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Remarks on random walks on graphs and the
Floyd boundary

Panagiotis Spanos

Abstract. We show that for a uniformly irreducible random walk on a graph, with bounded
range, there is a Floyd function for which the random walk converges to its corresponding Floyd
boundary. Moreover if we add the assumptions, p(n)(v, w)≤Cρn, where ρ<1 is the spectral radius,
then for any Floyd function f that satisfies

∑∞
n=1 nf(n)<∞, the Dirichlet problem with respect

to the Floyd boundary is solvable.

1. Introduction

Different compactifications of classes of graphs, respectively groups, play im-
portant roles in the boundary theory of random walks, typically in connection with
probabilistic and potential theoretic aspects of boundary convergence. The basic
compactification of a locally finite, connected graph is its end compactification, see
Freudenthal [4]. Any transient random walk with bounded range on such a graph
converges to a random end, and under suitable irreducibility assumptions, its Mar-
tin compactification, see Martin [12] and Doob [2], covers the end compactification,
see Picardello and Woess [13]. For a class of random walks on hyperbolic graph,
respectively on hyperbolic groups (in the sense of Gromov [6]), Ancona [1] showed
that the Martin boundary can be identified with the hyperbolic boundary. In case
of invariance under a transitive group action, very general results are available for
convergence to the boundary and the Dirichlet problem at infinity with respect to
ends or the hyperbolic compactification. For many references, see Woess [15]. In
absence of a group action, Kaimanovich and Woess [8] provided geometric criteria
beyond bounded range to obtain such results.
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In 1980 Floyd [3] introduced the Floyd compactification of groups, respectively
their Cayley graphs, in order to study limit sets of Kleinian groups, the Floyd
compactification is defined for all graphs, respectively groups. Moreover there are
groups whose Floyd boundary is bigger than their space of ends. More precisely
the Floyd boundary of the fundamental group of a closed hyperbolic n-manifold is
the (n−1)-dimensional sphere.

In this context, it first was Karlsson [9], [10], [11] to relate the Floyd boundary
with issues concerning random walks. In case of random walks on groups, or more
generally, random walks on graphs which are invariant under a transitive group
action, Karlsson has clarified the typical convergence questions. Only recently,
there has been substantial new work in the group setting. Gekhtman, Gerasimov,
Potyagailo and Yang [5] have shown that under natural assumptions, the Martin
boundary of a random walk on a group covers the Floyd boundary.

On the other hand, for random walks on graphs that possess no group in-
variance, [11] only contains a few indications, just concerning simple random walk,
under which conditions one may have convergence to the Floyd boundary.

The present short note aims at giving more general answers to those questions
in the non-group invariant case, along the line of the methods of [8]. As a matter
of fact, it needs a few modifications of those methods to get analogous results for
the Floyd boundary.

In Section 2, convergence to the Floyd boundary is proved for uniformly irre-
ducible random walks with bounded range, without the typical assumption that the
spectral radius is smaller than 1. Instead, the Floyd function is assumed to depend
on the Green function of the random walk.

In Section 3, the solution of the Dirichlet problem at infinity and convergence
to the boundary are proved under uniform assumptions concerning irreducibility,
first moment and exponential decay of transition probabilities, which relate the
random walk with the underlying geometry.

2. Convergence to the boundary

We first describe some preliminaries. Let G be a locally finite graph and d

the graph distance metric. Fix a vertex e and let f be a function f :N→R>0 such
that λf(r)≤f(r+1)≤f(r) for some constant λ>0 and every r>0. It is required
in addition for f to be summable

∑∞
j=0 f(r)<∞. The function f is called Floyd

function.
We fix a vertex e in the Cayley graph and for an edge [v, w] we denote d(e, w)=

|w| and min{|v|, |w|}=|[v, w]|. To create the Floyd boundary, one needs to resize
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each edge of the graph based to its distance from the fixed vertex e and the Floyd
function. So the new length will be f(|[v, w]|).

Consequently a new length arises, let α={xi}ni=1 be a path (where xi and xi+1
are neighbours), now the Floyd length of α will be Lf (α)=

∑n−1
i=1 f(|[xi, xi+1]|).

Subsequently a new metric arises df (v, w)=inf
α

Lf (α), where α runs over all paths
connecting v and w. With this metric G has finite diameter and the completion Ģ

of G is a compact metric space and the Floyd boundary is defined as ∂fG=Ģ\G.
Let P be the irreducible transition matrix of a transient random walk Zn on

G. If there is a Γ�Aut(G,P ) that acts transitively on G, Karlsson [10] proved
that Ģ satisfies Woess’ axioms of projectivity and contractivity, meaning that Ģ is
a contractive Γ-compactification of G (as defined in [14]). Therefore if the Floyd
boundary ∂fG is infinite and does not have a fixed point by Γ, then the Dirichlet
problem with respect to P and Ģ is solvable.

