Yagita's counter-examples and beyond

Sanghoon Baek and Nikita A. Karpenko

Abstract

A conjecture on a relationship between the Chow and Grothendieck rings for the generically twisted variety of Borel subgroups in a split semisimple group G, stated by the second author, has been disproved by Nobuaki Yagita in characteristic 0 for $G=\operatorname{Spin}(2 n+1)$ with $n=8$ and $n=9$. For $n=8$, the second author provided an alternative simpler proof of Yagita's result, working in any characteristic, but failed to do so for $n=9$. This gap is filled here by involving a new ingredient - Pieri type K-theoretic formulas for highest orthogonal grassmannians. Besides, a similar counter-example for $n=10$ is produced. Note that the conjecture on $\operatorname{Spin}(2 n+1)$ holds for n up to 5 ; it remains open for $n=6, n=7$, and every $n \geq 11$.

Contents

1 Introduction 1
2 Preliminaries 4
3 Proof of Theorem 1.3 9
References 16

1. Introduction

Let X be a smooth variety (over a field of arbitrary characteristic). Consider the Grothendieck ring $K(X)$ of X and its filtration by codimension of support of coherent sheaves:

$$
0=K(X)^{(\operatorname{dim} X+1)} \subset K(X)^{(\operatorname{dim} X)} \subset \ldots \subset K(X)^{(1)} \subset K(X)^{(0)}=K(X)
$$

[^0]Key words and phrases: algebraic groups, generic torsors, projective homogeneous varieties, Chow groups.

2010 Mathematics Subject Classification: 20G15, 14C25.
called the topological filtration or the coniveau filtration. We consider the associated graded ring

$$
G K(X)=\bigoplus_{i=0}^{\operatorname{dim} X} K(X)^{(i / i+1)}, \quad \text { where } \quad K(X)^{(i / i+1)}:=K(X)^{(i)} / K(X)^{(i+1)} .
$$

Let $\mathrm{CH}(X)$ be the Chow ring of X. There is a canonical surjective graded ring homomorphism

$$
\begin{equation*}
\varphi: \mathrm{CH}(X) \longrightarrow G K(X) \tag{1.1}
\end{equation*}
$$

mapping the class in $\mathrm{CH}^{i}(X)$ of a closed subvariety in X of codimension i to the class of its structure sheaf in the quotient $G^{i} K(X)=K(X)^{(i / i+1)}$. The morphism φ commutes with pull-backs, push-forwards, and Chern classes of the respective cohomology theories. Moreover, by the Riemann-Roch theorem, the kernel of the i th homogeneous component

$$
\varphi^{i}: \mathrm{CH}^{i}(X) \longrightarrow G^{i} K(X)
$$

is annihilated by $(i-1)$!.
Let G be a split semisimple group and let E be a generic G-torsor, i.e., the generic fiber of the quotient map $\mathrm{GL}(N) \rightarrow \mathrm{GL}(N) / G$ induced by an embedding $G \hookrightarrow \mathrm{GL}(N)$ for some $N \geq 1$. For the twisted by E variety X of Borel subgroups in G, the second author conjectured:

Conjecture 1.2. ([7, Conjecture 1.1]) For X as above, the homomorphism (1.1) is an isomorphism.

Note that since the group G is split, it contains a Borel subgroup B. For any choice of Borel B, the variety of all Borel subgroups in G is isomorphic to the quotient G / B and the variety X is isomorphic to E / B.

By [12, Theorem 3.1], the statement of Conjecture 1.2 for a given G is equivalent to absence of torsion in the connective K-theory of X. Also note that by [8, Lemma 4.2], Conjecture 1.2 is equivalent to the same statement with the Borel subgroups replaced by any conjugacy class of special parabolic subgroups in G, where an algebraic group P is called special if any P-torsor over any base field extension is trivial.

In [8], Conjecture 1.2 has been confirmed for simple groups G of type A and C. Moreover, by [7, Theorem 1.2], Conjecture 1.2 holds for a wider class of groups G including special orthogonal groups as well as the exceptional groups of types $\mathrm{G}_{2}, \mathrm{~F}_{4}$, and simply connected E_{6}. Finally, by [9, Theorem 3.1], Conjecture 1.2 holds for $G=\operatorname{Spin}(2 n+1)$ with $n \leq 5$. Note that for any $n \geq 1$, the statement of

Conjecture 1.2 on $\operatorname{Spin}(2 n+1)$ (which is a simply connected group of type B_{n}) is equivalent to its statement on $\operatorname{Spin}(2 n+2)$ (a simply connected group of type D_{n+1}), see Proposition 2.16.

