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This is a correction to [11] (Acta Math.), as well as to the follow-up publications [3]

and [5] (both in J. Funct. Anal.).

Theorem. In the formulations of the tensorization property for

(i) the CD(K,∞) condition [11, Proposition 4.16],

(ii) the CD∗(K,N) condition [3, Theorem 4.1], and

(iii) the CD(K,N) condition [5, Theorem 1.1],

the assumption non-branching has to be replaced by the stronger assumption that all the

metric measure spaces (Mi, di,mi) for i=1, ..., ℓ are

(a) infinitesimally Hilbertian spaces (in the sense of [1] and [7]), or

(b) smooth Finslerian spaces (in the sense of [9] and [10]).

Recall that a metric measure space (M, d,m) is called infinitesimally Hilbertian if

the Cheeger energy E on M is a quadratic functional on L2(M,m) or, in other words, if

the associated heat flow is linear—and note that Finslerian spaces constitute the main

class of metric measure spaces that are not infinitesimally Hilbertian.

The previous erroneous proofs relied on an argument which can not be made rigorous

[11, p. 115, first two lines]: “According to Lemma 2.11 (iii), since M is non-branching

and since the ν0,j for j=1, ..., n are mutually singular, also the ηj for j=1, ..., n must be

mutually singular”.

http://dx.doi.org/10.1007/s11511-006-0002-8
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As thankfully pointed out to the author first by G. Savaré and then also by N. Gigli,

the composition of the partial optimal transports is not necessarily an optimal transport

of the composed marginals, and thus mutual singularity of the partial marginals (and

non-branching property) does not imply mutual singularity of the partial midpoints.

The corrected statements are derived as follows.

(a) Infinitesimally Hilbertian spaces

• If all the (Mi, di,mi) are infinitesimally Hilbertian spaces and satisfy CD(K,∞),

then so does their tensor product (M, d,m); [2, Theorems 5.2 and 4.17]. This is a conse-

quence of the tensorization property for the Bakry–Émery condition BE(K,∞) and the

equivalence between Eulerian and Lagrangian curvature-dimension conditions BE(K,∞)

and CD(K,∞).

(Note that the proof of the tensorization property in [1, Theorem 6.13] is based on

the incorrect [11, Proposition 4.16]. Also notice that in [2], at some stage, a tensoriza-

tion argument from [1] is used, but, as noted there, the lemma used was not involving

curvature properties.)

• If all the (Mi, di,mi) are infinitesimally Hilbertian spaces and satisfy CD∗(K,N),

then so does their tensor product (M, d,m); [6, Theorem 3.23].

• If all the (Mi, di,mi) are infinitesimally Hilbertian spaces and satisfy CD(K,N),

then, in particular, they all satisfy CD∗(K,N). Thus, by the previous assertion, their

tensor product (M, d,m), is infinitesimally Hilbertian and satisfies CD∗(K,N). According

to the globalization theorem in [4], the latter implies that (M, d,m) also satisfies the

CD(K,N) condition. (Indeed, the original argument in [4] only applied to normalized

mm-spaces but it is extended to σ -finite mm-spaces in [8].)

(b) Smooth Finslerian spaces

If all the (Mi, di,mi) for i=1, ..., ℓ are smooth Finslerian spaces (in the sense of [9] and

[10]), then so is their tensor product

(M, d,m)=

ℓ⊗
i=1

(Mi, di,mi).

For smooth Finslerian spaces, the CD(K,∞) condition is equivalent to the weighted flag

Ricci curvature being bounded from below by K, [9, Theorem 1.2]. By construction, the

weighted flag Ricci curvature bound has the tensorization property.
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Moreover, the CD∗(K,N) condition, as well as the CD(K,N) condition, are both

equivalent to the weighted flag N -Ricci curvature being bounded from below by K, [9,

Theorem 1.2]. The tensorization property of the weighted flag N -Ricci curvature bound

follows as in the Riemannian case: if each of the spaces Mi with dimension ni and weight

Vi for i=1, ..., ℓ satisfies

RicNi(ξi) :=Ric(ξi)+HessVi(ξ, ξ)−
1

Ni−ni
⟨∇Vi, ξi⟩2 ⩾K|ξi|2

for all ξi∈TMi, then the space

M=
⊗
i

Mi,

with dimension n=
∑

i ni and weight V =
⊕

i Vi, satisfies

Ric(ξ)−HessV (ξ, ξ)−K|ξ|2 =
∑
i

Ric(ξi)−
∑
i

HessV (ξi, ξi)−
∑
i

K|ξi|2

⩾
∑
i

1

Ni−ni
⟨∇Vi, ξi⟩2

⩾
1

N−n
⟨∇V, ξ⟩2

for all ξ=(ξ1, ..., ξℓ)∈TM, with N=
∑

i Ni.

Indeed, in all these cases, the tensorization property in the Lagrangian picture is

known only through its proof within the Eulerian picture.
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