ON SINGULAR VARIETIES ASSOCIATED TO A POLYNOMIAL MAPPING FROM \mathbb{C}^{n} TO $\mathbb{C}^{n-1 *}$

NGUYEN THI BICH THUY ${ }^{\dagger}$ AND MARIA APARECIDA SOARES RUAS ${ }^{\ddagger}$

Abstract

We construct singular varieties \mathcal{V}_{G} associated to a polynomial mapping $G: \mathbb{C}^{n} \rightarrow$ \mathbb{C}^{n-1} where $n \geqslant 2$. Let $G: \mathbb{C}^{3} \rightarrow \mathbb{C}^{2}$ be a local submersion, we prove that if the homology or the intersection homology with total perversity (with compact supports or closed supports) in dimension two of any variety \mathcal{V}_{G} is trivial then G is a fibration. In the case of a local submersion $G: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}$ where $n \geqslant 4$, the result is still true with an additional condition.

Key words. Complex polynomial mappings, intersection homology, singularities at infinity.
Mathematics Subject Classification. 14P10, 14R15, 32S20, 55N33.

1. Introduction. Let $G: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}$ be a non-constant polynomial mapping $(n \geqslant 2)$. It is well known [20] that G is a locally trivial fibration outside the bifurcation set $B(G)$ in \mathbb{C}^{n-1}. In a natural way appears a fundamental question: how to determine the set $B(G)$. In [12], Ha Huy Vui and Nguyen Tat Thang gave, for a generic class of $G: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}(n \geqslant 2)$, a necessary and sufficient condition for a point $z \in \mathbb{C}^{n-1}$ to be in the bifurcation set $B(G)$ in term of the Euler characteristic of the fibers at nearby points. The case $\mathrm{n}=2$ was previously given in [11.

In this paper, we want to construct singular varieties \mathcal{V}_{G} associated to a polynomial mapping $G: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}(n \geqslant 2)$ such that the intersection homology of \mathcal{V}_{G} can characterize the bifurcation set of G. The motivation for this paper comes from the paper [21, where Anna and Guillaume Valette constructed real pseudomanifolds, denoted V_{F}, associated to a given polynomial mapping $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, such that the singular part of the variety V_{F} is contained in $\left(S_{F} \times K_{0}(F)\right) \times\left\{0^{p}\right\}(p>0)$, where $K_{0}(F)$ is the set of critical values and S_{F} is the set of non-proper points of F. In the case of dimension $n=2$, the homology or intersection homology of V_{F} describes the geometry of the singularities at infinity of the mapping F. With Anna and Guillaume Valette, the first author generalized this result [18] for the general case $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ $(n \geqslant 2)$. The idea to construct varieties V_{F} is the following: considering the polynomial mapping $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ as a real one $F: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$, then if we take a finite covering $\left\{V_{i}\right\}$ by smooth submanifolds of $\mathbb{R}^{2 n} \backslash \operatorname{Sing} F$, the mapping F induces a diffeomorphism from V_{i} into its image $F\left(V_{i}\right)$. We use a technique in order to separate these $\left\{F\left(V_{i}\right)\right\}$ by embedding them in a higher dimensional space, then V_{F} is obtained by gluing $\left\{F\left(V_{i}\right)\right\}$ together along the set $S_{F} \cup K_{0}(F)$.

A natural question is that how can we apply this construction to the case of polynomial mappings $G: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}$, or, $G: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n-2}$. The main difficulty of this case is that if we take an open submanifold V in $\mathbb{R}^{2 n} \backslash \operatorname{Sing} F$, then locally we do not have a diffeomorphism from V into its image $G(V)$. So we consider a generic $(2 n-2)$ - real dimensional submanifold in the source space $\mathbb{R}^{2 n}$, denoted \mathcal{M}_{G}, which

[^0]is called the Milnor set of G. Then we can apply the construction of singular varieties V_{F} in [21] for $F:=\left.G\right|_{\mathcal{M}_{G}}$ the restriction of G to the Milnor set \mathcal{M}_{G}.

We obtain the following result: let $G: \mathbb{C}^{3} \rightarrow \mathbb{C}^{2}$ be a local submersion, then if the homology or the intersection homology with total perversity (with compact supports or closed supports) in dimension two of any among of the constructed varieties \mathcal{V}_{G} is trivial then G is a fibration (Theorem 5.1). In the case of a local submersion $G: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}$ where $n \geqslant 4$, the result is still true with an additional condition (Theorem 5.2). Comparing with the paper [12], we obtain the Corollary 5.9 .
2. Preliminaries and basic definitions. In this section we set-up our framework. All the varieties we consider in this article are semi-algebraic.
2.1. Notations and conventions. Given a topological space X, singular simplices of X will be semi-algebraic continuous mappings $\sigma: T_{i} \rightarrow X$, where T_{i} is the standard i-simplex in \mathbb{R}^{i+1}. Given a subset X of \mathbb{R}^{n} we denote by $C_{i}(X)$ the group of i-dimensional singular chains (linear combinations of singular simplices with coefficients in \mathbb{R}); if c is an element of $C_{i}(X)$, we denote by $|c|$ its support. By $\operatorname{Reg}(X)$ and $\operatorname{Sing}(X)$ we denote respectively the regular and singular locus of the set X. Given $X \subset \mathbb{R}^{n}, \bar{X}$ will stand for the topological closure of X. The smoothness to be considered as the differentiable smoothness.

Notice that, when we refer to the homology of a variety, the notation $H_{*}^{c}(X)$ refers to the homology with compact supports, the notation $H_{*}^{c l}(X)$ refers to the homology with closed supports (see [1]).
2.2. Intersection homology. We briefly recall the definition of intersection homology; for details, we refer to the fundamental work of M. Goresky and R. MacPherson [6] (see also [1]).

Definition 2.1. Let X be a m-dimensional semi-algebraic set. A semi-algebraic stratification of X is the data of a finite semi-algebraic filtration

$$
X=X_{m} \supset X_{m-1} \supset \cdots \supset X_{0} \supset X_{-1}=\varnothing
$$

such that for every i, the set $S_{i}=X_{i} \backslash X_{i-1}$ is either empty or a manifold of dimension i. A connected component of S_{i} is called a stratum of X.

We denote by $c L$ the open cone on the space L, the cone on the empty set being a point. Observe that if L is a stratified set then $c L$ is stratified by the cones over the strata of L and a 0 -dimensional stratum (the vertex of the cone).

Definition 2.2. A stratification of X is said to be locally topologically trivial if for every $x \in X_{i} \backslash X_{i-1}, i \geqslant 0$, there is an open neighborhood U_{x} of x in X, a stratified set L and a semi-algebraic homeomorphism

$$
h: U_{x} \rightarrow(0 ; 1)^{i} \times c L
$$

such that h maps the strata of U_{x} (induced stratification) onto the strata of $(0 ; 1)^{i} \times c L$ (product stratification).

The definition of perversities as originally given by Goresky and MacPherson:
Definition 2.3. A perversity is an $(m+1)$-uple of integers $\bar{p}=$ $\left(p_{0}, p_{1}, p_{2}, p_{3}, \ldots, p_{m}\right)$ such that $p_{0}=p_{1}=p_{2}=0$ and $p_{k+1} \in\left\{p_{k}, p_{k}+1\right\}$, for $k \geqslant 2$.

Traditionally we denote the zero perversity by $\overline{0}=(0,0,0, \ldots, 0)$, the maximal perversity by $\bar{t}=(0,0,0,1, \ldots, m-2)$, and the middle perversities by $\bar{m}=$ $\left(0,0,0,0,1,1, \ldots,\left[\frac{m-2}{2}\right]\right)$ (lower middle) and $\bar{n}=\left(0,0,0,1,1,2,2, \ldots,\left[\frac{m-1}{2}\right]\right)$ (upper middle). We say that the perversities \bar{p} and \bar{q} are complementary if $\bar{p}+\bar{q}=\bar{t}$.

Let X be a semi-algebraic variety such that X admits a locally topologically trivial stratification. We say that a semi-algebraic subset $Y \subset X$ is (\bar{p}, i)-allowable if

$$
\operatorname{dim}\left(Y \cap X_{m-k}\right) \leqslant i-k+p_{k} \text { for all } k .
$$

Define $I C_{i}^{\bar{p}}(X)$ to be the \mathbb{R}-vector subspace of $C_{i}(X)$ consisting in those chains ξ such that $|\xi|$ is (\bar{p}, i)-allowable and $|\partial \xi|$ is $(\bar{p}, i-1)$-allowable.

