

τ−1dr = dr,top: E
s,k
r −!Es+r,k−1

r ,

which determines the dr differential by the above.

As a corollary of this description of the νE-Adams spectral sequence, we obtain the
following more explicit statement.

Corollary A.9. For 2⩽r⩽∞, there are natural isomorphisms:
(1) Es,k,w

r
∼=0 for w>s;

(2) Es,k,w
r
∼=Zs,k

r−1 for w=s;
(3) Es,k,w

r
∼=Zs,k

r−1/B
s,k
s−w+1 for s−r+1<w<s;

(4) Es,k,w
r
∼=Es,k

r for w⩽s−r+1 and w⩽0.
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In particular, the map

Es,k,w
r −!Es,k,w−1

r

induced by multiplication by τ is surjective for w⩽s.

Our next order of business will be to determine the νE-based Adams spectral se-
quence for Cτp⊗νX.

Notation A.10. We use the notation pEs,k,w
r to denote the groups on page r of the

νE-based Adams spectral sequence

pEs,k,w
1 :=πk,k+w(νE⊗Cτp⊗Σ0,sνXs) =⇒ πk,k+w(νX),

and similarly for the later pages.

Corollary A.11. For p⩾1 and 2⩽r⩽∞, there are natural isomorphisms:
(1) pEs,k,w

r
∼=0 for w>s;

(2) pEs,k,w
∞ ∼=Zs,k

p−s+w/B
s,k
s−w+1 for s⩾w>s−p;

(3) pEs,k,w
r
∼=0 for s−p⩾w.

Proof. This follows from considering the map of νE-based Adams spectral sequences
induced by the map

νX −!Cτp⊗νX.

In order to use the theorem and corollaries we have just proved we will need to make
a digression and discuss completeness and convergence.

Definition A.12. We say that a synthetic spectrum A is τ -complete if the τ -Bockstein
tower of A is convergent: that is, if the canonical map

A−! lim←−
n

Cτn⊗A

is an equivalence.

Proposition A.13. The following are equivalent :
(1) X is E-nilpotent complete;
(2) νX is νE-nilpotent complete;
(3) νX is τ -complete.

The proof of Proposition A.13 will rely on the following two lemmas.
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Lemma A.14. The synthetic spectrum Cτp⊗νX is νE-nilpotent complete.

Proof. By induction on p via the the Bockstein sequences

Σ0,−1Cτp−1⊗νX −!Cτp⊗νX −!Cτ⊗νX,

we see that it suffices to prove the lemma for p=1. Tensoring the canonical Adams
resolution for νX with Cτ , we obtain an Adams resolution of Cτ⊗νX. Using [77,
Lemma 4.29] repeatedly, we learn that Cτ⊗Σ0,sνX is (−s)-coconnective in the homo-
logical t-structure. Thus, the inverse limit of this Adams resolution for νX is trivial
because this t-structure is right complete.

Lemma A.15. The synthetic spectrum νE⊗νX is τ -complete.

Proof. In order to show that νE⊗νX is τ -complete, we will show that the inverse
limit under iterated multiplication by τ is trivial. From Remark 9.6, it suffices to check
triviality on maps in from suspensions of finite projectives. Pick a finite E∗-projective P

and an integer k. Using Remark 9.5 and the dualizability statement from Remark 9.6,
we obtain an equivalence

Hom(ΣkνP, lim←−
τ

Σ0,−sνE⊗νX)≃ lim←−
τ

Hom(Sk,s, ν(E⊗DP⊗X)).

Note that the spaces in the inverse limit on the right-hand side are each (s−k)-connective
by [77, Proposition 4.21]. Therefore, as s!∞, the right-hand side becomes infinitely
connective and thereby trivial.

Proof of Proposition A.13. First, we show that E-nilpotent completeness is equiv-
alent to νE-nilpotent completeness. Using [77, Lemma 4.29 and Proposition 4.35], we
may rewrite the canonical νE-Adams tower for νX as

...−!Y (X2)⩾−2
f̃2−−!Y (X1)⩾−1

f̃1−−!Y (X0)⩾0,

where

...−!X2−!X1−!X0

is the canonical Adams tower for X. Inverting τ on the νE-Adams tower recovers the
image of the E-Adams tower under Y (−), and there is a fiber sequence(

lim←−
s

Y (Xs)⩾−s

)
−!

(
lim←−
s

Y (Xs)
)
−!

(
lim←−
s

Y (Xs)⩽−s

)
.
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The right-hand term vanishes because the homological t-structure is right complete [77,
Proposition 4.16]. Furthermore, since Y is a right adjoint, we may pull the inverse limit
inside the functor Y in the middle term. Thus, we obtain an equivalence(

lim←−
s

Y (Xs)⩾−s

)
≃Y

(
lim←−
s

Xs

)
.

From the fact that Y is fully faithful, we conclude that the left-hand side vanishes if and
only if the inverse limit of the E-Adams tower for X vanishes.

Next, we show that νE-nilpotent completeness is equivalent to τ -completeness. Con-
sider the following diagram:

lim←−s
lim←−τ

Σ0,s−pνXs ... lim←−τ
Σ0,1−pνX1 lim←−τ

Σ0,−pνX

lim←−τ
Σ0,1−p(νE⊗νX1) lim←−τ

Σ0,−p(νE⊗νX).

f̃1

ν(i1) ν(i0)

Here, the limits over τ refer to limits, as p varies, under multiplication by τ maps. Using
Lemma A.15, each object on the second row vanishes. We obtain an equivalence

lim←−
s

lim←−
τ

Σ0,s−pνXs≃ lim←−
τ

Σ0,−pX.

Dually, using Lemma A.14, we learn that

lim←−
τ

lim←−
s

Σ0,s−pνXs≃ lim←−
s

Σ0,sνXs.

Together these equalities finish the proof.

We are now ready to prove the first part of Theorem 9.19.

Proof of Theorem 9.19 (1). Since X is E-nilpotent complete, it follows from Proposi-
tion A.13 that Cτ r⊗νX is νE-nilpotent complete and τ -complete. From Corollary A.11
we can read off that the νE-based Adams spectral sequence for Cτ r⊗νX converges
strongly. Further, we can directly read off that (1a) and (1b) are equivalent. Clearly (1c)
implies (1b). We will now prove (1c) assuming (1b). If dr+1(x)=0, then we may finish
by (1a), so we assume otherwise.

We will prove (1c) by working directly with the cofiber sequence of Adams towers
associated to the relevant Bockstein sequence. Before we begin, we fix some notation,

rDs,k,w :=πk,k+w(Cτ r⊗Σ0,sνXs).
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Applying homotopy groups to the smash product of the two extended cofiber sequences

Σ−1,0Cτ −!Cτ r+1−!Cτ r −!Cτ

and
Σ0,s+1νXs+1−!Σ0,sνXs−! νE⊗Σ0,sνXs−!Σ1,s+1νXs+1,

we obtain the following diagram of exact sequences:

1Ds+1,k,s+r r+1Ds+1,k,s rDs+1,k,s 1Ds+1,k−1,s+r+1

1Ds,k,s+r r+1Ds,k,s rDs,k,s 1Ds,k−1,s+r+1

0 r+1Es,k,s
1

rEs,k,s
1 0

1Ds+1,k−1,s+r+1 r+1Ds+1,k−1,s+1 rDs+1,k−1,s+1 1Ds+1,k−2,s+r+2.

f f f f

i i i i

∂ ∂r+1 ∂r ∂

In this diagram, we may pick a representative of x in rEs,k,s
1 =r+1Es,k,s

1 (which we will
also denote x). Let y=dr(x) denote the target of the relevant differential in the E-based
Adams spectral sequence and consider y as an element of 1Ds+1,k−1,s+r+1. We claim
that there exists a y′∈r+1Ds+1,k−1,s+r+1 such that ∂r+1(x)=τ ry′ and y maps to τ ry′.
Indeed, this follows from Theorem A.8 and the fact that τ r, as an endomorphism of
Cτ r+1, factors through Cτ .

