
Annals of Mathematical Sciences and Applications

Volume 5, Number 2, 317–345, 2020

Statistical models and stochastic optimization in
financial technology and investment science

Tze L. Lai
∗†
, Shih-Wei Liao, Samuel P. S. Wong,

and Huanzhong Xu

In the decade since the global financial crisis and the Great Reces-
sion that followed, the financial technology – or FinTech – revolu-
tion has transformed financial markets and services through the au-
tomation of trading and risk management, among other things. The
“ABCD” of cutting-edge FinTech are AI (Artificial intelligence),
Blockchains, Cloud computing and big Data. We first review these
technologies of modern FinTech and some of the underlying math-
ematical foundations. We then describe new statistical models and
stochastic optimization methods in FinTech and investment sci-
ence.
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1. Introduction

In this section, we review modern investment science and the ABCD of
FinTech. Artificial intelligence refers to the intelligence demonstrated by
machines, in contrast with “natural intelligence” displayed by humans and
animals. The August 21, 2015 issue of Business Insider of Financial Times
lists the leaders of AI applications in the global FinTech industry. Most of
them are located in the US and China, and focus on the areas of lending,
payment, money transfer, and insurance. Ant Financial, with headquarters
in Hangzhou of China’s Zhejiang Province, is the largest, with a valuation
of US$45.5bn at that time and $75bn by late 2016. Its financial services
include internet and mobile payment systems, consumer and SME (small
and medium-sized enterprise) lending, insurance (with its insurance robo-
advisor), personal wealth management (with its wealth robo-advisor), and
institutional wealth management, which make it look like a tradional bank
even though it is actually a FinTech company with many state-of-the-art
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technologies deployed to make the services more efficient and far-reaching.
AI is assuming an increasingly important role in traditional banking as it
provides technologies such as voice recognition, natural language process-
ing, and computer vision for user-account management and fraud detec-
tion, machine learning methods and deep learning networks for anti-money-
laundering and credit modeling. Mobile and internet payment systems are
closely connected to cloud computing. The past ten years have withnessed
increasing adoption of cloud computing by financial institutions around the
globe. As a highly regulated industry, there are many challenges for the fi-
nancial industry that handles sensitive personal information to use cloud
computing for core business processes such as credit risk management and
customer services. Cloud service providers have worked with financial insti-
tutions and regulators to address the security and compliance requirements,
mitigating the early concerns about privacy and data security in the cloud.
PricewaterhouseCoopers (PwC) predicts that the cloud will become a dom-
inant infrastructure model in FinTech 2020.

In the remainder of this section, We describe the mathematical under-
pinnings of Blockchains and Data in FinTech and provide the background
for the developments in Sections 2 an 3.

1.1. Data, models, optimization and algorithms in quantitative
trading

A quantitative trading strategy is an investment strategy based on quan-
titative analysis of financial markets and prediction of future performance
that it tries to optimize. The time-scale of an investment strategy defines
the horizon of the investment’s future return to be considered. Before high-
frequency data of reliable quality were available, the daily closing prices of
stocks constituted the main data source for investment analysis and strate-
gic decisions. Modeling the daily returns has been a fundamental problem
in financial economics and models of “speculative prices”, using the termi-
nology of the 1970 Economic Sciences Nobel Prize winner Paul Samuelson
[44], have evolved from Brownian motion and geometric Brownian motion
(GBM) to stable processes and subordinated processes, culminating in the
more general Lévy processes that also allow jumps and have become pop-
ular in the recent literature. However, the implicit assumption of i.i.d., or
independent but possibly non-identically distributed, returns in these mod-
els do not match stylized facts of daily (or other low-frequency) returns of
stocks. New mathematical models that relate data to decisions have played
an important role in the development of quantitative trading strategies. In
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particular, as described in the recent monograph [23], there have been de-
velopments that use linear regression with time series regressors, which are
lagged or exogenous variables, and martingale difference errors that will be
discusses further in Section 2.

Major advances in information technology in the 1980s led to electronic
trading platforms that became widely adopted in the decade, beginning in
1986 when the London Stock Exchange moved to electronic trading. Trans-
action prices are quoted in discrete units or ticks. On New York Stock Ex-
change (NYSE), the tick size was $0.125 before June 24, 1997, and $0.0625
afterward until January 29, 2001, when all NYSE stocks started to trade
in decimals. There is a large literature in financial econometrics on models
and methods for tick-by-tick transactions data, including market microstruc-
ture noise models that have negative lag 1 autocorrelation for (logarithmic)
price changes under the efficient market hypothesis (EMH), estimation of
the integrated variance of the efficient price process in the presence of mar-
ket microstructure noise, econometric models of inter-transaction durations,
and predictive models relating low-frequency to high-frequency volatilities,
as described in [23] that also links the low-frequency time scale (daily, weekly
or monthly) to the smaller time scale of seconds to hundredth of a second
in algorithmic trading. The two time-scales correspond to the two stages
by which traders slice and place their buy and sell orders to electronic ex-
changes. The first stage, known as optimal execution, optimally slices big
orders into smaller ones on a daily basis to minimize the price impact, and
the second stage optimally places the orders within seconds. It is known as
optimal placement within one exchange, or smart order routing across differ-
ent exchanges. The sequential nature of these algorithmic trading strategies
leads to recursions for updating them as new data arrive.

In high-frequency trading (HFT), a few microseconds can make a sig-
nificant difference. Therefore the proximity of the server boxes (where the
strategy components reside) to the exchange data center (where the match-
ing process takes place and the market data originates) is a significant factor
that can affect the overall latency of a strategy. Colocation is a term that
refers to the practice of placing trade servers at or close to the exchange
data center. Exchanges that provide colocation services are required to of-
fer equal access to all participants. In particular, the physical cables that
link all servers to their gateways are required to be of the same length, and
hence all colocated clients are subject to the same inbound and outbound
latencies. For colocation services, exchanges charge a fee that can depend on
the space and power consumption that client servers require. Latency arbi-
trage in HFT refers to trading assets that are highly correlated and some-
times even equivalent. For example, the exchange-traded fund SPY and the
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E-mini S&P 500 futures contract traded on Chicago Mercantile Exchange
(CME) under the ticker symbol ES, are both based on the S&P 500 Index,
ignoring the dividend and interest rate parts. However, ES is traded on the
CME’s platform in Chicago and SPY is traded on the platforms of several
exchanges based in the East Coast. When ES moves up, SPY should move
up too, albeit with a delay. This delay is a function of the speed at which
the arbitrageurs can operate. This latency can be in the range of tens of
milliseconds, mostly due to the geographic separation of the two exchanges:
the distance between Chicago and New York is roughly 714 miles, resulting
in delay between the movements of SPY and ES. Latency arbitrage strate-
gies focus on this type of opportunities, and they serve as a facilitator for
information transfer between the two trading hubs.

