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DEFORMING CALABI-YAU ORBIFOLDS* 

DOMINIC JOYCEt 

1. Introduction. A Calabi-Yau 3-fold is a compact complex 3-manifold (X, J) 
equipped with a Ricci-flat Kahler metric g and a holomorphic volume form Cl which is 
constant under the Levi-Civita connection of g. Suppose X is a Calabi-Yau 3-fold and 
G a finite group that acts on X preserving J^g and fL Then Z = X/G is a Calabi- 
Yau 3-orbifold. One can also construct Calabi-Yau 3-orbifolds Z which are not of the 
form X/G, for instance as hypersurfaces in weighted projective spaces CP^0 ?a4 as 
in Candelas et al. [2]. 

Often it is possible to find a compact manifold Y that desingularizes Z, and carries 
a family of Calabi-Yau structures that converge to the singular Calabi-Yau structure 
on Z in a well-defined sense, so that the orbifold metric on Z may be regarded as the 
degenerate case in a smooth family of Calabi-Yau metrics on Y. 

The two main strategies for desingularizing Z to get Y are called resolution and 
deformation. A resolution (Y, TT) of Z is called a crepant resolution if Ky — ^(Kz)- 
To get a Calabi-Yau structure on Y we must choose a crepant resolution. A nonsin- 
gular deformation of Z is called a smoothing. 

We can also combine the two processes by taking a crepant resolution of a sin- 
gular deformation of Z, which we will call a CR-deformation of Z. Thus, crepant 
resolutions, smoothings and CR-deformations are three different ways to desingular- 
ize a Calabi-Yau orbifold Z to get a new Calabi-Yau 3-fold Y. As a shorthand we will 
sometimes use desingularize and desingularization to mean either a crepant resolution, 
or a smoothing, or a CR-deformation. 

Much is already known about the crepant resolutions of Z. For example, Z always 
admits at least one crepant resolution, distinct crepant resolutions of Z are related by 
'flops', and the Hodge numbers of all crepant resolutions of Z are the same, and can 
be written down in terms of X and G. For more information on this, see for instance 
Reid [9], Ito and Reid [3] and Roan [10]. However, the topology of smoothings and 
CR-deformations of Z is less well understood. 

In this paper we describe a topological mechanism through which a Calabi-Yau 
orbifold Z with singularities of codimension two may admit a number of topologi- 
cally distinct resolutions, smoothings and CR-deformations, with a variety of Betti 
numbers. This mechanism is related to the Weyl group of the codimension two sin- 
gularities, and we refer to it as twisting by the Weyl group. 

We illustrate our ideas upon two orbifolds. The first example T6/Z4 has crepant 
resolutions and smoothings with 5 different sets of Betti numbers, which are easily 
described. The second example T6/^! is much more complicated. There are a very 
large number of ways of desingularizing it, which we are unable to classify completely, 
realizing many different sets of Betti numbers. It seems surprising that such a simple 
orbifold can have crepant resolutions, smoothings and CR-deformations giving Calabi- 
Yau 3-folds in so many different ways. 

We now explain the idea of 'twisting by the Weyl group'. Suppose G is a finite 
subgroup of SU(S) with a normal subgroup H contained in some SU(2) C SU(S), 
but where G is not itself contained in SU(2). Then C3/H ^ C x C2/H, and G/H is 
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a finite cyclic group Z& for some k > 1. To construct a crepant resolution, smoothing 
or CR-deformation Y of C3 /G, we may proceed in two stages. 

The first stage is to choose a desingularization X of C2 /if, so that C x X is a 
crepant resolution, smoothing or CR-deformation of C3 /if. Then we hope to find an 
action of Z& = G/H upon C x X, which is asymptotic to the prescribed action of 
Z& on C3/if. If there exists such an action, then the second stage is to make Y as a 
crepant resolution, smoothing or CR-deformation of (C x X)/Zk. 

It is well known that if if C SU(2) is a finite subgroup then C2/if admits a 
unique crepant resolution X', and that any smoothing or CR-deformation X of C? /H 
is diffeomorphic to X'. Thus, the diffeomorphism type of X is fixed uniquely by if. 
However, our key observation is that the action of Z^ on X and on its cohomology is 
not always uniquely determined by G. 

Instead, there can be a finite number of topologically distinct ways for Z^ to 
act on X, depending on the choice of complex structure of X, and on the level of 
cohomology these actions differ by an element of the Weyl group of the singularity 
C2/if. For one of these Z^-actions the desingularization Y of (C x X)/Z& has the 
topology of a crepant resolution, but for other choices of the Z^-action Y does not 
have this topology. 

As the idea of making Calabi-Yau 3-folds out of torus orbifolds T6/G goes back 
a long way, this paper na/fcurally has similarities with the work of other authors. The 
first paper to construct Calabi-Yau 3-folds using crepant resolutions of T6/G was 
Roan and Yau [11], and was followed by many others. 

The method of constructing Calabi-Yau 3-folds by deforming singular Calabi-Yau 
3-folds has also been explored by a number of authors — see for instance Tian [14] 
for an important result on deformations of Calabi-Yau 3-folds with ordinary double 
points. 

However, as far as the author can tell, there are few papers which combine these 
ideas, and construct Calabi-Yau 3-folds by deforming orbifolds T6/G with codimen- 
sion two singularities. One such paper is Vafa and Witten [15, §2], who construct a 
Calabi-Yau 3-fold by smoothing T6/Z|. 

The two main ideas in this paper which the author hopes are new are the use 
of Weyl groups of codimension two singularities to find and describe topologically 
distinct ways of making Calabi-Yau 3-folds out of orbifolds by CR-deformations, and 
the fact that just one orbifold can have a surprisingly large number of Calabi-Yau 
desingularizations, realizing many different sets of Betti numbers. 

The rest of the paper is set out as follows. Section 2 summarizes the theory 
of singularities C2/if for if a finite subgroup of 517(2), their resolutions and defor- 
mations, and the idea of the Weyl group. Then §3 explains some theory about the 
orbifolds we are interested in, and the topology of their crepant resolutions, smooth- 
ings and CR-deformations. Sections 4 and 5 apply these ideas to the orbifolds T6/Z4 
and r6/Z2. 

2. Kleinian singularities and ALE spaces. The quotient singularities C2/if, 
for if a finite subgroup of 31/(2), were first classified by Klein in 1884 and are called 
Kleinian singularities; they are also called Du Val surface singularities, or rational 
double points. The theory of these singularities and their resolutions is very rich, and 
has many connections to other areas of mathematics. Most of the following facts are 
taken from McKay [8], Slodowy [13], and Kronheimer [6, 7]. 