Then, by standard manipulations of exact sequences arising from smash products of
cofiber sequences (as in, e.g., [6, Lemma 9.3.2]), there is some x̃ in rDs,k,s which maps
to both x in rEs,k,s

1 and −f(y) in 1Ds,k−1,s+r+1. The image of x̃ along the map

rDs,k,s−!πk,k+s(Cτ r⊗νX)

is the desired class.

Proposition A.16. Let X denote an E-nilpotent complete spectrum. Then, the
following are equivalent :

(1) The E-based Adams spectral sequence for X converges strongly ;
(2) The νE-based Adams spectral sequence for νX converges strongly ;
(3) The τ -Bockstein spectral sequence for νX converges strongly.
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In order to prove Proposition A.16 we recall the following theorem of Boardman,
which provides a useful characterization of strong convergence.

Theorem A.17. ([16, Theorem 7.3]) Given an E-nilpotent complete spectrum X,
the following two conditions are equivalent :

• The E-based Adams spectral sequence of X converges strongly ;
• lim←−

1

r
Es,t
r (X)=0 for pair of integers s and t.

Analogous lim1 conditions determine strong convergence of νE-based Adams spectral
sequences and τ -Bockstein spectral sequences.

Note that the second bullet point in the above theorem makes sense because

Es,t
r+1⊆Es,t

r

as soon as r>s.

Proof of Proposition A.16. Since X is E-nilpotent complete, it follows from Propo-
sition A.13 that νX is νE-nilpotent complete and τ -complete.

Using Theorem A.17, to prove that (1) is equivalent to (2) it suffices to show that

lim←−
r

Es,k
r =0 if and only if lim←−

r

Es,k,w
r =0.

In fact, these groups are isomorphic:

lim←−
r

1Es,k
r
∼= lim←−

r

1Zs,k
r /Bs,k

s
∼= lim←−

r

1Zs,k
r
∼= lim←−

r

1Zs,k
r /Bs,k

s−w+1
∼= lim←−

r

1Es,k,w
r .

We next prove the equivalence of the second and third conditions. Let βs,k,w
r denote

the groups in the τ -Bockstein spectral sequence indexed, so that the spectral sequence
takes the form

βs,k,w
1

∼=πk,k+w(Σ
0,−sCτ⊗νX) =⇒ πk,k+w(νX).

Combining Theorem 9.19 (1) and Corollary A.9, we learn that

βs,k,w
r

∼=Ew+s,k,w
r+1 .

Boardman’s theorem applies since both of these spectral sequences are conditionally
convergent. Since the spectral sequences are furthermore isomorphic, up to reindexing,
one converges strongly if and only if the other does.

Notation A.18. We let Fsπk,k+w(νX)⊆πk,k+w(νX) denote the νE-Adams filtration,
and we let Fs

τπk,k+w(νX) denote the τ -Bockstein filtration.
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Corollary A.19. Suppose that X is E-nilpotent complete and that its E-based
Adams spectral sequence converges strongly. Then,

Fsπk,k+w(νX)=Fs−w
τ πk,k+w(νX),

where, for k<0, we set
Fk
τπk,k+w(νX)=πk,k+w(νX).

In particular, for w⩽s, the map

Fsπk,k+w(νX)
·τ−−!Fsπk,k+w−1(νX)

is surjective.

Proof. By Proposition A.16, the νE-based Adams spectral sequence for νX con-
verges strongly.

Now, the inclusion

Fs−w
τ πk,k+w(νX)⊆Fsπk,k+w(νX)

follows from a downward induction on w, starting from Corollary A.9 (1), which implies
the desired result for w⩾s. On the other hand, to see that

Fsπk,k+w(νX)⊆Fs−w
τ πk,k+w(νX)

for all s, it suffices by strong convergence to show that, whenever w⩽s, multiplication
by τ is surjective as a map Es,k,w−1

∞ !Es,k,w
∞ . This is a consequence of Corollary A.9.

Proof of Theorem 9.19 (2)–(4). We begin by noting that Proposition A.16 implies
that the νE-based Adams spectral sequence for νX converges strongly. Recall that this
means that:

(1) Fsπk,k+w(νX)/Fs+1πk,k+w(νX)∼=Es,k,w
∞ ;

(2) The filtration F�πk,k+w(νX) is complete and Hausdorff.
Now, we examine the reduction map

νX −!Cτ⊗νX

through the νE-based Adams spectral sequence. As discussed in Corollary A.11, the
νE-based Adams spectral sequence for Cτ⊗νX has E2-term given by

1Es,k,w
2

∼=
{

Es,k
2 , if s=w,

0, otherwise.
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It follows that the spectral sequence collapses at the E2-page, that there is no space for
extension problems and that the map

Zs,k
∞ ∼=Es,k,s

∞ −! 1Es,k,s
∞ ∼=Es,k

2

is just the usual inclusion. This produces a factorization

πk,k+s(νX)=F sπk,k+s(νX) // // Es,k,s
∞ ∼=Zs,k

∞ ⊆Es,k
2
∼=πk,k+s(Cτ⊗νX).

The surjectivity of the first map implies that we can always pick an x̃.
(2a) On the associated graded, multiplication by τ r−1 can be identified with

Es,k,s
∞ ∼=Zs,k

∞ (X)−!Zs,k
∞ (X)/Bs,k

r (X).

Therefore, as long as x survives to the Er+1-page, any lift x̃ will have τ r−1x̃ ̸=0.
(2b) It suffices to note that the νE-based Adams spectral sequence for νX is sent

to the E-based Adams spectral sequence for X under τ−1 and that the induced map

Es,k,s
∞ ∼=Zs,k

∞ (X)−!Es,k
∞

is just the usual projection.
(3a) For this, we now suppose that x∈Bs,k

r+1 and consider the following diagram:

0 (Fsπk,k+s(νX))[τ r] Fsπk,k+s(νX) Fsπk,k+s−r(νX) 0

0 Es,k,s
∞ [τ r] Es,k,s

∞ Es,k,s−r
∞ 0

0 Bs,k
r+1 Zs,k

∞ Zs,k
∞ /Bs,k

r+1 0,

·τr

where the rows are exact by Corollaries A.9 and A.19. It will suffice to show that leftmost
vertical map is surjective. This follows from the snake lemma together with the fact that
the map

Fs+1πk,k+s(νX)
·τr

−−−!Fs+1πk,k+s−r(νX)

is surjective, which follows from Corollary A.19.
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(3b) We now suppose that we are given α∈πk(X) detected by x. In particular, x
is not the target of a differential in the E-based Adams spectral sequence for X. Then,
we may modify x̃ by elements of higher νE-filtration without affecting conditions (1a)
through (2b). Let β=τ−1x̃. Then, α−β∈Fs+1πk(X). It follows from Lemma 9.15 that
there exists some e1∈πk,k+s+1(νX) such that τ−1e1=α−β. It follows from Corollary A.9
that e1 must be in νE-Adams filtration at least s+1. Replacing x̃ with x̃+e1, we obtain
τ−1x̃=α, as desired.

(4) Finally, we verify the generation statement. Let A denote the Z[τ ]-submodule
of πk,∗(νX) generated by the x̃, and let B denote the τ -adic completion of A. Our first
claim is that B remains a natural submodule of πk,∗(νX), which follows from the fact
that the τ -adic filtration on πk,∗(νX) is complete and Hausdorff by strong convergence.
Now, since the inclusion B!πk,∗(νX) is one between τ -complete objects, we need only
note that the map

B/τ −!πk,k+∗(νX)/τ ∼=F∗πk,k+∗(νX)/F∗+1πk,k+∗(νX)∼=E∗,k,∗
∞

is a surjection. The middle isomorphism above follows from Corollary A.19.