Definition 2.4. The $i^{\text {th }}$ intersection homology group with perversity \bar{p}, denoted by $I H_{i}^{\bar{p}}(X)$, is the $i^{\text {th }}$ homology group of the chain complex $I C_{*}^{\bar{p}}(X)$.

Notice that, the notation $I H_{*}^{\bar{p}, c}(X)$ refer to the intersection homology with compact supports, the notation $I H_{*}^{\bar{p}, c l}(X)$ refer to the intersection homology with closed supports.

Goresky and MacPherson proved that the intersection homology is independent of the choice of the stratification [6, 7].

The Poincaré duality holds for the intersection homology of a (singular) variety:
Theorem 2.5 (Goresky, MacPherson [6]). For any orientable compact stratified semi-algebraic m-dimensional variety X, generalized Poincaré duality holds:

$$
I H_{k}^{\bar{p}}(X) \simeq I H_{m-k}^{\bar{q}}(X)
$$

where \bar{p} and \bar{q} are complementary perversities.
For the non-compact case, we have:

$$
I H_{k}^{\bar{p}, c}(X) \simeq I H_{m-k}^{\bar{q}, c l}(X) .
$$

A relative version is also true in the case where X has boundary.
2.3. The bifurcation set, the set of asymptotic critical values and the asymptotic set. Let $G: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ where $n \geqslant m$ be a polynomial mapping.
i) The bifurcation set of G, denoted by $B(G)$ is the smallest set in \mathbb{C}^{m} such that G is not C^{∞} - fibration on this set (see, for example, [20]).
ii) The set of asymptotic critical values, denoted by $K_{\infty}(G)$, is the set
$K_{\infty}(G)=\left\{\alpha \in \mathbb{C}^{m}: \exists\left\{z_{k}\right\} \subset \mathbb{C}^{n}\right.$, such that $\left|z_{k}\right| \rightarrow \infty, G\left(z_{k}\right) \rightarrow \alpha$ and $\left.\left|z_{k}\right|\left|d G\left(z_{k}\right)\right| \rightarrow 0\right\}$.
The set $K_{\infty}(G)$ is an approximation of the set $B(G)$. More precisely, we have $B(G) \subset$ $K_{\infty}(G)$ (see, for example, [14] or [3]).
iii) When $n=m$, we denote by S_{G} the set of points at which the mapping G is not proper, i.e.

$$
S_{G}=\left\{\alpha \in \mathbb{C}^{m}: \exists\left\{z_{k}\right\} \subset \mathbb{C}^{n},\left|z_{k}\right| \rightarrow \infty \text { such that } G\left(z_{k}\right) \rightarrow \alpha\right\},
$$

and call it the asymptotic variety. In the case of polynomial mappings $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, the following holds: $B(G)=S_{G}(\underline{9})$.
3. The variety \mathcal{M}_{G}. We consider polynomial mappings $G: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}$ as real ones $G: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n-2}$. By $\operatorname{Sing}(G)$ we mean the singular locus of G, that is the set of points for which the (complex) rank of the Jacobian matrix is less than $n-1$. We denote by $K_{0}(G)$ the set of critical values. From here, we assume always $K_{0}(G)=\varnothing$.

Definition 3.1. Let $G: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}$ be a polynomial mapping. Consider G as a real polynomial mapping $G: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n-2}$. Let $\rho: \mathbb{C}^{n} \rightarrow \mathbb{R}$ be a real function such that $\rho(z) \geqslant 0$ for any $z \in \mathbb{C}^{n}$. Let

$$
\varphi=\frac{1}{1+\rho} .
$$

Consider (G, φ) as a mapping from $\mathbb{R}^{2 n}$ to $\mathbb{R}^{2 n-1}$. Let us define

$$
\mathcal{M}_{G}:=\operatorname{Sing}(G, \varphi)=\left\{x \in \mathbb{R}^{2 n} \text { such that } \operatorname{Rank} D_{\mathbb{R}}(G, \varphi)(x) \leqslant 2 n-2\right\}
$$

where $D_{\mathbb{R}}(G, \varphi)(x)$ is the Jacobian matrix of $(G, \varphi): \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n-1}$ at x.
Remark 3.2. Since $K_{0}(G)=\varnothing$, then $\operatorname{Rank} D_{\mathbb{R}}(G)=2 n-2$, so we have

$$
\operatorname{Sing}(G, \varphi)=\left\{x \in \mathbb{R}^{2 n} \text { such that } \operatorname{Rank} D_{\mathbb{R}}(G, \varphi)=2 n-2\right\}
$$

Note that, from here, if we want to refer to the source space as a complex space, we will write $(G, \varphi): \mathbb{C}^{n} \rightarrow \mathbb{R}^{2 n-1}$, if we want to refer to the source space as a real space, we will write $(G, \varphi): \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n-1}$. Moreover, in general, we denote by $z \mathrm{a}$ complex element in \mathbb{C}^{n} and by x a real element in $\mathbb{R}^{2 n}$.

Lemma 3.3. For any ρ, φ and (G, φ) as in the Definition 3.1 and for any $x=$ $\left(x_{1}, \ldots, x_{2 n}\right) \in \mathbb{R}^{2 n}$, we have

$$
\operatorname{Rank} D_{\mathbb{R}}(G, \varphi)(x)=\operatorname{Rank} D_{\mathbb{R}}(G, \rho)(x),
$$

so we have

$$
\mathcal{M}_{G}=\operatorname{Sing}(G, \varphi)=\operatorname{Sing}(G, \rho)
$$

Proof. For any $x=\left(x_{1}, \ldots, x_{2 n}\right) \in \mathbb{R}^{2 n}$, we have

$$
\begin{gathered}
D_{\mathbb{R}}(G, \rho)(x)=\left(\begin{array}{ccc}
& D_{\mathbb{R}}(G) & \\
\rho_{x_{1}} & \cdots & \rho_{x_{2 n}}
\end{array}\right), \\
D_{\mathbb{R}}(G, \varphi)(x)=\left(\begin{array}{ccc}
& D_{\mathbb{R}}(G) & \\
\frac{-\rho_{x_{1}}}{(1+\rho)^{2}} & \cdots & \frac{-\rho_{x_{2 n}}}{(1+\rho)^{2}}
\end{array}\right),
\end{gathered}
$$

where $\rho_{x_{i}}$ is the derivative of ρ with respect to x_{i}, for $i=1, \ldots, 2 n$. We have $\operatorname{Rank} D_{\mathbb{R}}(G, \varphi)(x)=\operatorname{Rank} D_{\mathbb{R}}(G, \rho)(x)$ for any $x \in \mathbb{R}^{2 n}$ and $\mathcal{M}_{G}=\operatorname{Sing}(G, \varphi)=$ $\operatorname{Sing}(G, \rho)$.

Remark 3.4. From here, we consider the function ρ of the following form

$$
\rho=a_{1}\left|z_{1}\right|^{2}+\cdots+a_{n}\left|z_{n}\right|^{2}
$$

where $\Sigma_{i=1, \ldots, n} a_{i}^{2} \neq 0, a_{i} \geqslant 0$, and $a_{i} \in \mathbb{R}$ for $i=1, \ldots, n$.
Proposition 3.5. Let $G=\left(G_{1}, \ldots, G_{n-1}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}(n \geqslant 2)$ be a polynomial mapping such that $K_{0}(G)=\varnothing$ and $\rho: \mathbb{C}^{n} \rightarrow \mathbb{R}$ be such that $\rho=a_{1}\left|z_{1}\right|^{2}+\cdots+a_{n}\left|z_{n}\right|^{2}$, where $\Sigma_{i=1, \ldots, n} a_{i}^{2} \neq 0, a_{i} \geqslant 0$ and $a_{i} \in \mathbb{R}$, for $i=1, \ldots, n$. Denote by \mathbf{v}_{i} the determinant of the cofactor of $\frac{\partial}{\partial z_{i}}$ of the matrix

$$
\mathbf{V}(z)=\left(\begin{array}{ccc}
\frac{\partial}{\partial z_{1}} & \cdots & \frac{\partial}{\partial z_{n}} \\
\frac{\partial G_{1}}{\partial z_{1}} & \cdots & \frac{\partial G_{1}}{\partial z_{n}} \\
\frac{\partial G_{n-1}}{\partial z_{1}} & \cdots & \frac{\partial G_{n-1}}{\partial z_{n}}
\end{array}\right)
$$

for $i=1, \ldots, n$. Then we have

$$
\mathcal{M}_{G}=h^{-1}(0)
$$

where

$$
h: \mathbb{C}^{n} \rightarrow \mathbb{C}, \quad h(z)=2 \Sigma a_{i} \mathbf{v}_{i}(z) \overline{z_{i}}
$$