In order to prove this, Karlsson first proves [10, Lemma 1]. Since it will be
needed in our proof, we briefly describe it. Let v, w be two vertices of G, set
v∧w= 1

2 (d(v, e)+d(w, e)−d(v, w)) the Gromov product of v and w, let m be the
nearest, to e, point of the d-geodesic [v, w]. Then

df (v, w)≤ df (v,m)+df (w,m)≤ 2
(
2|m|f(|m|)+

|m|+d(v,w)∑
i=|m|

f(i)
)
.(1)

Define ν(|m|):=4|m|f(|m|)+2
∑∞

i=|m| f(i) and observe that ν(|m|)→0 as
|m|→∞. Moreover if (v∧w)→∞, then df (v, w)→0, since df (v, w)≤ν(|m|) and
|m|=d(e,m)≥ 1

2 (d(v, e)+d(w, e)−d(v, w)). This inequality turns out equally useful
in the general case.

With the hypothesis of uniform irreducibility and bounded range, we find a
Floyd function for which the random walk converges to the corresponding Floyd
boundary. This function depends on the distribution of the random walk. Uniform
irreducibility means that there are ε0>0 and K>0 such that for every v, w∈G with
v∼w there is ˇ<K such that p(ˇ)(v, w)≥ε0 and bounded range means that there
is an M>0 such that sup{d(v, w):v, w∈G, p(v, w)>0}≤M . The Green function
g(v, w), for v, w∈G, of a random walk Zn is the expected number of visits to
w when Z0=v. If g(v, w) is finite for every v, w∈G then Zn is called transient.
For any set W⊂G we set g(v,W )=

∑
w∈W g(v, w). Let Sn={w∈G:|w|=n} and

Bn={w∈G:|w|≤n}.

Lemma 2.1. Let P be the transition matrix of a transient, uniformly irre-

ducible random walk Zn on G with bounded range. If h(n) is a Floyd function, then

f(n)= h(n)
g(e,Bn+M ) is well defined and satisfies the requirements of a Floyd function.
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Proof. The graph is locally finite, thus Sn and Bn are finite sets for every
n∈N. The random walk Zn is transient, therefore g(e,Bn+M ) is finite for every
n∈N, hence f is well defined. Since the balls are an increasing sequence of sets, f
is decreasing and summable. In order to show that f satisfies the requirements of
a Floyd function, it has to be proven that there is a λ>0 such that λf(n)≤f(n+1)
for every n∈N.

The random walk is uniformly irreducible therefore there is an ε0>0 and a K<

∞ such that v∼w⇒p(ˇ)(v, w)≥ε0 for some ˇ≤K. This also implies that deg(v)≤
K+1
ε0

. Let v, w∈G with v∼w, then:

ε0g(e, w)=
∞∑
k=1

ε0p
(k)(e, w)≤

∞∑
k=1

p(ˇ)(w, v)p(k)(e, w)≤
∞∑
k=1

p(k)(e, v)= g(e, v)

Combining the bounded degree of each vertex with the inequality for the Green
function of neighbouring vertices we gain:

g(e, Sn+1)=
∑

w∈Sn+1

g(e, w)≤
∑
vw

1
ε0

g(e, vw)≤ K+1
ε0

1
ε0

g(e, Sn)

We note that vw is an arbitrary neighbour of w such that vw∈Sn, moreover the
same vertex can appear multiple times since many w∈Sn+1 could be spanned from
the same vertex vw, but at most K+1

ε0
, since we have bounded degree.

Since h is a Floyd function, there is a λ′>0 such that λ′h(n)≤h(n+1). We
conclude:

h(n+1)
h(n)

g(e,Bn+M )
g(e,Bn+M+1)

= h(n+1)
h(n)

n+M∑
k=0

g(e, Sk)

n+M+1∑
k=0

g(e, Sk)

= h(n+1)
h(n)

n+M∑
k=0

g(e, Sk)

n+M∑
k=0

g(e, Sk)+g(e, Sn+M+1)

≥ h(n+1)
h(n)

n+M∑
k=0

g(e, Sk)

n+M∑
k=0

g(e, Sk)+ K+1
ε20

g(e, Sn+M )

≥λ′ ε2
0

(K+1+ε2
0)

> 0 �



Remarks on random walks on graphs and the Floyd boundary 187

Theorem 2.2. Let P be the transition matrix of a transient, uniformly irre-

ducible random walk Zn on G with bounded range. Then there exist a Floyd function

f such that, for any starting point, Zn converges to a point of ∂fG almost surely.