A.2. Bigraded homotopy groups in the Toda range

In order to illustrate the complexities present in synthetic homotopy groups, we will com-
pute the bigraded groups πk,∗(νHF2

S∧2 ) in the Toda range (k⩽19). We will see that these
groups reflect the entire structure of the HF2-Adams spectral sequence for S∧2 , including
hidden extensions. For brevity, throughout this section πa,b will refer to πa,b(νHF2 S

∧
2 ).

The HF2-Adams spectral sequence for S∧2 converges strongly because S∧2 is HF2-
nilpotent complete and each of the groups on its E2-term are finite. There are no dif-
ferentials in the HF2-Adams spectral sequence for S∧2 in topological degree less than or
equal to 13. For topological degrees 14 through 19 we reproduce the spectral sequence
below in Figure 5.

Proposition A.20. For k⩽19, πk,∗ is presented as a τ -adically complete algebra
by generators

τ∈π0,−1 σ̃∈π7,8 κ̃∈π14,18 P̃ 2h1∈π17,26

2̃∈π0,1 ε̃∈π8,11 ρ̃∈π15,19 ν̃∗∈π18,20

η̃∈π1,2 P̃ h1∈π9,14 η̃∗∈π16,18 c̃1∈π19,22

ν̃∈π3,4 P̃ h2∈π11,16 P̃ c0∈π16,24 P̃ 2h2∈π19,28
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subject to relations

(0) 0= 2̃η̃= η̃ν̃= 2̃ν̃2 = 2̃4σ̃= ν̃σ̃= η̃σ̃2 = 2̃ε̃= η̃2ε̃= ν̃ε̃= σ̃ε̃

= 2̃P̃ h1 = ν̃P̃ h1 = η̃P̃ h2 = σ̃P̃ h2 = ε̃P̃ h2 = 2̃3κ̃= 2̃5ρ̃= ν̃ρ̃

= 2̃P̃ c0 = η̃2P̃ c0 = ν̃P̃ c0 = 2̃η̃∗ = ν̃η̃∗ = 2̃P̃ 2h1 = η̃ν̃∗ = 2̃c̃1,

(1) η̃3 = 2̃2ν̃, (4) η̃2P̃ h1 = 2̃2P̃ h2, (7) η̃2η̃∗ = 2̃2ν̃∗,

(2) η̃ρ̃= τ2P̃ c0, (5) ε̃P̃ h1 = η̃P̃ c0, (8) η̃2P̃ 2h1 = 2̃2P̃ 2h2,

(3) ν̃3 = η̃2σ̃+τ η̃ε̃, (6) P̃ h1
2 = η̃P̃ 2h1, (9) τ 2̃ = 2,

(10) 0=2σ̃2, (12) 0=2ν̃κ̃, (14) 2κ̃= 2̃2σ̃2,

(11) 0= τ η̃2κ̃, (13) ν̃P̃ h2 = 2̃2κ̃, (15) ε̃2 = η̃2κ̃= σ̃P̃ h1+τP̃ c0.

Before proving Proposition A.20, we discuss some of the subtleties which appear in
this range. The results of this proposition are also summarized in Figure 6.

Remark A.21. The first hidden extension in the Adams spectral sequence occurs in
stem 9, where on the E2-page h3

2=h2
1h3, but in homotopy ν3=η2σ+ηε. Synthetically the

presence of this hidden term is reflected by the appearance of a τ in relation (3), where

ν̃3 = η̃2σ̃+τ η̃ε̃.

Similarly, in stem 16, the hidden extension from h3
0h4 to Pc0 is reflected by relation

(2), where η̃ρ̃=τ2P̃ c0. Note that in this case the multiplication jumps by two Adams
filtrations and therefore two τ ’s appear in the product. This product relation is depicted
by the green line originating from ρ̃ in Figure 6.

Another subtlety is that products that are classically zero need not be zero syn-
thetically (though they will be τ -power torsion). In this range the key example of this
is relation (14), where 2̃2σ̃2=τ 2̃κ̃. In this relation, we see a product which is τ -torsion
hidden extend to a τ2-torsion class and is depicted by the bent green line in Figure 6. A
combination of these features appears in relation (15).

Remark A.22. In Proposition A.20 the generators are chosen using Theorem 9.19 (3).
It is important to note that there are ambiguities in this notation. For some classes x̃,
x refers to an element of the homotopy S∧2 . In these cases, x̃ is determined up to τ -
power torsion classes of higher νHF2-Adams filtration. For other classes x̃, x refers to a
permanent cycle on the E2-page of the Adams spectral sequence for S∧2 . These classes
are only determined up to elements of higher νHF2-Adams filtration. However, in the
case that x is the target of a dm+1-differential, we more precisely define x̃ up to elements
of higher νHF2-filtration which are τm-torsion.
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In particular, note that the classes 2̃, η̃ and ν̃ are unambiguously determined. On
the other hand, one could, for example, replace κ̃ with 3κ̃ or c̃1 with c̃1+aτ6P̃ 2h2. Nev-
ertheless, we claim that the proposition is valid for any collection of generators provided
by Theorem 9.19 (3), as long as we choose a c̃1 which is 2-torsion.

Remark A.23. It is also important to note that multiplication may not interact
nicely with the tilde notation: x̃ỹ might not be a valid choice of representative for x̃y

since x̃ỹ may not satisfy the τ -torsion requirement that Theorem 9.19 (3) places on x̃y.
However, it is true that x̃ỹ−x̃y is divisible by τ , and often this can be used to show that
x̃ỹ does in fact satisfy the τ -torsion requirement.

Furthermore, when solving extension problems, one needs to be careful about exactly
which bigraded homotopy elements one chooses. For example, both σ̃2 and σ̃2+τ2κ̃ are
valid choices of h̃2

3, but η̃σ̃2=0 whereas η̃(σ̃2+τ2κ̃)=τ2η̃κ̃ ̸=0.

Proof of Proposition A.20. Using Theorem 9.19, we may produce the generators
listed above. This theorem also lets us conclude that the τ -adic completion of the algebra
they generate is equal to πk,∗ for k⩽19.

Before we continue, we use Corollary 9.22 to find which bigraded groups have τ -
power torsion elements. The only bigraded groups with k⩽19 for which πtor

k,k+s is non-zero
are

π14,17, π14,18, π14,19, π14,20, π16,22, π17,23, π17,24.

This means that τ−1:πk,k+s!πk is an inclusion in all other bidegrees. Moreover, since
the functor τ−1 is symmetric monoidal, it follows that these inclusions respect the mul-
tiplicative structure on both sides. Thus, we may deduce that (0)–(9) follow from the
associated relations in usual homotopy groups.

To prove the relation (10), note that the element σ̃ lives in an odd topological degree.
Therefore, we learn that 2σ̃2=0 by considering the E∞-ring structure on νHF2(S

∧
2 ) (see

[77, Remark 4.10]).
Relations (11) and (12) follow from the fact that both η2κ and 2νκ are zero in the

usual homotopy groups of S∧2 . Therefore, both η̃2κ̃ and 2̃ν̃κ̃ are τ -power torsion. Since
they live in bidegrees containing only simple τ -torsion, it follows that τ times them is
zero. Note that τ 2̃ν̃κ̃=2ν̃κ̃.

To prove (13) and (15), we consider the ring map

νHF2(S
∧
2 )−!Cτ⊗νHF2(S

∧
2 ).

Because there are no τ -power torsion elements which are also divisible by τ in π14,20 or
π16,22, this map induces isomorphisms

πtor
14,20

∼=Ext6,20A∗
(F2,F2) and πtor

16,22
∼=Ext6,22A∗

(F2,F2).
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Figure 5. Synthetic and usual Adams spectral sequences for the 2-complete sphere.

Left : Adams spectral sequence for the sphere, with differentials color-coded by length.