Proof. Let $G=\left(G_{1}, \ldots, G_{n-1}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}(n \geqslant 2)$ and $\rho: \mathbb{C}^{n} \rightarrow \mathbb{R}$ such that $\rho=a_{1}\left|z_{1}\right|^{2}+\cdots+a_{n}\left|z_{n}\right|^{2}$, where $\Sigma_{i=1, \ldots, n} a_{i}^{2} \neq 0, a_{i} \geqslant 0$ and $a_{i} \in \mathbb{R}$. Let us consider the vector field

$$
\mathbf{V}(z)=\left(\begin{array}{ccc}
\frac{\partial}{\partial z_{1}} & \cdots & \frac{\partial}{\partial z_{n}} \\
\frac{\partial G_{1}}{\partial z_{1}} & \cdots & \frac{\partial G_{1}}{\partial z_{n}} \\
\frac{\partial G_{n-1}}{\partial z_{1}} & \cdots & \frac{\partial G_{n-1}}{\partial z_{n}}
\end{array}\right) .
$$

We have

$$
\mathbf{V}(z)=\mathbf{v}_{1} \frac{\partial}{\partial z_{1}}+\cdots+\mathbf{v}_{n} \frac{\partial}{\partial z_{n}}
$$

where \mathbf{v}_{i} is the determinant of the cofactor of $\frac{\partial}{\partial z_{i}}$, for $i=1, \ldots, n$. The vector field $\mathbf{V}(z)$ is tangent to the curve $G=c$. Let $R(z)=a_{1} z_{1}^{2}+\cdots+a_{n} z_{n}^{2}$, then we have $\mathcal{M}_{G}=h^{-1}(0)$, where

$$
h: \mathbb{C}^{n} \rightarrow \mathbb{C}, \quad h(z)=<\mathbf{V}(z), \operatorname{Grad} R(z)>
$$

More precisely, we have $h(z)=2 \Sigma a_{i} \mathbf{v}_{i}(z) \overline{z_{i}}$.
Proposition 3.6. For an open and dense set of polynomial mappings $G: \mathbb{C}^{n} \rightarrow$ \mathbb{C}^{n-1} such that $K_{0}(G)=\varnothing$, the variety \mathcal{M}_{G} is a smooth manifold of dimension $2 n-2$.

Proof. The question is of local nature. In a neighbourhood of a point z_{0} in \mathbb{C}^{n}, we can choose coordinates such that the level curve $G=c$, where $c=G\left(z_{0}\right) \in \mathbb{C}^{n-1}$ is parametrized

$$
\gamma:(\mathbb{C}, 0) \rightarrow\left(\mathbb{C}^{n}, z_{0}\right)
$$

$$
s \mapsto\left(\gamma_{1}(s), \ldots, \gamma_{n}(s)\right)
$$

Since $\rho=a_{1}\left|z_{1}\right|^{2}+\cdots+a_{n}\left|z_{n}\right|^{2}$, then $\rho \circ \gamma:(\mathbb{C}, 0) \rightarrow \mathbb{R}$ and

$$
\rho \circ \gamma(s)=a_{1}\left|\gamma_{1}(s)\right|^{2}+\cdots+a_{n}\left|\gamma_{n}(s)\right|^{2}
$$

If z_{0} is a singular point of $\left.\rho\right|_{G=c}$, then

$$
\begin{gathered}
\rho \circ \gamma(0)=\rho(\gamma(0))=\rho\left(z_{0}\right) \\
(\rho \circ \gamma)^{\prime}(0)=0
\end{gathered}
$$

For an open and dense set of G, we have

$$
(\rho \circ \gamma)^{\prime \prime}(0) \neq 0
$$

Hence, z_{0} is a Morse singularity of $\left.\rho\right|_{G=c}$. In particular, it is an isolated point of the level curve $G=c$. When c varies in \mathbb{C}^{n-1}, it follows that the set \mathcal{M}_{G} has dimension $2 n-2$.

We prove now that \mathcal{M}_{G} is smooth. By Proposition 3.5, the variety \mathcal{M}_{G} is the set of solutions of $h=0$, where

$$
h(z)=2 \Sigma a_{i} \mathbf{v}_{i}(z) \overline{z_{i}}
$$

and \mathbf{v}_{i} is the determinant of the cofactor of $\frac{\partial}{\partial z_{i}}$ of $\mathbf{V}(z)$, for $i=1, \ldots, n$. Since $K_{0}(G)=\varnothing$ then $\mathbf{V}(z)=\left(\mathbf{v}_{1}(z), \ldots, \mathbf{v}_{n}(z)\right) \neq 0$. We can assume that $\mathbf{V}\left(z_{0}\right) \neq 0$ for a fixed point z_{0}. For a generic polynomial mapping, we can solve the equation $h=0$ in a neighbourhood of z_{0}. This shows that $h=0$ is smooth in a neighbourhood of z_{0}. Then M_{G} is smooth.

REmARK 3.7. From here, we consider always generic polynomial mappings G : $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}$ as in the Propostion 3.6 .

4. The variety \mathcal{V}_{G}.

4.1. The construction of the variety \mathcal{V}_{G}. Let $G: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}$ and $\rho, \varphi:$ $\mathbb{C}^{n} \rightarrow \mathbb{R}$ such that

$$
\rho=a_{1}\left|z_{1}\right|^{2}+\cdots+a_{n}\left|z_{n}\right|^{2}, \quad \varphi=\frac{1}{1+\rho}
$$

where $\Sigma_{i=1, \ldots, n} a_{i}^{2} \neq 0, a_{i} \geqslant 0$ and $a_{i} \in \mathbb{R}$. Let us consider:
a) $F:=G_{\mid \mathcal{M}_{G}}$ the restriction of G on \mathcal{M}_{G},
b) $\mathcal{N}_{G}=\mathcal{M}_{G} \backslash F^{-1}\left(K_{0}(F)\right)$.

Since the dimension of \mathcal{M}_{G} is $2 n-2$ (Proposition 3.6), then locally, in a neighbourhood of any point x_{0} in \mathcal{M}_{G}, we get a mapping $F: \mathbb{R}^{2 n-2} \rightarrow \mathbb{R}^{2 n-2}$. Now, we can apply the construction of singular varieties V_{F} in [21] for $F:=G_{\mid \mathcal{M}_{G}}$: there exists a covering $\left\{U_{1}, \ldots, U_{p}\right\}$ of \mathcal{N}_{G} by open semi-algebraic subsets (in $\mathbb{R}^{2 n}$) such that on every element of this covering, the mapping F induces a diffeomorphism onto its image (see Lemma 2.1 of [21], see also [16]). We can find semi-algebraic closed subsets $V_{i} \subset U_{i}\left(\right.$ in $\left.\mathcal{N}_{G}\right)$ which cover \mathcal{N}_{G} as well. Thanks to Mostowski's Separation Lemma
(see Separation Lemma in [15], page 246), for each $i=1, \ldots, p$, there exists a Nash function $\psi_{i}: \mathcal{N}_{G} \rightarrow \mathbb{R}$, such that ψ_{i} is positive on V_{i} and negative on $\mathcal{N}_{G} \backslash U_{i}$.

Lemma 4.1. We can choose the Nash functions ψ_{i} such that $\psi_{i}\left(x_{k}\right)$ tends to zero when $\left\{x_{k}\right\} \subset \mathcal{N}_{G}$ tends to infinity.