As trading decisions are made at split-second intervals, the task of en-
suring that the algorithm and the infrastructure are error-free in a HFT
firm pertains to both software engineering and LOB analytics. Trading al-
gorithms are required to undergo multiple stages of testing and certification,
with duplicate checks in place. Seemingly inconspicuous bugs such as inte-
ger overflow or underflow could have a significant impact on the strategy.
Operational risk in this context mainly refers to the risk stemming from in-
frastructure disruptions and software bugs. A case in point was the 2012 soft-
ware error of the Knight Capital Group that deployed on August 1 untested
software, which contained an obsolete function because a technician forgot
to copy the new code to one of its servers for automated routing of equity
orders. This caused major disruption in stock prices within 45 minutes and
a pre-tax cost of $440 million and subsequent drop of over 70% of the com-
pany’s stock price. On August 5, 2012, Knight Capital raised about $400
million from several major investors to stay in business. It was subsequently
acquired by the Global Electronic Trading Company (Getco LLC).

Is HFT socially useful? This question was asked of James Simons, founder
of the highly profitable algo trading company Renaissance Technologies, in
2010 after the Flash Crash. He answered affirmatively because “highly liq-
uid markets are socially useful” and said that with HFT the market “came
right back within minutes” after the initial dive, in contrast to 1987 when the
stock market “went down 25% in half a day” on October 19 (Black Monday)
when a large imbalance between the volume of sell orders and buy orders
arose immediately after the opening of NYSE due to pent-up pressure to sell
stocks due to general worries of over-valuation of stocks and news of worsen-
ing economic indicators, and “didn’t recover for six months.” Figure 1, which
plots the closing prices and traded volumes of the S&P 500 Index in the 12-
month periods April 1, 1987–March 31, 1988 and January 1–December 31,
2010, confirms his point.
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Figure 1: Daily closing price (top) and traded volume (bottom) of the S&P
500 Index for Black Friday 1987 (left) and Flash Crash 2010 (right), with
the dotted vertical lines showing the event dates and the dashed horizontal
lines the closing prices prior to the events in the top panel.

1.2. Blockchains, cryptography and mathematical foundations

On the occasion of the 80th anniversary of United Overseas Bank in Novem-
ber, 2015, Prime Minister H.L. Lee of Singapore (who graduated with first-
class honours from Cambridge University in mathematics in 1974) said:
“Blockchains, which are used for bitcoin, can also be used for many other
applications like real-time gross settlement, or financial transactions verifi-
cation, so our banks and our regulators must keep up to date and up to
scratch with these developments.” Narayanan et al. [41] say in their intro-
ductory chapter that Cryptography, which provides a mechanism for secu-
rity encoding the rules of a cryptocurrency system. . . “is a deep academic
research field using many advanced mathematical techniques.” These tech-
niques include hash functions, computational number theory, complexity
theory, elliptic curves, digital signatures and public/private key enciphering
and deciphering, information theory and probability; see [25] for details. To
overcome certain weakness of deterministic encryption which always pro-
duces the same ciphertext for a given plaintext and key, Goldwasser and
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Micali [22] introduced a new model of probabilistic encryption in 1984. De-
terministic encryption is not secure against eavesdropping; the eavesdropper
might perform statistical analysis of messages transmitted over a cryptosys-
tem to learn x from f(x) where x is of a special form, or to compute some
partial information about x, even though f is a trapdoor function, “which
is easy to compute but difficult to invert unless some secret information, the
trapdoor, is known.” Cryptosystems can be broadly divided into 2 classes:
stream ciphers which process the plaintext into small chunks (bits or charac-
ters), and block ciphers which act in a combinatorial fashion on large blocks
of text, as pointed out by Diffie and Hellman [13]. Goldwasser and Micali
[22] “replace deterministic block encryption by probabilistic encryption of
single bits, where there are many different encodings of 1 and many different
encodings of 0 (and uses) a fair coin to encrypt each message, the encoding
(of which) will depend on the message plus the result of a sequence of coin
tosses. . . (hence) there are many possible encodings for each message (but)
messages are always uniquely decodable (by) the legal receiver of a message,
who knows the trapdoor information, but provably hard for an adversary.”

Bitcoin is not the only cryptocurrency. Many difference altcoins – alter-
native to bitcoin – emerged as the value of bitcoin increased. A well-known
example is ethereum. Dan Boneh [7] who has been the founding director of
the Center for Blockchain Research at Stanford since August 2018 (http://
cbr.stanford.edu), says that the swell of excitement in blockchain and cryp-
tocurrencies among coders and computer scientists has not been witnessed
since the earliest days of the internet, and that “cryptocurrencies are a won-
derful way to teach cryptography.” Moreover, to address the computational
challenges, bitcoin mining trading is dominated by application-specific in-
tegrated circuits (ASICs), which are chips designed, built and optimized
for mining bitcoins, yielding arguably the “fastest turnaround time – from
specifying a problem to delivering working chips – in the history of inte-
grated circuits.”[41] Hence cryptocurrencies have indirectly advanced the
blockchain technology.

As The Economist explained in its 31 October 2015 issue, financial sys-
tems have long operated on the basis of trust, for which banks and gov-
ernments have served to provide top-down control of monetary value. Now,
however, bottom-up “trust machines” are emerging through blockchain tech-
nology to provide immutable shared ledgers to exchange information digi-
tally and determine value by consensus, as exemplified by bitcoin and other
cryptocurrencies. Similar to debates concerning printed money over fifty
years ago in the celebrated work of the Nobel laureate Milton Friedman
on the monetary history in the U.S. [19, 20], there is an ongoing debate

http://cbr.stanford.edu
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over whether bitcoin and other cryptocurrencies actually achieve “trust”, or

“mischief or mistrust”. Economists have questioned whether cryptocurren-

cies are tangible assets and criticized them as a cause of speculative bubbles.

Another Nobel laureate Paul Krugman [30] calls bitcoin “a bubble wrapped

in techno-mysticism inside a cocoon of libertarian ideology”, saying that

it “lacks a tether to reality”. He adds: “Although the modern dollar is a

fiat currency, not backed by any other asset, like gold, its value is ultimately

backed by the fact that the U.S. government will accept it, . . . its purchasing

power is also stabilized by the Federal Reserve” via monetary policy. In con-

trast, bitcoin is categorized as a decentralized virtual currency by the U.S.

Treasury, as a commodity by the Commodity Futures Trading Commission,

and as an intangible asset by Canada, South Africa, the Czech Republic and

several other countries. Although bitcoins and altcoins are not expected to

provide substitutes for dollar bills (or even $100 bills) in ordinary (or not

so ordinary) transactions, they can be useful for payment and settlement in

specialized markets. Narayanan et al. [41, Section 9.5] describe the example

of “prediction markets” and how altcoins can be used for accepting pay-

ments and distributing payouts in a decentralized prediction market with a

decentralized order book.