Right : E∞-page of the synthetic Adams spectral sequence for νHF2 S∧2 . Black dots indicate a
copy of F2[τ ], red dots indicate a copy of F2[τ ]/τ2 and blue dots indicate a copy of F2[τ ]/τ .
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13 14 15 16 17 18 19

0

2

4
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12

1

σ̃2 η̃∗ ν̃∗

c̃1

κ̃ ρ̃

P̃ c0

P̃ 2h1 P̃ 2h2

Figure 6. A picture of πk,k+sνHF2 (S
∧
2 ) for 13⩽k⩽19.

We index the picture so that bidegree (k, k+s) corresponds to position (k, s). Black dots
indicate non-τ -torsion classes, red dots indicate τ2-torsion and blue dots indicate τ -torsion.
We suppress all τ -multiples in this figure. Black lines correspond to 2̃, η̃, and ν̃ multiplications
which are detected at the level of Cτ . Green lines are used for more complicated 2̃ and η̃
multiplications. In this range, the green line indicate a multiplication which hits a power of τ
times the indicated dot (see Remark A.21 for further discussion).
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Thus, once we know that each term is zero in the usual homotopy groups, we can read
(13) and (15) off from the corresponding relation in the E2 page.

In the Toda range, (14) is the most difficult relation. To obtain it, we will make use
of the long exact sequence

...−!πk+1,k+s−1−!Exts−2,k+s−1
A∗

(F2,F2)−!πk,k+s
·τ−−!πk,k+s−1−! ... .

From (10) and the torsion bound on π14,18, we know that 2̃σ̃2 and 2κ̃ are both
simple τ -torsion. Thus, they lift to non-zero classes in Ext1,16A∗

(F2,F2) and Ext2,17A∗
(F2,F2),

respectively. These classes must be h4 and h0h4, and hence are related by multiplication
by h0. This implies that their images are related by multiplication by 2̃, as desired.

Finally, using parts (2a), (3a), (3b) and (4) of Theorem 9.19, one may compute the
length of πk,k+s as a Z2-module for each k⩽19 and all s. From this, we may conclude
that there are no further relations for size reasons.

Appendix B. Vanishing curves in Adams spectral sequences,
by Robert Burklund

In this appendix we study vanishing curves in Adams spectral sequences via an explicit
analysis of Adams towers and their Postnikov truncations. These techniques were devel-
oped in order to answer Question 3.33 from [69], which asks about the linear term in the
vanishing curve of the BP⟨n⟩-Adams spectral sequence for the sphere. At the prime 3

our results provide the upper bound on the left-hand side of equation (7.1) necessary in
the proof of Theorem 1.4. As a corollary, we obtain new bounds on the p-torsion order
of the stable homotopy groups of spheres.

Before proceeding further, we should highlight several differences between the per-
spective on vanishing curves taken in §11 and this appendix. In the main body of the
paper, vanishing curves are interpreted in terms of the bigraded homotopy groups of
a synthetic spectrum, and are often implicitly linear and finite-page. The emphasis is
mostly on genericity results. §11 inherits the technical assumption that we must work
only with ring spectra which are of Adams type from [77]. In this appendix, we will not
consider finite-page vanishing lines, instead confining ourselves to the vanishing curve
present at the E∞ page. Our emphasis is on exploiting naturality in the choice of ring
spectrum. This appendix works with the approach to descent developed by Akhil Mathew
in [69] and thereby inherits the technical assumption that all ring spectra admit an E1

multiplication.
In §B.1 we recall the definition of the vanishing curve, review previous results and

state our main theorem, which is a collection of novel bounds on various vanishing curves.
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In §B.2 we give a comparison theorem for vanishing curves over different rings. This
comparison theorem is the key technical advance in this appendix. In §B.3 we finish the
proof of the comparison theorem. In §B.4 we use the comparison theorem and theorems
of Davis–Mahowald [29] and González [40] to prove the main theorem.

Convention B.1. Throughout this appendix, we will adopt the following conventions:
(1) All spectra will be p-local for a fixed prime p.
(2) Rings and ring morphisms will refer to objects and morphisms of Alg(Sp).(17)
(3) A ring R will also be assumed to satisfy the following hypotheses:

•R is p-local and connective;
•π0(R)∼=Z(p);
•πi(R) is a finitely generated Z(p) module for all i.

Moreover, A and B will also denote rings satisfying the same hypotheses.(18)
(4) In order to make concise statements about the asymptotics of various functions,

we will make use both big O and little o notation.

Notation B.2. In this appendix we will adopt the following notation in order to
simplify expressions:

(1) q=2p−2;
(2) vp(k) will denote the p-adic valuation of an integer k∈Z;
(3) if p ̸=2,

ℓ(k)=

{
vp(k+2), if k+2≡ 0 mod q,
0, if k+2 ̸≡ 0 mod q,

if p=2,

ℓ(k)=

{
v2(k+1), if k is odd,
v2(k+2), if k is even.

We will sometimes use that ℓ(k)∈O(log(k)).

B.1. Preliminaries and statements

We begin by defining two functions attached to a ring R, which we will refer to as the
R-Adams spectral sequence vanishing curves. Although the function gR defined below
has a more direct interpretation as a vanishing curve, it will turn out that fR has more
tractable properties. For example, fR is sub-additive, while gR has no such property.

(17) The results of this appendix remain true if we replace Alg(Sp) with the full subcategory of
AlgE0 (Sp) on those objects that admit an A2 structure. We opt to work in less generality for convenience,
and so that we can avoid reproving many statements from [69].

(18) This convention ensures that the Adams spectral sequence based on R converges for every
connective p-local spectrum.
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Definition B.3. Given a ring spectrum R as above, we give the following notation.
• Let gR(k) denote the minimal m such that every α∈πk(S) whose R-Adams filtra-

tion is strictly greater than m is zero.(19)
• Let fR(k) denote the minimal m such that, for every connective p-local spectrum

X, i<k, and α∈πi(X), if α has R-Adams filtration at least m, then α=0.
• Let Γ(k) denote the minimal m such that every α∈πk(S0) whose HFp-Adams

filtration is strictly greater than m is detected in the K(1)-local sphere (Γ does not
depend on a choice of R).(20)

Remark B.4. The X=S0 case in the definition of fR(k) implies that

gR(k)⩽ fR(k+1)−1.

Several classic results in stable homotopy theory can be reformulated as bounds on
the functions fR, gR and Γ for various rings R. In [68] and [69], work of Adams [3] and
Luilevicius [60] is reformulated into the pair of inequalities

fZp
(k)⩽

1

q
k+O(1) and Γ(k)⩽

1

q
k+O(1).

Later, in [29], Davis and Mahowald showed that, at the prime 2,

gbo(k)⩽
1

5
k+O(log(k)) and Γ(k)⩽

3

10
k+O(log(k))

In [42], Gonzalez proved the analogous results at odd primes,

gBP⟨1⟩(k)⩽
1

p2−p−1k+O(log(k)) and Γ(k)⩽
(2p−1)

(2p−2)(p2−p−1)k+O(log(k)).

Finally, another formulation of the nilpotence theorem [30] worked out by Hopkins and
Smith is that(21)

fBP(k)= o(k).

One of the purposes of §12 was to provide the first effective bound on fBP(k) which is
not already present at the E2-page.

In the situation where R is both an E1-ring and of Adams type, we have the following
lemma which relates fR and gR to weak and strong vanishing lines in synthetic spectra.

(19) Our function gBP is equal to the function g defined by Hopkins in [46].
(20) Definition 7.3 is equivalent to the definition given here, by our knowledge of the homotopy of

the K(1)-local sphere.
(21) See [69, Theorem 3.30] for a published account of this argument.
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Lemma B.5. Suppose R is both an E1 ring and of Adams type. Then, the following
statements hold :

• If νR(S0) has a finite-page vanishing line of slope m and intercept c, then

gR(k)⩽mk+c.