Proof. If ψ_{i} is a Nash function, then with any $N_{i} \in(\mathbb{N} \backslash\{0\})$, the function

$$
\psi_{i}^{\prime}(x)=\frac{\psi_{i}(x)}{\left(1+|x|^{2}\right)^{N_{i}}},
$$

where $x \in \mathcal{N}_{G}$, is also a Nash function, for $i=1, \ldots, p$. The Nash function ψ_{i}^{\prime} satisfies the property: ψ_{i}^{\prime} is positive on V_{i} and negative on $\mathcal{N}_{G} \backslash U_{i}$. With N_{i} large enough, $\psi_{i}^{\prime}\left(x_{k}\right)$ tends to zero when $\left\{x_{k}\right\} \subset \mathcal{N}_{G}$ tends to infinity, for $i=1, \ldots, p$. We replace the function ψ_{i} by ψ_{i}^{\prime}.

Definition 4.2. Let the Nash functions ψ_{i} and ρ be such that $\psi_{i}\left(x_{k}\right)$ tends to zero and $\rho\left(x_{k}\right)$ tends to infinity when $x_{k} \subset \mathcal{N}_{G}$ tends to infinity. Define a variety \mathcal{V}_{G} associated to (G, ρ) as

$$
\mathcal{V}_{G}:=\overline{\left(F, \psi_{1}, \ldots, \psi_{p}\right)\left(\mathcal{N}_{G}\right)} .
$$

REmARK 4.3. For a given polynomial mapping $G: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}$, the variety \mathcal{V}_{G} is not unique. It depends on the choice of the function ρ and the Nash functions ψ_{i}.

Proposition 4.4. The real dimension of \mathcal{V}_{G} is $2 n-2$.
Proof. By Proposition 3.6, in the generic case, the real dimension of \mathcal{M}_{G} is $2 n-2$. Moreover, F is a local immersion in a neighbourhood of a point in \mathcal{M}_{G}. So, the real dimension of $F\left(\mathcal{M}_{G}\right)$ is also $2 n-2$. Since

$$
F\left(\mathcal{N}_{G}\right)=F\left(\mathcal{M}_{G}\right) \backslash K_{0}(F),
$$

so the real dimension of $F\left(\mathcal{N}_{G}\right)$ is $2 n-2$. By Definition 4.2, the real dimension of \mathcal{V}_{G} is $2 n-2$.

Definition 4.5 (see, for example, [4). Let $G: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}$ be a polynomial mapping and $\rho: \mathbb{C}^{n} \rightarrow \mathbb{R}$ a real function such that $\rho \geqslant 0$. Define $\mathcal{S}_{G}:=\left\{\alpha \in \mathbb{C}^{n-1}: \exists\left\{z_{k}\right\} \subset \operatorname{Sing}(G, \rho)\right.$, such that z_{k} tends to infinity, $G\left(z_{k}\right)$ tends to $\left.\alpha\right\}$.

REMARK 4.6. a) For any real function $\rho: \mathbb{C}^{n} \rightarrow \mathbb{R}$ such that $\rho \geqslant 0$, we have

$$
B(G) \subset \mathcal{S}_{G} \subset K_{\infty}(G)
$$

where $B(G)$ is the bifurcation set and $K_{\infty}(G)$ is the set of asymptotic critical values of G (see, for example, [4).
b) By Lemma 3.3. we have $\operatorname{Sing}(G, \rho)=\mathcal{M}_{G}$, so the set \mathcal{S}_{G} can be written $\mathcal{S}_{G}:=\left\{\alpha \in \mathbb{C}^{n-1}: \exists\left\{x_{k}\right\} \subset \mathcal{M}_{G}\right.$, such that x_{k} tends to infinity, $G\left(x_{k}\right)$ tends to $\left.\alpha\right\}$.

Definition 4.7. The singular set at infinity of the variety \mathcal{V}_{G} is the set

$$
\left\{\beta \in \mathcal{V}_{G}: \exists\left\{x_{k}\right\} \subset \mathcal{N}_{G}, x_{k} \rightarrow \infty,\left(G, \psi_{1}, \ldots, \psi_{p}\right)\left(x_{k}\right) \rightarrow \beta\right\}
$$

Proposition 4.8. The singular set at infinity of the variety \mathcal{V}_{G} is contained in the set $\mathcal{S}_{G} \times\left\{0_{\mathbb{R}^{p}}\right\}$.

Proof. At first, by Proposition 3.6, for the generic case, the real dimension of \mathcal{V}_{G} associated to $G: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}$ is $2 n-2$. Moreover, we have the following facts:
a) $\mathcal{S}_{G} \subset K_{\infty}(G)$,
b) $\operatorname{dim}_{\mathbb{C}}\left(K_{\infty}(G)\right) \leqslant n-2$ (see [14]), so $\operatorname{dim}_{\mathbb{R}}\left(K_{\infty}(G)\right) \leqslant 2 n-4$.

Hence, we have $\operatorname{dim}_{\mathbb{R}} \mathcal{S}_{G} \times\left\{0_{\mathbb{R}^{p}}\right\} \leqslant 2 n-4$. Moreover, by Proposition 4.4 we have $\operatorname{dim}_{\mathbb{R}} \mathcal{V}_{G}=2 n-2$. Let β be a singular point at infinity of the variety \mathcal{V}_{G}, then there exists a sequence $\left\{x_{k}\right\}$ in \mathcal{N}_{G} tending to infinity such that $\left(G, \psi_{1}, \ldots, \psi_{p}\right)\left(x_{k}\right)$ tends to β. Assume that $G\left(x_{k}\right)$ tends to α, then α belongs to \mathcal{S}_{G}. Moreover, the Nash function $\psi_{i}\left(x_{k}\right)$ tends to 0 , for any $i=1, \ldots, p$. So $\beta=\left(\alpha, 0_{\mathbb{R}^{p}}\right)$ belongs to $\mathcal{S}_{G} \times\left\{0_{\mathbb{R}^{p}}\right\}$. Notice that, by Definition of \mathcal{V}_{G}, the set $\mathcal{S}_{G} \times\left\{0_{\mathbb{R}^{p}}\right\}$ is contained in \mathcal{V}_{G}. Then $\mathcal{S}_{G} \times\left\{0_{\mathbb{R}^{p}}\right\}$ contains the singular set at infinity of the variety \mathcal{V}_{G}.

Remark 4.9. The singular set at infinity of \mathcal{V}_{G} depends on the choice of the function ρ, since when ρ changes, the set \mathcal{S}_{G} also changes. But, the property $B(G) \subset$ \mathcal{S}_{G} does not depend on the choice of the function ρ (see, for example, [4]).

The previous results show the following Proposition:
Proposition 4.10. Let $G: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}$ be a polynomial mapping such that $K_{0}(G)=\varnothing$ and let $\rho: \mathbb{C}^{n} \rightarrow \mathbb{R}$ be a real function such that

$$
\rho=a_{1}\left|z_{1}\right|^{2}+\cdots+a_{n}\left|z_{n}\right|^{2}
$$

where $\Sigma_{i=1, \ldots, n} a_{i}^{2} \neq 0, a_{i} \geqslant 0$ and $a_{i} \in \mathbb{R}$ for $i=1, \ldots, n$. Then, there exists a real variety \mathcal{V}_{G} in $\mathbb{R}^{2 n-2+p}$, where $p>0$, such that:

1) The real dimension of \mathcal{V}_{G} is $2 n-2$,
2) The singular set at infinity of the variety \mathcal{V}_{G} is contained in $\mathcal{S}_{G} \times\left\{0_{\mathbb{R}^{p}}\right\}$.

Remark 4.11. The variety \mathcal{V}_{G} depends on the choice of the function ρ and the functions ψ_{i}. From now, we denote by $\mathcal{V}_{G}(\rho)$ any variety \mathcal{V}_{G} associated to (G, ρ). If we refer to \mathcal{V}_{G}, that means a variety \mathcal{V}_{G} associated to (G, ρ) for any ρ.

REmark 4.12. 1) In the construction of singular varieties \mathcal{V}_{G}, we can put $F:=$ $(G, \varphi)_{\mid \mathcal{M}_{G}}$, that means F is the restriction of (G, φ) on \mathcal{M}_{G}. In this case, since the dimension of \mathcal{M}_{G} is $2 n-2$ then locally, in a neighbourhood of any point x_{0} in \mathcal{M}_{G}, we get a mapping $F: \mathbb{R}^{2 n-2} \rightarrow \mathbb{R}^{2 n-1}$. The construction of singular varieties \mathcal{V}_{G} can be applied also in this case.
2) The construction of singular varieties \mathcal{V}_{G} can be applied for polynomial mappings $G: \mathbb{C}^{n} \rightarrow \mathbb{C}^{p}$ where $p<n-1$ if the Milnor set \mathcal{M}_{G} is smooth is this case.

