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A study on random differential equations of
arbitrary order
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In this paper, the well-posedness of fractional random differen-
tial equations (FRDEs) involving Hilfer-Katugampola fractional
derivative (HKFD) is discussed. The sufficient conditions to exis-
tence of solutions for FRDEs involving initial, nonlocal and impul-
sive conditions are generated using standard fixed point theorems.
Further the stability of solution is verified by the concept proposed
by Ulam. Uniqueness solutions of initial value problems for FRDEs
using picards iterative techique and continuous dependence of data
are also discussed.
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1. Preface

Fractional calculus is generalization of ordinary differentiation and integra-
tion to arbitrary non-integer order. The subject is as old as the differential
calculus. Integral equations are one of the most useful mathematical tools in
both pure and applied analysis. We can find numerous applications of dif-
ferential and integral equation of fractional order in finance, hydrology, bio-
physics; thermodynamics control theory, statistical mechanics, astrophysics,
cosmology and bioengineering [11, 12, 19]. For the significant development
in fractional differential equations (FDEs) in recent years; see [2, 4, 5].

Evaluation of parameters of a dynamical system is not without uncer-
tainties. When our knowledge about the parameters of a dynamic system is
of statistical nature, that is, the information is probabilistic; the common
approach in mathematical modeling of such systems is the use of random
differential equations (RDEs) or stochastic differential equations. RDEs, as
natural extensions of deterministic ones, arise in many applications and have
been investigated by many mathematicians. We refer the reader to the pa-
pers. The analyses of FDEs with random parameters have been studied in,
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[15, 20, 23]. The existence results for a FRDEs is discussed here [3, 6, 16, 23].
As an extension of work [9], here we study the special case of kernel which
represents Hilfer-Katugampola fractional derivative (HKFD). The general-
ization of HKFD and the properties are chiefly discussed by Oliveira and
Capelas, in [18]. The detailed study and theoretical analysis of FDEs involv-
ing HKFD is discussed in [10].

2. Preliminary

Set (Ω, F, p) is a complete probability space. Define the Banach space of all
continuous random functions space, C([a, b] = J×Ω,R) := {u : J × Ω → R}
with the norm

‖u‖C = sup {|u(t, ϑ)| : t ∈ J, ϑ ∈ Ω} .

We denote the weighted spaces of all continuous random functions space,
defined by

C1−γ,ρ(J,R) =

{
u : J × Ω → R :

(
tρ − aρ

ρ

)1−γ

u(t, ϑ) ∈ C(J,R)

}
,

0 ≤ γ < 1,

with the norm

‖u‖C1−γ,ρ
= sup

t∈J

∣∣∣∣∣
(
tρ − aρ

ρ

)1−γ

u(t, ϑ)

∣∣∣∣∣ .
Next, we introduce the piecewise continuous space

PC =
{
u : J × Ω → R : u ∈ C(tk, tk+1], k = 0, . . . ,m;

there exists u(t+k )(ϑ) and u(t−k )(ϑ)
}
.

Now, we give the weighted piecewise continuous space of the formPC1−γ,ρ(ϑ),

PC1−γ,ρ =

{
u :

(
tρ − aρ

ρ

)1−γ

u(t, ϑ)|t∈[tk,tk+1] ∈ C[tk, tk+1], k = 0, . . . ,m,

where 0 ≤ γ < 1

}
.
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Obviously, which is a Banach space with norm

‖u‖PC1−γ,ρ
= sup

t∈(tk,tk+1]

{(
tρ − aρ

ρ

)1−γ

u(t, ϑ)

}
, k = 0, . . . ,m.

Definition 2.1 ([13]). The generalized left-sided fractional integral ρIαf of
order α ∈ C(�(α)) is defined by

(1) (ρIα) f(t) =
ρ1−α

Γ(α)

∫ t

a
(tρ − sρ)α−1sρ−1f(s)ds, t > a,

if the integral exists.
The generalized fractional derivative, corresponding to the generalized

fractional integral (1), is defined for 0 ≤ a < t, by

(2) (ρDαf) (t) =
ρα−n−1

Γ(n− α)

(
t1−ρ d

dt

)n ∫ t

a
(tρ − sρ)n−α+1sρ−1f(s)ds,

if the integral exists.

Definition 2.2 ([18]). The Hilfer-Katugampola fractional operator with re-
spect to t, of order ρ > 0, is defined by

(
ρDα,βf

)
(t) =

(
ρIα
(
tρ−1 d

dt

)
ρI(1−β)(1−α)

)
(t)(3)

=
(
ρIαδρ

ρI(1−β)(1−α)
)
(t).

Lemma 2.3. [18] Let α, β > 0, and

ρIα
(
tρ − aρ

ρ

)β−1

(t) =
Γ(β)

Γ(α+ β)

(
tρ − aρ

ρ

)α+β−1

,

ρDα

(
tρ − aρ

ρ

)α−1

(t) = 0.

Lemma 2.4. [18] If α > 0 and 0 ≤ μ < 1, then ρIα is bounded from
Cμ(J,R) into Cμ(J,R). In addition, if μ ≤ α, then ρIα is bounded from
Cμ(J,R) into C(J,R).

Lemma 2.5. [27] Suppose α > 0, a(t, ϑ) is a nonnegative function locally
integrable on J × Ω (some T ≤ ∞), and let g(t, ϑ) be a nonnegative, non-
decreasing continuous function defined on J × Ω, such that g(t, ϑ) ≤ K for
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some constant K. Further let u(t, ϑ) be a nonnegative locally integrable on
J × Ω function with

u(t, ϑ) ≤ a(t, ϑ) + g(t, ϑ)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1u(s, ϑ)ds, (t, ϑ) ∈ J × Ω,

with some α > 0. Then

u(t, ϑ) ≤ a(t, ϑ) +

∫ t

a

[ ∞∑
n=1

(g(t, ϑ)Γ(α))n

Γ(nα)

(
tρ − sρ

ρ

)nα−1

sρ−1

]
a(s, ϑ)ds,

(t, ϑ) ∈ J × Ω.

Remark 2.6. Under the hypethesis of Lemma 2.5 let a(t, ϑ) be a nonde-

creasing function on [a, b]. Then u(t, ϑ) ≤ a(t, ϑ)Eαg(t, ϑ)Γ(α)
(
tρ−aρ

ρ

)α
,

where Eα is the Mittag-Leffler function defined by

Eα(z) =

∞∑
k=0

zk

Γ(kα+ 1)
, z ∈ C, Re(α) > 0.