There is a 1-1 correspondence between finite subgroups if C 517(2) and the 
Dynkin diagrams of type Ar (r > 0), Dr (r > 4), EQ, E? and Es. Let T be the Dynkin 
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diagram associated to H. These Dynkin diagrams appear in the classification of Lie 
groups, and each one corresponds to a unique compact, simple Lie group; they are 
the set of such diagrams containing no double or triple edges. 

Each singularity C2 /H admits a unique crepant resolution (X, TT). The preimage 
7r_1(0) of the singular point is a union of a finite number of rational curves in X. 
These curves correspond naturally to the vertices of F. They all have self-intersection 
—2, and two curves intersect transversely at one point if and only if the corresponding 
vertices are joined by an edge in the diagram; otherwise the curves do not intersect. 

These curves give a basis for the homology group H2(X,Z), which may be iden- 
tified with the root lattice of the diagram, and the intersection form with respect to 
this basis is the negative of the Cartan matrix of F. Define A to be {8 E #2(^5 ^) : 
6 - 6 = —2}. Then A is identified with the set of roots of the diagram. There are also 
1-1 correspondences between the curves and the nonidentity conjugacy classes in H, 
and also the nontrivial representations of iJ; it makes sense to regard the nonidentity 
conjugacy classes as a basis for #2(^7 %), and the nontrivial representations as a basis 
for#2(X,Z). 

By the theory of Lie groups, the Dynkin diagram F of C2 /H has a Weyl group 
W, and a representation of W on the root lattice H2(X,Z) of F. This action of W 
preserves the subset A and the intersection form on ^(X, Z), and by duality W also 
acts on H2(X, Z). Let Aut(r) be the group of automorphisms of the graph F, which 
is given by 

Aut(r) = { 
{1}   i£r = AuE7OTEs, 

Z2     if F = Ak (k > 2), Dk (k > 5) or E6, 

S3     if F = D4. 

Now the vertices of F correspond to the basis elements of ^(X, Z), so that 
Aut(r) acts naturally on ^(X, Z), preserving the intersection form. But the Weyl 
group W also acts on ^(X, Z). It turns out that there is a natural semidirect 
product Aut(r) ex W, and the actions of Aut(r) and W on ^(X, Z) combine to give 
a representation of Aut(r) x W on ^(X, Z). Define p to be the dual representation 
of Aut(r) ix W on both i?2(X,R) and iJ2(X,C). The action of each element of 
Aut(r) ix W is induced by a diffeomorphism of X, so we can interpret Aut(r) tx W as 
a group of isotopy classes of diffeomorphisms of X. However, in general Aut(r) tx W 
is not a group of diffeomorphisms of X, nor an isometry group of any of the metrics 
or complex structures on X. 

The singularities C2 /H can be desingularized by deformation as well as by crepant 
resolution. Klein found that each singularity C2 /H is isomorphic as an affine complex 
variety to the zeros of a polynomial on C3. For example, C2 /Z& may be identified with 
the set of (#, y, z) € C3 with xy — zk — 0. The deformations of C2 /H are constructed 
by adding terms of lower order in #, y and z to this polynomial. All of the smooth 
deformations of C2 /H are diffeomorphic to the unique crepant resolution X of C2 /H. 

Each of these desingularizations of C2 /H carries a special family of metrics with 
holonomy SU(2). The metrics are asymptotic up to 0(r-4) to the Euclidean metric 
on C2/i?, and so are called Asymptotically Locally Euclidean] the complex manifold 
X with its Kahler metric is called an ALE space. A complete construction and 
classification of ALE spaces was carried out by Kronheimer [6, 7], and we describe it 
next. 

Let Y be an ALE space asymptotic to C2 /H. Then Y is diffeomorphic to X, 
and carries a geometric structure which is encoded in the Kahler form 00 and the 
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holomorphic volume form ft of X. Both u and ft are closed forms, so they define de 
Rham cohomology classes a = [u] G H2(X,R) and /? = [Q] <E iI2(X,C). Thus, to 
each ALE space Y we may associate the pair (a, (3) E H2(X, K) x H2(X, C). 

For each pair (a,/?) E H2(X,M) x H2(X:C), Kronheimer [6] defined an explicit, 
possibly singular ALE space XQ,^ asymptotic to C2 /if, using the hyperkahler quotient 
construction. Let U be the subset 

U = {(a,P) E H2(X,R) x iJ2(X,C) : a(<J) # 0 or (3(5) ^ 0 for all 6 E A}. 

Then U is a dense open subset of H2(X, E) x H2(X, C). Kronheimer showed that if 
(a, /?) ^ U then Xa^ is an orbifold, and if (a, /?) E C/ then Xa?/3 is nonsingular and 
diffeomorphic to X, and the Kahler form u and holomorphic volume form ft of Xa^ 
have cohomology classes [LU] = a and [O] = /?. The manifolds XQip for (a,/?) E U 
form a family diffeomorphic to X x U. 

Next, Kronheimer [7] showed that if Y is any ALE space asymptotic to C2 /H 
then the associated pair (a, /?) must lie in U, and that if Yi and I2 are two ALE spaces 
asymptotic to C2/H that both yield the same pair (a,/?), then Fi,!^ are isomorphic 
as ALE spaces. Combining these results we see that every ALE space Y asymptotic 
to C2/H is isomorphic to Xaip for some pair (a,/?) E U, so we have a complete 
description of all ALE spaces. 

The group Aut(r) x W associated to C2 /H acts on Kronheimer's construction, 
in the following way. The obvious action of Aut(r) x W on iJ2(X,M) x H2(X,C) 
preserves the subset U, so that Aut(r) x W also acts on U. The action extends 
naturally to the hyperkahler quotient construction that Kronheimer uses to construct 
Xaip, and this shows that if w E Aut(r) x W and (a, ft) E U, then Xw.a^w.p is 
isomorphic to Xaip as an ALE space. 

Moreover, if w e W rather than AutfT) x W, then there is a unique ALE space 
isomorphism between Xw.a,wf3 and Xa?^ that is asymptotic to the identity at infinity. 
One can also show that i?Xa',p' is isomorphic to Xaip as an ALE space, then (a7, /?') = 
(w-a^w-P) for some w E Aut(r) x W. If in addition the isomorphism between X^^p' 
and Xa^p is asymptotic to the identity at infinity, then w E W. 