In this paper we work with the group $G=\operatorname{Spin}(2 n+1)$ for larger n. A generic G-torsor E yields a generic quadratic form q of dimension $2 n+1$ with trivial discriminant and Clifford invariant (defined as the Brauer class of the even Clifford algebra of q). The twisted by E variety X of an appropriate conjugacy class of special parabolic subgroups in G is identified with the highest orthogonal grassmannian of q.

Counter-examples to Conjecture 1.2 have been constructed with $G=\operatorname{Spin}(17)$ and $G=\operatorname{Spin}(19)$ by N. Yagita in [19]. Later, Yagita's counter-example for $\operatorname{Spin}(17)$ has been modified, simplified, and extended to the base field of arbitrary characteristic in [11]. However, an attempt to treat $\operatorname{Spin}(19)$ failed at that time.

In the present paper, we successfully treat $\operatorname{Spin}(19)$ by involving a new ingredient - a Pieri type formula for K-theory of highest orthogonal grassmannians. The Pieri formula (3.12) we need is formulated in [4, Theorem 1.2] in a combinatorial way. To avoid combinatorial computations, we reprove it using a technique of partially split generic forms, see the proof of Lemma 3.10. The Pieri formula is used in Lemma 3.24 as well.

We also do a similar treatment for $\operatorname{Spin}(21)$ thus showing the failure of Conjecture 1.2 for this group. (The corresponding Pieri formula (3.15) is involved in Lemmas 3.14 and 3.25.) In other terms, combined with the previously available results, we show

Theorem 1.3. Let X be the highest orthogonal grassmannian of a generic quadratic form q of dimension 17, 19 or 21 with trivial discriminant and Clifford invariant. Then the canonical surjective homomorphism $\varphi: \mathrm{CH}(X) \rightarrow G K(X)$ is not an isomorphism.

Recall that Conjecture 1.2 on $\operatorname{Spin}(2 n+1)$ holds for n up to 5 . By Theorem 1.3 it fails for $8 \leq n \leq 10$. However, it remains widely open for every of the remaining values of n. One of the obstacles to extend the counter-examples to $n=11$ is the "drop" to 2^{5} of the torsion index of $\operatorname{Spin}(23)$: the torsion indexes of $\operatorname{Spin}(19)$ and $\operatorname{Spin}(21)$ are 2^{4} and 2^{5}, see [16]. (The similar drop for $\operatorname{Spin}(19)$ was also the origin of the difficulties with this case.) Generally speaking, it seems that every n needs an individual treatment. However, since the next drop occurs with $\operatorname{Spin}(35)$ only, all $11 \leq n \leq 16$ can probably be treated in a common way.

We do expect that the conjecture fails for every $n \geq 11$. However, the situation with the pairs $n=6$ and $n=7$ looks completely misty.

For the proof of Theorem 1.3, following the approach of [11], we provide certain elements in the Chow groups of the highest orthogonal grassmannians, which are not divisible by 2 , whereas their images under φ are.

2. Preliminaries

In this section we collect some basic results on the Chow and the Grothendieck rings of highest orthogonal grassmannians. For details and the general theory we refer the reader to [5], [11], and [17]. In the last part of the section, we discuss the equivalence between Conjecture 1.2 for $\operatorname{Spin}(2 n+1)$ and for $\operatorname{Spin}(2 n+2)$; in the course of this discussion it is also demonstrated how information on a generic object can serve to gain some information on a more general one - see Lemma 2.15.

2a. Chow ring of highest orthogonal grassmannians

For an integer $n \geq 1$, let q be a generic ($2 n+1$)-dimensional quadratic form over a field F of trivial discriminant and Clifford invariant corresponding to a generic $\operatorname{Spin}(2 n+1)$-torsor. The highest orthogonal grassmannian X_{n} of q is the variety of its n-dimensional totally isotropic subspaces.

We have $\operatorname{dim} X_{n}=n(n+1) / 2$. The index ind X_{n} of X_{n} (defined as the greatest common divisor of the degrees of closed points on X_{n}) coincides with the torsion index of $\operatorname{Spin}(2 n+1)$, determined by Totaro in [16]. In particular, we have

$$
\begin{equation*}
\text { ind } X_{8}=2^{4}, \quad \text { ind } X_{9}=2^{4}, \quad \text { ind } X_{10}=2^{5} . \tag{2.1}
\end{equation*}
$$