Lemma 2.7. Let u ∈ PC1−γ,ρ satisfies the following inequality

|u(t, ϑ)| ≤ a(t, ϑ)+g(t, ϑ)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1 |u(s, ϑ)| ds+
∑

0<tk<t

|utk(ϑ)| ,

where c1 is a nonnegative, continuous and nondecreasing function and c2, λi

are constants. Then

|u(t, ϑ)| ≤ a(t, ϑ)

(
1 + λEα

(
g(t, ϑ)Γ(α)

(
tρ − aρ

ρ

)α−1
))k

× Eα

(
g(t, ϑ)Γ(α)

(
tρ − aρ

ρ

)α−1
)
,

where λ = sup {λk : k = 1, 2, 3, . . . ,m}.
Theorem 2.8 (Krasnoselskii’s fixed point theorem [7]). Let X be a Ba-
nach space, let B be a bounded closed convex subset of X and let P1,P2 be
mapping from B into X such that P1u+P2v,∈ B for every pair u, v ∈ B.
If P1 is contraction and P2 is completely continuous, then the equation
P1u+P2u = u has a solution on B.
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Theorem 2.9 (Schaefer’s Fixed Point Theorem [7]). Let K be a Banach
space and let P : K → K be completely continuous operator. If the set
{u ∈ K : u = δPu for some δ ∈ (0, 1)} is bounded, then P has a fixed point.

Theorem 2.10 (Banach Fixed Point Theorem [7]). Suppose Q be a non-
empty closed subset of a Banach space E. Then any contraction mapping P

from Q into itself has a unique fixed point.

3. Initial value problem for FRDEs

Consider the FRDEs involving HKFD of the form{
ρDα,βu(t, ϑ) = g(t, ϑ, u(t, ϑ)), t ∈ J := (a, b],
ρI1−γu(t, ϑ)|t=a = ua(ϑ),

(4)

where ϑ ∈ Ω, ρDα,β is the HKFD of order α (0 < α < 1) and type β (0 ≤ β ≤
1) and ρI1−γ is generalized fractional integral of order 1−γ (γ = α+β−αβ).
Let g : J × Ω × R → R is a given continuous function. Here, ϑ is random
variable and ua(ϑ) is random initial condition.

In this section, we prove existence and uniqueness of proposed Cauchy
type problem (4). Before starting and proving this result, we list the follow-
ing condition:

(H1) Lipschitz condition: There exist a constant 	(t, ϑ) > 0 such that

|g(t, ϑ, u)− g(t, ϑ, u)| ≤ 	(t, ϑ) |u− u| ,

for any u, u ∈ R, and t ∈ J .

Lemma 3.1. Let γ = α + β − αβ, where 0 < α < 1 and 0 ≤ β ≤ 1.
Let g : J × Ω × R → R be a function such that g ∈ C1−γ;ρ(J,R) for any
u ∈ C1−γ;ρ(J,R). If u satisfies the problem

ρDα,βu(t, ϑ) = g(t, ϑ, u(t, ϑ)),
ρI1−γu(t, ϑ)|t=a = ua(ϑ),

if and only if u satisfies the Volterra integral equation of second kind

u(t, ϑ)=
ua(ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, u(s, ϑ))ds.

(5)
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Lemma 3.2. The Katugampola fractional integral operator ρIα is bounded
from C1−γ;ρ(J,R) to C1−γ;ρ(J,R):

‖ρIαg‖C1−γ;ρ
≤ M

B(γ, α)

Γ(α)

(
tρ − aρ

ρ

)α

,(6)

where, M is the bound of bounded function g.

Proof. From Lemma 2.4, the result follows. Now we prove the estimate (6),
we have

‖ρIαg‖C1−γ;ρ
=

∥∥∥∥∥
(
tρ − aρ

ρ

)1−γ
ρIαg

∥∥∥∥∥
C

≤ ‖g‖C1−γ;ρ

B(γ, α)

Γ(α)

(
tρ − aρ

ρ

)α

,

using Lemma 2.3, we get

‖ρIαg‖C1−γ;ρ
≤ M

B(γ, α)

Γ(α)

(
tρ − aρ

ρ

)α

.

Theorem 3.3. Here the assumption [H1] holds. There exists a unique so-
lution u for the Cauchy-type problem (4) in C1−γ;ρ(J,R).

Proof. The integral Eq. (5) makes sense in any interval [a, t1] ⊂ [a, b]. Choose
t1 such that

	(t, ϑ)
B(γ, α)

Γ(α)

(
tρ1 − aρ

ρ

)α

< 1(7)

holds and first we prove the existence of unique solution u∈ C1−γ;ρ([a, t1],R).
We proceed as follows. Set Picard’s sequence functions

u0(t, ϑ) =
ua(ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

,(8)

um(t, ϑ) = u0(t, ϑ) +
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, um−1(s, ϑ))ds,(9)

m ∈ N.

We show that um(t, ϑ) ∈ C1−γ;ρ(J,R). From Eq. (8), it follows that u0(t, ϑ) ∈
C1−γ;ρ(J,R). By Lemma 3.2, ρIα is bounded from C1−γ;ρ(J,R) to



A study on random differential equations of arbitrary order 147

C1−γ;ρ(J,R), which gives um(t, ϑ) ∈ C1−γ;ρ(J,R), m ∈ N . By Eq. (8) and

Eq. (9), we have

‖u1(t, ϑ)− u0(t, ϑ)‖C1−γ;ρ([a,t1],R)
= ‖ρIαg(t, ϑ, u0(t, ϑ))‖C1−γ;ρ([a,t1],R)

using Lemma 3.2

‖u1(t, ϑ)− u0(t, ϑ)‖C1−γ;ρ([a,t1],R)
≤ M

B(γ, α)

Γ(α)

(
tρ1 − aρ

ρ

)α

.(10)

Further we obtain

‖u2(t, ϑ)− u1(t, ϑ)‖C1−γ;ρ([a,t1],R)
(11)

≤ M
B(γ, α)

Γ(α)

(
tρ1 − aρ

ρ

)α(
	(t, ϑ)

B(γ, α)

Γ(α)

(
tρ1 − aρ

ρ

)α)
.

Continuing in this way m-times, we obtain

‖um(t, ϑ)− um−1(t, ϑ)‖C1−γ;ρ([a,t1],R)
(12)

≤ M
B(γ, α)

Γ(α)

(
tρ1 − aρ

ρ

)α(
	(t, ϑ)

B(γ, α)

Γ(α)

(
tρ1 − aρ

ρ

)α)m−1

.

By Eq. (7), we get

‖um(t, ϑ)− um−1(t, ϑ)‖C1−γ;ρ([a,t1],R)
→ 0, as m → +∞.(13)

Again by Lemma 3.2, it follows that

‖ρIαg(t, ϑ, um(t, ϑ))− ρIαg(t, ϑ, u(t, ϑ))‖C1−γ;ρ([a,t1],R)

≤ 	(t, ϑ)
B(γ, α)

Γ(α)

(
tρ1 − aρ

ρ

)α

‖um(t)− u(t)‖C1−γ;ρ([a,t1],R)
,

and hence by Eq. 13,

‖ρIαg(t, ϑ, um(t, ϑ))− ρIαg(t, ϑ, u(t, ϑ))‖C1−γ;ρ([a,t1],R)
→ 0, as m → +∞.