• If νR(S0) has a strong finite-page vanishing line of slope m and intercept c, then

fR(k)⩽m(k−1)+c+1.

Proof. By Lemma 9.15, each non-zero class α∈πj(X) whose R-Adams filtration is
⩾n yields a non-τ -torsion class α̃∈πj,j−n(νX).

Applying Lemma B.5 to Theorem 12.2, we obtain the following corollary.

Corollary B.6. For each odd prime p,

fBP(k)⩽
1

p3−p−1k+2p2−4p+10− 2p2+2p−9
p3−p−1 .

The main theorem of this appendix is the following.

Theorem B.7. (1) For each prime and n∈Z⩾0,

fBP⟨n⟩(k)⩽
1

|vn+1|
k+

(
1+

1

|vn+1|

)
fBP(k)−

1

|vn+1|
.

(2) For each prime,

Γ(k)⩽
(q+1)

q|v2|
k+

(q+1)(|v2|+1)

q|v2|
fBP(k)+ℓ(k).

(3) For each odd prime,

fBP⟨1⟩(k)⩽
p+2

2(p3−p−1)k+2p2−4p+11.

(4) For p=3,

Γ(k)⩽
25

184
k+19+

1133

1472
+ℓ(k),

and, for p⩾5,

Γ(k)⩽
(2p−1)(p+2)

4(p−1)(p3−p−1)k+2p2−3p+11+ℓ(k).
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The proof of this theorem will occupy the remainder of this appendix. Once we
have proved Theorem B.7 (1), the rest of the theorem follows by relatively standard
arguments. Note that Theorem B.7 (1), when combined with the nilpotence theorem,
implies the following corollary which appeared as Question 3.33 in [69].

Corollary B.8.
fBP⟨n⟩(k)⩽

1

|vn+1|
k+o(k).

Remark B.9. Similarly, using the nilpotence theorem, the bound on Γ given in The-
orem B.7 (2) at the prime 2 simplifies to

Γ(k)⩽
1

4
k+o(k).

Although this is asymptotically better than the result of Davis–Mahowald quoted above,
because we do not have explicit control over the error term, it is unsuitable for use in
§7. In fact, as observed by Stolz [90, p. XX], any further improvement of the slope of a
linear bound on Γ(k) would imply Theorem 1.4 at the prime 2 for k≫0. This would, at
least for k≫0, bypass the need for Theorem 10.8.

Conjecture B.10.
Γ(k)⩽

1

|v2|
k+O(1).

The application of Theorem B.7 (2) to bounding torsion exponents in the stable
homotopy groups of spheres was explained in §3.3. Ultimately, torsion exponent bounds
arise as a corollaries to bounds on Γ(k). A more numerically precise result is obtained
at odd primes by using Theorem B.7 (4). The mysterious “sublinear error term” present
in Theorem 3.8 is a residue of the non-effective nature of the nilpotence theorem.

B.2. Comparing vanishing lines

The novel part of the proof of Theorem B.7 is the following comparison theorem, which
allows us to relate vanishing lines for different rings.

Theorem B.11. (Comparison theorem) Let i:A!B be a ring map. Then, the
following statements hold :

(1) gA(k)⩽gB(k);
(2) fA(k)⩽fB(k);
(3) if i becomes an equivalence after applying τ<m, then

fB(k)⩽ fA(k)+

⌊
k+fA(k)−1

m

⌋
⩽

1

m
k+

(
1+

1

m

)
fA(k)−

1

m
.
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Remark B.12. In [12], Conjecture 9.4.2 asks whether there is a finite-page vanishing
line of slope 1

13 in the tmf-Adams spectral sequence for a particular spectrum. We can
provide the following evidence in favor of this conjecture: The map

tmf −! tmf1(3)=BP⟨2⟩

allows us to apply Theorem B.11 (2), Theorem B.7 (1), and the nilpotence theorem in
order to conclude that

ftmf(k)⩽ fBP⟨2⟩(k)⩽
1
14k+o(k).

Note that the bound on ftmf is not guaranteed to appear at any finite page.

The first two statements of Theorem B.11 follow easily from the fact that i:A!B

induces a map of canonical Adams resolutions. The proof of the third statement will
occupy most of Appendices B.2 and B.3. In this proof, we will rely on an alternative
interpretation of fR from [69]. In order to recall this interpretation we begin by defining
a natural filtration on the thick ⊗-ideal generated by R.

Definition B.13. Given a set of spectra, S, the thick ⊗-ideal generated by S consists
of the smallest collection of spectra, Thick⊗(S), closed under finite (co)limits and re-
tracts, such that X⊗s∈Thick⊗(S) for all s∈S. We equip Thick⊗(S) with the following
filtration:

• Thick⊗(S)0={0};
• Thick⊗(S)1 consists of retracts of spectra of the form X⊗s where s∈S;
• Thick⊗(S)n consists of retracts of extensions of objects of Thick⊗(S)n−1 by ob-

jects of Thick⊗(S)1.
We will only make use of this definition in the case where S={R}.

Remark B.14. For any R-module M , the unit map M!R⊗M and the action map
R⊗M!M exhibit M as a retract of R⊗M , therefore M∈Thick⊗(R)1.

The function fR can then be interpreted in terms of this filtration.

Proposition B.15. ([69, Definitions 2.28 and 3.26, and Proposition 3.28]) Let

I := fib(S!R).

Then, the following are equivalent :
(1) fR(k)⩽n;
(2) τ<k S0∈Thick⊗(R)n;
(3) the map I⊗n

!S0 becomes null after tensoring with τ<k S0.
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Sadly, none of these conditions are particularly convenient for the proof we have in
mind. In order to remedy this, we introduce two further equivalent conditions.

Proposition B.16. The list of equivalent conditions from Proposition B.15 can be
extended to include the following :

(4) τ<k S0 is a retract of an object which has a length-n resolution by connective
R-modules;

(5) τ<k S0 is a retract of an object which has a length-n resolution by connective
induced R-modules.

Before proving Proposition B.16, we set up some notation and conventions for ma-
nipulating finite resolutions of spectra.

Definition B.17. A length-N resolution of a spectrum X0 will consist of a diagram

FN−1 XN−2 ... X1 X0

FN−2 F1 F0

such that each
Xj+1−!Xj −!Fj

is a cofiber sequence with the convention that XN−1=FN−1. In this situation, we will
say that we have a resolution of X0 by FN−1, ..., F0.

Notation B.18. We will adopt the compact notation

[FN , ..., F1, F0;X]

to express a resolution of X by FN , ..., F0. It is important to note that this notation
suppresses much of the data of a resolution.

Warning B.19. Sometimes we will write [..., F1, F0;X] for a resolution. Although
this suggests an infinite-length resolution, in this appendix all resolutions will be finite-
length and this will simply be used to avoid specifying the length of a resolution.

Remark B.20. In the length-2 case the notation [A,B;X] simply refers to a cofiber
sequence

A−!X −!B.

Proof of Proposition Proposition B.16. (5)⇒ (4) is clear.
(4)⇒ (2). As remarked above, every R-module is in Thick⊗(R)1, therefore τ<k S0

is a retract of an n-fold extension of elements of Thick⊗(R)1.
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(3)⇒ (5). Consider the following length-(n+1) resolution of S:

I⊗n I⊗(n−1) ... I S

R⊗I⊗(n−1) R⊗I R.

From it, we can produce the following length-n resolution of cof(I⊗n
!S):

R⊗I⊗(n−1) I⊗(n−2)/I⊗n ... I/I⊗n S /I⊗n

R⊗I⊗(n−2) R⊗I R.

Upon tensoring with τ<k S0, we obtain a length-n resolution of (τ<k S0)⊗(S /I⊗n) by
connective, induced R-modules. Finally, by hypothesis,

(τ<k S0)⊗(S /I⊗n)≃ (τ<k S0)⊕(τ<k S0⊗ΣI⊗n).