Let \bar{X}_{n} be the base change of X_{n} to an algebraic closure \bar{F} of F and let \bar{Y}_{n} be the base change of the quadric Y_{n} of q to \bar{F}. Consider the projective bundle $\pi: \mathcal{P} \rightarrow \bar{X}_{n}$ associated with the tautological vector bundle on \bar{X}_{n} and the projection $\pi^{\prime}: \mathcal{P} \rightarrow \bar{Y}_{n}$. For $i=0, \ldots, n$, let l_{i} be the class in $\mathrm{CH}\left(\bar{Y}_{n}\right)$ of a projective i-dimensional subspace on \bar{Y}_{n} and let $e_{i} \in \mathrm{CH}^{i}\left(\bar{X}_{n}\right)$ be the image of l_{n-i} under the composition of the pullback of π^{\prime} and the push-forward of π. Then, the Chow group $\operatorname{CH}\left(\bar{X}_{n}\right)$ is free with basis given by the products $\prod_{i \in I} e_{i}$, where I runs over the subsets of the set $\{1, \ldots, n\}$. In particular, both groups $\mathrm{CH}^{\operatorname{dim} \bar{X}_{n}}\left(\bar{X}_{n}\right)$ and $\mathrm{CH}^{\operatorname{dim} \bar{X}_{n}-1}\left(\bar{X}_{n}\right)$ are cyclic generated by

$$
\begin{equation*}
p:=\prod_{i=1}^{n} e_{i} \quad \text { and } \quad l:=\prod_{i=2}^{n} e_{i} \tag{2.2}
\end{equation*}
$$

respectively.

The Chow ring $\mathrm{CH}\left(\bar{X}_{n}\right)$ is generated by e_{1}, \ldots, e_{n} subject to the relations

$$
\begin{equation*}
e_{i}^{2}-2 e_{i-1} e_{i+1}+2 e_{i-2} e_{i+2}-\ldots+(-1)^{i-1} 2 e_{1} e_{2 i-1}+(-1)^{i} e_{2 i}=0 \tag{2.3}
\end{equation*}
$$

for all $i \geq 1$, where $e_{i}:=0$ for $i>n$. In particular, for $n \leq 10$ we have the following relations:

$$
\begin{array}{ll}
e_{1}^{2}=e_{2}, & e_{1}^{4}=2 e_{1} e_{3}-e_{4} \tag{2.4}\\
e_{1}^{8} \equiv 2\left(e_{3} e_{5}-e_{2} e_{6}+e_{1} e_{7}\right)-e_{8} & \left(\bmod 2^{2}\right), \\
e_{1}^{16} \equiv 2\left(e_{7} e_{9}-e_{6} e_{10}\right) \quad\left(\bmod 2^{2}\right)
\end{array}
$$

Let c_{i} be the Chern class of the dual of the (rank n) tautological vector bundle on X_{n}. As the Clifford invariant of q is trivial, by [5, Exercise 88.14] there is an element $e \in \mathrm{CH}^{1}\left(X_{n}\right)$ with $c_{1}=2 e$. (As the group $\mathrm{CH}^{1}\left(X_{n}\right)$ is torsion free, the element e is uniquely defined.) Consider the restriction map

$$
\text { res : } \mathrm{CH}\left(X_{n}\right) \longrightarrow \mathrm{CH}\left(\bar{X}_{n}\right)
$$

Since the map res commutes with Chern classes, by [5, Proposition 86.13] we have $\operatorname{res}\left(c_{i}\right)=2 e_{i}$ for all $1 \leq i \leq n$ and $\operatorname{res}(e)=e_{1}$.

For a smooth quasi-projective variety X, we consider the total cohomological Steenrod operation $S: \operatorname{Ch}(X) \rightarrow \mathrm{Ch}(X)$, where $\mathrm{Ch}(X):=\mathrm{CH}(X) / 2 \mathrm{CH}(X)$ denotes the modulo 2 Chow ring of X. (The Steenrod operation in characteristic 2 has recently been constructed in [15].) For any $i \geq 0$, we write $S^{i}: \mathrm{Ch}^{*}(X) \rightarrow \mathrm{Ch}^{*+i}(X)$ for the i th component of S, which corresponds to the Steenrod operation $\mathrm{Sq}^{2 i}$ on $\bmod 2$ cohomology. The image of an element $x \in \mathrm{CH}(X)$ under the map $\mathrm{CH}(X) \rightarrow$ $\mathrm{Ch}(X)$ will be denoted by \bar{x}.

The values of Steenrod operations on Chern classes have been computed in [18] (see also [1, Théorème 7.1]). In [11, Proposition 3.1] only the linear part of the formula is indicated. In fact, there is also a quadratic part, but it is irrelevant for our purposes.