(14)

From Eq. (13) and Eq. (14), it follows that u(t, ϑ) is the solution of integral

Eq. (5) in C1−γ;ρ([a, t1],R).
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Now to show that the solution u(t, ϑ) is unique, consider there exists two
solutions u(t, ϑ) and v(t, ϑ) of the integral equation (5) on [a, t1]. Substituting
them into Eq. (5) and using Lemma 2.4 with condition [H1], we get

‖u(t, ϑ)− v(t, ϑ)‖C1−γ;ρ([a,t1],R)
(15)

≤ ‖ρIαg(t, ϑ, u(t, ϑ))− ρIαg(t, ϑ, v(t, ϑ))‖C1−γ;ρ([a,t1],R)

≤ 	(t, ϑ)
B(γ, α)

Γ(α)

(
tρ1 − aρ

ρ

)α

‖u(t)− v(t)‖C1−γ;ρ([a,t1],R)
.

This yields 	(t, ϑ)B(γ,α)
Γ(α)

(
tρ1−aρ

ρ

)α
≥ 1, which contradicts to condition (7).

Thus there exists u(t, ϑ) = u1(t, ϑ) ∈ C1−γ;ρ([a, t1],R) as a unique solution
on [a, t1].

Next, consider the interval [t1, t2], where t2 = t1 + h1, h1 > 0 such that
t2 < b. Now the integral Eq. (5) takes the form

u(t, ϑ) =
ua(ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+
1

Γ(α)

∫ t

t1

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, u(s, ϑ))ds

(16)

+
1

Γ(α)

∫ t1

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, u(s, ϑ))ds, t ∈ [t1, t2].

Since the function u(t, ϑ) is uniquely defined on [a, t1], the last integral is
known function and therefore the integral Eq. (16) can be written in the
form

u(t, ϑ) =u∗(t, ϑ) +
1

Γ(α)

∫ t

t1

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, u(s, ϑ))ds,(17)

where

u∗(t, ϑ) =
ua(ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

(18)

+
1

Γ(α)

∫ t1

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, u(s, ϑ))ds,

is the known function. Using the same argument as above, we deduce that
there exist a unique solution u(t, ϑ) = u2(t, ϑ) ∈ C1−γ;ρ([t1, t2],R) on [t1, t2].
Taking interval [t2, t3], where t3 = t2 + h2, h2 > a such that t3 < b, and
repeating the above process, we obtain a unique solution u(t) ∈ C1−γ;ρ(J,R)
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of integral equation (5) such that u(t) = uj(t) ∈ C1−γ;ρ([tj−1, tj ],R) for
j = 1, 2, . . . , l, and a = u0 < u1 < . . . < ul = b. Using differential Eq. (4)
and Lipschitz condition [H1], we obtain

∥∥∥ρDα,βum(t, ϑ)− ρDα,βu(t, ϑ)
∥∥∥
C1−γ;ρ

= ‖g(t, um(t, ϑ))− g(t, u(t, ϑ))‖C1−γ;ρ

(19)

≤ 	(t, ϑ) ‖um(t, ϑ)− u(t, ϑ)‖C1−γ;ρ
.

Clearly, (13) and (19) implies that ρDα,βu(t, ϑ) ∈ C1−γ;ρ(J,R).
Thus, the proof of the theorem is complete.

4. Solution of nonlocal initial value problem for FRDEs

First, we discuss the existence, uniqueness and stability of solutions of
FRDEs with nonlocal condition of the form

(20)

{
ρDα,βu(t, ϑ) = g(t, ϑ, u(t, ϑ)), t ∈ J := (a, b],
ρI1−γu(t, ϑ)|t=a = u(ϑ) + h(u, ϑ).

We establish by an integral equation is as follows

u(t, ϑ) =
ua(ϑ) + h(u, ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

(21)

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, u(s, ϑ))ds.

(H2) There exist p, q : J × Ω → R with

|g(t, ϑ, u)| ≤ p(t, ϑ) + q(t, ϑ) |u| ,

for all u ∈ R and P (ϑ) = supt∈J p(t, ϑ), Q(ϑ) = supt∈J q(t, ϑ), for
t ∈ J .

(H3) There exist a constant 	h, such that

|h(u, ϑ)− h(v, ϑ)| ≤ 	h(t, ϑ) |u− v| .

(H4) Let the functions utkvtk : J × Ω → R are continuous and there exists
a constant 	∗ > 0, such that

|utk(ϑ)− vtk(ϑ)| ≤ 	∗(t, ϑ) |u− v| ,
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and

|utk(ϑ)| ≤ r(t, ϑ), for all k = 1, 2, . . . ,m,

and we denote R(ϑ) = supt∈J r(t, ϑ).
(H5) There exists an increasing function ϕ : J × Ω → R

+ and there exists
λϕ > 0 such that for any t ∈ J

ρIαϕ(t, ϑ) ≤ λϕϕ(t, ϑ).

Theorem 4.1. Assume that hypotheses [H1]–[H3] are satisfied. Then,
Eq. (20) has at least one solution.

Proof. Consider the operator P (ϑ) : Ω× C1−γ,ρ → C1−γ,ρ.
Hence, u is a solution for the problem (20) if and only if

u(t, ϑ) = (Pu)(t, ϑ),

where the equivalent integral equation which can be written in the operator
form

(Pu)(t, ϑ) =
ua(ϑ) + h(u, ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

(22)

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, u(s, ϑ))ds.

Consider the ball Br =
{
u ∈ C1−γ,ρ : ‖u‖C1−γ,ρ

≤ r
}
. Set h(0, ϑ) = H(ϑ)

Now we subdivide the operator P into two operator P1 and P2 on Br as
follows

P1u(t, ϑ) =
ua(ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+
h(u, ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

,

and

P2u(t, ϑ) =
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, u(s, ϑ))ds.

The proof is separated into some steps.

Step 1. P1u+ P2v ∈ Br for every u, v ∈ Br.

|P1u(t, ϑ)| =
∣∣∣∣∣ua(ϑ)Γ(γ)

(
tρ − aρ

ρ

)γ−1

+
h(t, ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1
∣∣∣∣∣
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∣∣∣∣∣P1u(t, ϑ)

(
tρ − aρ

ρ

)1−γ
∣∣∣∣∣ ≤ |ua(ϑ)|

Γ(γ)
+

|h(u, ϑ)− h(0, ϑ)|
Γ(γ)

+
|h(0, ϑ)|
Γ(γ)

≤ |ua(ϑ)|
Γ(γ)

+
	h

Γ(γ)

(
tρ − aρ

ρ

)γ−1

‖u‖C1−γ,ρ
+
H(ϑ)

Γ(γ)
.