Blockchain technology also much broader applications in FinTech than

providing a platform for the bitcoin and altcoin systems, and has been de-

scribed as the future of the sharing economy [2], the next frontier for online

marketplaces [42], and a powerful solution to optimize financial transac-

tions and improve efficiency, security and trust [26]. Moreover, as Boneh [7]

points out, “blockchain is rich in possibility” even though the technology

is still in its early days. There are already blockchain-based solutions to

food and drug traceability, interoperability of electronic health and medical

records, which in turn open up new opportunities and challenges to com-

puter science and statistics. In particular, Section 3.2 describes the challenge

of “zero-knowledge proofs for fast verification” in blockchain technology and

recent breakthroughs in computer science.

The blockchain technology has recently provided a new form of cryp-

tocurrency issued by JP Morgan Chase on 14 February, 2019 dubbed JPM

Coin, which has a fixed value redeemable for one US dollar. This digital

token is designed to be used by major institutional customers, not by in-

dividuals such as bitcoin miners or other cryptocurrency speculators, to

transfer cross-border payments or corporate debt services on the blockchain

network called Quorum that replaces old technology such as wire transfers.
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2. A martingale regression model of equity prices and
portfolio optimization under risk constraints

As noted in the first paragraph of Section 1.1, new mathematical models for
equity prices have been developed in the past decade to relate financial data
to investment decisions such as portfolio optimization and risk management.
Section 2.1 describes some recent developments in this direction, beginning
with works since the turn of the century to address the “Markowitz” portfo-
lio optimization enigma” – whether ‘optimized’ is optimal; see Michaud [39].
This section generalizes the mathematical underpinnings of the key stochas-
tic optimization advances and shows how these generalizations can be used
for portfolio optimization under convex risk constraints. In particular, we
describe an empirical Bayes approach to statistical modeling that is also
relevant to blockchain collision analysis in Section 3.1.

2.1. Portfolio optimization enigma and approaches to address it

The 1990 Nobel Prize in Economic Sciences was awarded to Harry Markowitz
and William Sharpe for their fundamental contributions to portfolio the-
ory and to Merton Miller for fundamental contributions to the theory of
corporate finance. Markowitz’s classical single-period, mean-variance port-
folio optimization theory in the 1950s [37, 38] gives the efficient frontier
in the mean versus volatility plane for portfolios consisting of m stocks
with expected returns μ1, . . . , μm and covariance matrix Σ of the stock re-
turns r1, . . . , rm. Let w = (w1, . . . , wm)T be the vector of portfolio weights
such that

∑m
i wi = 1 and let μ = (μ1, . . . , μm)T , r = (r1, . . . , rm)T . While

Markowitz derived the efficient frontier from scratch by geometric argu-
ments, advances in the mathematics of optimization show that his problem
is basically that of multi-objective optimization, with two objective func-
tions f1(w) = E(wT r) and f2(w) = −Var(wT r), and its Pareto optimal
set corresponds to the efficient frontier. The theory assumes known μ and
Σ, and Markowitz [37] shows how to compute the weight vector weff corre-
sponding to a target value μ∗ = wTμ of a portfolio on the efficient frontier
that minimize Var(wT r) = wTΣw subject to inequality constraints on the
feasible short selling.

In practice, μ and Σ are unknown and a natural idea is to replace them
by the sample mean vector μ̂ and covariance matrix Σ̂ of a training sample
of size n consisting of historical returns. Frankfurther et al. [18] and Jobson
and Korkie [27] have reported that these estimated (“plug-in”) portfolios can
perform worse than the highly inefficient equally-weights portfolio of the m
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stocks. The difficulty of estimating μ well enough for the plug-in portfolio to
have reliable performance has then been noted by Jorion [28] who proposes to
use for μ̂ a shrinkage estimator similar to the Bayes estimator, while Ledoit
and Wolf [35] propose to shrink Σ̂ towards a structured covariance matrix.
Lai et al. [33] carry out an extensive empirical study of other proposals to
plug into the efficient frontier and Michaud’s [39] proposal to use bootstrap
resampling to rectify the plug-in portfolios, and find that their improvements
over the classical plug-in portfolio are minimal in comparison with the NPEB
(nonparametric empirical Bayes) portfolio developed therein.

2.2. Bayesian generalization of mean-variance portfolio
optimization for unknown μ, Σ

A major difficulty with the plug-in efficient frontier (which replaces the un-
known μ and Σ by their sample counterparts or Bayes/shrinkage estimates
based on a sample r1, r2, . . . , rn of current and past return vectors) is that
Markowitz’s idea of using Var(wTrn+1) as a measure of portfolio’s risk is
no longer valid when it and E(wTrn+1) are replaced by estimates that have
sampling distributions. To resolve this difficulty, Lai et al. [33] started by
generalizing Markowitz’s optimization problem to the Bayes decision prob-
lem

(2.1) max
w

{E(wTrn+1)− λVar(wTrn+1)}

with a prior distribution on (μ,Σ) so that the maximum in (2.1) is over
weight vectors w whose components sum to 1 and which are functions of
the posterior distribution of (μ,Σ) given r1, . . . , rn. Note that if the prior
distribution puts all its mass at the actual parameter value (μa,Σa), then
the Bayes decision problem reduces to Markowitz’s optimization problem
that assumes μa and Σa to be given. The Lagrangian multiplier λ in (2.1)
can be interpreted as the investor’s risk-aversion index when variance is used
to measure risk.

Standard methods to compute Bayes rules maximizing the expected re-
ward E(X; d) over decision rules d by using the law of iterated expectations

E(X; d) = E{E[X; d(r1, . . . , rn)]|r1, . . . , rn}

are not applicable to (2.1) because Var(X) = EX2 − (EX)2 involves the
square of an expectation of X = wTrn+1. The approach used in [33] is to
convert (2.1) to a family of Bayes decision problems, indexed by a parameter
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η ∈ R, such that each problem involves only expecatations. Specifically, (2.1)
can be written in the form

max
η

{E[wT (η)rn+1]− λVar[wT (η)rn+1]}, where(2.2)

w(η) = argmin
w

{λE[(wTrn+1)
2]− ηE(wTrn+1)},(2.3)

as we now demonstrate. Letting W = wTrn+1 and WB = wT
Brn+1, where

wB is the Bayes weight vector, Lai et al. [33] write E(W ) − λVar(W ) =
h(EW,EW 2), where h(x, y) = x+ λx2 − λy, and note that

0 � h(EW,EW 2)− h(EWB, EW 2
B)