Using condition (4), we reduce the proof of Theorem B.11 to the following problem:
take a resolution of X by A-modules and produce from it the shortest possible resolution
of X by B-modules. In order to provide a simple illustration of the methods we will use
in the general case, we first work the following example in detail.

Question. Suppose that a spectrum X sits in a cofiber sequence C!X!D, where
C and D are BP-modules and C,D,X∈Sp[0,10]. What is the shortest resolution of X by
BP⟨1⟩-modules?

Strategy 1. We know that the map BP!BP⟨1⟩ is an equivalence after we apply τ<6,
therefore any BP module in Sp[k,k+5] is automatically a BP⟨1⟩ module.(22) Knowing this
trick, we can break each of C and D into two BP⟨1⟩-modules and produce a new resolution
of X which uses four BP⟨1⟩-modules:

τ[6,10]C C F X

τ[0,5]C τ[6,10]D τ[0,5]D.

This is a start, but it turns out we can do better.

(22) A proof of this will appear in much greater generality in the next section.
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Strategy 1. For our second approach, we will start with a slightly modified version
of the first resolution we produced:

τ[5,10]C C F X

τ[0,4]C τ[6,10]D τ[0,5]D.

Now, we can expand this resolution into the following diagram, where each square is
cartesian:

τ[5,10]C C F X

0 τ[0,4]C G H

0 τ[6,10]D D

0 τ[0,5]D.

Notably, the cofiber sequence which G sits in is “backwards”. In fact, if we expand
it a little bit

Σ−1τ[6,10]D−! τ[0,4]C −!G−! τ[6,10]D,

we see that the attaching map must be zero for connectivity reasons, and therefore

G≃ τ[0,4]C⊕τ[6,10]D.

As a direct sum of BP⟨1⟩-modules, this is in fact a BP⟨1⟩-module as well. Thus, we can
produce the following length-3 resolution of X:

τ[5,10]C F X

τ[0,4]C⊕τ[6,10]D τ[0,5]D.

Both strategies had four main steps:
(1) start with a resolution by bounded A-modules;
(2) construct a new resolution from the given one;
(3) count the length of the new resolution;
(4) show that the new resolution is in fact a resolution by B-modules.
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In the proof of Theorem B.11, each of these elements will be replaced by a lemma
(whose proofs we defer to the next section).

Lemma B.21. Given a resolution [FN , ..., F0;X] such that each Fj is an A-module
and all the Fj are connective, there exists another resolution [F ′

N , ..., F ′
0; τ⩽M−1X] such

that each F ′
j is an A-module in Sp[0,M ].

Lemma B.22. Given a resolution [FN , ..., F0;X], where each Fj lives in Sp[0,K], we
can construct another resolution[

...,

( ⊕
0⩽i⩽j

τ[(j−i)m−i,(j−i+1)m−i)Fi

)
, ..., (τ[−1,m−1)F1⊕τ[m,2m)F0), (τ[0,m)F0);X

]
.

Remark B.23. Since Lemma B.22 is more complicated than the others, we pause
here to note that, in the case where N=0, this lemma just produces the m-speed Post-
nikov tower for X. In general, the lemma takes Postnikov-type towers for each Fj and
shuffles them together. Ultimately, this is no more than a careful elaboration on the
manipulations used in strategy 2 above.

Lemma B.24. The resolution produced by Lemma B.22 has length

1+N+

⌊
K+N

m

⌋
.

Lemma B.25. Given a ring map A!B which becomes an equivalence after applying
τ<m, any A-module in Sp[a,a+m) can be given the structure of a B-module.

Proof of Theorem B.11. Let N+1=fA(k). Then, by Proposition B.16 (4), there ex-
ists a Y such that the following conditions hold:

(1) τ<k S0 is a retract of Y ;
(2) Y has a resolution [FN , ..., F0;Y ] by connective A-modules.
Next, we apply Lemma B.21 to obtain a resolution [GN , ..., G0; τ<kY ], where each

Gj is an A-module in Sp[0,k].
At this point, we apply Lemma B.22 to [GN , ..., G0; τ<kY ] with K=k and m=m

to obtain a new resolution [..., H1, H0; τ<kY ]. Each of the Hj is a direct sum of finitely
many terms of the form τ[a,a+m)Gi. By Lemma B.25, each of these terms is then a B -
module, thus Hj is a B -module as well. Finally, we note that τ<k S0 is a retract of τ<kY ,
therefore, by Proposition B.16 (4), fB(k) is bounded by the length of the resolution we
have produced, and Lemma B.24 lets us conclude that

fB(k)⩽ 1+N+

⌊
k+N

m

⌋
.
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B.3. Comparing vanishing lines (continued)

In this subsection we prove the four lemmas used in the proof of Theorem B.11. Lem-
mas B.21 and B.25 follow from standard manipulations of Postnikov towers for R-
modules. Lemma B.22 requires the iterated application of several simple maneuvers
that modify finite resolutions. After laying out the necessary constructions, the proof is
straightforward.

Lemma B.26. ([62, Proposition 7.1.1.13]) Let U : LModR!Sp denote the functor
which sends a left R-module to its underlying spectrum. Let LMod⩾0

R (resp. LMod⩽0
R )

denote the full subcategory of LModR on those left R-modules whose underlying spectrum
is connective (coconnective). Then, LMod⩾0

R and LMod⩽0
R determine an accessible t-

structure on LModR such that
(1) U(τ⩾0M)≃τ⩾0U(M);
(2) U(τ⩽0M)≃τ⩽0U(M);
(3) the natural functor π0U : LMod♡R!Sp♡(p) is an equivalence.(23)

Proof of Lemma B.25. It will suffice to prove the lemma in the case where a=0. We
would like to show that the left B-module

τ<m(B⊗AM)

is equivalent to M . Consider the following diagram of spectra

(τ⩾mB)⊗AM B⊗AM (τ<mB)⊗AM

(τ⩾mA)⊗AM A⊗AM (τ<mA)⊗AM,

where both rows are cofiber sequences. In order to produce a chain of equivalences

τ<m(B⊗AM)≃ τ<m(τ<mB⊗AM)≃ τ<m(τ<mA⊗AM)≃ τ<m(A⊗AM),

it will suffice to show that (τ⩾mB)⊗AM and (τ⩾mA)⊗AM are m-connective. This fol-
lows from the fact that a relative tensor product of connective modules over a connective
ring is connective.

Proof of Lemma B.21. We are given a resolution

FN XN−1 ... X1 X

FN−1 F1 F0.

(23) Recall that, by convention, π0R∼=Z(p).
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From this, we construct the resolution

τ⩽M−1FN τ⩽M−1XN−1 ... τ⩽M−1X1 τ⩽M−1X

F ′
N−1 F ′

1 F ′
0.

In order to finish the proof, we just need to analyze F ′
j . For j ̸=N , we can construct

the following diagram of spectra, where Y and Z are chosen so that each row is a cofiber
sequence:

τ⩽M−1Xj+1 Y τ⩽MFj τ⩽MΣXj+1 ΣY

τ⩽M−1Xj+1 τ⩽M−1Xj F ′
j τ⩽MΣXj+1 τ⩽MΣXj

Z τ⩽M−1Xj τ⩽M−1Fj ΣZ τ⩽MΣXj .

On long exact sequences of homotopy groups this diagram becomes

... 0 A πM (Fj) πM−1(Xj+1) πM−1(Xj) ...

... 0 0 πM (F ′
j) πM−1(Xj+1) πM−1(Xj) ...

... 0 0 0 B πM−1(Xj) ...,

where A, πM (F ′
j), and B are the kernels of the next map in the sequence. From this, we

can read off that the sequence

τ⩽MFj −!F ′
j −! τ⩽M−1Fj

becomes an equivalence after applying τ⩽M−1 and induces a surjection on πM . In par-
ticular, this tells us that F ′

j∈Sp[0,M ]. What remains is to show that F ′
j is an A-module.