This gives

‖P1u‖C1−γ,ρ
≤ |ua(ϑ)|

Γ(γ)
+

	h
Γ(γ)

(
bρ − aρ

ρ

)γ−1

‖u‖C1−γ,ρ
+

H(ϑ)

Γ(γ)
.(23)

For the operator P2

∣∣∣∣∣P2(t, ϑ)

(
tρ − aρ

ρ

)1−γ
∣∣∣∣∣

≤ 1

Γ(α)

(
tρ − aρ

ρ

)1−γ ∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1 |g(s, ϑ, u(s, ϑ))| ds

≤ 1

Γ(α)

(
tρ − aρ

ρ

)1−γ ∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1 |p(t, ϑ)| ds

+
1

Γ(α)

(
tρ − aρ

ρ

)1−γ ∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1 |q(t, ϑ)| |u(s)| ds

≤ 1

Γ(α+ 1)

(
tρ − aρ

ρ

)1−γ ( tρ − aρ

ρ

)α

P (ϑ)

+
1

Γ(α)

(
tρ − aρ

ρ

)1−γ

B(γ, α)

(
tρ − aρ

ρ

)α+γ−1

Q(ϑ) ‖u‖C1−γ,ρ
ds

Thus, we obtain

‖P2u‖C1−γ,ρ(ϑ)
≤ P (ϑ)

Γ(α+ 1)

(
bρ − aρ

ρ

)α−γ+1

(24)

+
Q(ϑ)

Γ(α)

(
bρ − aρ

ρ

)α

B(γ, α) ‖u‖C1−γ,ρ
.

Linking (23) and (24), for every u, v ∈ Br,

‖P1u+ P2v‖C1−γ,ρ
≤ ‖P1u‖C1−γ,ρ

+ ‖P2v‖C1−γ,ρ
≤ r.
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Step 2. P1 is a contration mapping.

For any u, v ∈ Br,∣∣∣∣∣
(
tρ − aρ

ρ

)1−γ

(P1u(t, ϑ)− P1v(t, ϑ))

∣∣∣∣∣
≤ 1

Γ(γ)
|h(u, ϑ)− h(v, ϑ)| ,

≤ 1

Γ(γ)
|h(u, ϑ)− h(v, ϑ)| ,

≤ 	h(t, ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

‖u− v‖C1−γ,ρ

This gives

‖(P1u− P1v)‖C1−γ,ρ
≤ 	h(t, ϑ)

Γ(ν)

(
bρ − aρ

ρ

)γ−1

‖u− v‖C1−γ,ρ
.

Thus, P1 is a contraction mapping.

Step 3. The operator P2 is compact and continuous.

According to Step 1, we know that

‖P2u‖C1−γ,ρ(ϑ)
≤ P (ϑ)

Γ(α+ 1)

(
bρ − aρ

ρ

)α−γ+1

+
Q(ϑ)

Γ(α)

(
bρ − aρ

ρ

)α

B(γ, α) ‖u‖C1−γ,ρ
.

So operator P2 is uniformly bounded.

Now, we confirm the compactness of operator P2.

For 0 < tl < tm < T , we have∣∣∣∣∣
((

tρm − aρ

ρ

)1−γ

P2u(tm, ϑ)−
(
tρl − aρ

ρ

)1−γ

P2v(tl, ϑ)

)∣∣∣∣∣
=

∣∣∣∣∣ 1

Γ(α)

(
tρm − aρ

ρ

)1−γ ∫ tm

a

(
tρm − sρ

ρ

)α−1

sρ−1g(s, ϑ, u(s, ϑ))ds

− 1

Γ(α)

(
tρl − aρ

ρ

)1−γ ∫ tl

a

(
tρl − sρ

ρ

)α−1

sρ−1g(s, ϑ, u(s, ϑ))ds

∣∣∣∣∣
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tending to zero as tl → tm. Thus P2 is equicontinuous. Hence, the operator P2

is compact on Br by the Arzela-Ascoli Theorem. It follows from Theorem 2.8
that the problem (20) has at least one solution.

Lemma 4.2. Assume that the hypothesis (H1) is satisfied. If(
	h(t, ϑ)

Γ(γ)

(
bρ − aρ

ρ

)γ−1

+
	(t, ϑ)

Γ(α)
B(γ, α)

(
bρ − aρ

ρ

)α
)

< 1,

then, (20) has a unique solution.

Next, we shall give the definition for generalized Ulam-Hyers-Rassias (U-
H-R) stability for the differential equations involving HKFD with random
effects is given by

ρDα,βu(t, ϑ) = g(t, ϑ, u(t, ϑ)).(25)

Let ε > 0 be a positive real number and ϕ : J × Ω → R
+ be a continuous

function. We consider the following inequality∣∣∣ρDα,βv(t, ϑ)− g(t, ϑ, v(t, ϑ))
∣∣∣ ≤ ϕ(t, ϑ).(26)

Definition 4.3. Eq. (25) is generalized U-H-R stable with respect to ϕ if
there exists a real number Cf,ϕ > 0 such that for each solution v : Ω →
C1−γ,ρ of the inequality (26) there exists a solution u : Ω → C1−γ,ρ of Eq.
(25) with

|v(t, ϑ)− u(t, ϑ)| ≤ Cf,ϕϕ(t, ϑ), t ∈ J, ϑ ∈ Ω.

Theorem 4.4. Under the hypotheses (H1) and (H5), the solution of Eq. (20)
is generalized U-H-R stable.

Proof. Let v be solution of inequality 26 and by Lemma 4.2 there exists a
unique solution u for the problem (20). Thus we have

u(t, ϑ) =
ua(ϑ) + h(u, ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, u(s, ϑ))ds.

By differentiating inequality (26) for each t ∈ J, ϑ ∈ Ω, we have∣∣∣∣∣v(t, ϑ)− ua(ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

− h(v, ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1
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− 1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, v(s, ϑ))ds

∣∣∣∣∣
≤ λϕϕ(t, ϑ).

Hence it follows

|v(t, ϑ)− u(t, ϑ)|

≤
∣∣∣∣∣v(t, ϑ)− ua(ϑ) + h(u, ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

− 1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, u(s, ϑ))ds

∣∣∣∣∣
≤
∣∣∣∣∣v(t, ϑ)− ua(ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

− h(v, ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

− 1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, v(s, ϑ))ds

∣∣∣∣∣
+

1

Γ(γ)

(
tρ − aρ

ρ

)γ−1

|h(v, ϑ)− h(u, ϑ)|

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1 |g(s, ϑ, v(s, ϑ))− g(s, ϑ, u(s, ϑ))| ds

≤ λϕϕ(t, ϑ) +
	h(t, ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

|v(t, ϑ)− u(t, ϑ)|

+
	(t, ϑ)

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1 |v(s, ϑ)− u(s, ϑ)| ds

:= Cf,ϕϕ(t, ϑ).