Proof. The random walk Zn has bounded range, so there is an M>0 such that
d(Zk, Zk+1)<M for every k∈N. We define a new random variable based on the
random walk:

Xk :=max{|Zk|−M, 0}

The Gromov product is bounded below:

Zk∧Zk+1 = 1
2(|Zk|+|Zk+1|−d(Zk, Zk+1))

≥ 1
2(|Zk|+|Zk+1|−M)

≥ 1
2(|Zk|+|Zk|−M−M)

=Xk

Let h be a Floyd function such that nh(n) is decreasing and summable, we
define f(n)= h(n)

g(e,Bn+M ) , f is a well defined from Lemma 2.1. Observe that nf(n) is
a decreasing function, since nh(n) is decreasing, hence so is ν(n).

Let m<n for m,n∈N.

df (Zm, Zn)≤
n∑

k=m

df (Zk, Zk+1)≤
n∑

k=m

ν(
Zk∧Zk+1�)≤
n∑

k=m

ν(Xk)(2)

≤
n∑

k=m

4(Xk)f(Xk)+2
n∑

k=m

Xk+M∑
i=Xk

f(i)

≤
n∑

k=m

4Xkf(Xk)+2
n∑

k=m

Mf(Xk)

The second sum in this inequality becomes small as m grows, since f satisfies the
requirements of a Floyd function.

In order to prove convergence to the boundary, we will prove that the sequence
is Cauchy almost surely. We compute

∞∑
k=1

E [Xkf(Xk)] =
∞∑
k=1

∞∑
n=1

nf(n)P(Xk =n)

=
∞∑

n=1
nf(n)

∞∑
k=1

P(Xk =n)
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=
∞∑

n=1
n

h(n)
g(e,Bn+M )

∞∑
k=1

P(Xk =n)

=
∞∑

n=1
n

h(n)
g(e,Bn+M )g(Z0, Sn+M )

≤
∞∑

n=1
nh(n) 1

g(e,Bn+M )ε
−|Z0|
0 g(e, Sn+M )

<ε
−|Z0|
0

∞∑
n=1

nh(n)<∞

This leads to
∑∞

k=1 E [Xkf(Xk)]<∞, so
∑∞

k=1 Xkf(Xk)<∞ almost surely.
Similarly,

∑∞
k=1 f(Xk)<∞ almost surely. We conclude that

∞∑
k=1

4Xkf(Xk)+2
∞∑
k=1

Mf(Xk)<∞ almost surely

From the inequality (2), this implies that (Zn) is a df -Cauchy sequence. �

In the Lemma 2.1 we require for the random walk to have bounded range, in
order to fix M for the proof of the Theorem 2.2. This assumption could be removed,
and M could be taken as an arbitrary natural number.

Since f(n)<Ch(n) for some constant C>0, there is a surjection from the Floyd
boundary with respect to h to the Floyd boundary with respect to f . Therefore
the Floyd boundary for the function f is potentially smaller than the one for the
function h.

3. Dirichlet problem

In Theorem 2.2, we have achieved convergence to the boundary for a weaker
Floyd function; essentially this function depends on the rate at which the Gromov
product of consecutive points of the random walk tends to infinity.

In the case of the graph that satisfies the strong isoperimetric inequality, Karls-
son [11] mentions that maybe, following the methods of [8], one could achieve con-
vergence to the boundary and solvability for the Dirichlet problem if the Floyd
function f=o(n−3) and the Floyd boundary is infinite.

The conditions imposed in [8] imply asymptotically linear speed for the Gromov
product. This will allow us to prove convergence to the boundary and solvability
of the Dirichlet problem for every Floyd function f that satisfies

∑∞
n=1 nf(n)<∞
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(independently the boundary’s cardinality). Therefore for the rest of the statements
we require that f satisfies this condition.

For both cases of space of ends and hyperbolic boundary, [8] proves lemmas
about the asymptotic behavior of the random walk. Those lemmas are proved for
the graph and they do not depend on a specific compactification, therefore they can
be used in the case of the Floyd compactification. A slightly more general version
can be found in [15] and we shall use those in order to gain a more general result.