= EW − EWB − λ(EW 2 − EW 2
B) + λ((EW )2 − (EWB)

2)

= EW − EWB − λ(EW 2 − EW 2
B) + λ(EW − EWB)

2

+ 2λEWB(EW − EWB)

� (1 + 2λEWB)(EW − EWB)− λ(EW 2 − EW 2
B)

= (λEW 2
B − ηEWB)− (λEW 2 − ηEW ),

(2.4)

where η = 1 + 2λEWB, and inequality is strict unless EW = EWB and
EW 2 = EW 2

B (i.e., W and WB have the same mean and variance). This
shows that (2.1) is equivalent to minimizing λE(wTrn+1)

2 − ηE(wTrn+1)
over weight vectors w that can depend on r1, r2, . . . , rn. Since η is lin-
ear function of EWB and WB is yet to be determined, [33] cannot apply
the equivalence directly and instead solves a family of Bayes decision prob-
lems (2.3) indexed by η and then performs one-dimensional search over η to
minimize (2.2).

We next consider computation of w(η) in (2.3). Let μn and Vn be the
posterior mean and second moment matrix given r1, . . . , rn. Without short
selling, the weight vector is given by

(2.5) w(η) = arg min
w�0:wT1=1

(λwTVnw − ηwTμn),

which can be computed by quadratic programming (e.g., quadprog in
MATLAB). When short selling is allowed up to certain limits, w � 0 in (2.5)
is replaced by w � w0, where w0 is a vector of negative numbers. When
there is no limit on short selling, the constraint w � 0 in (2.5) is removed
and w(η) is given explicitly by

w(η) =
V −1
n 1

1TV −1
n 1

+
η

2λ
V −1
n

(
μn − μT

nV
−1
n 1

1TV −1
n 1

1

)
.
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2.3. From Bayes to empirical Bayes and then to nonparametric

bootstrap

Besides specifying a prior distribution to (μ,Σ), (2.1) also requires specifi-

cation of the common distribution of the returns ri (assumed to be i.i.d.
by Markowitz and others who interpret an efficient financial market as
a “random walk down Wall Street” [36]) to evaluate Eμ,Σ(w

T
n rn+1) and

Varμ,Σ(w
T
n rn+1), where wn is the weight vector for a chosen portfolio and

may depend on r1, . . . , rn. Lai et al. [33] use the nonparametric bootstrap,

which samples {r∗b1 , . . . , r
∗
bn
}, drawn with replacement from the observed

sample {r1, . . . , rn} for 1 � b � B, to estimate

Eμ,Σ(w
T
n rn+1) = Eμ,Σ(w

T
nμ)

Varμ,Σ(w
T
n rn+1) = Eμ,Σ(w

T
nΣwn) + Var(wT

nμ).
(2.6)

They use Bayes or empirical Bayes (EB) estimators of μ and Σ in (2.6); the
EB approach allows the prior distribution in the Bayesian model to include
unspecified hyperparameters which can be estimated from the training sam-

ple by maximum likelihood or generalized method of moments. In particu-
lar, using a scale hyperparameter τ for a given distribution of τ−1vec(μ,Σ)

and letting τ → ∞ leads to a nonparametric EB (NPEB) implementa-
tion of (2.1), for which μn and Vn in (2.5) are the sample mean vector

r̄ = n−1
∑n

i=1 ri and second moment matrix n−1
∑n

i=1 rir
T
i since the pos-

terior distribution converges to the empirical distribution of r1, . . . , rn as

τ → ∞.

2.4. Extension of NPEB to incorporate time series features of ri
via martingale regression

Lai and Xing [32] describe diagnostic checks and statistical tests of the i.i.d.

assumption on daily (or weekly) asset returns in their Chapters 5 and 6,
and Lai et al. [33] show how the NPEB approach described in the pre-
ceding subsection can be extended to incorporate these “stylized facts” of

the time series of asset returns. The year 1982 marked the publication of
Robert Engle’s groundbreaking paper [15] on ARCH (autoregressive condi-

tional heteroscedastic) models, for which he was awarded the 2003 Nobel
Prize in Economic Sciences. In that year, Lai and Wei [31] published their

seminal paper on “stochastic regression”, which laid the groundwork for
the martingale regression model described in this subsection and which was
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developed for the analysis of stochastic input-output systems of the form

(2.7) yt = βTxt + εt,

in which yt represents the output at time t, the regressor xt is a vector de-
pending on past inputs and outputs and is therefore Ft−1-measurable, where
Fs is the σ-field generated by {(xi, yi), i � s}, and the random disturbance
εt satisfies E(εt|Ft−1) = 0, i.e., {εt, t � 1} is a martingale difference sequence
with respect to the filtration {Ft, t � 1}. Note that the autoregressive model
AR(p) is a special case of (2.7) with xt = (yt−1, . . . , yt−p)

T , and so is the
ARX(p, r) model yt = β1yt1 + · · · + βpyt−p + βp+1ut−1 + · · · + βp+rut−r, in
which us is the exogenous input at time s. The assumption of martingale
difference (instead of i.i.d. zero-mean) random errors εt in (2.7) allows Lai
et al. [33] to incorporate volatility changes in modeling εt.

The ARCH model has been generalized to the GARCH(h, k) model of
the form

(2.8) εt = σtζt, σ2
t = ω +

h∑
i=1

biσ
2
t−i +

k∑
j=1

ajεt−j ,

in which ζt are i.i.d. with mean 0 and variance 1; ARCH(k) corresponds to
the case without

∑h
i=1 biσ

2
t−i. Letting ηt = ε2t −σ2

t , which forms a martingale
difference sequence, we can write (2.8) as an ARMA model for ε2t :

ε2t = ω +

max(h,k)∑
j=1

(aj + bj)ε
2
t−j + ηt −

h∑
i=1

biηt−i,

in which aj = 0 for j > k and bj = 0 for j > h; see [32, p. 147]. Lai et al.
[33] extend NPEB to the following “martingale regression model” for the
returns rit of the ith asset at time t:

(2.9) rit = βT
i xi,t−1 + εit, εit = si,t−1zit, s2i,t−1 = ωi + ais

2
i,t−2 + bir

2
i,t−1,

where the components of xi,t−1 include 1, factor variables such as the re-
turn of a market portfolio like S&P500 at time t − 1, and lagged variables
ri,t−1, ri,t−2, . . . The random disturbances εit are assumed to be martingale
differences, as in (2.7), that undergo dynamic changes in volatility via the
GARCH(1, 1) model for εit = si,t−1zit, with i.i.d. zit that have mean 0 and
variance 1. The regression parameter βi can be estimated by least squares,
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whereas the GARCH(1, 1) parameter vector (ωi, ai, bi) in (2.9) can be esti-
mated by applying maximum likelihood to the residuals rit−βT

i xi,t−1 under
the “working model” that zit has a standardized Student’s t-distribution tνi

in which νi � 2 is treated as an unknown parameter; see [32, p. 149–151]
where the function garchfit in the MATLAB GARCH toolbox is used (the R

function fGARCH in cran.r can be used as an alternative). It should be
emphasized that this GARCH(1, 1) parameter estimate is actually QMLE
(quasi-maximum likelihood estimate) in the martingale regression model
in (2.9) with i.i.d. zit that have mean 0 and variance 1. Assuming a working
model of N(0, 1) for zit yields β̂i as QMLE of βi, and further relaxing the
N(0, 1) model to a standardized tνi

parametric model yields QMLE of νi
and ωi, ai, bi. Despite potential model misspecification, QMLE can still be
consistent and asymptotically normal, as shown by White [46] and Lee and
Hansen [34].