Let w E Aut(r) x W. Now Xa,p and Xw.a,w.p are both diffeomorphic to X, 
under diffeomorphisms that are natural up to isotopy. The identification between 
Xaip and Xw.aiW.p that comes from their isomorphism as ALE spaces can thus be 
thought of as a diffeomorphism of X, up to isotopy. The corresponding isotopy class 
of diffeomorphisms of X is identified with w E Aut(r) x W, regarding Aut(r) x W 
as a group of isotopy classes of diffeomorphisms of X, as above. In particular, the 
identification between Xaip and Xw.aiW.p induces the action of w on iJ2(X, M) and 
H2(X, C), and this is why it is possible for two isomorphic Kahler forms apparently 
to have two different cohomology classes a and w • a. 

Here is a heuristic description of what is going on. When we desingularize C2 /if 
we replace the singular point by a bunch of 2-spheres, and this introduces nontrivial 
homology classes in ^(X, Z). The Weyl group W then acts as a kind of 'internal 
symmetry group' on the new homology classes; we can visualize elements of W as 
diffeomorphisms of X that are the identity outside a small neighbourhood of the 
2-spheres. Elements of Aut(r) also act as diffeomorphisms of X, but they act non- 
trivially near infinity. 

These diffeomorphisms of X can in fact be described as generalized Dehn twists 
of X, and the Weyl group W is the group of isotopy classes of diffeomorphisms of X 
generated by Dehn twists along the exceptional 2-spheres. For explicit descriptions of 
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the generalized Dehn twist of T*52 along the zero section, which is the case H = Z2 
above, see Arnold [1, §2] and Seidel [12]. 

The ALE spaces Xa^ for (a, /3) G U can be thought of as a family of Kahler struc- 
tures upon the fixed real 4-manifold X. Then Xaip and Xw.a}W.p represent Kahler 
structures on X that are equivalent under a diffeomorphism 0 of X corresponding to 
w. If w 7^ 1 then 0 is not isotopic to the identity, and acts nontrivially on H2(X, R) 
andtf2(X,(C). 

3. Desingularizing Calabi-Yau orbifolds. We are interested in desingulariz- 
ing Calabi-Yau orbifolds of dimension 3 whose singularities are modelled upon C3 /G, 
where G is a finite subgroup of 517(3), and C3 /G has singularities in codimension two. 
If we first understand the different ways of resolving, smoothing and CR-deforming 
such C3/G, this will give us a local model for how to desingularize more general 
Calabi-Yau orbifolds Z. 

The usual point of view is that one constructs a CR-deformation Y of Z using 
complex geometry, and then applies Yau's theorem to show that there exist Calabi- 
Yau metrics on Y. Thus, the complex structure of Y is close to that of Z in some 
sense, but we don't actually know that the Calabi-Yau metric on Y is close to the 
orbifold metric on Z. Now the author conjectures that this should be so. 

That is, given a family {Yt : t G (—e, e)} of CR-deformations of Z with YQ = Z, the 
author believes that there should exist a corresponding family of Calabi-Yau metrics 
gt on Yt which converge to the orbifold metric on Z as t —> 0, say in the Gromov- 
Hausdorff sense. Moreover, for small t and near the desingularization of an orbifold 
point in Z modelled on C3 /G, the metric gt should be close to a Quasi-ALE metric 
with holonomy in SU(S) on a CR-deformation of C3/G, in the sense of [4]. 

We shall not actually use this conjecture in the paper. However, it motivates 
the approach we take, which is based on the idea that in studying the different CR- 
deformations X of C3/G, it is important to consider and describe the appropriate 
Quasi-ALE metrics on X as well as the complex structures. In particular, the prop- 
erties of Kronheimer's metrics on ALE spaces described in §2 will be pivotal to our 
constructions. 

Suppose G C SU(S) is finite and C3/G has codimension two singularities. Pick 
x G C3 such that xG is a generic point in the codimension two singular set, and let 
H be {h G G : h(x) = x}, the stabilizer subgroup of x in G. Then there is a natural 
orthogonal splitting C3 = C © C2, such that x ^ 0 lies in C, and H fixes C and acts 
on C2 as a finite, nontrivial subgroup of SU(2). We may write C3 /H = C x (C2 /#), 
where C2 /H is one of the Kleinian singularities of §2. 

We shall restrict our attention to the case that H is a normal subgroup of G. If 
H is not normal then things are more difficult. So suppose that H is normal in G, 
and let K be the quotient group G/H. Then K acts naturally on C x C2 /H, and 
(C x C2/H)/K = C3/G. Let the notation X,r, A, W, Aut(r),p,C7 and Xa^ all be 
as defined in the previous section. 

We begin by constructing two natural group homomorphisms </) : K —>■ U(l) and 
ip : K —> Aut(r). Since H is the subgroup of G fixing C and is normal in G, it 
follows that G preserves the splitting C3 = C © C2. Therefore G is a subgroup of 
S(U(1) x C/(2)), the subgroup of 5C7(3) preserving this splitting, and we may write 
each element g G G as a pair (cr,r), where a G U(l), r G f7(2), and a • detr = 1. 
Then g G H if and only if a = 1 G 17(1). Define a map 0 : K -+ U{1) by ^(gH) = a 
for each g G G, where g = (cr, r). It is easy to see that 0 is well-defined, and a group 
homomorphism. 
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Write Ch for the conjugacy class of h in iJ, and let SH be the set of nonidentity 
conjugacy classes in H. As H is a normal subgroup, gCug-1 is also a conjugacy class 
in H for each g £ G, which is the identity if and only if Ch is. Thus Ch *-> gChg~l 

defines a map from SH to itself. Define a map from If x SH to 5# by (gH, Ch) ^ 
gChg~1' Then this map is well-defined and is an action of if on SJJ. But there is 
a natural correspondence between SH, the nonidentity conjugacy classes in iJ, and 
the vertices of the Dynkin diagram T. Thus K acts on the vertices of T. In fact K 
acts by automorphisms of the whole graph, and this defines the group homomorphism 
V> : K -> Aut(r) that we want. 

Now let (a, (3) £ [/, so that Xaj)g is a nonsingular ALE space, diffeomorphic to 
X, and asymptotic to C2 /H as in §2. Then C x Xa^ desingularizes C x C2/if, and 
has a natural Calabi-Yau structure. Our goal is to choose (a, /?) such that C x Xaj/tf 
admits a if-action preserving this Calabi-Yau structure, which is asymptotic to the 
natural action of K on Cx C2 /H. To achieve this, we must work out what conditions 
a and /? must satisfy for such a if-action to exist. 