A graph G satisfies the strong isoperimetric inequality if there is a η>0 such
that |∂W |≥η|W |, for every finite subset of its vertices W⊆G, where ∂W=
{w∈W :there exist a v∼w with v∈G\W}. Let P be the transition matrix of a ran-
dom walk Zn on G. If P is irreducible, the spectral radius of P is defined as
ρ(P )=lim supn→∞ pn(v, w) 1

n for v, w∈G and it is independent of the choice of the
two vertices. We say that (G,P ) has uniform first moment if m=

∑∞
n=1 φ(n)<∞,

where φ(n)=supv∈G σv([n,∞)) are the tails of the step length distribution σv(n)=∑
w:d(v,w)=n

p(v, w).

We call (G,P ) reversible if there is a measure m:G→(0,∞) such that
m(v)p(v, w)=m(w)p(w, v) for every v, w∈G and strongly reversible if there is a
constant M>0 such that M−1≤m(v)≤M for every v∈G. For a strongly reversible,
uniformly irreducible random walk on a graph, Kaimanovich [7] proved that the
strong isoperimetric inequality implies spectral radius strictly smaller than 1 and
the existance of a constant C>0 such that pn(v, w)≤Cρn for every v, w∈G and
n∈N.

Lemma 3.1. Let τ(n):=10
∑∞

i=�n
2 �+1 f(i), then τ is a decreasing function,

ν(n)≤τ(n) for every n∈N and
∑∞

i=1 τ(i)<∞.

Proof. Obviously τ is decreasing, since f is also decreasing we gain,

nf(n)≤ 2
(
f

(⌊n
2

⌋
+1

)
+f

(⌊n
2

⌋
+2

)
...f

(
2

⌊n
2

⌋
+1

))
< 2

∞∑
i=�n

2 �+1

f(i).

This yields

ν(n)= 4nf(n)+2
∞∑
i=n

f(i)< 8
∞∑

i=�n
2 �+1

f(i)+2
∞∑

i=�n
2 �+1

f(i)= τ(n).

To complete the proof we make the following calculations
∞∑

n=1
τ(n)=

∞∑
n=1

10
∞∑

i=�n
2 �+1

f(i)≤ 10
∞∑

n=1
2nf(n)<∞. �
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Lemma 3.2. Let P be the transition matrix of a uniformly irreducible random

walk Zn on G with uniform first moment and ρ(P )<1. Then Zn converges to a

random point ξ of ∂fG almost surely.

Proof. Since Zn satisfies those conditions, we gain the following asymptotic
properties lim

n→∞
1
nd(Zn, Zn+1)=0 and 0<m≤lim inf

n→∞
1
n |Zn| almost surely (from [15,

Lemma 8.8 and Corollary 8.9]). Combining those two properties, we obtain that
lim inf
n→∞

1
n (Zn∧Zn+1)≥m almost surely.

So there are c0>0 and n0∈N such that Zn∧Zn+1>c0n for every n≥n0 almost
surely. We set c1=min{c0, 1}. From inequality (1) and Lemma 3.1 we conclude
that:

∞∑
k=1

df (Zk, Zk+1)≤
∞∑
k=1

τ(
Zk∧Zk+1�)

≤
n0∑
k=1

τ(
Zk∧Zk+1�)+
∞∑

k=n0

τ(
c0n�)

≤
n0∑
k=1

τ(
Zk∧Zk+1�)+
∞∑
k=1

c−1
1 τ(n)<∞

This yields that Zn→ξ almost surely for a random ξ∈∂fG. �

The following Lemma has the same core as [8, Corollary 2], which was proved
and used in order to show the solvability of the Dirichlet problem in both cases of
ends of graphs and hyperbolic boundary. Once more we provide a slightly more
general Lemma that will follow [15, Lemma 21.17]. We will make some adjustments
in order to work for the case of Floyd compactification.

Lemma 3.3. Let P be the transition matrix of a uniformly irreducible random

walk Zn on G with uniform first moment, ρ(P )<1 and p(n)(v, w)≤Cρn for a con-

stant C>0 and every v, w∈G, n∈N. For α, ε>0 and v∈G we define Av=Av(α, ε)
as the event that:

1. Z0=v

2. d(Z0, Zn)≤(m+ε)n, n≥α|v|
3. d(Zn, Zn+1)≤εn, n>α|v|
4. |Zn|≥(m−ε)n, n≥α|v|
5. |Zn|>ε|v|, n≥0

Then there is ε0>0 such that for all ε≤ε0 and α>0 lim
|v|→∞

Pv(Av)=1.
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Proof. Let Av,i be the event that the i-th property is satisfied, for i=2, 3, 4, 5.
Then from [15, Lemma 21.17], it is known that lim

|v|→∞
Pv(Av,i)=1 for i=3, 5. As

mentioned before uniform first moment yields that

lim sup
n→∞

1
n

sup
k≤n

d(Z0, Zk)≤m and lim inf
n→∞

1
n
|Zn| ≥m almost surely

(see [15, Lemma 8.8 and Corollary 8.9]) Therefore lim sup
n→∞

1
nd(Z0, Zn)≤m almost

surely so lim
n→∞

P(Av,i)=1 for i=2, 4. �

The main idea in [8] is to bound the probability that the random walk converges
to a neighbourhood of ξ by the probability that an event Av occurs. We follow this
plan.