Since (2.9) produces i.i.d. zt = (z1t, . . . , zmt)
T , the NPEB approach can

still be used to determine the optimal weight vector, bootstrapping from the
estimated common distribution of zt, as carried out by Lai et al. [33]. The
NPEB approach yields the following formulas for μn and Vn in (2.5):

μn = (β̂T
1 x1,n−1, . . . , β̂

T
mxm,n−1)

T , Vn = μnμ
T
n + (ŝi,nŝj,nσ̂ij)1�i,j�m,

in which ŝ2l,n is the QMLE of s2l,n in (2.9) and (σ̂ij)1�i,j�m is the sample

covariance matrix of the residuals of rin − β̂T
inxi,n−1 (i = 1, . . . ,m).

2.5. Sharpe’s CAPM, information ratio and choice of λ

In 1964, building on Markowitz’s mean-variance portfolio optimization the-
ory, Sharpe who shared the Nobel prize with Markowitz and Miller in 1990
published his foundational paper [45] on the Capital Asset Pricing Model
(CAPM) that develops economy-wide implications of the trade-off between
return and risk, assuming that the market has a risk-free asset with return rf
(interest rate) besides the m risky assets in Markowitz’s theory and that all
investors have homogeneous expectations and hold mean-variance optimal
portfolios. Allowing lending and borrowing of the risk-free assets at rate rf ,
the efficient frontier (Pareto optimal set) in CAPM is a straight line, called
the “capital market line”, that is tangent to Markowitz’s efficient frontier
for the m risky assets at a point M , which can be interpreted as an index
fund or market portfolio. The “one fund theorem” states that any efficient
portfolio can be constructed as a linear combination of the fund and the
risk-free asset. Hence the capital market line can be defined by the linear
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equation μ = rf + σ(μM − rf )/σM , where μ is the mean and σ2 the vari-
ance of the return of an efficient portfolio and μM and σ2

M are those for the
market portfolio. The Sharpe ratio of a portfolio whose return has mean μ
and standard deviation σ is (μ− rf )/σ, which is the expected excess return
per unit of risk. For an efficient portfolio, its Sharpe ratio is the same as
that of the market portfolio. Instead of using a risk-free asset (such as U.S.
Treasury bond) as the benchmark, the information ratio uses a surrogate
of the market portfolio (such as S&P500) or another market index such as
Dow Jones or Nasdaq Composite as the benchmark with return rb and is
defined by E(r− rb)/

√
Var(r − rb), which is the expected excess return of a

portfolio with return r over the (risky) benchmark per unit of risk measured
by the standard deviation of r−rb. The information ratio is often annualized
(see [32, p. 66]) and is a commonly used measure of a fund’s performance
relative to other funds.

As we have noted in the first paragraph of Section 2.2, λ in (2.1) repre-
sents an investor’s risk-aversion parameter which may be difficult to specify,
especially when risk is measured by the variance of a portfolio’s return. Since
information ratio is often used to measure a portfolio’s performance, Lai et
al. [33] regard λ in (2.1) as a tuning parameter for the weight vector wλ,
and choose it over a grid to maximize the information ratio

(2.10) Eμ,Σ(w
T
λ r − rb)/

√
Varμ,Σ(w

T
λ r − rb).

The mean and variance in (2.10) can be estimated by the bootstrap method,
similar to NPEB that estimates Eμ,Σ(w

T (η)r) − λVarμ,Σ(w
T (η)r) by the

bootstrap.

2.6. Generalization of variance to convex risks of centered
returns and an empirical study

Harvey and Siddique [24], Dittmar [14], Ang et al. [1] and You and Daigler
[47] proposed to replace variance as a measure of risk by higher moments
of centered returns, with mean centering (which subtracts the mean of a
random variable from all observations on the variable). We now show how the
martingale regression model (2.9) and the NPEB approach can be extended
to convex functions of the centered returns, whose expectations include the
higher moments advocated by these authors.

Let ψ : R → [0,∞) be a convex function such that ψ(0) = 0 and consider
the Bayes decision problem, with prior distribution on (μ,Σ), for

(2.11) max
w

{E(wTrn+1)− λEψ(wTrn+1 − EwTrn+1)}
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over weight vectors w whose components sum to 1 and which are functions
of the posterior distribution of (μ,Σ) given r1, . . . , rn. The case ψ(x) = x2k

reduces to (2.1) for k = 1, and to higher moments of centered returns for
k = 2, 3, . . . . Let W = wTrn+1,WB = wT

Brn+1, and assume that ψ is
continuously differentiable in some neighborhood of EWB. Let η = 1 +
λψ′(EWB). Then by convexity,

ψ(W − EW )− ψ(WB − EWB)

={ψ(W − EW )− ψ(W )}+ ψ(W )− ψ(WB) + {ψ(WB)− ψ(WB − EWB)}
�ψ′(EWB)(−EW + EWB) + ψ(W )− ψ(WB).

Hence the same argument as that in (2.4) yields

0 � EW − EWB + λψ′(EW )(EW − EWB) + λ{Eψ(WB)− Eψ(W )}
= (λEψ(WB)− ηEWB)− (λEψ(W )− ηEW ).

(2.12)

Therefore the same ideas as in Sections 2.3, 2.4 and 2.5 to implement NPEB

can be used to solve the problem forw
(n)
λ (η) :=argminw:wT1=1E{E[(ψ(W )−

ηW )|Fn]}, where W = wTrn+1 and Fn is the σ-field generated by
{(rit, xi,t−1) : i = 1, . . . ,m; t � n}, and then to search for η to mini-
mize (2.11) for given λ, followed by searching λ over a grid to minimize
the information ratio (2.10).