First consider how if can act on X, as a group of diffeomorphisms. The action of 
if on C2 /H only determines how if should act 'near infinity' in X. But elements of 
W may be visualized as diffeomorphisms of X that are the identity near infinity. Thus 
the action of if on X may not be uniquely determined by the asymptotic conditions 
on it, but instead there may be several such actions, differing only by elements of 
W. The data we need to determine how if acts on X is a group homomorphism 
X : if -> Aut(r) x W, such that TT O X = il>, where TT : Aut(r) x W -> Aut(r) is 
the natural projection, so that x lifts ip from Aut(r) to Aut(r) x W. Choose such a 
homomorphism x- 

There always exists at least one such homomorphism, because there is a canonical 
choice for x, which will yield crepant resolutions of C3 /G in the construction below. 
As Aut(r) is naturally isomorphic to a subgroup of Aut(r) x W, we can regard 
ip : if -> Aut(r) as a homomorphism if -> Aut(r) x W, and this is the canonical 
choice for x- However, for many groups G, H there are other, different choices for 
X: and we may be able to use these to construct smoothings or CR-deformations of 
C3 /G which do not have the topology of a crepant resolution. 

Since % : if —>• Aut(r) x W is a group homomorphism and p is a representation 
of Aut(r) x W on H2(X, R) and H2(X, C), we see that p o x is a representation of 
if on H2(X, M) and H2(X, C). So, suppose for the moment that if acts on X as a 
group of diffeomorphisms, with action asymptotic to the prescribed action of if on 
C2/H, such that the induced action of if on H2(X, R) and H2(X, C) is p o x- 

Next, we choose (a,/3) £ U and identify Xa^ with X as a real 4-manifold, so 
that if acts on Xayp, and so on C x Xa^p. What is the condition on the pair (a,/?) 
for this if-action to preserve the natural Calabi-Yau structure on C x Xaip? Let the 
Kahler form and holomorphic volume form of C be UJ and H, and let the Kahler form 
and holomorphic volume form of Xa^ be u' and fi', respectively. Then the Kahler 
form of C x Xa^ is cu + a/, and the holomorphic volume form of C x X^p is Q A ft1. 
Thus the if-action on C x Xaip must preserve both u + u' and ft A H'. 

Write p £ G as a padr (or,r) as above, where a £ U(l) and r £ U(2). Then 
^ii" £ if acts on UJ and fi by ^ii" • u = u and ^ii" • ft = a • ft. Therefore, the Calabi-Yau 
structure of C x Xat0 is if-invariant if #ii" • UJ' = u' and cr • (gH • fl') = ft'. Now the 
cohomology classes of a/ cind H7 are a and /? respectively, and a = (f)(gH) from above. 
Therefore a necessary condition on the pair (a,/?) for the Calabi-Yau structure on 
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C x Xafi to be i^-invariant is 

(3.1)     poX(gH)a = a    and    $(gH) ■ poX(gH)p = (3    for all gH G K. 

It turns out that equation (3.1) is also a sufficient condition for there to exist a 
If-action on -XQ,^ with all the properties we require. In particular, we do not need 
the assumption we made above about the existence of a suitable action of K on X by 
diffeomorphisms, because equation (3.1) guarantees this. We now explain why (3.1) 
is a sufficient condition. Recall from §2 that if w G Aut(r) tx W and (a, 13) G U then 
Xai(3 and Xw.a^w./3 are isomorphic as ALE spaces, and that if w G W then there is a 
unique isomorphism which is asymptotic to the identity at infinity. 

Extending the arguments used to show this, one can prove the following result. 
Let gH G K and (a, /3) and (a7, (3') lie in U, and consider a map QgH • Xa^ —>■ Xa^pt 
that is an isomorphism of Kahler manifolds, is asymptotic to the action of gH on 
C2/i7, multiplies holomorphic volume forms by (/>(##)-1, and acts on cohomology by 
p o x(gH). Then the necessary and sufficient condition for there to exist such a map 
QgH is that p o x(gH)a = a' and (j)(gH) • p o x(gH)f3 = /?', and if it exists then QgH 
is unique. 

But any solution (a,/3) to (3.1) satisfies these conditions with (a',/?') = (a,/?). 
Therefore, this result guarantees the existence and uniqueness of a map QgH from 
Xa,p to itself with the properties above, for each gH G K. It is then easy to show 
that the maps QgH yield an action of K on Xaip with all the properties we need. We 
summarize our progress so far in the following theorem; the final part is left as an 
exercise for the reader. 

THEOREM 3.1. Using the above notation, suppose that x '■ K ~* Aut(r) tx W is 
a group homomorphism such that n o x — ip, and suppose that (a, /?) G U satisfies 
the condition that p o x{gH)a = a and <t>(gH) • p o x(gH)(3 = (3 for all gH G K. 
Then there exists a unique action of K on C x Xafi that preserves the Calabi-Yau 
structure of C x Xa^ and is asymptotic to the natural action of K on C x C2 jH. 
The representation of K on iJ2(Xa^,R) induced by this action is p o x, identifying 
Xa^ and X as real ^manifolds. Moreover, if Y is any ALE space asymptotic to 
C2 jH such that C x Y admits a K-action preserving the Calabi-Yau structure and 
asymptotic to the given action on C x C2 jH, then Y arises from this construction. 

Let us now consider the condition (3.1) more closely. What it really means is 
that a has to be invariant under the action p o x of K on H2(X, M), but f3 has to be 
invariant under the action (fr • p o x of K on H2(X, C). When 0 is nontrivial, these 
two if-actions are different, and will have different invariant subspaces. 

Our construction only works if we are able to choose (a,/3) G U satisfying (3.1). 
Thus by definition of [/, we must find if-invariant elements a and f3 such that either 
a(6) 7^ 0 or f3(5) y^ 0 for each S G A. To satisfy this condition in examples, the fact 
that the two if-actions are different is important. For instance, it can happen that for 
some S G A, every element a G H2(X, R) invariant under the if-action p o x satisfies 
a(8) = 0. But because (3 must be invariant under a different if-action cj) • p o x, there 
may still exist a suitable element /? with /?(5) ^ 0. 

The goal of this section is to find crepant resolutions, smoothings and CR- 
deformations of C3/G. We divide the problem into two stages, firstly to desingularize 
C3 /H to get C x Xai(3 with a if-action, and then secondly to divide by if and desin- 
gularize the result (Cx Xa^)/K. So far we have discussed only the first stage in this 
process. But what about the second stage? 