Theorem 3.4. Let P be the uniformly irreducible transition matrix of a ran-

dom walk Zn on G with uniform first moment, ρ(P )<1 and p(n)(v, w)≤Cρn for a

constant C>0 and every v, w∈G, n∈N. Then the Dirichlet problem with respect to

the Floyd compactification is solvable.

Proof. Let μv be the Borel measure in ∂fG for the Pv-distribution of lim
n→∞

Zn,
meaning μv(B)=P[ lim

n→∞
Zn∈B|Z0=v]. The Dirichlet problem is solvable if and

only if the random walk converges to the boundary and the measures μv converges
weakly to the Dirac measure δξ as v→ξ, for every ξ∈∂fG (see Theorem (20.3) [15]).
From Lemma 3.2 we already know that the random walk converges to a point on
the boundary almost surely.

Let ξ∈∂fG and B(ξ, r) be the open ball in Ģ, let v∈B(ξ, r
2 )∩G and we take

Av=Av(ε, α) as in the previous Lemma, where α= 1
2m , ε< 1

3m. If |v|> ε+m
ε and the

event Av occurs then:
Set k=�α|v|�=� 1

2m |v|�, then

2(Z0∧Zk) = |Z0|+|Zk|−d(Z0, Zk)= |v|+|Zk|−d(v, Zk)

≥ |v|+ε|v|−(k+1)(m+ε)≥ |v|(1+ε)−( 1
2m |v|−1)(m+ε)

≥ |v|(1+ε− 1
2−

ε

2m−m+ε

|v| )≥ |v|(1− 1
2−

1
6 + ε|v|−ε−m

|v| )

≥ |v|
3

If n≥α|v|, then

2(Zn∧Zn+1) = |Zn|+|Zn+1|−d(Zn, Zn+1)
≥ (m−ε)n+(m−ε)(n+1)−εn



192 Panagiotis Spanos

≥ (2m−3ε)n+m−ε

≥ (2m−3ε)n

Consequently for n≥α|v|

df (Z0, Zn)≤ df (Z0, Zk)+df (Zk, Zn)

≤ τ(
v∧Zk�)+
n∑

i=k

τ(
Zi∧Zi+1�)

≤ τ

(⌊
|v|
6

⌋)
+

n∑
i=k

τ

(

(m− 3ε

2 )i�
)

Now we set c=min{m− 3ε
2 , 1} and the inequality becomes:

df (Z0, Zn)≤ τ

(⌊
|v|
6

⌋)
+

n∑
i=k

τ (
ci�)

≤ τ

(⌊
|v|
6

⌋)
+

∞∑
i=�ck�

c−1τ(i)

Since we have from Lemma 3.1 for τ that
∑∞

i=1 τ(i)<∞, there is a |v|>m+ε
ε

large enough such that df (Z0, Zn)< r
2 for every n>α|v|. This means that Zn∈

B(ξ, r) for all large n. This can be expressed as μv(B(ξ, r)∩∂fG)≥Pv(Av), but
from Lemma 3.3 lim

|v|→∞
Pv(Av)=1. This is true for every r>0, therefore lim

v→ξ
μv=δξ.

�

Corollary 3.5. Let G be a graph that satisfies the strong isoperimetric in-

equality and P be the uniformly irreducible transition matrix of a strongly reversible

random walk Zn that has uniform first moment. Then the random walk Zn con-

verges to the boundary ∂fG and the Dirichlet problem with respect to the Floyd

compactification is solvable.

Therefore there exist an analogue of probabilistic propositions for the Floyd
boundaries as there is for hyperbolic boundaries and the space of ends. As already
mentioned in the introduction, for a random walk on a locally finite hyperbolic
graph there is a relation between the hyperbolic boundary and the Martin boundary.
Also, for a random walk on an arbitrary graph, the Martin boundary covers the
space of ends. The recent work of Gekhtman, Gerasimov, Potyagailo and Yang
sparks the question of whether the Martin boundary of a random walk covers the
Floyd boundary (for suitable Floyd functions) on a general graph under geometric
adaptedness conditions in the place of group invariance.
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