Thus, Eq. (20) is generalized U-H-R stable.

5. Random differential equation with impulsive effect

Next, we discuss the existence, uniqueness and stability of solutions of RDE
with impulsive involving HKFD of the form

(27)

⎧⎪⎨
⎪⎩

ρDα,βu(t, ϑ) = g(t, ϑ, u(t, ϑ)), t ∈ J
′
:= J \ {t1, . . . , tm} ,

ΔρI1−γu(t, ϑ)|t=tk = utk(ϑ),
ρI1−γu(t, ϑ)|t=a = ua(ϑ),
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where uk(ϑ) : J × Ω → R is continuous for all k = 1, 2, . . . ,m, and 0 =

t0 < t1 < . . . < tm < tm+1 = b, ΔρI1−γu(t, ϑ)|t=tk = ρI1−γu(t+k )(ϑ) −
ρI1−γu(t−k )(ϑ),

ρI1−γu(t+k )
(ϑ) = limh→0+ u(tk+h)(ϑ) and ρI1−γu(t−k )(ϑ) =

limh→0− u(tk+h)(ϑ) represent the right and left limits of u(t, ϑ) at t = tk.

The integral equation of the problem (27) is of the form

u(t, ϑ) =
ua(ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+

∑
0<tk<t utk(ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

(28)

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, u(s, ϑ))ds.

Theorem 5.1. Assume that [H2]–[H4] are satisfied. Then, Eq. (27) has at

least one solution.

Proof. Consider the operator T : Ω × PC1−γ,ρ → PC1−γ,ρ. The operator

form of integral equation (28) is written as follows

u(t, ϑ) = Tu(t, ϑ),

where

(Tu)(t, ϑ) =
ua(ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+

∑
0<tk<t utk(ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

(29)

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, u(s, ϑ))ds

Define Br =
{
u ∈ PC1−γ,ρ : ‖u‖PC1−γ,ρ

≤ r
}
. Set

ω :=
|ua(ϑ)|
Γ(γ)

+
P (ϑ)

Γ(α+ 1)

(
bρ − aρ

ρ

)α+1−γ

and

σ :=

(
mR(ϑ)

Γ(γ)

(
bρ − aρ

ρ

)γ−1

+
B(γ, α)Q(ϑ)

Γ(α)

(
bρ − aρ

ρ

)α
)

In order to apply Schauder fixed point theorem, we divide our proof into

three steps.
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Step 1: We check that T (Br) ⊂ Br.∣∣∣∣∣(Tu)(t, ϑ)
(
tρ − aρ

ρ

)1−γ
∣∣∣∣∣

≤ |ua(ϑ)|
Γ(γ)

+

∑
0<tk<t |utk(ϑ)|

Γ(γ)

+
1

Γ(α)

(
tρ − aρ

ρ

)1−γ ∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1 |g(s, ϑ, u(s, ϑ))| ds

≤ |ua(ϑ)|
Γ(γ)

+

(
tρ − aρ

ρ

)γ−1
∑

0<tk<t r(t, ϑ)
(
tρ−aρ

ρ

)1−γ
‖u‖PC1−γ,ρ

Γ(γ)

+

(
tρ − aρ

ρ

)1−γ 1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1 [p(s, ϑ) + q(s, ϑ) |u(s, ϑ)|] ds

≤ |ua(ϑ)|
Γ(γ)

+

(
tρ − aρ

ρ

)γ−1 mR(ϑ)

Γ(γ)
‖u‖PC1−γ,ρ

+

(
tρ − aρ

ρ

)1−γ 1

Γ(α+ 1)

(
tρ − aρ

ρ

)α

P (ϑ)

+

(
tρ − aρ

ρ

)1−γ B(γ, α)Q(ϑ)

Γ(α)

(
tρ − aρ

ρ

)α+γ−1

‖u‖PC1−γ,ρ

≤ |ua(ϑ)|
Γ(γ)

+
P (ϑ)

Γ(α+ 1)

(
bρ − aρ

ρ

)α+1−γ

+

(
mR(ϑ)

Γ(γ)

(
bρ − aρ

ρ

)γ−1

+
B(γ, α)Q(ϑ)

Γ(α)

(
bρ − aρ

ρ

)α
)
‖u‖PC1−γ,ρ

.

Hence

‖(Tu)‖PC1−γ,ρ
≤ ω + σr ≤ r,

which yields that T (Br) ⊂ Br. Next we prove that the operator T is com-
pletely continuous.

Step 2: The operator T is continuous.

Let un be a sequence such that un → u in Br. Then for each t ∈ J ,∣∣∣∣∣Tun(t, ϑ)−Pu(t, ϑ))

(
tρ − aρ

ρ

)1−γ
∣∣∣∣∣
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≤ 1

Γ(γ)

∑
0<tk<t

|ψk(ukn
(tk))− ψk(u(tk))|

+
1

Γ(α)

(
tρ − aρ

ρ

)1−γ ∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1

× |g(s, ϑ, un(s, ϑ))− g(s, ϑ, u(s, ϑ))| ds.

Since g is continuous, then we have

‖Tun − Tu‖PC1−γ ,ρ
→ 0 as n → ∞.

This proves the continuity of T .

Step 3: T (Br) is relatively compact.
Thus T (Br) is uniformly bounded. And for any tl, tm ∈ J, tl > tm then,

we have∣∣∣∣∣
(
tρl − aρ

ρ

)1−γ

(Pu)(tl, ϑ)−
(
tρm − aρ

ρ

)1−γ

(Pu)(tm, ϑ))

∣∣∣∣∣
=

∣∣∣∣∣
∑

0<tk<tl
utk(ϑ)

Γ(γ)
+

(
tρl −aρ

ρ

)1−γ

Γ(α)

∫ tl

0

(
tρl − sρ

ρ

)α−1

sρ−1g(s, ϑ, u(s, ϑ))ds

−
∑

0<tk<tm
utk(ϑ)

Γ(γ)
−
( tρm−aρ

ρ

)1−γ

Γ(α)

∫ tm

0

(
tρm − sρ

ρ

)α−1

sρ−1g(s, ϑ, u(s, ϑ))ds

∣∣∣∣∣,
tending to zero as tl → tm. That is, T is equicontinuous. Hence, T (Br) is
relatively compact. As a outcome of Steps 1–3 together with Arzelä-Ascoli
theorem, we can conclude that that T is completely continuous. Finally by
Schauder fixed point theorem the proof is complete.