In fact, at the second stage three things can happen. Firstly, the if-action on 
Xa^ may have no fixed points.   In this case (C x Xa,p)/K has no singularities, 
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and is itself a smoothing or CR-deformation of C3/G. Secondly, the singularities of 
{CxXa^)/K may be isolated points. In this case we must take a crepant resolution. 
And thirdly, (C x Xa^)/K may have singularities in codimension 2. In this case we 
are free to apply the method above again. 

That is, the singularities of (C x Xaip)/K are locally modelled on C3 /Gf, where 
G' is a finite subgroup of 577(3) that is isomorphic to a subgroup of K. As the 
singularities have codimension 2, there is a subgroup H' in G' contained in some 
3X1(2) C 517(3). We may use the method above to find ways to desingularize C3 /G7, 
and use these as a local model to desingularize (C x Xa^)/K. Note that (G'l < \K\ 
as G' is a subgroup of K, and \K\ = \G\/\H\ < \G\, so that |G"| < |G|. Thus, if we 
use the method iteratively the size of the quotient groups decreases at each stage, and 
the process must terminate. 

4. An example. We now apply the theory of the previous section to the example 
of C3 /Z4. First in §4.1 we show that C3 /Z4 has a crepant resolution and a smoothing, 
which are topologically distinct. Then in §4.2 we use this to desingularize a compact 
Calabi-Yau orbifold T6/Z4. 

4.1. Crepant resolutions and smoothings of C3/Z4. Let C3 have complex 
coordinates (^1,^2^3)5 and define hi: C3 -)■ C3 by 

(4.1) K : (zi,Z2,Z3) 1—> (-Zi,iZ2,iZ3). 

Define G = {l,ft, Ae2,/^3}, so that G is a finite subgroup of SU(S) isomorphic to Z4. 
The only fixed point of K and tt3 is (0,0,0), but the fixed points of K? are (zi,0,0) 
for all zi e C. Therefore C3 /G has singularities of codimension two. The subgroup 
of G fixing the points (zi,0,0) is H = {l,ft2}, which is a normal subgroup of G, and 
preserves the obvious splitting C3 = C © C2. Thus the theory of §3 applies to G 
and H. 

The Kleinian singularity C2 /H is C2 /{±1}. The crepant resolution X of C2 /{±1} 
has H2(X,Z) = Z. The Dynkin diagram T is Au with Aut(r) = {1} and Weyl 
group W = Z2. Let W = {1, A}. Then the generator A of W acts on i^P^Z) by 
multiplication by —1. The quotient group K = G/H is Z2 with generator KH. Thus 
the homomorphism x : K ~> Aut(r) x W of §3 maps Z2 to Z2, and the condition 
TT o x = ip on x is trivial since Aut(r) = {1}. Therefore there are two possibilities for 
X, given by 

(4.2) (a) x(H) = 1, xfaH) = 1,    and    (6) X(H) = 1, x(*ff) = A. 

Since i72(X,M) ^ 1 and iJ2(X,C) ^ C, the ALE spaces asymptotic to C2/i7 
are parametrized by pairs (a, (3) with a G E and /? G C The condition for (a, (3) E U 
is that either a ^ 0 or (3 ^ 0. Let us calculate the conditions (3.1) on (a,/?) for the 
ALE space Xa^ to admit a suitable if-action, for each possibility (a) and (b) in (4.2). 
These conditions involve 0, which is given by ^(H) = 1, ^(KH) = — 1. In case (a), 
with gH = KH: equation (3.1) gives a = a and (3 = —/?, which holds if /3 = 0. In case 
(b) with gH — KH, equation (3.1) gives a = —a and /? = /?, which holds if a = 0. 

Thus, section 3 gives two different ways (a) and (b) to choose an ALE space Xajf3 
asymptotic to C2 /{±1} together with a if-action on CxXaip asymptotic to the given 
action of K on C3 /H. Here is what happens in each case. 

(a) Let a £ M be nonzero. Then K acts on C x Xa^. The fixed points of KH 

in C x Xayo are a copy of CP1. Thus (C x Xa^)/K has singularities in 
codimension two.   These singularities admit no deformations, but they do 
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have a unique crepant resolution Yi, which can be described explicitly using 
toric geometry, and is a crepant resolution of C3/Z4. The Betti numbers 
V =V(Y1)ofY1 are 

(4.3) b0 = bA = 1,        b2 = 2,        b1 =bs = bb =b6 = 0. 

(b) Let ft £ C be nonzero. Then XQ,/? is isomorphic as a complex surface to 
the hypersurface xixs — x^ — ft in C3. Using these coordinates on XQ,/?, the 
if-action on CXXQ,/? is given by KH • (zi,Xi,X2,xs) = (—zi, —xi, —x^, —xz). 
Now this action has no fixed points in C x XQ,/?, since (0,0,0,0) does not 
satisfy 0:1X3 — x* = 0. Thus Y2 = (C x Xo^)/K is already nonsingular, and 
is a smoothing of C3 /Z4. 
A careful analysis shows that Y2 retracts onto the subset 

{±(0,x1,X2,xs) ^ Y2 : Ixil2 + 2|x2|
2 + |x3|2 = 2|/?|}, 

which is a copy of MP2. Thus the fundamental group and cohomology of Y2 
and MIP2 are isomorphic. So TT^Y^) = ^2, and the Betti numbers bj = ft^Q^) 
are 

(4.4) &0 = 1,        61 = --- = b6=0. 

From (4.3) and (4.4) we see that methods (a) and (b) yield a crepant resolution Yi 
and a smoothing Y2 of C3 /Z4 with rather different topology. The reason for this 
difference is that in case (a), KH acts trivially on .H^CXa.OjZ), but in case (b), KH 

acts on iJ2(Xo,/?,Z) by multiplication by —1, so the two if-actions are topologically 
distinct. 

4.2. An orbifold T6/Z4 and how to desingularize it. Let C3 have complex 
coordinates (^1,^25^3)5 and define a lattice A in C3 by 

A = {(ai +ibi,a2 +i&2,«3 + ^3) : ^j^j ^ ^}- 

Then C3/A is a 6-torus T6, equipped with a flat Calabi-Yau structure. Let K act on 
T6by 

(4.5) K : (31,22,23) + A 1—► {-zi,iz2,iz3) + A, 

as in (4.1). Then K is well-defined and preserves the Calabi-Yau structure on T6. Let 
G = {!,/£, tt2,^3} be the group generated by ft, so that G = Z4. Then r6/G is a 
compact Calabi-Yau orbifold. To understand the singular set of T6/G, we shall first 
find the fixed points of ft, ft2 and ft3. 