Lemma 2.5. ([18], [1, Théorème 7.1]) For $i \geq 0$, let \bar{c}_{i} be the image in $\operatorname{Ch}^{i}\left(X_{n}\right)$ of the ith Chern class $c_{i} \in \mathrm{CH}^{i}\left(X_{n}\right)$ of the dual of the (rank n) tautological vector bundle on X_{n}. Then, for any $j \geq 0$,

$$
S^{j}\left(\bar{c}_{i}\right)=\binom{i-1}{j} \bar{c}_{i+j}+\ldots
$$

where.. stands for a linear combination of $c_{1} c_{i+j-1}, \ldots, c_{i} c_{j}$.
In particular, by Lemma 2.5, we have

$$
\begin{array}{ll}
S\left(\bar{c}_{2}\right)=\bar{c}_{2}+\bar{c}_{3}+\ldots, & S\left(\bar{c}_{3}\right)=\bar{c}_{3}+\bar{c}_{5}+\ldots \tag{2.6}\\
S\left(\bar{c}_{6}\right)=\bar{c}_{6}+\bar{c}_{7}+\bar{c}_{10}+\bar{c}_{11}+\ldots, & S\left(\bar{c}_{7}\right)=\bar{c}_{7}+\bar{c}_{9}+\bar{c}_{11}+\bar{c}_{13}+\ldots
\end{array}
$$

where $\bar{c}_{i}=0$ for $i>n$. Besides, since $\bar{e} \in \operatorname{Ch}^{1}\left(X_{n}\right)$, we have

$$
\begin{equation*}
S(\bar{e})=\bar{e}+\bar{e}^{2} \tag{2.7}
\end{equation*}
$$

2b. Grothendieck ring of highest orthogonal grassmannians

For a smooth variety X, let $\widetilde{K}(X)$ denote the (extended) Rees ring of the Grothendieck ring $K(X)$ with respect to the topological filtration on $K(X)$, i.e.,

$$
\widetilde{K}(X)=\bigoplus_{i \in \mathbb{Z}} \widetilde{K}^{i}(X), \text { where } \widetilde{K}^{i}(X)=K(X)^{(i)} t^{-i}
$$

for a variable t, where $K(X)^{(i)}:=K(X)$ for $i<0$ (see [2, §4.5] for the definition of the extended Rees ring). We view $\widetilde{K}(X)$ as a subring of the Laurent polynomial ring $K(X)\left[t, t^{-1}\right]$. Note that $\widetilde{K}(X)$ is a graded ring, $\widetilde{K}^{i}(X)$ is its degree i component. The degree of $t \in \widetilde{K}^{-1}(X)$ is -1 and for any $i \in \mathbb{Z}$ the degree of any element of

$$
K(X)^{(i)} \subset K(X)=\widetilde{K}^{0}(X)
$$

is 0 .
We have $G K(X)=\widetilde{K}(X) / t \widetilde{K}(X)$. We also have $\widetilde{K}(X) / I(X)=G K(X) / 2 G K$ (X), where $I(X)$ is the ideal of $\widetilde{K}(X)$ generated by t and 2 .

To avoid the minus sign, we sometimes write u instead of t^{-1}. Note that $u \notin \widetilde{K}(X)$.

As in §2a, let X_{n} be the highest orthogonal grassmannian of a generic quadratic form of dimension $2 n+1$ of trivial discriminant and Clifford invariant. Given $i \geq 0$, similarly to $\S 2 \mathrm{a}$, we now write $c_{i} \in K\left(X_{n}\right)^{(i)}$ for the K-theoretic Chern class of the dual of the tautological vector bundle on X_{n} and we also write $e_{i} \in K\left(\bar{X}_{n}\right)^{(i)}$ for the image of $l_{n-i} \in K\left(\bar{Y}_{n}\right)^{(n+i-1)}$ under the composition

$$
\pi_{*}^{\circ} \circ\left(\pi^{\prime}\right)^{*}: K\left(\bar{Y}_{n}\right)^{(n+i-1)} \longrightarrow K(\mathcal{P})^{(n+i-1)} \longrightarrow K\left(\bar{X}_{n}\right)^{(i)} .
$$