4.2. A variety \mathcal{V}_{G} in the case of the Broughton's Example.

Example 4.13. We compute in this example a variety \mathcal{V}_{G} in the case of the Broughton's example [2]:

$$
G: \mathbb{C}^{2} \rightarrow \mathbb{C}, \quad G(z, w)=z+z^{2} w
$$

We see that $K_{0}(G)=\varnothing$ since the system of equations $G_{z}=G_{w}=0$ has no solutions. Let us denote

$$
z=x_{1}+i x_{2}, \quad w=x_{3}+i x_{4}
$$

where $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}$. Consider G as a real polynomial mapping, we have

$$
G\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+x_{1}^{2} x_{3}-x_{2}^{2} x_{3}-2 x_{1} x_{2} x_{4}, x_{2}+2 x_{1} x_{2} x_{3}+x_{1}^{2} x_{4}-x_{2}^{2} x_{4}\right)
$$

Let $\rho=|w|^{2}$, then

$$
\varphi=\frac{1}{1+\rho}=\frac{1}{1+|w|^{2}}=\frac{1}{1+x_{3}^{2}+x_{4}^{2}}
$$

The Jacobian matrix of (G, ρ) is

$$
D_{\mathbb{R}}(G, \rho)=\left(\begin{array}{cccc}
1+2 x_{1} x_{3}-2 x_{2} x_{4} & -2 x_{2} x_{3}-2 x_{1} x_{4} & x_{1}^{2}-x_{2}^{2} & -2 x_{1} x_{2} \\
2 x_{2} x_{3}+2 x_{1} x_{4} & 1+2 x_{1} x_{3}-2 x_{2} x_{4} & 2 x_{1} x_{2} & x_{1}^{2}-x_{2}^{2} \\
0 & 0 & 2 x_{3} & 2 x_{4}
\end{array}\right) .
$$

By an easy computation, we have $\mathcal{M}_{G}=\operatorname{Sing}(G, \rho)=M_{1} \cup M_{2}$, where

$$
\begin{aligned}
& M_{1}:=\left\{\left(x_{1}, x_{2}, 0,0\right): x_{1}, x_{2} \in \mathbb{R}\right\}, \\
& M_{2}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: 1+2 x_{1} x_{3}-2 x_{2} x_{4}=2 x_{2} x_{3}+2 x_{1} x_{4}=0\right\} .
\end{aligned}
$$

Let us consider G as a real mapping from $\mathbb{R}_{\left(x_{1}, x_{2}, x_{3}, x_{4}\right)}^{4}$ to $\mathbb{R}_{\left(\alpha_{1}, \alpha_{2}\right)}^{2}$, then:
a) If $x=\left(x_{1}, x_{2}, 0,0\right) \in M_{1}$, we have $G(x)=\left(x_{1}, x_{2}\right)$.
b) If $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in M_{2}$, then we have $G(x)=\left(\alpha_{1}, \alpha_{2}\right)$, where

$$
\alpha_{1}=\frac{-x_{3}}{4\left(x_{3}^{2}+x_{4}^{2}\right)}, \quad \alpha_{2}=\frac{x_{4}}{4\left(x_{3}^{2}+x_{4}^{2}\right)} .
$$

Let $F:=G_{\mid \mathcal{M}_{G}}$. We can check easily that $K_{0}(F)=\varnothing$. Choosing \mathcal{M}_{G} as a covering of \mathcal{M}_{G} itself. We choose the Nash function $\psi=\varphi$, then ψ is positive on all \mathcal{M}_{G}. So, by Definition 4.2, we have

$$
\left.\mathcal{V}_{G}=\overline{(F, \varphi)\left(\mathcal{M}_{G}\right)}=\overline{(G, \varphi)\left(\mathcal{M}_{G}\right.}\right)=(G, \varphi)\left(M_{1}\right) \cup(G, \varphi)\left(M_{2}\right) \cup\left(\mathcal{S}_{G} \times 0_{\mathbb{R}}\right),
$$

where $(G, \varphi): \mathbb{R}_{\left(x_{1}, x_{2}, x_{3}, x_{4}\right)}^{4} \rightarrow \mathbb{R}_{\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)}^{3}$. Then
a) $(G, \varphi)\left(M_{1}\right)$ is the plane $\left\{\alpha_{3}=1\right\} \subset \mathbb{R}_{\left(\alpha_{1}, \alpha_{2}, \alpha_{3},\right)}^{3}$.
b) Assume that $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in(G, \varphi)\left(M_{2}\right)$, and let

$$
x_{3}=r \cos \theta, \quad x_{4}=r \sin \theta,
$$

where $r \in \mathbb{R}, r>0$ and $0 \leqslant \theta \leqslant 2 \pi$, then

$$
\alpha_{1}^{2}+\alpha_{2}^{2}=\frac{1}{16 r^{2}}, \quad \alpha_{3}=\frac{1}{1+r^{2}}
$$

So $(G, \varphi)\left(M_{2}\right)$ is a 2-dimensional open cone. In fact, when r tends to infinity, then α_{1}, α_{2} and α_{3} tend to 0 , but the origin does not belong to this cone.

Moreover, by an easy computation, we can verify that the set \mathcal{S}_{G} is $0=(0,0) \in$ $\mathbb{R}_{\left(\alpha_{1}, \alpha_{2}\right)}^{2}$. So the origin 0 of $\mathbb{R}_{\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)}^{3}$ belongs to \mathcal{V}_{G}. In conclusion, the variety \mathcal{V}_{G} is the union of the plane $\alpha_{3}=1$ and a 2 -dimensional cone \mathcal{C} with vertex 0 , where the cone \mathcal{C} tends to infinity and asymptotic to the plane $\alpha_{3}=1$ in $\mathbb{R}_{\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)}^{3}$ (see Figure 1).

Fig. 1. A variety \mathcal{V}_{G} in the case of the Broughton's Example $G(z, w)=z+z^{2} w$.

Remark 4.14. We can use the Proposition 3.5 with the view of mixed functions (see [19]) to determine the variety \mathcal{M}_{G}. Let us return to the Example 4.13 In this case $\rho=|w|^{2}$, then

$$
\mathcal{M}_{G}=\left\{(z, w) \in \mathbb{C}^{2}: \frac{\partial G}{\partial z} \bar{w}=0\right\}
$$

Hence we have $(1+2 z w) \bar{w}=0$, that implies the following two cases:
i) $\bar{w}=0$: We have $x_{3}=x_{4}=0$, where $w=x_{3}+i x_{4}$.
ii) $\bar{w} \neq 0$ and $z=-\frac{1}{2 w}=-\frac{\bar{w}}{2|w|^{2}}$: We have

$$
x_{1}=\frac{-x_{3}}{2\left(x_{3}^{2}+x_{4}^{2}\right)}, \quad x_{2}=\frac{x_{4}}{2\left(x_{3}^{2}+x_{4}^{2}\right)},
$$

where $z=x_{1}+i x_{2}$.
So we get $\mathcal{M}_{G}=M_{1} \cup M_{2}$ as the computations and notations in the Example 4.13

5. Results.

Theorem 5.1. Let $G=\left(G_{1}, G_{2}\right): \mathbb{C}^{3} \rightarrow \mathbb{C}^{2}$ be a polynomial mapping such that $K_{0}(G)=\varnothing$. If one the groups $I H_{2}^{\bar{\tau}, c}\left(\mathcal{V}_{G}, \mathbb{R}\right), I H_{2}^{\bar{t}, c l}\left(\mathcal{V}_{G}, \mathbb{R}\right), H_{2}^{c}\left(\mathcal{V}_{G}, \mathbb{R}\right)$ and $H_{2}^{c l}\left(\mathcal{V}_{G}, \mathbb{R}\right)$ is trivial then the bifurcation set $B(G)$ is empty.