We illustrate the method with an empirical study involving the weekly
returns ofm = 10 stocks from January 2010 to December 2013 obtained from
Yahoo Finance (Wells Fargo, JP Morgan, Apple, Microsoft, Google, IBM,
Walmart, AIG, General Electric). The convex function ψ is the conditional
value at risk CVaRα(X), also called expected shortfall, which is defined as
E(X|X > VaRα) for a short position and can be computed by using the
function hHistoricalVaRES in the MATLAB Risk Management toolbox, with
X replaced by −X for a long position; see [32, Section 12.1.2 and 12.1.3]
on regulatory capital requirements based on VaRα and CVaRα and their
respective definitions. We use sliding windows of n = 120 weeks of train-
ing data to construct portfolios for the subsequent week. Performance of a
portfolio is measured by its excess returns et = rt − ut over the benchmark
portfolio S&P500 Index ut. As t varies over the weekly test periods from
January 2010 to December 2013, we add up the realized excess returns to
give the cumulative realized excess return

∑t
l=1 et up to time t. For the

NPEB portfolios we follow the model in Section 2.4 and use GARCH(1, 1)
for εit in (2.9). We choose λ which can maximize the information ratio over
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the grid λ = {2i, i = −3,−2, · · · , 6}. Figure 2 plots the time series of cumu-
lative realized excess returns over the S&P500 Index during the test period
of 200 weeks. Also given in Figure 2 for comparison is the corresponding
time series for the plug-in portfolio.

Figure 2: Cumulative excess returns of NPEB portfolio (solid curve) and
plug-in portfolio (dashed curve) over the S&P500 Index.

3. Secure hash algorithms and stochastic models, collision
and verification problems in blockchains

A hash function takes a string x is a string of any length and returns a bit
string H(x) with 0 and 1 as its entries such that the computation of H(x) is
fast and easy, roughly linear time, but inversion of H(x) is difficult, hence it
is a trapdoor function. It is called cryptographic if it is (i) collision-resistant,
(ii) hiding and (iii) puzzle-friendly. Bitcoin uses one such function called
SHA-256, in which SHA stands for Secure Hash Algorithm. A collision of H
occurs at x �= y if H(x) = H(y), hence H being collision-resistant means
that it is computationally infeasible to find x and y such that collision occurs.
Since the range of H is a finite proper subset of its domain of infinite size,
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its collision is an absolute certainty. However, for a bit string of length 256

as in SHA-256, and for any given x, locating y by random sampling over

the range of H that collides with x requires 2256 + 1 inversions of H in the

worst case and 2128 inversions on average. Even if a computer could invert

H 10, 000 times per second, computing 2128 inversions of H requires 1027

years. On the other hand, if H(x) is regular (say, of the form of x mod

2256), one may find collisions quite easily by detecting patterns. Although

no function has been proven to be collision-resistant, the commonly used

hash functions in cryptography are believed to be collision-resistant because

no collisions have been found (or reported) so far. Cryptologists customarily

perform the collision analysis of a hash function via the birthday problem

in combinatorial probability, which will be described and further developed

in Section 3.1.

To ensure a hash function H to be able to keep the input secrecy, H(x)

needs to be “hiding” in the sense that for a 256-bit long y, it is computa-

tionally infeasible to find x such that H(r||x) = y, where r is sampled from

a maximum-entropy distribution [10] and || is the string concatenation op-

erator. Puzzle-friendliness refers to the constraint that given a 256-bit long

hashed value y = H(r||x) and its secret key r, the number of operations

needed to determine x cannot be significantly less than 2256. Hence, it is

computationally infeasible to invert a puzzle-friendly hash function signifi-

cantly faster than searching over its range. Although its input is restricted

to be 768-bit long, SHA-256 can still be used repeatedly to fabricate a cryp-

tographic hash function. Dividing a long x into a sequence of blocks such

that each block is of length 512-bit, it concatenates the first block of x to an

initialization vector of length 256-bit, which is called the genesis block, and

is passed to SHA-256 whose output is again of length 256-bit and is concate-

nated with the second block of x as the input of the second call of SHA-256.

Such process repeats until the last block of x is reached. Assuming SHA-256

is collision-resistant, the resulting composite function can be proved to be

also collision-resistant. In fact, SHA-256 is known as the compression func-

tion while the terminology of the cryptographic hash function H is reserved

for the composite function; the method of computing cryptographic hash

function by applying the compression function (that requires fixed-length

input) repeatedly to a sequence of blocks is called the Merkle–Damg̊ard

transform. Hence a blockchain is simply a linked list of consecutive data,

each of which is hashed by H. Because of the hiding property of H, all data

recorded in the chain are kept confidential from those who do not know the

corresponding secret key. Yet the collision-resistant property allows every
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user of the chain, irrespective of whether the user knows the key, to detect
if any data have been tampered.

In his overview of the development of cryptographic systems and even-
tually bitcoin and other cryptocurrencies, Clark [9] says: “To create a free-
floating digital currency that is likely to acquire real value, you need to have
something that is scarce by design. In fact, scarcity is also the reason gold
or diamonds have been used as a backing for money. In the digital realm,
one way to achieve scarcity is to design the system so that minting money
requires solving a (difficult) computational puzzle.” He says that bitcoin
mining integrates this computational puzzle idea with the use of blockchain
as a ledger in which all transactions are securely recorded and which “doesn’t
require trusted timestamping and merely tries to preserve the relative or-
der of blocks and transactions.” He also explains why Satoshi Nakamoto
[40] used this pseudonym to maintain anonymity in publishing this seminal
white paper in the domain that was registered 2 months earlier, concluding
that “Bitcoin was able to build up a (vibrant supporting) community of
passionate users as well as developers willing to contribute to open-source
technology, (unlike) previous attempts at digital cash, which were typically
developed by a company.” The “peer-to-peer” in the title of this white paper
for the proposed electronic cash system refers to that the responsibility of en-
suring no double spending is carried by all users rather than by a centralized
party (e.g., bank). Bitcoin users, known as miners, conduct transactions by
using Public Key Encryption to broadcast each encrypted transaction over
the network of miners who verify the transactions coded in the blockchain
data structure as follows [41, Section 5.1]. Taking as input the block solution
s′ at the head of the current version of the blockchain and denoting concate-
nation of strings by +, solve for s is the hash s = h(s′ + x+ n) such that s
has at least a specified number (∼64) of leading zeros, where h denotes the
SHA-256 hash function, x is the string that is intended to be incorporated
into the next block, and n is “nonce” which is a random value that can be
updated to make the valid block below a “difficulty target”. Note that s′

is itself an output of the hash function, hence the term “double SHA-256”,
and that x contains information of new “transactions on the network (which
the miner has to) validate by checking that (digital) signatures are correct
and that the outputs being spent haven’t already been spent.”