Theorem 5.2. Assume that [H1] and [H3] are satisfied. If

(30)

(
m	∗(t, ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+
	(t, ϑ)

Γ(α)

(
tρ − aρ

ρ

)α

B(γ, α)

)
< 1,

then, the Eq. (27) has a unique solution.

Now, we shall give the definition for U-H-R stability of random implicit
differential equation with impulsive effect involving HKFD of the form{

ρDα,βu(t, ϑ) = g(t, ϑ, u(t, ϑ)),

ΔρI1−γu(t, ϑ)|t=tk = utk(ϑ).
(31)
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Let ε > 0 be a positive real number and ϕ : J × Ω → R
+ be a continuous

function. We consider the following inequalities{∣∣ρDα,βu(t, ϑ)− g(t, ϑ, v(t, ϑ))
∣∣ ≤ ϕ(t, ϑ),∣∣ΔρI1−γv(t, ϑ)|t=tk − vtk(ϑ)
∣∣ ≤ ϕ(t, ϑ).

(32)

Definition 5.3. Eq. (31) is generalized U-H-R stable with respect to ϕ if
there exists a real number Cf,ϕ > 0 such that for each solution u : Ω →
PC1−γ of the inequality (32) there exists a solution v : Ω → PC1−γ of Eq.
(31) with

|v(t, ϑ)− u(t, ϑ)| ≤ Cf,ϕϕ(t, ϑ), t ∈ J, ϑ ∈ Ω.

Theorem 5.4. The assumptions [H1], [H4], [H5] and (30) hold. Then,
Eq. (27) is generalized U-H-R stable.

Proof. Let v be solution of inequality (32) and by Theorem 4.2 there u is
unique solution of the problem

ρDα,βu(t, ϑ) = g(t, ϑ, u(t, ϑ)),

ΔρI1−γu(t, ϑ)|t=tk = utk(ϑ),
ρI1−γu(t, ϑ)|t=a = ua(ϑ).

Then, we have

u(t, ϑ) =
ua(ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+

∑
0<tk<t utk(ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, u(s, ϑ))ds.

By differentiating inequality (32), for each t ∈ (tk, tk+1], we have∣∣∣∣∣v(t, ϑ)− ua(ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

−
∑

0<tk<t vtk(ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

− 1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, u(s, ϑ))ds

∣∣∣∣∣
≤
∣∣∣∣∣
∑

0<tk<t gk

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+
1

Γ(α)

∫ t

0

(
tρ − sρ

ρ

)α−1

sρ−1ϕ(s, ϑ)ds

∣∣∣∣∣
≤ m

Γ(γ)

(
tρ − aρ

ρ

)γ−1

ϕ(t, ϑ) + λϕϕ(t, ϑ)
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≤
(

m

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+ λϕ

)
ϕ(t, ϑ).

Hence for each t ∈ (tk, tk+1], it follows

|v(t, ϑ)− u(t, ϑ)|

≤
∣∣∣∣∣v(t, ϑ)− ua(ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

−
∑

0<tk<t utk(ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

− 1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, u(s, ϑ))ds

∣∣∣∣∣
≤
∣∣∣∣∣v(t, ϑ)− u0(ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

−
∑

0<tk<t vk(ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

− 1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, v(s, ϑ))ds

∣∣∣∣∣
+

∑
0<tk<t |vk(ϑ)− uk(ϑ)|

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1 |g(s, ϑ, v(s, ϑ))− g(s, ϑ, u(s, ϑ))| ds

≤
(

m

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+ λϕ

)
ϕ(t, ϑ)

+
m	∗(t, ϑ)

Γ(γ)

(
tρ − aρ

ρ

)γ−1

|v(t, ϑ)− u(t, ϑ)|

+
	(t, ϑ)

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1 |v(s, ϑ)− u(s, ϑ)| ds

By Lemma 2.7, there exists a constant K > 0 independent of λϕϕ(t, ϑ) such

that

|v(t, ϑ)− u(t, ϑ)| ≤ K

(
m

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+ λϕ

)
ϕ(t, ϑ) := Cf,ϕϕ(t, ϑ).

Thus, Eq. (27) is generalized U-H-R stable.



160 K. Kanagarajan et al.

6. Continuous dependence

In this section, first we study the continuous dependence of solution of
FRDEs involving HFD by applying generalized Gronwall inequality an im-
portant tool. Consider the Eq. (4). To present dependence of solution on the
order, let us consider the solutions of two equations with the neighbouring
orders. Before studying the continuous dependence the Cauchy-type prob-
lem (4), we will discuss some results for the RDEs involving Katugampola
fractional derivative{

ρDαu(t, ϑ) = g(t, u(t, ϑ)), t ∈ J
ρI1−αu(a, ϑ) = u(ϑ),

(33)

and equivalent to the integral equation which is of the form

u(t, ϑ)=
u(ϑ)

Γ(α)

(
tρ − aρ

ρ

)α−1

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, u(s, ϑ))ds.

(34)

First we present the continuous dependence of the solution of the Cauchy-
type problem involving Katugampola fractional differential equation

Theorem 6.1. Let α > 0, ν > 0 such that 0 < α − ν < α ≤ 1. Let u is
continuous function satisfying Lipschitz condition [H2] in R. Foe a ≤ t <
h < b, assume that u is the solution of Eq. (4) and u is the solution of
equation

ρDα−νu(t, ϑ) = g(t, ϑ, u(t, ϑ)),

ρI1−(α−ν)u(t, ϑ)|t=a = u(ϑ).
(35)

Then, for a < t ≤ h, the estimate of the following

|u(t, ϑ)− u(t, ϑ)|

≤ K1(t) +

∫ t

a

⎡
⎢⎣ ∞∑
k=1

(
	(t, ϑ)Γ(α− ν)

Γ(α)

)k

(
tρ−sρ

ρ

)k(α−ν)−1
sρ−1

Γ(k(α− ν))
K1(s)

⎤
⎥⎦ ds

holds, where

K1(t) =

∣∣∣∣∣ ua

Γ(α− ν)

(
tρ − aρ

ρ

)α−ν−1

− ua

Γ(α)

(
tρ − aρ

ρ

)α−1
∣∣∣∣∣
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+ ‖g‖

∣∣∣∣∣∣∣
(
tρ−aρ

ρ

)α−ν

Γ(α− ν + 1)
−

(
tρ−aρ

ρ

)α−ν

(α− ν)Γ(α)

∣∣∣∣∣∣∣
+ ‖g‖

∣∣∣∣∣∣∣
(
tρ−aρ

ρ

)α−ν

(α− ν)Γ(α)
−

(
tρ−aρ

ρ

)α
Γ(α+ 1)

∣∣∣∣∣∣∣
Proof. Solutions of the problems (33) and (35) are given by

u(t, ϑ) =
u(ϑ)