In order to do this, we recall [15, Proposition 1.3.15]: Let C be a triangulated
category equipped with a left and right complete t-structure. Suppose we are given an
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object P∈C and a quotient map πMP!Q in C♡. Then, there is a unique object P ′

equipped with a factorization

τ⩽MP −!P ′−! τ⩽M−1P

such that P ′∈C⩽M and after applying πM this sequence becomes

πM (P )−!Q−! 0.

Using the existence part of this proposition with C=LModR, we construct an A-
module P . Using the properties of U from Lemma B.26, we may apply the uniqueness
assertion in the proposition to conclude that UP≃F ′

j .
In the j=N case, we have F ′

N :=τ⩽M−1Fj . This objects clearly lives in Sp[0,M ] and
is an A-module by Lemma B.26.

Before proceeding with the proof of Lemma B.22, we introduce several basic con-
structions which we will need in order to efficiently manipulate resolutions. The first
pair of constructions (which are inverse to each other) codify the process of inserting a
resolution into another resolution and extracting a piece of a resolution.

Construction B.27. (Compression) Given a resolution

[..., Fj , ..., Fj−a, ..., F0;X],

we construct resolutions

[..., Fj+1, G, Fj−a−1, ..., F0;X] and [Fj , ..., Fj−a;G].

Proof. The desired resolution is given by

... Xj+2 Xj+1 Xj−a Xj−a−1 ... X

Fj+2 Fj+1 G Fj−a−1 F0.

The resolution of G is given by

Fj Xj−1/Xj+1 Xj−2/Xj+1 ... Xj−a/Xj+1 =:G

Fj−1 Fj−2 Fj−a
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Construction B.28. (Insertion) Given a resolution [Fn, ..., F0;X] and another reso-
lution [Gm, ..., G0;Fj ], we construct a third resolution

[Fn, ..., Fj+1, Gm, ..., G0, Fj−1, ..., F0;X].

Proof. We will make our construction by induction on m. The m=0 case is trivial.
In the m=1 case, let H denote the fiber of the composite Xj!Fj!G0. Then, we

obtain a natural maps Xj+1!H!Xj , and the desired resolution is given by

... Xj+1 H Xj Xj−1 ... X

Fj+1 G1 G0 Fj−1 F0.

For the induction step, we compress [Gm, ..., G0;Fj ] into [Gm, ..., G2,K;Fj ], then we
insert this new resolution into the given one, and apply insertion again, this time with
[G1, G0;K] instead, which finishes the construction.

When appropriate connectivity hypotheses are satisfied, we can use compression and
insertion to swap the order of the terms in a resolution.

Lemma B.29. (Splitting lemma) When the compression construction is applied with
a=1, if Fj−1 is k-connective and Fj is (k−2)-coconnective, then G≃Fj⊕Fj−1.

Proof. The attaching map in the cofiber sequence building G is zero for connectivity
reasons.

Construction B.30. (Swapping) Given a resolution

[Fn, ... Fj , A⊕B,Fj−1, ..., F0;X],

we can construct another resolution

[Fn, ..., Fj , A,B, Fj−1, ..., F0;X]

by inserting the resolution [A,B;A⊕B] into the given one.

Finally, we have a second pair of inverse constructions where we slice off the leading
object of a resolution or add a new leading term.

Construction B.31. (Slicing) Given a resolution [Fn, ..., F0;X], we will construct
another resolution [Fn, ..., F1;X1], where X1 sits in a cofiber sequence X1!X!F0.
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Proof. The desired resolution is given by

... X2 X1

F2 F1,

together with the cofiber sequence X1!X!F0.

Construction B.32. (Appending) Given a resolution [Fn, ..., F0;X] and a cofiber
sequence X!Y!A, we can construct another resolution [Fn, ..., F0, A;Y ].

Proof. The desired resolution is given by

... X2 X1 X Y

F2 F1 F0 A.

Proof of Lemma B.22. We will prove the proposition by induction on N . For the
base case, we replace the resolution [X;X] with

[..., τ[2m,3m)X, τ[m,2m)X, τ[0,m)X;X],

which is a variant on the Postnikov resolution. For the induction step, we start by slicing
and suspending the given resolution to obtain a new resolution

[ΣFN , ...,ΣF1; ΣX1].

Next, we apply the N−1 case of this proposition to this resolution, obtaining[
...,

( ⊕
0⩽i⩽j

τ[(j−i)m−i,(j−i+1)m−i)(ΣFi+1)

)
, ..., (τ[0,m)(ΣF1)); ΣX1

]
.

After desuspending this resolution and appending X to the front, we obtain a resolution[
...,

( ⊕
1⩽i⩽j

τ[(j−i)m−i,(j−i+1)m−i)Fi

)
, ..., (τ[−1,m−1)F1), F0;X

]
.

In order to simplify notation, we will define

Gj :=

( ⊕
1⩽i⩽j

τ[(j−i)m−i,(j−i+1)m−i)Fi

)
.

Now we make two observations that will let us finish the proof.
(1) We are trying to produce a resolution whose terms are Gj⊕τ[jm,(j+1)m)F0.
(2) Gj is (jm−2)-coconnective.
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Next, we insert the the same variant of the Postnikov resolution considered in the
base case (this time applied to F0). This produces the resolution

[..., G2, G1, ..., τ[2m,3m)F0, τ[m,2m)F0, τ[0,m)F0;X].

We now apply the splitting lemma and the swap construction repeatedly, in order to
move the terms τ[am,(a+1)m)F0 to the left until we saturate the coconnectivity from (2).
This yields a resolution

[..., τ[2m,3m)F0⊕G2, τ[m,2m)F0⊕G1, τ[0,m)F0;X],

which completes the proof.

Proof of Lemma B.24. The last term in the resolution from Lemma B.22 which con-
tains a truncation of Fi as a summand has j such that

K ∈ [(j−i)m−i, (j−i+1)m−i).

Thus, there are j+1 terms in the resolution, where j is the integer such that

K ∈ [(j−N)m−N, (j−N+1)m−N).

From this, we may conclude that

j+1=1+N+

⌊
K+N

m

⌋
.

B.4. The proof of Theorem B.7

For clarity of exposition, we prove the various parts of Theorem B.7 as separate lemmas.
Before proceeding, we summarize each of these parts.

(i) Theorem B.7 (1) is a direct corollary of Theorem B.11.
(ii) Theorem B.7 (2) is a corollary of Theorem B.7 (1) and a bound on Γ(k) in terms

of fBP⟨1⟩(k), due to Davis and Mahowald [29] at p=2 and González [40] at odd primes.
(iii) Theorem B.7 (3) is a corollary of the n=1 case of Theorem B.7 (1) combined

with Corollary B.6.
(iv) Theorem B.7 (4) is proved in the same way as Theorem B.7 (2), except using

Theorem B.7 (3) instead of Theorem B.7 (1).

Corollary B.33. (Theorem B.7 (1))

fBP⟨n⟩(k)⩽
1

|vn+1|
k+

(
1+

1

|vn+1|

)
fBP(k)−

1

|vn+1|
=

k

|vn+1|
+o(k).
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Proof. Apply Theorem B.11 to the map of E1-algebras BP!BP⟨n⟩, which exists by
[7, Corollary 3.2]. While the statement of [7, Corollary 3.2] asks for R to be an E∞-ring
spectrum, its proof only requires that R be E2. The spectrum BP admits the structure
of an E4-ring (and therefore E2-ring) by [11].

This corollary used only very coarse information about BP⟨n⟩. In fact, the same
conclusions hold with BP⟨n⟩ replaced by τ<|vn+1| BP. We believe that the actual van-
ishing curve for BP⟨n⟩ has only a constant “error term”. As such, we make the following
conjecture.

Conjecture B.34.
fBP⟨n⟩(k)=

k

|vn+1|
+O(1).