As the homomorphism φ in (1.1) commutes with Chern classes, we have $\varphi\left(c_{i}\right)=c_{i}$ and $\varphi\left(e_{i}\right)=e_{i}$ modulo $K\left(X_{n}\right)^{(i+1)}$ and $K\left(\bar{X}_{n}\right)^{(i+1)}$, respectively. We write p and l for the classes of $\prod_{i=1}^{n} e_{i}$ and $\prod_{i=2}^{n} e_{i}$ in $K\left(\bar{X}_{n}\right)^{\left(\operatorname{dim} \bar{X}_{n}\right)}$ and $K\left(\bar{X}_{n}\right)^{\left(\operatorname{dim} \bar{X}_{n}-1\right)}$, respectively. In particular, we have

$$
\begin{equation*}
K\left(\bar{X}_{n}\right)^{\left(\frac{n^{2}+n}{2}\right)}=\mathbb{Z} \cdot p \quad \text { and } \quad K\left(\bar{X}_{n}\right)^{\left(\frac{n^{2}+n-2}{2}\right)}=\mathbb{Z} \cdot p \oplus \mathbb{Z} \cdot l . \tag{2.8}
\end{equation*}
$$

Since the Clifford invariant of q is trivial, we have

$$
\begin{equation*}
K\left(X_{n}\right)=K\left(\bar{X}_{n}\right) \tag{2.9}
\end{equation*}
$$

by [14]. In addition, the following relations hold:

$$
\begin{equation*}
K\left(X_{n}\right)^{(1)}=K\left(\bar{X}_{n}\right)^{(1)} \quad \text { and } \quad K\left(X_{n}\right)^{(i)} \subset K\left(\bar{X}_{n}\right)^{(i)} \tag{2.10}
\end{equation*}
$$

for any $i \geq 2$. We shall still write c_{i} for the image of $c_{i} \in K\left(X_{n}\right)^{(i)}$ under the restriction map in (2.10) and write $e \in K\left(X_{n}\right)^{(1)}$ for the element $e_{1} \in K\left(\bar{X}_{n}\right)^{(1)}$. Note that in general, the (injective) restriction map $K\left(X_{n}\right)^{(i)} \rightarrow K\left(\bar{X}_{n}\right)^{(i)}$ is not an isomorphism. However, a restriction-corestriction argument shows that (ind X_{n}). $K\left(\bar{X}_{n}\right)^{(i)} \subset K\left(X_{n}\right)^{(i)}$, so that

$$
\begin{equation*}
\left(\operatorname{ind} X_{n}\right) \cdot \widetilde{K}\left(\bar{X}_{n}\right) \subset \widetilde{K}\left(X_{n}\right) \tag{2.11}
\end{equation*}
$$

We shall need [11, Lemma 4.1]. A typo (some plus sign in place of minus) made there is corrected here:

Lemma 2.12. ([11, Lemma 4.1]) For any $i \geq 0$, the difference

$$
\left(2 e_{i}-e_{i+1}\right)-c_{i}
$$

is a sum of monomials in c_{1}, \ldots, c_{n} of degrees greater than or equal to $i+1$, where the degree of c_{j} for any $j \geq 0$ is defined to be j. In particular, the difference $2 e_{i}-e_{i+1}$, lying a priori in $K\left(\bar{X}_{n}\right)^{(i)}$, actually lies in $K\left(X_{n}\right)^{(i)}$ and $2 e_{i}-e_{i+1}=$ c_{i} in $K\left(X_{n}\right)^{(i / i+1)}$.

2c. Relation between $\operatorname{Spin}(2 n+1)$ and $\operatorname{Spin}(2 n+2)$

Given any $n \geq 1$, we are going to show that Conjecture 1.2 with $G=\operatorname{Spin}(2 n+1)$ is equivalent to the same conjecture with $G=\operatorname{Spin}(2 n+2)$. This statement has already been mentioned in $[11, \S 1]$ but no proof was provided.

Before proving the equivalence, let us mention that the genericity of q in Theorem 1.3 is only used for determination of the index of the variety X. So, the assumption that q is generic can be replaced by the assumption on the value of the index. Then it is also not needed to require the triviality of the discriminant because any quadratic form of odd dimension is similar to a quadratic form of trivial discriminant which has the same highest orthogonal grassmannians. So, we will actually prove the following stronger result:

Theorem 2.13. For $n=8,9,10$, let $X=X_{n}$ be the highest orthogonal grassmannian of a non-degenerate quadratic form q of dimension $2 n+1$ with trivial Clifford invariant. If ind X is as in (2.1), then $\varphi: \mathrm{CH}(X) \rightarrow G K(X)$ is not an isomorphism.

This stronger result is easier to use for producing the counter-examples to Conjecture 1.2 with $G=\operatorname{Spin}(2 n+2)$.