The subset of T6 fixed by ft and ft3 turns out to be the 16 points 

{(*i,*2,*3)+A: 21 E{0,|,|i5| + |i}, Z2,z3 G{0,| + |i}}. 

And the subset of T6 fixed by ft2 is 16 copies of T2, given by 

{(zuZ2,z3) +A: z1 (EC, 22,23 G{0,|,|i,| + |i}}. 

Twelve of the 16 copies of T2 fixed by ft2 are identified in pairs by the action of ft, 
and these contribute 6 copies of T2 to the singular set of T6/G. On the remaining 4 
copies ft acts as -1, so these contribute 4 copies of T2/{±1} to the singular set. Each 
T2/{±1} contains 4 of the 16 points fixed by ft. 
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Therefore the singular set of T6/G consists of 6 copies of T2, with singularities 
modelled on T2 x C2/{il}, and 4 copies of T2/{±1}. Each T2/{±1} has 4 special 
points where the singularity is modelled on 0 in C3 /G as in §4.1, and the other singular 
points look locally like the singularities of C x C2/{d=l}. 

To desingularize T6/G, each copy of T2 in the singular set can be resolved with a 
crepant resolution, which replaces the T2 by T2 x CP1. But each copy of T2/{ibl} in 
the singular set, may be either resolved using method (a) or smoothed using method 
(b) above. For each k = 0,... ,4, let Zj* be one of the manifolds obtained by resolving 
each T2 in the singular set, resolving using method (a) for k of the T2/{ibl}'s, and 
smoothing using method (b) for the remaining 4 — k copies of T2/{ilil}. Then each 
Zk is a compact, nonsingular manifold carrying a family of Calabi-Yau structures. 

We shall find the Betti numbers of Zk. The Betti numbers of T6/G are 

(4.6)   b0(TQ/Z4) = l,    b1(T6/Z4)=0,    b2(T6/Z4)=5,    b3(T6/Z±)=4. 

To find the Betti numbers of Zk we must add on contributions from each component 
of the singular set. The resolution of each copy of T2 in the singular set adds 1 to 
b2 and 2 to b3. Resolving a T2/{±1} using method (a) adds 5 to b2 and fixes 63, 
but smoothing using method (b) fixes b2 and adds 2 to b3. All three processes fix &0 

and b1. 
Thus we calculate that the Calabi-Yau 3-folds Zk have Betti numbers 

b0(Zk) = 1,    b^Zk) = 0,    b2(Zk) = 11 + 5k,    b3(Zk) = 24 - 2fc, 

giving Euler characteristic x(Zk) — 12&. For k = 1,2,3,4 one can show that Zk is 
simply-connected, and carries metrics with holonomy SU(3). But ZQ is the quotient 
of T2 x KS by a free ^-action, and has fundamental group Z2 x Z2 and holonomy Z2 x 
5*7(2). 

5. Another example. In this section we consider another example that shows 
how complicated the business of desingularizing orbifolds can be. First in §5.1 we 
describe the crepant resolutions, smoothings and CR-deformations of C3/Z2. Then 
in §5.2 we apply this to study the possible desingularizations of the orbifold T6/Z2. 
This turns out to be a complex problem, which we do not solve completely. 

5.1. Desingularizations of C3 /Z|. Let C3 have complex coordinates (zi, 22, £3), 
and define Kj : C3 ->» C3 by 

Avi  : (ZUZ2,Z3) *-> (Z1,-Z2,-Zs),      K2 I (^1,^2,^3) ^ (-^1,^2,-^3) 

and    K3-(zi, 22,23) ^(-zi,-22,23)- 

Then G = {1,^1,^2,^3} is a subgroup of SU(3) isomorphic to Z2. The singular set 
of C3/G splits into 3 pieces: the points ±(21,0,0) coming from the fixed points of ACI, 

the points ±(0,^2,0) from the fixed points of Av2, and the points ±(0,0,23) from the 
fixed points of K,S. Each piece is a copy of C/{±1}, and they meet at (0,0,0). 

Define Hj = {1, K,J} for j = 1,2,3. Then Hi,H2 and H3 are normal subgroups of 
G with C3 /Hj =Cx C2/{±1}. The quotient groups Kj = G/Hj are isomorphic to 
Z2, and act upon C3/Hj. Thus we can apply the method of §3 to C3/G in 3 different 
ways, by starting with Hi,H2 or #3, and these 3 ways correspond to the 3 pieces of 
the singular set. Now C2/{±1} has Dynkin diagram F = Ai, with Aut(r) = {1} and 
Weyl group W = {1, A} isomorphic to Z2. 
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Thus, by §3, every desingularization Y of ^ jlj\ has three pieces of topological 
data, the group homomorphisms Xj : ^j ~^ Aut(r) ix W for j = 1,2,3. Here K\ — 
{fl"i,«2-ffi} and Aut(r) tx W = {1,A} are both isomorphic to Z2, so there are two 
possibilities for x\ •> 

(a) xi(Hi) = 1, Xi(«2tfi) = 1,    and    (6) xi(ffi) = 1, Xi^^i) = A. 

As a shorthand, we shall write xi = 1 to denote case (a) and Xi = — 1 to denote case 
(b). Similarly, there are two possibilities for each of X2 and Xs? which we will also 
write X2 = ±1, Xs = ±1- We can think of X15X2 and xs as describing the topology 
of Y near infinity. 

First we describe the deformations of C3 /Z^ Let 7 : 0/1^ -> C4 be given by 
T^i,^,^)*?) = (zi,Z2,zl,ziZ2Z3). Then 7 is well-defined, and induces an isomor- 
phism between C3 /G and the hypersurface 

Wo,o,o,o = {(^1,^2,^3,^4) G C4 : XXX2X3 -£4 = 0} 

in C4. Let a,/?i,/?2 and ^3 be complex numbers, and define 

Waj^faPs = {(^1,^2,^3,^4) G C4 1x1^2^3 -art = a + ^1^1 +^2^2 +/?3^3}. 

Then Wa,(31,(32,/33 is a deformation of C3/Z|. For generic a,... ,/?3 the hypersurface 
Wa?/3l5/32?/53 is nonsingular, and thus is a smoothing of C3/^. But for some special 
values of ce,... , fe it has singularities, and we then take a crepant resolution to get a 
CR-deformation of C3/Z|. 

We will now list the different cases that arise in this way. In each case we will give 
the values of xi, X2 and Xs, and the Betti numbers b2 and 63 of the desingularization. 