Nakamoto [40] points out the importance of (i) incentives for the nodes
(miners) of the bitcoin network “to stay honest” and (ii) “vanishingly small”
probability that an attacker can use CPU power to “catch up from a deficit”
as the number of blocks the attacker has to catch up increases. He uses
analogy with the Gambler’s Ruin problem (see Feller [17, p. 347]) to show
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that the probability πz the attacker will ever catch up from z blocks behind
is (p̃/p)z, where p (respectively, p̃) is the probability that an honest node
(respectively, attacker) finds the next block. It is assumed that p̃ < p, hence
πz decreases exponentially with z. If p̃ ≥ p, then πz = 1. Rosenfeld [43] uses
a Markov chain model to “clarify and expand on this work”, noting that
“bitcoin transactions are grouped into blocks, with every block referencing
an earlier block by including the uniquely identifying hash of this earlier
block in its header” except for the genesis block and that “the blocks form
a tree, with the genesis block as the root and each block being a child of
the block it references, (and with) a branch being a path from the leaf block
to the genesis block (and) representing one version of the history of two
conflicting transactions.” Göbel et al. [21] further incorporate the difference
in communication delay between a “pool of bitcoin miners” and “the rest
of the community” in their Markov chain model assuming that the pool
mines honestly and in another Markov chain that assumes the pool games
the network by using Eyal and Sirer’s selfish mining strategy [16].

A classical problem in combinatorial probability is the “birthday prob-
lem” on the probability pn that at least two of n randomly chosen people
have the same birthday, assuming 365 (or 366, in a leap year) possible birth-
days. For n � m = 365, pn = 1−

∏n−1
i=2 (1− i

m) under the assumption that (A)
each individual is born equally likely over every single day of the year and
(B) all births are independent of each other. A well-known cryptographic
application of the probability pn, with m = n256 ≈ 1077 for SHA-256 used
by the bitcoin blockchain, is the probability of finding a collision for the “se-
cure” hash function. For such large m and sufficiently large n, the Poisson
approximation [11, Theorem 1] yields pn ≈ 1− exp[−n(n− 1)/2m]. Recent
collision analysis questions the validity of the assumption (A). In particular,
Boneh and Shoup [8, Corollary B.2] have shown that the Poisson approxi-
mation 1− exp[−n(n−1)/2m] is only a lower bound of pn when assumption
(A) does not hold.

In Section 3.1 we address this issue by using a new empirical Bayes (EB)
model for birthday probabilities. Section 3.2 describes recent breakthroughs
in the problem of “zero-knowledge proofs for fast verification” mentioned in
the penultimate paragraph of Section 1.2.

3.1. EB model for birthday probabilities in collision analysis

For the birthday problem with m = 365 and its generalization to general m
under the equivalence between the birthday probability pn and the prob-
ability of at least a match when n balls are dropped randomly into m
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boxes, Diaconis and Holmes [12] introduce a general Dirichlet prior dis-
tribution Dir(α) for the probability vector (π1, . . . , πm), when πi is the
probability of a ball dropping into box i. The Dirichlet distribution Dir(α)
with parameter vector α = (α1, . . . , αm) has probability density function
fα(x) =

(∏m
i=1 x

αi−1

i

)
/B(α) for x = (x1, . . . , xm) with xi � 0 such that∑m

i=1 xi = 1 (i.e., x belongs to the m-dimensional simplex), where B(α) =(∏m
i=1 Γ(αi)

)
/Γ

(∑m
i=1 αi

)
is the multivariate beta function expressed in

terms of the gamma function Γ(·). Section 2.2 of [12] shows that the Dirich-
let prior distribution includes the uniform prior distribution on the m-
dimensional simplex, which can be analyzed by Polya’s urn scheme and
corresponds to the symmetric Dirichlet distribution with α1 = · · · = αm = c
and for which Propositions 2.2 and 2.3 of [12] give the Poisson approximation
for the probability of at least one match:

(3.1) pn = 1−
n−1∏
i=1

(m− i)c

mc+ i
≈ 1− e−λ

as n2/m → λ. For general α, (3.1) still holds if

(3.2)

(
n

2

) m∑
i=1

αi(αi + 1)

/{( m∑
i=1

αi

)(
1 +

m∑
i=1

αi

)}
→ λ;

see Remark 1 on Proposition 2.4 (which is about the number of boxes with
two or more balls) of [12] that uses this proposition to solve the Bayesian
extension of the classical coupon collector’s problem, one of “the three prin-
cipal examples of Feller’s Volume I”.

We now address the issue with traditional collision analysis of hash
functions in blockchains via the birthday problem, mentioned in the first
paragraph of this subsection, by using am empirical Bayes approach to the
specification of α in the prior distribution Dir(α) of the parameter vector
(π1, . . . , πm). Herem is an astronomical number, e.g.,m ≈ 1077 for SHA-256,
and n is also large but manageably smaller than m. Similar to the NPEB
approach to portfolio optimization in Section 2.3, we choose hyperparame-
ter c

√
m for (α1, . . . , αn) and δ for (αn+1, . . . , αm) so that (π1, . . . , πn) yields

the estimated probability of collision:

(3.3) p̂
(m)
k ≈ 1− exp

{
−

(
1 + δ−1

2

)
k(k − 1)

m− n
− k√

m

nc

δ

}
, k = n+1, . . . ,m,

given that no collision is observed up to time n. To derive (3.3), let γ = c
√
m

and consider the Dir(α) prior with α1 = · · · = αn = γ, αn+1 = · · · = αm = δ,
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hence the prior distribution of (
∑n

i=1 πi, πn+1, · · · , πm) is Dir(nγ, δ, · · · , δ).
Let η =

∑n
i=1 πi. An argument similar to that in the proof of Propositions

2.2 and 2.3 in [12] using Polya’s urn shows that analogous to (3.1),

(3.4) P (no collision at times n+1, . . . , n+k|η) = (1−η)k
k−1∏
i=1

δ(m− n− i)

(m− n)δ + i
.

Moreover, since η ∼ Beta(nγ, (m− n)δ), E{(1− η)k} is equal to

∫ 1

0
(1− x)k

Γ(nγ + (m− n)δ)

Γ(nγ)Γ((m− n)δ)
xηγ−1(1− x)(m−n)δ−1dx(3.5)

=

k−1∏
i=1

(m− n)δ + i

(m− n)δ + nγ + i
.

Combining (3.4) and (3.5) yields

P (no collision at times n+ 1, . . . , n+ k) =

k−1∏
i=1

δ(m− n+ 1)

(m− n)δ + nγ + i
,

from which an argument similar to the proof of Propositions 2.1 and 2.4
shows that for γ = c

√
m and k/

√
m converging to a positive limit,

P (collision occurs at some time i ∈ {n+ 1, . . . , n+ k})(3.6)

= 1− exp

{
−

(
δ + 1

2

)(
k

2

)/
(m− n)− k√

m

cn

δ

}
,

leading to the NPEB estimate (3.3) when there is no collision up to time n.