Indeed, any $\operatorname{Spin}(2 n+2)$-torsor E (over a field) yields a non-degenerate quadratic form q of dimension $2 n+2$ with trivial discriminant and Clifford invariant. The highest orthogonal grassmannian of q consists of two connected components each of which is isomorphic to $X:=E / P$ for an appropriately chosen special parabolic subgroup $P \subset G$. Besides, X is isomorphic to the highest orthogonal grassmannian X^{\prime} of any non-degenerate $(2 n+1)$-dimensional subform q^{\prime} of q, [5, Proposition 85.2]. The Clifford invariant of q^{\prime} coincides with the Clifford invariant of q which is trivial. We also have ind $X^{\prime}=$ ind X and, if E is generic, this is the torsion index of $\operatorname{Spin}(2 n+2)$. By [16], the torsion index of $\operatorname{Spin}(2 n+2)$ coincides with the torsion index of $\operatorname{Spin}(2 n+1)$. It follows that Theorem 2.13 applies to X^{\prime} and we get

Theorem 2.14. For $n=8,9,10$, let X be a connected component of the highest orthogonal grassmannian of a generic quadratic form q of dimension $2 n+2$ with trivial Clifford invariant. Then $\varphi: \mathrm{CH}(X) \rightarrow G K(X)$ is not an isomorphism. In particular, Conjecture 1.2 fails for $G=\operatorname{Spin}(2 n+2)$.

In order to prove the equivalence between $\operatorname{Spin}(2 n+1)$ and $\operatorname{Spin}(2 n+2)$ cases for arbitrary $n \geq 1$, we first deduce another consequence of Conjecture 1.2 with $G=\operatorname{Spin}(2 n+1)$:

Lemma 2.15. Assume that for some $n \geq 1$, Conjecture 1.2 holds for $\operatorname{Spin}(2 n+$ 1). Let X be the highest orthogonal grassmannian of a non-degenerate ($2 n+1$)dimensional quadratic form q and let $c_{i} \in \mathrm{CH}^{i}(X)$ for $i=1, \ldots, n$ be the ith Chern class of the tautological vector bundle on X. Assume that c_{1} is divisible by 2 and that the ring $\mathrm{CH}(X)$ is generated by $e:=c_{1} / 2$ along with c_{2}, \ldots, c_{n}. Then $\varphi: \mathrm{CH}(X) \rightarrow$ $G K(X)$ is an isomorphism.

Proof. Since c_{1} is divisible by 2 , the Clifford invariant of q is trivial, [5, Exercise $88.14(1)]$. We consider the group $G=\operatorname{Spin}(2 n+1)$ over the field of definition of q. We choose an embedding $G \hookrightarrow \mathrm{GL}(N)$ with some $N \geq 1$. Let \tilde{q} be the quadratic form, given by the generic fiber of the quotient map

$$
f: \mathrm{GL}(N) \longrightarrow Q:=\mathrm{GL}(N) / G
$$

and let \widetilde{X} be the highest orthogonal grassmannian of \tilde{q}. The smooth variety Q has a rational point x such that the fiber of f over x is a $\operatorname{Spin}(2 n+1)$-torsor that yields q, see $[13, \S 3]$. Therefore we have a specialization homomorphism $\mathrm{CH}(\widetilde{X}) \rightarrow \mathrm{CH}(X)$ which is a homomorphism of graded rings mapping for every i the i th Chern class of the tautological vector bundle on \widetilde{X} to c_{i}. The specialization map $K(\widetilde{X}) \rightarrow K(X)$ is an isomorphism. Moreover, since the rings $\mathrm{CH}(\widetilde{X})$ and $\mathrm{CH}(X)$ are generated by Chern classes (the element e is also the Chern class of a line bundle), the topological
filtrations on both $K(\widetilde{X})$ and $K(X)$ coincide with the gamma-filtrations ([6, Proof of Theorem 3.7]) implying that the specialization map is an isomorphism of rings with filtrations. It follows that the specialization map $G K(\widetilde{X}) \rightarrow G K(X)$ is an isomorphism. From the commutative square

we conclude that the bottom map is an isomorphism.
Proposition 2.16. For any $n \geq 1$, Conjecture 1.2 with $G=\operatorname{Spin}(2 n+1)$ is equivalent to the same conjecture with $G=\operatorname{Spin}(2 n+2)$.

Proof. Assume that Conjecture 1.2 with $G=\operatorname{Spin}(2 n+1)$ holds. To prove Conjecture 1.2 with $G=\operatorname{Spin}(2 n+2)$, it suffices to show that $\varphi: \mathrm{CH}(X) \rightarrow G K(X)$ is an isomorphism, where X is a connected component of the highest orthogonal grassmannian given by a generic ($2 n+2$)-dimensional quadratic form q of trivial discriminant and Clifford invariant. Since the variety X also is the highest orthogonal grassmannian of a non-degenerate ($2 n+1$)-dimensional subform of q, φ is an isomorphism by Lemma 2.15.