(i) Wo,o,o,o is isomorphic to C3 /Z^. It has 4 possible crepant resolutions, which 
are easily described using toric geometry. Each has xi — X2 — Xs — 1 and 
Betti numbers b2 = 3 and b3 = 0, and is a crepant resolution of C3/Z2. 

(ii) Wa,0,0,0 for a ^ 0. This is nonsingular, with xi = X2 = Xs = 1, b2 = 2 and 
b3 = 1, and is a smoothing of C3/^. 

(iii) Wo,/3i,o,o for Pi 7^ 0-   This is isomorphic to (C x XQ^^/KI, and has sin- 
gularities at the points (0,£2,£3,0) for X2X3 = ft. It has a unique crepant 
resolution, by blowing up the singular set, which has xi = — 1, X2 = Xs — 1 
and b2 — b3 = 1, and is a CR-deformation of C3/Z2. 

(iv) Wa,/?i,o,o for a,(3i / 0. This is nonsingular, and thus a smoothing of C3/Z|. 
It is a smooth deformation of the 3-fold in (iii), with the same topology and 
values of Xj and bk. 

(v),(vi) As (iii) and (iv) but with fa nonzero and X2 = —1, instead of fa and Xi- 
(vii),(viii) As (iii) and (iv) but with fa nonzero and xs = —1, instead of fa and xi- 

(ix) Wa,/?i,/32,/?3 with fa, fa, fa i=- 0 and o? ^ ^fafafa.  This is nonsingular and 
has xi = X2 = Xs = -1, &2 = 0 and b3 — 2, and is a smoothing of C3 /Z^. 

For a few special values of a,... ,fa, we cannot resolve Wa^^^ as a Calabi- 
Yau 3-fold with the appropriate asymptotic behaviour, so it does not appear on the 
above list. Here are the missing cases, with the reason why. 

• If exactly one of fa, fa, fa is zero, say fa, then Wa,o,/?2,/?3 ls nonsingular and 
is topologically equivalent to case (ix). However, we should regard it as being 
'singular at infinity'. 

• Also, VFce,^1,^2,^3 with fa, fa, fa ^ 0 and a2 = ^fafafa has a single node at 
Xj — —a/2fa for j = 1,2,3. But neither of the small resolutions of it are 
Kahler manifolds. 
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Here is what we mean by 'singular at infinity'. Our goal is to construct Calabi- 
Yau 3-folds that desingularize C3/^. As with the ALE spaces of §2, we expect these 
manifolds to be asymptotic to C3 /Zg at infinity, and the metrics on them to be asymp- 
totic at infinity to the Euclidean metric on C3/^!, in some suitable sense. However, 
because the singularities of C3/^! extend to infinity, things are more complicated 
than they seem at first. 

In [4], the author studies Kahler metrics on resolutions X of non-isolated quotient 
singularities Cm/G, under appropriate asymptotic conditions. We define Quasi-ALE 
metrics upon X, which appear to be the natural generalization of ALE metrics to the 
non-isolated case, and prove an existence result for Ricci-flat Quasi-ALE Kahler met- 
rics on crepant resolutions of Cm/G. Further work will be published in the author's 
book [5], including an extension to the case of smoothings and CR-deformations of 
Cm /G. In cases (i)-(ix) above, these results guarantee the existence of Calabi-Yau 
metrics on the given desingularizations Y, for suitable choices of the Kahler class. 

Roughly speaking, in this case the asymptotic conditions on the metrics are as 
follows. If at least two of zi, £2, £3 are very large, then the metric on Y near the point 
(zi,Z2,Z3)G in C3/Z2 must be close to the flat metric on C3/Z^- But if only one of 
^1,^2,^3 is large, say zi, then the metric on Y near (^1,2:2,^3)0 in C3/Z^ must be 
close to the product metric on C x Xs,e> where zi is the coordinate in C, and Xs,e is 
an ALE space asymptotic to C2/{dil}, which has coordinates ±(22, Z3). 

We say the metric on Y is singular at infinity if the ALE space X^^ appearing 
in this asymptotic condition is singular — in this case, if X^e = C2/{±1}. We have 
excluded cases like Wajo,/?2,/?3 for /fej/fe 7^ 0 from our list because they are singular 
at infinity, so that the singularities ±(21,0,0) for zi very large, effectively remain 
unresolved. It can be shown that every Calabi-Yau desingularization Y of C3 /Z2 that 
is not 'singular at infinity', is modelled on one of cases (i)-(ix) above. 

In cases (ii), (iv), (vi) and (viii) there are nontrivial conditions upon the Kahler 
class for the metrics to be nonsingular at infinity. The allowed values for the Kahler 
class split into several connected components - six components in case (ii) and two 
components in cases (iv), (vi) and (viii). The connected component of the Kahler 
class can be regarded as an extra topological choice in the desingularization; but we 
will not discuss this issue here. 

Observe that in cases (i)-(ix) we can have 0,1 or 3 of X15X2 and xs equal to -1, 
but we cannot have exactly 2 of Xi,X2 and xs equal to -1. Thus we cannot choose 
Xi, X2 and Xs independently. The moral is that when we desingularize C3/Z| or other 
orbifolds in which the codimension 2 singularities split into several pieces, the topo- 
logical choices for different pieces of the singular set are not in general independent, 
but are subject to constraints involving all the pieces. 

5.2. Counting Calabi-Yau desingularizations of T^ jl^. Let A be as in §4.2, 
so that C3/A is a 6-torus T6 with a flat Calabi-Yau structure. Let K\,K<I and ^3 act 
on T6 by 

ACI : (zi,22,23) +Ai—► (z1,-Z2,-zs) +A, 

K2 : (zUZ2,Zs) +Al > (-Zi:Z2,-Z3) + A, 

and K3 = KIK,2, as in (5.1). Then G = {1, Ki, ^2, ^3} acts on T6 preserving the Calabi- 
Yau structure, and is a group isomorphic to Zg. The quotient T6/G is a Calabi-Yau 
orbifold, with singularities modelled on C3 /Z^. This orbifold was studied by Vafa and 
Witten [15, §2], who showed that T6/Z^ has many crepant resolutions, which all have 
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ft1'1 = 51 and /i2'1 = 3. They also found one smoothing of T6/Z|, which has ft1*1 = 3 
and /i2'1 = 115. 

Let us now consider how to describe all the Calabi-Yau 3-folds constructed from 
T6/Zl by crepant resolutions, smoothings and CR-deformations. We will not be 
able to offer a complete classification, because the calculations involved are extremely 
complex. However, we can explain the first steps in this classification, and we will see 
that there are in fact a large number of possibilities, of which those found by Vafa 
and Witten represent two extremes. 