Theorem 5.2. Let $G=\left(G_{1}, \ldots, G_{n-1}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}(n \geqslant 4)$ be a polynomial mapping such that $K_{0}(G)=\varnothing$ and $\operatorname{Rank}_{\mathbb{C}}\left(D \hat{G}_{i}\right)_{i=1, \ldots, n-1}>n-3$, where \hat{G}_{i}
is the leading form of G_{i}, that is the homogenous part of highest degree of G_{i}, for $i=1, \ldots, n-1$. Then if one the groups $I H_{2}^{\bar{t}, c}\left(\mathcal{V}_{G}, \mathbb{R}\right), I H_{2}^{t, c l}\left(\mathcal{V}_{G}, \mathbb{R}\right), H_{2}^{c}\left(\mathcal{V}_{G}, \mathbb{R}\right)$, $H_{2}^{c l}\left(\mathcal{V}_{G}, \mathbb{R}\right), H_{2 n-4}^{c}\left(\mathcal{V}_{G}, \mathbb{R}\right)$ and $H_{2 n-4}^{c l}\left(\mathcal{V}_{G}, \mathbb{R}\right)$ is trivial then the bifurcation set $B(G)$ is empty.

Before proving these Theorems, we recall some necessary Definitions and Lemmas.
Definition 5.3. A semi-algebraic family of sets (parametrized by \mathbb{R}) is a semialgebraic set $A \subset \mathbb{R}^{n} \times \mathbb{R}$, the last variable being considered as parameter.

Remark 5.4. A semi-algebraic set $A \subset \mathbb{R}^{n} \times \mathbb{R}$ will be considered as a family parametrized by $t \in \mathbb{R}$. We write A_{t}, for "the fiber of A at t ", i.e.:

$$
A_{t}:=\left\{x \in \mathbb{R}^{n}:(x, t) \in A\right\} .
$$

Lemma 5.5 (21]). Let β be a j-cycle and let $A \subset \mathbb{R}^{n} \times \mathbb{R}$ be a compact semialgebraic family of sets with $|\beta| \subset A_{t}$ for any t. Assume that $|\beta|$ bounds a $(j+1)$-chain in each $A_{t}, t>0$ small enough. Then β bounds a chain in A_{0}.

Definition 5.6 ([21). Given a subset $X \subset \mathbb{R}^{n}$, we define the "tangent cone at infinity", called "contour apparent à l'infini" in [16] by:

$$
\begin{aligned}
C_{\infty}(X):= & \left\{\lambda \in \mathbb{S}^{n-1}(0,1) \text { such that } \exists \eta:\left(t_{0}, t_{0}+\varepsilon\right] \rightarrow X\right. \text { semi-algebraic, } \\
& \left.\lim _{t \rightarrow t_{0}} \eta(t)=\infty, \lim _{t \rightarrow t_{0}} \frac{\eta(t)}{|\eta(t)|}=\lambda\right\} .
\end{aligned}
$$

LEMMA 5.7 ([18]). Let $G=\left(G_{1}, \ldots, G_{m}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a polynomial mapping and V the zero locus of $\hat{G}:=\left(\hat{G}_{1}, \ldots, \hat{G}_{m}\right)$, where \hat{G}_{i} is the leading form of G_{i}. If X is a subset of \mathbb{R}^{n} such that $G(X)$ is bounded, then $C_{\infty}(X)$ is a subset of $\mathbb{S}^{n-1}(0,1) \cap V$, where $V=\hat{G}^{-1}(0)$.

Proof of the Theorem 5.1. Recall that in this case, $\operatorname{dim}_{\mathbb{R}} \mathcal{V}_{G}=4$ (Proposition 4.4) and $\mathcal{V}_{G} \backslash\left(\mathcal{S}_{G} \times\left\{0_{\mathbb{R}^{p}}\right\}\right)$ is not smooth in general. Consider a stratification of \mathcal{V}_{G}, the strata of which are the strata of $\mathcal{S}_{G} \times\left\{0_{\mathbb{R}^{p}}\right\}$ union the strata of the stratification of $K_{0}(F)$ defined by the rank, according to Thom [20]. Assume that $B(G) \neq \varnothing$, then by Remark 4.6, the set \mathcal{S}_{G} is not empty. This means that there exists a complex Puiseux arc in \mathcal{M}_{G}

$$
\gamma: D(0, \eta) \rightarrow \mathbb{R}^{6}, \quad \gamma=u z^{\alpha}+\ldots,
$$

(with α negative integer and u is an unit vector of \mathbb{R}^{6}) tending to infinity such a way that $G(\gamma)$ converges to a generic point $x_{0} \in \mathcal{S}_{G}$. Then, the mapping $h_{F} \circ \gamma$, where $h_{F}=\left(F, \varphi_{1}, \ldots, \varphi_{p}\right)$ and F is the restriction of G on \mathcal{M}_{G} provides a singular 2 -simplex in \mathcal{V}_{G} that we will denote by c. We prove now the simplex c is $(\bar{t}, 2)$ allowable for total perversity \bar{t}. In fact, by [14], in this case we have $\operatorname{dim}_{\mathbb{C}} \mathcal{S}_{G} \leqslant 1$, then $\alpha=\operatorname{codim}_{\mathbb{R}} \mathcal{S}_{G} \geqslant 2$. The condition

$$
0=\operatorname{dim}_{\mathbb{R}}\left\{x_{0}\right\}=\operatorname{dim}_{\mathbb{R}}\left(\left(\mathcal{S}_{G} \times\left\{0_{\mathbb{R}^{p}}\right\}\right) \cap|c|\right) \leqslant 2-\alpha+t_{\alpha},
$$

implies $t_{\alpha} \geqslant \alpha-2$, with $\alpha \geqslant 2$, which is true for total perversity \bar{t}. Take now a stratum V_{i} of $\mathcal{V}_{G} \backslash\left(\mathcal{S}_{G} \times\left\{0_{\mathbb{R}^{p}}\right\}\right)$. Denote by $\beta=\operatorname{codim}_{\mathbb{R}} V_{i}$. If $\beta \geqslant 2$, we can choose
the Puiseux arc γ such that c lies in the regular part of $\mathcal{V}_{G} \backslash\left(\mathcal{S}_{G} \times\left\{0_{\mathbb{R}^{p}}\right\}\right)$. In fact, this comes from the generic position of transversality. So c is $(\bar{t}, 2)$-allowable in this case. We need to consider only the cases $\beta=0$ and $\beta=1$. We have the following two cases:

1) If V_{i} intersects c, again by the generic position of transversality, we can choose the Puiseux arc γ such that $0 \leqslant \operatorname{dim}_{\mathbb{R}}\left(V_{i} \cap|c|\right) \leqslant 1$. The condition

$$
\operatorname{dim}_{\mathbb{R}}\left(V_{i} \cap|c|\right) \leqslant 2-\beta+t_{\beta}
$$

holds since $2-\beta+t_{\beta} \geqslant 1$, for $\beta=0$ and $\beta=1$.
2) If V_{i} does not meet c, then the condition

$$
-\infty=\operatorname{dim}_{\mathbb{R}} \varnothing=\operatorname{dim}_{\mathbb{R}}\left(V_{i} \cap|c|\right) \leqslant 2-\beta+t_{\beta}
$$

holds always.
So the simplex c is $(\bar{t}, 2)$-allowable for total perversity \bar{t}.
From here, the proof of the Theorem follows the ideas of 21]: We can always choose the Puiseux arc such that the support of ∂c lies in the regular part of $\mathcal{V}_{G} \backslash\left(\mathcal{S}_{G} \times\right.$ $\left\{0_{\mathbb{R}^{p}}\right\}$). We have

$$
H_{1}\left(\operatorname{Reg}\left(\mathcal{V}_{G} \backslash\left(\mathcal{S}_{G} \times\left\{0_{\mathbb{R}^{p}}\right\}\right)\right)\right)=0
$$

then the chain ∂c bounds a singular chain $e \in C^{2}\left(\operatorname{Reg}\left(\mathcal{V}_{G} \backslash\left(\mathcal{S}_{G} \times\left\{0_{\mathbb{R}^{p}}\right\}\right)\right)\right)$, where e is a chain with compact supports or closed supports. So $\sigma=c-e$ is a $(\bar{t}, 2)$-allowable cycle of \mathcal{V}_{G}, with compact supports or closed supports.