Γ(α)

(
tρ − aρ

ρ

)α−1

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, u(s, ϑ))ds

(36)

and

u(t, ϑ) =
u(ϑ)

Γ(α− ν)

(
tρ − aρ

ρ

)α−ν−1

(37)

+
1

Γ(α− ν)

∫ t

a

(
tρ − sρ

ρ

)α−ν−1

sρ−1g(s, ϑ, u(s, ϑ))ds

respectively, it follows that

|u(t, ϑ)− u(t, ϑ)|

=

∣∣∣∣∣ u(ϑ)

Γ(α− ν)

(
tρ − aρ

ρ

)α−ν−1

− ua

Γ(α)

(
tρ − aρ

ρ

)α−1

+
1

Γ(α− ν)

∫ t

a

(
tρ − sρ

ρ

)α−ν−1

sρ−1g(s, ϑ, u(s, ϑ))ds

− 1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, u(s, ϑ))ds

∣∣∣∣∣
≤
∣∣∣∣∣ u(t, ϑ)

Γ(α− ν)

(
tρ − aρ

ρ

)α−ν−1

− ua

Γ(α)

(
tρ − aρ

ρ

)α−1
∣∣∣∣∣

+

∣∣∣∣∣∣∣
∫ t

a

⎛
⎜⎝
(
tρ−sρ

ρ

)α−ν−1

Γ(α− ν)
−

(
tρ−sρ

ρ

)α−ν−1

Γ(α)

⎞
⎟⎠ sρ−1g(s, ϑ, u(s, ϑ))ds

∣∣∣∣∣∣∣
+

∣∣∣∣∣
∫ t

a

1

Γ(α)

((
tρ − sρ

ρ

)α−ν−1

−
(
tρ − sρ

ρ

)α−1
)
sρ−1g(s, ϑ, u(s, ϑ))ds

∣∣∣∣∣
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+

∣∣∣∣∣∣∣
∫ t

a

(
tρ−sρ

ρ

)α−ν−1

Γ(α)
sρ−1 (g(s, u(s))− g(s, u(s))) ds

∣∣∣∣∣∣∣
≤
∣∣∣∣∣ u(ϑ)

Γ(α− ν)

(
tρ − aρ

ρ

)α−ν−1

− u(ϑ)

Γ(α)

(
tρ − aρ

ρ

)α−1
∣∣∣∣∣

+ ‖g‖

∣∣∣∣∣∣∣
(
tρ−aρ

ρ

)α−ν

Γ(α− ν + 1)
−

(
tρ−aρ

ρ

)α−ν

(α− ν)Γ(α)

∣∣∣∣∣∣∣+ ‖g‖

∣∣∣∣∣∣∣
(
tρ−aρ

ρ

)α−ν

(α− ν)Γ(α)
−

(
tρ−aρ

ρ

)α
Γ(α+ 1)

∣∣∣∣∣∣∣
+

	(t, ϑ)

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−ν−1

sρ−1 |u(s)− u(s)| ds.

Then we have by Grownwall Lemma 2.5,

|u(t, ϑ)− u(t, ϑ)|

≤ K1(t) +

∫ t

a

⎡
⎢⎣ ∞∑
k=1

(
	(t, ϑ)Γ(α− ν)

Γ(α)

)k

(
tρ−sρ

ρ

)k(α−ν)−1

Γ(k(α− ν))
sρ−1K1(s)

⎤
⎥⎦ ds.

Hence, the proof of theorem is complete.

Next, we study the continuous dependence of the solution on the order of

the Cauchy-type problem (4) involving HKFD equation using the Grownwall

Lemma, for that we consider the initial condition that given in (4), and the

solutions of two initial value problems with a neighbouring orders and a

neighbouring initial values.

Theorem 6.2. Let α > 0, ν > 0 such that 0 < α − ν < α ≤ 1. Let u is

continuous function satisfying Lipschitz condition [H1] in R. For a ≤ t <

h < b, assume that u is the solution of Eq. (4) and u is the solution of

equation

ρDα−ν,βu(t, ϑ) = g(t, ϑ, u(t, ϑ)),

ρI1−γ−ν(β−1)u(t, ϑ)|t=a = u(ϑ).
(38)

Then, for a < t ≤ h, the estimate of the following
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|u(t, ϑ)− u(t, ϑ)|

≤ K2(t) +

∫ t

a

⎡
⎢⎣ ∞∑
k=1

(
	(t, ϑ)Γ(α− ν)

Γ(α)

)k

(
tρ−sρ

ρ

)k(α−ν)−1

Γ(k(α− ν))
sρ−1K1(s)

⎤
⎥⎦ ds,

where

K2(t) =

∣∣∣∣∣ ua

Γ(γ + ν(β − 1))

(
tρ − aρ

ρ

)γ+ν(β−1)

− ua

Γ(γ)

(
tρ − aρ

ρ

)γ−1
∣∣∣∣∣

+ ‖g‖

∣∣∣∣∣∣∣
(
tρ−aρ

ρ

)α−ν

Γ(α− ν + 1)
−

(
tρ−aρ

ρ

)α−ν

(α− ν)Γ(α)

∣∣∣∣∣∣∣
+ ‖g‖

∣∣∣∣∣∣∣
(
tρ−aρ

ρ

)α−ν

(α− ν)Γ(α)
−

(
tρ−aρ

ρ

)α
Γ(α+ 1)

∣∣∣∣∣∣∣ .

Proof. Solutions of the problems (20) and (38) are given by

u(t, ϑ)=
u(ϑ)

Γ(α)

(
tρ − aρ

ρ

)α−1

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, u(s, ϑ))ds

(39)

and

u(t, ϑ) =
ua

Γ(γ + ν(β − 1))

(
tρ − aρ

ρ

)γ+ν(β−1)

(40)

+
1

Γ(α− ν)

∫ t

a

(
tρ − sρ

ρ

)α−ν−1

sρ−1g(s, ϑ, u(s, ϑ))ds

it follows that

|u(t, ϑ)− u(t, ϑ)|

=

∣∣∣∣∣ u(ϑ)

Γ(γ + ν(β − 1))

(
tρ − aρ

ρ

)γ+ν(β−1)−1

− u(ϑ)

Γ(α)

(
tρ − aρ

ρ

)α−1

+
1

Γ(α− ν)

∫ t

a

(
tρ − sρ

ρ

)α−ν−1

sρ−1g(s, ϑ, u(s, ϑ))ds
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− 1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, u(s, ϑ))ds

∣∣∣∣∣
≤
∣∣∣∣∣ u(ϑ)

Γ(γ + ν(β − 1))

(
tρ − aρ

ρ

)γ+ν(β−1)−1

− u(ϑ)

Γ(α)