The proof of the inverse implication is similar (with Lemma 2.15 replaced by its $\operatorname{Spin}(2 n+2)$-analogue).

3. Proof of Theorem 1.3

Theorem 1.3 for q of dimension 17 is [11, Theorem 1.1]. So, here we assume that $\operatorname{dim} q=2 n+1$ for $n=9,10$ and consider the highest orthogonal grassmannian X_{n} of q.

3a. Non-divisibility in $\mathrm{CH}\left(\boldsymbol{X}_{\boldsymbol{n}}\right)$

We first show that certain elements in $\mathrm{CH}\left(X_{n}\right)$ are not divisible by 2 :
Proposition 3.1. The elements

$$
c_{2} c_{3} c_{6} e^{31} \in \mathrm{CH}\left(X_{9}\right) \quad \text { and } \quad c_{2} c_{3} c_{6} c_{10} e^{31} \in \mathrm{CH}\left(X_{10}\right)
$$

are not divisible by 2 .

Proof. Consider the elements

$$
\begin{aligned}
& A_{9}=\left(c_{2}+c_{3}+\ldots\right)\left(c_{3}+c_{5}+\ldots\right)\left(c_{6}+c_{7}+\ldots\right)\left(e+e^{2}\right)^{31} \in \mathrm{CH}\left(X_{9}\right) \text { and } \\
& A_{10}=\left(c_{2}+c_{3}+\ldots\right)\left(c_{3}+c_{5}+\ldots\right)\left(c_{6}+c_{7}+c_{10}+\ldots\right) c_{10}\left(e+e^{2}\right)^{31} \in \mathrm{CH}\left(X_{10}\right),
\end{aligned}
$$

where ... stand for certain sums of pairwise products of c_{i} with $i>0$. By (2.6) and (2.7), they are integral representatives of $S\left(\bar{c}_{2} \bar{c}_{3} \bar{c}_{6} \bar{e}^{31}\right)$ and $S\left(\bar{c}_{2} \bar{c}_{3} \bar{c}_{6} \bar{c}_{10} \bar{e}^{31}\right)$, respectively, where S is the total Steenrod operation. For $n=9,10$, the $\left(\operatorname{dim} X_{n}\right)$ th degree homogeneous part $A_{n}\left[\operatorname{dim} X_{n}\right]$ of A_{n} is therefore the integral representative of $S^{3}\left(\bar{c}_{2} \bar{c}_{3} \bar{c}_{6} \bar{e}^{31}\right)$ and $S^{3}\left(\bar{c}_{2} \bar{c}_{3} \bar{c}_{6} \bar{c}_{10} \bar{e}^{31}\right)$, respectively. Let deg: $\mathrm{CH}^{\mathrm{dim} X_{n}}\left(X_{n}\right) \rightarrow \mathbb{Z}$ be the degree homomorphism (induced by the structure morphism of the variety X_{n}). Then, by Lemma 3.2 below, the image of $A_{n}\left[\operatorname{dim} X_{n}\right]$ under the degree map is an odd multiple of ind X_{n}. Hence, $A_{n}\left[\operatorname{dim} X_{n}\right]$ is not divisible by 2 in $\mathrm{CH}\left(X_{n}\right)$ and the statement follows.

Lemma 3.2. For $n=9,10$, with the above notation, $\operatorname{res}\left(A_{n}\left[\operatorname{dim} X_{n}\right]\right)$ is an odd multiple of $\left(\operatorname{ind} X_{n}\right) \cdot p$, where, as in (2.2), $p \in \mathrm{CH}^{\operatorname{dim} X_{n}}\left(\bar{X}_{n}\right)$ is the class of a rational point.

Proof. We will prove the statement case by case.