Figure 3 displays the collision probability p̂
(m)
k given by (3.3) with δ =

1, n = 215 = 32768, and k in the range 2110 to 2130, applied to the hash
function SHA-256 wihm = 2256 ≈ 1077. This is the dashed curve in Figure 3,

showing p̂
(m)
k ≈ 0.5 for k = 2121.5 ≈ 1036. In comparison, the classcial Poisson

approximation pn+k ≈ 1− exp
(
−

(
n+k
2

)
/m

)
, represented by the solid curve

in Figure 3, increases sharply from 0.0019 to 0.999 as k increases from 2124

to 2130 and reaches 0.5 for k = 2128.25.

3.2. Zero-knowledge proofs for fast verification

As emerging trend in FinTech is digital cash for payment of goods and
services. Just like the cash in the real economy, one needs to prove that
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Figure 3: Collision probabilities for SHA-256 using empirical Bayes estimate
(dashed curve) and classical Poisson approximation (solid curve).

there is a high probability that one can prevent double spending attacks

without granting everyone the right to track his or her cash flow, and that

he or she has enough cash on hand to spend. Furthermore, relying on zero-

knowledge proofs, there have been several implementations that can protect

the privacy of all information about transactions, including payment targets,

amounts, and times. In recent years, with the development of regulatory

technology, auditing of funds has gradually gained attention and traction.

To be precise, one can design a zero-knowledge statement which is capable

of supporting selective disclosure: one can provide some specific keys to a

third party so that he or she can track whether the specific cash flow he

or she provided is correct without revealing unrelated information. Such a

technique is universal, for example, one can use similar techniques to prove

that funds at a specified address exist.

The invention of Bitcoin ushers in the era of large-scale decentralized

cryptocurrency and of blockchains. By using a blockchain network, anony-

mous participants can reach consensus without trusting each other. This is

accomplished by the careful design of consensus algorithms such as Proof-of-

Work. Although a proper balance has been struck between Bitcoin’s trans-

parent disclosure of addresses and protection of privacy, the state transition
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script invented by Bitcoin is still very primitive. It can only verify digi-

tal signatures and perform money transfers. On the other hand, a more

sophisticated state transition script called “smart contract” was recently

introduced to enable a blockchain to handle more complex programming

logic. This more general-purpose programmability has transformed the land-

scape of blockchains. Blockchains today typically include smart contracts in

their design, which some researchers name Blockchain 2.0. However, unlike

traditional client-server architecture, there is no private storage in these

blockchains. This shortcoming is the direct consequence of their design. The

verification mechanism is performed by each participant, hence all partici-

pants need to have full access to all the information used by the state transi-

tions, making it impossible to verify a secret without knowing it. Thanks to

the recent breakthroughs due to Eli Ben-Sasson and his collaborators (see

[3], [4] and [5]), we can addresses this shortcoming by zero-knowledge proof

in Blockchain 3.0 that is described below.

Digital signatures are important in modern cryptography, especially in

finance. Specifically, digital signature is a building block in cryptography in

order to verify a message to the public that a particular person, who holds

the corresponding private key, has signed to the message without reveal-

ing the private key itself. Zero-knowledge proof technology further extends

digital signature to prove a wide range of facts without revealing specific in-

formation. For all calculations performed by someone who is not completely

trusted by us, such as banking, election voting or cloud services, we often

need to personally verify that the results are correct. If the calculation pro-

cess is clear, verification of it is usually simpler and faster than calculation,

because the calculator can collect enough evidence to prove that each step

of the calculation process is correct. In this scenario, we call the calculator

here a “prover”. To prove “statement”, the simplest verification method is

to recalculate, especially when it is a generalized statement, just like what

the blockchain’s decentralized ledger does, but this suffers from the dilemma

between efficiency and privacy. Considering a public function F as a state-

ment, the zero-knowledge prover with data x, which consist of public data

xpub and private data xpriv, wants to produce a specific result y, keeping the

confidentiality of xpriv and using a verification function V (which returns a

bit with 1 denoting “accept” and 0 “reject”) to match F , so that one can

generate a valid w such that V (xpub,y,w) = 1 if and only if one has xpriv
such that F (xpub,xpriv) = y. Using the aforementioned breakthroughs in

[3], [4] and [5], it is now possible to carry out this verification within O(1)

time (instead of polynomial time), about several hundred bytes, comparable
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to the most common ECDSA (Elliptic Curve Digital Signature Algorithm)
with 64 bytes, regardless of how complex F is.

Non-interactive zero-knowledge proofs are zero-knowledge proofs in
which no interaction is needed between the prover and verifier, in contrast
to interactive proofs that require multiple communications between the two
parties and are therefore inefficient. There have been major developments in
the past few years, such as scalable systems that compile a subset of widely
used programming languages (C, Java, Python, Javascript, etc.) into a form
suitable for proofs and generating the keys, and multiple optimizations to
produce a faster process. The verification function can provide a mathemat-
ical description model for the target function. In particular, the protocol
zk-SNARK [6] (which stands for zero-knowledge Succinct Non-interactive
ARguments of Knowledge) now has a QAP (Quadratic Arithmetic Pro-
gram) for its verification function that has the capability of verifying all
NP languages; a language L is said to be NP ifit is possible to check in
polynomial time whether an element belongs to L or not. We can describe
the QAP computation problem by using a rank-1 constraint system (R1CS)
S :=

(
(vi,wi,yi)

d
i=1,m

)
consisting of d constraints, where each vi,wi and

yi is a vector of length m and with entries belonging to a finite field Fp of
order p, in which p is a sufficiently large prime number so that the discrete
logarithm problem associated with the group of integers over Fp is difficult
enough to ensure security. It has been shown by Koblitz [29] and others that
similar security can be achieved by using a finite group of smaller order from
ECDLP (Elliptic Curve Discrete Logarithm Problem) which is described be-
low, e.g., the security of Fp (with p of 3072 bits) is almost equivalent to the
security of 256 bits for the abelian group of elliptic curves.

The cryptographic basis of ECDLP is the computational intractability
of finding the discrete logarithm of a random elliptic curve element with
respect to a publicly known base; powers bk can be defined for integers k,
with b−k = (b−1)k, and elements b of a group for which the discrete logarithm
of x ∈ G, with respect to base b, is an integer k such that x = bk. An elliptic
curve is the set of plane curves over a finite field satisfying the equation
y3 = x2 + ax + b; a plane curve is a curve in the (x, y) plane which may
be an affine or projective plane. This set, together with an ideal point ∞
and the group structure inherited from the divisor group of the underlying
algebraic variety, is an abelian group.
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