We claim that σ may not bound a 3 -chain in \mathcal{V}_{G}. Assume otherwise, i.e. assume that there is a chain $\tau \in C_{3}\left(\mathcal{V}_{G}\right)$, satisfying $\partial \tau=\sigma$. Let

$$
\begin{aligned}
& A:=h_{F}^{-1}\left(|\sigma| \cap\left(\mathcal{V}_{G} \backslash\left(\mathcal{S}_{G} \times\left\{0_{\mathbb{R}^{p}}\right\}\right)\right)\right), \\
& B:=h_{F}^{-1}\left(|\tau| \cap\left(\mathcal{V}_{G} \backslash\left(\mathcal{S}_{G} \times\left\{0_{\mathbb{R}^{p}}\right\}\right)\right)\right) .
\end{aligned}
$$

By definition, $C_{\infty}(A)$ and $C_{\infty}(B)$ are subsets of $\mathbb{S}^{5}(0,1)$. Observe that, in a neighborhood of infinity, A coincides with the support of the Puiseux arc γ. The set $C_{\infty}(A)$ is equal to $\mathbb{S}^{1} . a$ (denoting the orbit of $a \in \mathbb{C}^{3}$ under the action of \mathbb{S}^{1} on $\left.\mathbb{C}^{3},\left(e^{i \eta}, z\right) \mapsto e^{i \eta} z\right)$. Let V be the zero locus of the leading forms $\hat{G}:=\left(\hat{G}_{1}, \hat{G}_{2}\right)$. Since $G(A)$ and $G(B)$ are bounded, by Lemma 5.7. $C_{\infty}(A)$ and $C_{\infty}(B)$ are subsets of $V \cap \mathbb{S}^{5}(0,1)$.
For R large enough, the sphere $\mathbb{S}^{5}(0, R)$ with center 0 and radius R in \mathbb{R}^{6} is transverse to A and B (at regular points). Let

$$
\sigma_{R}:=\mathbb{S}^{5}(0, R) \cap A, \quad \tau_{R}:=\mathbb{S}^{5}(0, R) \cap B
$$

Then σ_{R} is a chain bounding the chain τ_{R}. Consider a semi-algebraic strong deformation retraction $\Phi: W \times[0 ; 1] \rightarrow \mathbb{S}^{1} . a$, where W is a neighborhood of $\mathbb{S}^{1} . a$ in $\mathbb{S}^{5}(0,1)$ onto $\mathbb{S}^{1} . a$. Considering R as a parameter, we have the following semi-algebraic families of chains:

1) $\tilde{\sigma}_{R}:=\frac{\sigma_{R}}{R}$, for R large enough, then $\tilde{\sigma}_{R}$ is contained in W,
2) $\sigma^{\prime}{ }_{R}=\Phi_{1}\left(\tilde{\sigma}_{R}\right)$, where $\Phi_{1}(x):=\Phi(x, 1), \quad x \in W$,
3) $\theta_{R}=\Phi\left(\tilde{\sigma}_{R}\right)$, we have $\partial \theta_{R}=\sigma_{R}^{\prime}-\tilde{\sigma}_{R}$,
4) $\theta^{\prime}{ }_{R}=\tau_{R}+\theta_{R}$, we have $\partial \theta_{R}^{\prime}=\sigma_{R}^{\prime}$.

As, near infinity, σ_{R} coincides with the intersection of the support of the arc γ with $\mathbb{S}^{5}(0, R)$, for R large enough the class of σ_{R}^{\prime} in $\mathbb{S}^{1} . a$ is nonzero.

Let $r=1 / R$, consider r as a parameter, and let $\left\{\tilde{\sigma}_{r}\right\},\left\{\sigma_{r}^{\prime}\right\},\left\{\theta_{r}\right\}$ as well as $\left\{\theta_{r}^{\prime}\right\}$ the corresponding semi-algebraic families of chains.

Denote by $E_{r} \subset \mathbb{R}^{6} \times \mathbb{R}$ the closure of $\left|\theta_{r}\right|$, and set $E_{0}:=\left(\mathbb{R}^{6} \times\{0\}\right) \cap E$. Since the strong deformation retraction Φ is the identity on $C_{\infty}(A) \times[0,1]$, we see that

$$
E_{0} \subset \Phi\left(C_{\infty}(A) \times[0,1]\right)=\mathbb{S}^{1} . a \subset V \cap \mathbb{S}^{5}(0,1)
$$

Denote by $E_{r}^{\prime} \subset \mathbb{R}^{6} \times \mathbb{R}$ the closure of $\left|\theta_{r}^{\prime}\right|$, and set $E_{0}^{\prime}:=\left(\mathbb{R}^{6} \times\{0\}\right) \cap E^{\prime}$. Since A bounds B, then $C_{\infty}(A)$ is contained in $C_{\infty}(B)$. We have

$$
E_{0}^{\prime} \subset E_{0} \cup C_{\infty}(B) \subset V \cap \mathbb{S}^{5}(0,1) .
$$

The class of σ_{r}^{\prime} in $\mathbb{S}^{1} . a$ is, up to a product with a nonzero constant, equal to the generator of $\mathbb{S}^{1} . a$. Therefore, since σ_{r}^{\prime} bounds the chain θ_{r}^{\prime}, the cycle $\mathbb{S}^{1} . a$ must bound a chain in $\left|\theta_{r}^{\prime}\right|$ as well. By Lemma 5.5, this implies that $\mathbb{S}^{1} . a$ bounds a chain in E_{0}^{\prime} which is included in $V \cap \mathbb{S}^{5}(0,1)$.

The set V is a projective variety which is an union of cones in \mathbb{R}^{6}. Since $\operatorname{dim}_{\mathbb{C}} V \leqslant$ 1 , so $\operatorname{dim}_{\mathbb{R}} V \leqslant 2$ and $\operatorname{dim}_{\mathbb{R}} V \cap \mathbb{S}^{5}(0,1) \leqslant 1$. The cycle \mathbb{S}^{1}.a thus bounds a chain in $E_{0}^{\prime} \subseteq V \cap \mathbb{S}^{5}(0,1)$, which is a finite union of circles, that provides a contradiction. $\mathrm{\square}$

Now we provides the proof of the Theorem 5.2 .
Proof. [Proof of the Theorem 5.2
The proof of this Theorem follows the idea of [18] and the proof of Theorem 5.1.
Assume that $B(G) \neq \varnothing$. Similarly to the proof of the Theorem 5.1 and with the same notations in this proof but for the general case, we have: since

$$
\operatorname{Rank}_{\mathbb{C}}\left(D \hat{G}_{i}\right)_{i=1, \ldots, n-1}>n-3
$$

then

$$
\operatorname{corank}_{\mathbb{C}}\left(D \hat{G}_{i}\right)_{i=1, \ldots, n-1}=\operatorname{dim}_{\mathbb{C}} V \leqslant 1
$$

so $\operatorname{dim}_{\mathbb{R}} V \leqslant 2$ and $\operatorname{dim}_{\mathbb{R}} V \cap \mathbb{S}^{2 n-1}(0,1) \leqslant 1$. The cycle \mathbb{S}^{1}.a bounds a chain in $E_{0}^{\prime} \subseteq V \cap \mathbb{S}^{2 n-1}(0,1)$, which is a finite union of circles, that provides a contradiction. So we have

$$
I H_{2}^{\bar{t}, c}\left(\mathcal{V}_{G}, \mathbb{R}\right) \neq 0, \quad I H_{2}^{\bar{t}, c l}\left(\mathcal{V}_{G}, \mathbb{R}\right) \neq 0, \quad H_{2}^{c}\left(\mathcal{V}_{G}, \mathbb{R}\right) \neq 0 \text { and } H_{2}^{c l}\left(\mathcal{V}_{G}, \mathbb{R}\right) \neq 0
$$

From the Goresky-MacPherson Poincaré duality Theorem, we have

$$
I H_{2}^{\bar{t}, c}\left(\mathcal{V}_{G}, \mathbb{R}\right)=I H_{2 n-4}^{\overline{0}, c l}\left(\mathcal{V}_{G}, \mathbb{R}\right) \text { and } I H_{2}^{\bar{t}, c l}\left(\mathcal{V}_{G}, \mathbb{R}\right)=I H_{2 n-4}^{\overline{0}, c}\left(\mathcal{V}_{G}, \mathbb{R}\right)
$$

that implies $H_{2 n-4}^{c}\left(\mathcal{V}_{G}, \mathbb{R}\right) \neq 0$ and $H_{2 n-4}^{c l}\left(\mathcal{V}_{G}, \mathbb{R}\right) \neq 0$.
Remark 5.8. The variety \mathcal{V}_{G} associated to a polynomial mapping $G: \mathbb{C}^{n} \rightarrow$ \mathbb{C}^{n-1} is not unique, but the result of the theorems 5.1 and 5.2 hold for any variety \mathcal{V}_{G} among the constructed varieties \mathcal{V}_{G} associated to G.