We shall regard T6 as a product T2 x T2 x T2. Then Z2 acts on each copy of T2, so 
that Z| acts on T6, and G is a subgroup of this Z^. This Z2-action on T2 has 4 fixed 
points pi,... ,P4- The fixed points of KI on T6 are T2 x pj x pk for j, k = 1,... ,4, 
which is 16 copies of T2. For j, fe = 1,... , 4, define A^ = T2/ Z2 xpj x pk c T6/^!- 
Similarly, for i, fc = 1,... ,4, define £;& = pi x T2/ Z2 xpfe c T

6/^ an(i for ^i = 
1,... , 4 define C^ = pi x ^ x r2/Z2 C T6/Zl 

The singular set of T6 /Z^ is the union of these sets Affc, Bik and Cij. The 
Ajfe come from the fixed points of «i, the B^ from ^2, and the C^ from ^3. Each 
of the Ajk,Bik and dj is a copy of T2/Z2. They are not disjoint, but for each 
i, j, k = 1,... , 4 the three sets A^, 2?^ and dj intersect in the point pijk = Pi xpj xpk 
in T6/Z2.   The p^u are the 64 singular points in r6/Z| which have a singularity 

modelled on 0 in C3/^I- 
Now, following the method of §3, to desingularize T6'/Z^ we must first choose 

some topological data, the group homomorphism x- As we saw above, for the C3 /Z2 

singularity there are 3 pieces of data Xi,X25X3 corresponding to the ^1,^2 and ^3 
singularities, and each Xj can take the values ±1. In our case, a little thought shows 
that Xi gives topological information about the way the singularities Aj^ are resolved. 
One can show that xi must be constant on each A^, since Ajk is connected, but 
different Ajk can have different values of xi- Write Xijfc for the value of xi on Ajk- 
Then for j, fc = 1,... , 4, we have Xi,j/e — il- 

Similarly, X2 gives information on how the ^^ are resolved, and we write X2,zfc 
for the value of X2 on i?^, and xs gives information on how the Cij are resolved, and 
we write X3,ij for the value of Xs on Cij. Thus, to desingularize T6'/Z^ we must first 
choose the values of Xi,jk^X2,ik and Xs,^'- These are 48 variables taking the values 
±1, so there are 248, or about 2-8 x 1014 possible choices. 

Now, we saw above that cases (i)-(ix) allow 0,1 or 3 of Xi5X2,X3 to be —1, but 
not two to be —1. This condition applies at each of the 64 points p^. Therefore, 
a necessary condition for the data Xijk to represent a possible Calabi-Yau 3-fold is 
that for each set of values i,j,k = 1,... ,4, exactly 0,1 or 3 of Xi,jk,X2,ik and xs,ij 
are —1, but not two of them. 

This condition excludes nearly all of the 248 choices for the Xijk, but there are 
still many choices for which this condition is satisfied, although we have not been 
able to count them. However, we can give four explicit families of solutions to the 
conditions, and so find a lower limit for their number. For the first family, let 5i,€j 
and (k take the values ±1 for i, j, k = 1,... , 4, and define 

(5.2) xi,jk = ej(k>        X2,ik = SiCk        and       X3,ij = -^j- 

Then XijkX2,ikXzM — —1 for all M, &, and this means that either 1 or 3 of xi jfc, X2,ik 
and X3,ij are equal to —1, but not 0 or 2. Conversely, any set of values of Xi,jk,X2,ik 
and X3,ij for which this holds may be written in the form (5.2). There are 212 possible 
values for S^ ej and Oe, but reversing the sign of all the ^, ej and (k does not change 
the Xijk, so this gives 211 = 2048 different solutions for the Xijk- 
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For the second family, let X2,ik — X3,ij = 1 for ^ hjik, and let Xijk be ±1. 
Clearly, for all i,j, k either 0 or 1 of Xi,jkiX2,ik and X3,ij are equal to —1, so the 
condition is satisfied. There are 216 = 65536 possible choices for the xijk- Similarly, 
by putting xijk = X3,ij = !> and by putting xijk = X2iik = 1, we get two other 
families of 216 choices. In total, allowing for repeated choices, we have found 198651 
different sets of values for Xi,jk,X27ik 

and Xsjj in which the conditions are satisfied. 
This is a lower limit on the number of solutions, which is probably rather larger than 
this. 

Next, having chosen a set of suitable values of the Xhjk, we must look for crepant 
resolutions, smoothings and CR-deformations of T6/^ with this data. There are still 
further topological choices to make. At each of the 64 points pijk, we must choose 
one of (i)-(ix) above that is consistent with the values ofxijk,X2,ik and X3,ij already 
chosen. For instance, if Xijk — X2,ik = X3,ij — 1 then either case (i) or case (ii) will 
do. There are also more subtle topological choices to do with Weyl groups and the 
connected component of the Kahler class, which we will not go into. 

Having made all these topological choices, we can finally construct a unique real 
6-manifold Y that desingularizes T6/Z|, which locally has the topology of a Calabi- 
Yau desingularization. However, many of these 6-manifolds do not admit Calabi-Yau 
structures desingularizing T6/Z|, for reasons of global topology. For Y to be Kahler 
we must be able to choose a Kahler class [a;] in H2 (Y, M) that is positive on all the 
complex curves in Y introduced by the crepant resolutions, and this is not always 
possible. Similar conditions apply to the choice of [fi] in i?3(Y, C). 

But in some special cases we can see quite easily that the Calabi-Yau structures 
exist. For instance, in the second family above with X2,ik — X3,ij = 1, if we choose 
desingularization (i) for p^ when Xijk = 1 and desingularization (iii) for p^k when 
Xijk — — 1? then one can prove that the resulting manifold has a Calabi-Yau structure, 
which is a crepant resolution of (T2 x K3)/Z2. Using the same trick with the third 
and fourth families gives a total of 196606 different sets of values of the Xijk which 
do correspond to Calabi-Yau 3-folds; and as there are four topological choices for 
resolution (i), these will lead to many more manifolds. 

Our discussion has shown that the problem of classifying all the possible Calabi- 
Yau desingularizations of T6/Z| is of great complexity. There are a large number of 
choices to be made, but these choices are subject to many complicated conditions. 
The author's feeling is that these conditions are not too restrictive, and the number of 
different crepant resolutions, smoothings and CR-deformations of T6/^ is probably 
very large. 
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