Remark B.35. The n=0 case of this conjecture is essentially due to Adams and Luile-
vicius and appeared in the discussion following Remark B.4. For n>0, this conjecture is
open.

In order to prove Theorem B.7 (2), we need a technique which allows us to bound
Γ(k). This is provided by the following pair of theorems proved by Davis–Mahowald at
p=2 and González at p ̸=2.

Theorem B.36. ([29, Theorem 5.1]) Let

S0 =S0
f1
 −−−S1

f2
 −−−S2

f3
 −−− ...

denote the canonical bo-Adams resolution of S0, and suppose we are given αs∈πn(Ss)

such that αs maps to zero under the composite

πn(Ss)−!πn(S0)−!πn(LK(1) S)

and AF(αs)⩾ε(n, s).(24) Then, there exists an αs+1 such that fs(fs+1(αs+1))=fs(αs)

and AF(αs+1)⩾AF(αs)−δ(n, s) , where the values of ε(n, s) and δ(n, s) are given in the
following table:

s ε(n, s) δ(n, s)

0 1 1

1 max(1, v2(n+1)−1) max(1, v2(n+1)−1)

2 v2(n+2)+1 v2(n+2)+1

⩾ 3 2

{
2, if n+s≡ 0, 1, 2, 4 mod 8,
1, if n+s≡ 3, 5, 6, 7 mod 8

(24) If α∈π∗(X), then AF(α) denotes the HFp-Adams filtration of the class α.
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Note that αs maps to zero in LK(1) S automatically if s⩾2.

Theorem B.37. ([40, Theorem 7.5]) Let

S0 =S0
f1
 −−−S1

f2
 −−−S2

f3
 −−− ...

denote the canonical BP⟨1⟩-Adams resolution of S0, and suppose we are given αs∈πn(Ss)

such that αs maps to zero under the composite

πn(Ss)−!πn(S0)−!πn(LK(1) S)

and AF(αs)⩾ε(n, s). Then, there exists an αs+1 such that fs(fs+1(αs+1))=fs(αs) and
AF(αs+1)⩾AF(αs)−ε(n, s), where the values of ε(n, s) are given in the following table:

s ε(n, s)

0, 1 1

2 1+ℓ(n)

⩾ 3

{
2, if n+s≡ 0 mod q,
1, if n+s ̸≡ 0 mod q

Note that αs maps to zero in LK(1) S automatically if s⩾2.

Corollary B.38. At p=2,

Γ(k)⩽
3

2
gbo(k)+

3

2
+ℓ(k),

and, at p ̸=2,

Γ(k)⩽
q+1

q
gBP⟨1⟩(k)+1− 2

q
+ℓ(k).

Proof. Suppose p=2. Then, we can read off from Theorem B.36 that, if α∈πk(S) is
a class which maps to zero in LK(1) S and

AF(α)⩾ 1+max(1, v2(k+1)−1)+(1+v2(k+2))

+(N−3)+|{(k+s)≡ 0, 1, 2, 4 mod 8 : 3⩽ s<N}|+1,

then α has bo-Adams filtration at least N . Once N>gbo(k), we automatically have α=0.
Stated another way, we have

Γ(k)+1⩽ 1+max(1, v2(n+1)−1)+(1+v2(n+2))

+(gbo(k)−2)+|{(n+s)≡ 0, 1, 2, 4 mod 8 : 3⩽ s< (gbo(k)+1)}|+1

⩽ 3+(gbo(k)−2)+
1

2
(gbo(k)−2)+

5

2
+

{
v2(n+1), if n is odd,
v2(n+2), if n is even

⩽
3

2
gbo(k)+

5

2
+ℓ(k).
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Suppose p ̸=2. Then, we can read off from Theorem B.37 that, if α∈πk(S) is a class
which maps to zero in LK(1) S and

AF(α)⩾ 3+ℓ(k)+(N−3)+|{(k+s)≡ 0 mod q : 3⩽ s<N}|,

then α has BP⟨1⟩-Adams filtration at least N . Once N>gBP⟨1⟩(k), we automatically
have α=0. Stated another way, we have

Γ(k)+1⩽ 3+ℓ(k)+(gBP⟨1⟩(k)−2)+|{(k+s)≡ 0 mod q : 3⩽ s< (gBP⟨1⟩(k)+1)}|

⩽ 1+ℓ(k)+gBP⟨1⟩(k)+
1

q
(gBP⟨1⟩(k)−2)+1

⩽ 2− 2

q
+ℓ(k)+

q+1

q
gBP⟨1⟩(k).

Corollary B.39. (Theorem B.7 (2)) At p=2,

Γ(k)⩽
1

4
k+

7

4
fBP(k+1)+ℓ(k),

and, at p ̸=2,

Γ(k)⩽
q+1

q|v2|
k+

(q+1)(|v2|+1)

q|v2|
fBP(k+1)− 3

q
+ℓ(k).

Proof. At p=2, using Corollary B.38, Remark B.4, and Theorems B.11 and B.7 (1),
we obtain

Γ(k)⩽
3

2
gbo(k)+

3

2
+ℓ(k)

⩽
3

2
(fbo(k+1)−1)+ 3

2
+ℓ(k)

⩽
3

2
fBP⟨1⟩(k+1)+ℓ(k)

⩽
3

2

(
1

6
(k+1)+

7

6
fBP(k+1)− 1

6

)
+ℓ(k)

⩽
1

4
k+

7

4
fBP(k+1)+ℓ(k).

At p ̸=2, using Corollary B.38, Remark B.4, and Theorem B.7 (1), we obtain

Γ(k)⩽
q+1

q
gBP⟨1⟩(k)+1− 2

q
+ℓ(k)

⩽
q+1

q
(fBP⟨1⟩(k+1)−1)+1− 2

q
+ℓ(k)

⩽
q+1

q

(
1

|v2|
(k+1)+

|v2|+1

|v2|
fBP(k+1)− 1

|v2|

)
− 3

q
+ℓ(k)

⩽
q+1

q|v2|
k+

(q+1)(|v2|+1)

q|v2|
fBP(k+1)− 3

q
+ℓ(k).
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Corollary B.40. (Theorem B.7 (3)) For each odd prime p,

fBP⟨1⟩(k)⩽
p+2

2(p3−p−1)k+2p2−4p+11.

Proof. We specialize Corollary B.33 to the n=1 case and plug in the bound on fBP

obtained in Corollary B.6:

fBP⟨1⟩(k)⩽
1

|v2|
k+

1+|v2|
|v2|

fBP(k)−
1

|v2|

⩽
1

|v2|
k+

1+|v2|
|v2|

(
1

p3−p−1k+2p2−4p+10− 2p2+2p−9
p3−p−1

)
− 1

|v2|

⩽
p+2

2(p3−p−1)k+2p2−4p+11− 2p−6
p2−1−

(2p2+2p−9)(2p2−1)
(2p2−2)(p3−p−1) (B.1)

<
p+2

2(p3−p−1)k+2p2−4p+11

Corollary B.41. (Theorem B.7 (4)) For p=3,

Γ(k)⩽
25

184
k+19+

1133

1472
+ℓ(k),

and, for p⩾5,

Γ(k)⩽
(2p−1)(p+2)

4(p−1)(p3−p−1)k+2p2−3p+11+ℓ(k).

Proof. In the proof of Theorem B.7 (2) we obtained

Γ(k)⩽
q+1

q
(fBP⟨1⟩(k+1)−1)+1− 2

q
+ℓ(k)

for each odd prime. Using the intermediate bound on fBP⟨1⟩(k) from equation (B.1), we
obtain a bound on Γ(k) which simplifies to

Γ(k)⩽
(2p−1)(p+2)

4(p−1)(p3−p−1)k+2p2−3p+10+
−4p5+26p4+19p3−52p2−27p+35

(2p−2)(2p2−2)(p3−p−1) +ℓ(k).

For all p⩾5, the second to last term is less than 1.
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