With the conditions of Theorem 5.2, the result of 12 also holds, hence as a consequence of Theorem 5.2 in this paper and Theorems 2.1 and 2.6 in [12], we obtain the following corollary.

Corollary 5.9. Let $G=\left(G_{1}, \ldots, G_{n-1}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}$, where $n \geqslant 4$, be a polynomial mapping such that $K_{0}(G)=\varnothing$. Assume that the zero set $\left\{z \in \mathbb{C}^{n}\right.$:
$\left.\hat{G}_{i}(z)=0, i=1, \ldots, n-1\right\}$ has complex dimension one, where \hat{G}_{i} is the leading form of G_{i}. If the Euler characteristic of $G^{-1}\left(z^{0}\right)$ is bigger than that of the generic fiber, where $z^{0} \in \mathbb{C}^{n-1}$, then

1) $H_{2}\left(\mathcal{V}_{G}(\rho), \mathbb{R}\right) \neq 0$, for any ρ,
2) $H_{2 n-4}\left(\mathcal{V}_{G}(\rho), \mathbb{R}\right) \neq 0$, for any ρ,
3) $I H_{2}^{\bar{t}}\left(\mathcal{V}_{G}(\rho), \mathbb{R}\right) \neq 0$, for any ρ, where \bar{t} is the total perversity.

Proof. At first, since the zero set $\left\{z \in \mathbb{C}^{n}: \hat{G}_{i}(z)=0, i=1, \ldots, n-1\right\}$ has complex dimension one, then by the Theorem 2.6 in [12], any generic linear mapping L is a very good projection with respect to any regular value z^{0} of G. Then if the Euler characteristic of $G^{-1}\left(z^{0}\right)$ is bigger than that of the generic fiber, where $z^{0} \in \mathbb{C}^{n-1}$, then by the Theorem 2.1 of [12], the set $B(G) \neq \varnothing$. Moreover, the complex dimension of the set $\left\{z \in \mathbb{C}^{n}: \hat{G}_{i}(z)=0, i=1, \ldots, n-1\right\}$ is the complex corank of $\left(D \hat{G}_{i}\right)_{i=1, \ldots, n-1}$. Hence $\operatorname{Rank}_{\mathbb{C}}\left(D \hat{G}_{i}\right)_{i=1, \ldots, n-1}=n-2$, and by the Theorem 5.2 , we finish the proof.

Example 5.10. Consider the suspension of the Broughton's example:

$$
G: \mathbb{C}^{3} \rightarrow \mathbb{C}^{2}, \quad G(z, w, \zeta)=\left(z+z^{2} w, \zeta\right)
$$

or, more general $G(z, w, \zeta)=\left(z+z^{2} w, g(\zeta)\right)$ where $g(\zeta)$ is any polynomial of variable ζ and $g^{\prime}(\zeta) \neq 0$. We can check that, for any function ρ, we have always $I H_{2}^{\bar{t}}\left(\mathcal{V}_{G}, \mathbb{R}\right) \neq 0$.

Remark 5.11. The condition $B(G)=\varnothing$ does not imply $I H_{2}^{\bar{t}}\left(\mathcal{V}_{G}, \mathbb{R}\right)=0$, since in this case \mathcal{S}_{G} maybe not empty.

Example 5.12. Let

$$
G: \mathbb{C}^{3} \rightarrow \mathbb{C}^{2}, \quad G(z, w, \zeta)=\left(z, z \zeta^{2}+w\right) .
$$

1) If we choose the function $\rho=|\zeta|^{2}$, then $\mathcal{S}_{G}=\varnothing$ and $I H_{2}^{\bar{t}}\left(\mathcal{V}_{G}, \mathbb{R}\right)=0$.
2) If we choose the function $\rho=|w|^{2}$, then $\mathcal{S}_{G} \neq \varnothing$ and $I H_{2}^{\bar{t}}\left(\mathcal{V}_{G}, \mathbb{R}\right) \neq 0$.

REFERENCES

[1] J-P. Brasselet, Introduction to intersection homology and perverse sheaves, Publicações Matemáticas do IMPA, 27o Colóquio Brasileiro de Matemática, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 2009.
[2] A. Broughton, On the topology of polynomial hypersurfaces, In "Singularities, Part 1 (Arcata, Calif., 1981)", volume 40 of Proc. Sympos. Pure Math., pp. 167-178.
[3] L. R. G. DiAs, Regularity at infinity and global fibrations of real algebraic maps, Tese de doutorado.
[4] L. R. G. Dias, M. A. S. Ruas, and M. Tibar, Regularity at infinity of real mappings and a Morse-Sard Theorem, J. Topology, 5:2 (2012), pp. 323-340.
[5] M. Chaperon, Jets, transversalité, singularités : petite introduction aux grandes idées de René Thom, Exposé du 29 semtembre 2001.
[6] M. Goresky and R. MacPherson, Intersection homology. II, Invent. Math., 72 (1983), pp. 77129.
[7] M. Goresky and R. MacPherson, Intersection homology theory, Topology, 19 (1980), pp. 135-162.
[8] R. HARDT, Semi-algebraic local-triviality in semi-algebraic mappings, Amer. J. Math., 102:2 (1980), pp. 291-302.
[9] Z. JELONEK, Testing sets for properness of polynomial mappings, Math. Ann., 315:1 (1999), pp. 1-35.
[10] V. H. HA, Nombres de Lojasiewicz et singularités à l'infini des polynômes de deux variables complexes, C. R. Acad. Sci. Paris Ser. I, 311 (1990), pp. 429-432.
[11] V. H. Ha and L. D. Tráng, Sur la topologie des polynomes complexes, Acta Math. Vietnamica, 9 (1984), pp. 21-32.
[12] V. H. Ha and T. T. Nguyen, On the topology of polynomial mappings from \mathbb{C}^{n} to \mathbb{C}^{n-1}, International Journal of Mathematics, 22:3 (2011), pp. 435-448.
[13] O. H. Keller, Ganze Cremonatransformationen Monatschr, Math. Phys., 47 (1939), pp. 229306.
[14] K. Kurdyka, P. Orro, and S. Simon, Semialgebraic Sard Theorem for generalized critical values, J. Differential Geometry, 56 (2000), pp. 67-92.
[15] T. Mostowski, Some properties of the ring of Nash functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 3:2 (1976), pp. 245-266.
[16] T. B. T. NGUYEN, Étude de certains ensembles singuliers associés à une application polynomiale, Thèse, Université d'Aix Marseille, http://tel.archives-ouvertes.fr/, ID : tel00875930.
[17] T. B. T. Nguyen, La méthode des façons, ArXiv: 1407.5239.
[18] T. B. T. Nguyen, A. Valette, and G. Valette, On a singular variety associated to a polynomial mapping, Journal of Singularities, 7 (2013), pp. 190-204.
[19] M. Oka, A Non-degenerate mixed function, Kodai Math. J., 33 (2010), pp. 1-62.
[20] R. Тном, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc., 75:2 (1969), pp. 240284.
[21] A. Valette and G. Valette, Geometry of polynomial mappings at infinity via intersection homology, Ann. I. Fourier, 64:5 (2014), pp. 2147-2163.

[^0]: *Received March 16, 2016; accepted for publication April 5, 2017. The research was partially supported by the post-doctoral FAPESP 2013/18706-7 (for the first author) and FAPESP Proc. 2014/00304-2 and CNPq Proc. 305651/2011-0 (for the second author).
 \dagger Ibilce-Unesp, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Letras e Ciências Exatas, Rua Cristovão Colombo, 2265, São José do Rio Preto, Brazil (bich.thuy@ unesp.br).
 \ddagger Universidade de São Paulo, Instituto de Ciências Matemáticas e de Computação - USP, Avenida Trabalhador São-Carlense, 400-Centro, Brazil (maasruas@icmc.usp.br).