(
tρ − aρ

ρ

)α−1
∣∣∣∣∣

+

∣∣∣∣∣∣∣
∫ t

a

⎛
⎜⎝
(
tρ−sρ

ρ

)α−ν−1

Γ(α− ν)
−

(
tρ−sρ

ρ

)α−ν−1

Γ(α)

⎞
⎟⎠ sρ−1g(s, ϑ, u(s, ϑ))ds

∣∣∣∣∣∣∣
+

∣∣∣∣∣
∫ t

a

1

Γ(α)

((
tρ − sρ

ρ

)α−ν−1

−
(
tρ − sρ

ρ

)α−1
)
sρ−1g(s, ϑ, u(s, ϑ))ds

∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫ t

a

(
tρ−sρ

ρ

)α−ν−1

Γ(α)
sρ−1 (g(s, ϑ, u(s, ϑ))− g(s, ϑ, u(s, ϑ))) ds

∣∣∣∣∣∣∣
≤
∣∣∣∣∣ u(ϑ)

Γ(γ + ν(β − 1))

(
tρ − aρ

ρ

)γ+ν(β−1)−1

− u(ϑ)

Γ(α)

(
tρ − aρ

ρ

)α−1
∣∣∣∣∣

+ ‖g‖

∣∣∣∣∣∣∣
(
tρ−aρ

ρ

)α−ν

Γ(α− ν + 1)
−

(
tρ−aρ

ρ

)α−ν

(α− ν)Γ(α)

∣∣∣∣∣∣∣
+ ‖g‖

∣∣∣∣∣∣∣
(
tρ−aρ

ρ

)α−ν

(α− ν)Γ(α)
−

(
tρ−aρ

ρ

)α
Γ(α+ 1)

∣∣∣∣∣∣∣
+

	(t, ϑ)

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−ν−1

sρ−1 |u(s, ϑ)− u(s, ϑ)| ds.

Then, we have by Grownwall Lemma 2.5,

|u(t, ϑ)− u(t, ϑ)|

≤ K2(t) +

∫ t

a

⎡
⎢⎣ ∞∑
k=1

(
	(t, ϑ)Γ(α− ν)

Γ(α)

)k

(
tρ−sρ

ρ

)k(α−ν)−1

Γ(k(α− ν))
sρ−1K1(s)

⎤
⎥⎦ ds.

Hence, the proof of the theorem is complete.

In the next theorem, we shall make a small change of the initial condition
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that given in (4), as follows

I1−γu(a, ϑ) = u(ϑ) + ε,(41)

where ε is arbitrary constant.

We state and prove the result as follows:

Theorem 6.3. Let γ = α + β − αβ, where 0 < α < 1 and 0 ≤ β ≤ 1.

Let g : J × R → R be a function such that g(·, u(·)) ∈ C1−γ;ρ(J,R) for any

u ∈ C1−γ;ρ(J,R), and satisfies the condition [H1]. For a ≤ t < h < b, assume

that u is the solution of Eq. (20) and u is the solution of equation

{
ρDα,βu(t, ϑ) = g(t, ϑ, u(t, ϑ)), t ∈ J,
ρI1−γu(t, ϑ)|t=a = u(ϑ) + ε.

(42)

Then,

|u(t, ϑ)− u(t)| ≤ ε

Γ(γ)

(
tρ − aρ

ρ

)γ−1

Eα,γ

(
	

(
tρ − aρ

ρ

)α)

holds, where Eα,γ =
∑∞

k=0
zk

Γ(kα+γ) is Mittag-Leffler function.

Proof. In accordance with Theorem 3.3 we have u(t, ϑ) = limn→∞ um(t, ϑ)

with u0(t, ϑ) and um(t, ϑ) are as defined in equations (8) and (9). Clearly,

we can write u(t, ϑ) = limn→∞ um(t, ϑ), and

u0(t, ϑ) =
u(ϑ) + ε

Γ(γ)

(
tρ − aρ

ρ

)γ−1

,(43)

um(t, ϑ) = u0(t, ϑ) +
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1g(s, ϑ, um−1(s, ϑ))ds.

(44)

It follows from (8) and (43) that

|u0(t, ϑ)− u0(t, ϑ)| =
∣∣∣∣∣u(ϑ)Γ(γ)

(
tρ − aρ

ρ

)γ−1

− u(ϑ) + ε

Γ(γ)

(
tρ − aρ

ρ

)γ−1
∣∣∣∣∣(45)

≤ ε

Γ(γ)

(
tρ − aρ

ρ

)γ−1

.
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Now, by using equations (9) and (44) and applying the Lipschitz condition
[H1], we get

|u1(t, ϑ)− u1(t, ϑ)|

=

∣∣∣∣∣ ε

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+
1

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

sρ−1 (g(s, ϑ, u0(s, ϑ))− g(s, ϑ, u0(s, ϑ))) ds

∣∣∣∣∣
≤ ε

Γ(γ)

(
tρ − aρ

ρ

)γ−1

+
	(t, ϑ)

Γ(α)

∫ t

a

(
tρ − sρ

ρ

)α−1

|u0(s, ϑ)− u0(s, ϑ)| ds

≤ ε

(
tρ − aρ

ρ

)γ−1 [ 1

Γ(γ)
+

	(t, ϑ)

Γ(α+ γ)

(
tρ − aρ

ρ

)α]
.

Then, we have

|u1(t, ϑ)− u1(t, ϑ)| ≤ ε

(
tρ − aρ

ρ

)γ−1 1∑
i=0

[
	i(t, ϑ)

Γ(αi+ γ)

(
tρ − aρ

ρ

)αi
]
.(46)

Similarly,

|u2(t, ϑ)− u2(t, ϑ)| ≤
ε

Γ(γ)

(
tρ − aρ

ρ

)γ−1 2∑
i=0

[
	i(t, ϑ)

Γ(αi+ γ)

(
tρ − aρ

ρ

)αi
]
.

(47)

By using the mathematical induction method, we conclude that

|um(t, ϑ)− um(t, ϑ)| ≤ ε

Γ(γ)

(
tρ − aρ

ρ

)γ−1 m∑
i=0

[
	i(t, ϑ)

Γ(αi+ γ)

(
tρ − aρ

ρ

)αi
]
.

(48)

Taking limit as m → ∞, we have

|u(t, ϑ)− u(t, ϑ)| ≤ ε

Γ(γ)

(
tρ − aρ

ρ

)γ−1 ∞∑
i=0

[
	i(t, ϑ)

Γ(αi+ γ)

(
tρ − aρ

ρ

)αi
]

(49)

=
ε

Γ(γ)

(
tρ − aρ

ρ

)γ−1

Eα,γ

(
	(t, ϑ)

(
tρ − aρ

ρ

)α)
,

which completes the proof.
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