Case $n=9$: Since modulo 2 we have

$$
\begin{aligned}
& A_{9}[45] \equiv\left(e^{16}\right)^{2}\left(c_{3} c_{3} c_{6} e+c_{3} c_{3} c_{7}+c_{2} c_{3} c_{6} e^{2}+c_{2} c_{3} c_{7} e+c_{2} c_{5} c_{6}+\ldots\right) \\
& \quad+e^{31}\left(c_{3} c_{5} c_{6}+c_{2} c_{5} c_{7}+\ldots\right)
\end{aligned}
$$

where \ldots stand for a sum of products of at least four c_{i} with $i>0$, and $\left(e_{1}^{16}\right) \equiv 0$ $(\bmod 2)$ by (2.4), we obtain

$$
\begin{equation*}
\operatorname{res}\left(A_{9}[45]\right) \equiv 2^{3}\left(e_{3} e_{5} e_{6} e_{1}^{31}+e_{2} e_{5} e_{7} \cdot e_{1}^{16} \cdot e_{1}^{15}\right) \quad\left(\bmod 2^{5}\right) \tag{3.3}
\end{equation*}
$$

As $e_{7}^{2} \equiv 0(\bmod 2)$ and $e_{1}^{16} \equiv 2 e_{7} e_{9}\left(\bmod 2^{2}\right)$ by (2.3) and (2.4), it follows from (3.3) that, modulo 2^{5},

$$
\operatorname{res}\left(A_{9}[45]\right) \equiv 2^{3} e_{3} e_{5} e_{6} \cdot e_{1}^{1+2+4+8} \cdot e_{1}^{16} \equiv 2^{3} e_{3} e_{5} e_{6} \cdot e_{1} e_{2} e_{4} e_{8} \cdot 2 e_{7} e_{9}=2^{4} \cdot p
$$

Since ind $X_{9}=2^{4}$, we are done with this case.

Case $n=10$: As the formal expressions for $A_{10}[55]$ and $A_{9}[45]$ are related by the equality $A_{10}[55]=c_{10} A_{9}[45]$, using (3.3), we get that

$$
\operatorname{res}\left(A_{10}[55]\right) \equiv 2^{4} e_{1}^{31}\left(e_{3} e_{5} e_{6} e_{10}+e_{2} e_{5} e_{7} e_{10}\right) \quad\left(\bmod 2^{6}\right)
$$

Now we have $e_{1}^{16} \equiv 2 e_{7} e_{9}-2 e_{6} e_{10}\left(\bmod 2^{2}\right)$ by (2.4). As $e_{10}^{2}=0$ and $e_{7}^{2} \equiv 0(\bmod 2)$, the second summand vanishes in the last formula for $A_{10}[55]$ and we come to the congruence (modulo 2^{6})

$$
\begin{aligned}
\operatorname{res}\left(A_{10}[55]\right) \equiv 2^{4} e_{3} e_{5} e_{6} e_{10} \cdot e_{1}^{1+2+4+8} \cdot e_{1}^{16} & \equiv 2^{4} e_{3} e_{5} e_{6} e_{10} \cdot e_{1} e_{2} e_{4} e_{8} \cdot\left(2 e_{7} e_{9}-2 e_{6} e_{10}\right) \\
& \equiv 2^{4} e_{3} e_{5} e_{6} e_{10} \cdot e_{1} e_{2} e_{4} e_{8} \cdot 2 e_{7} e_{9}=2^{5} \cdot p
\end{aligned}
$$

Hence, by (2.1) the statement follows.

3b. Divisibility in $G K\left(X_{n}\right)$

Now we show that the images under the map

$$
\varphi: \mathrm{CH}\left(X_{n}\right) \longrightarrow G K\left(X_{n}\right)
$$

of the elements given in Proposition 3.1 are divisible by 2. This will complete the proof of Theorem 1.3.

Proposition 3.4. The classes of the elements

$$
c_{2} c_{3} c_{6} e^{31} \in K\left(X_{9}\right)^{(42)} \quad \text { and } \quad c_{2} c_{3} c_{6} c_{10} e^{31} \in K\left(X_{10}\right)^{(52)}
$$

in the quotients $K\left(X_{9}\right)^{(42 / 43)}$ and $K\left(X_{10}\right)^{(52 / 53)}$, respectively, are divisible by 2.
Proof. We shall use the (extended) Rees ring $\widetilde{K}\left(X_{n}\right)$ of $K\left(X_{n}\right)$ and the ideal $I\left(X_{n}\right) \subset \tilde{K}\left(X_{n}\right)$, introduced in $\S 2 \mathrm{~b}$. Let

$$
B_{9}^{\prime}:=c_{2} c_{3} c_{6} e^{31} \in K\left(X_{9}\right)^{(42)} \quad \text { and } \quad B_{10}^{\prime}:=c_{2} c_{3} c_{6} c_{10} e^{31} \in K\left(X_{10}\right)^{(52)}
$$

We have $B_{9}^{\prime} u^{42} \in \widetilde{K}^{42}\left(X_{9}\right)$ and $B_{10}^{\prime} u^{52} \in \widetilde{K}^{52}\left(X_{10}\right)$, where $u=t^{-1}$. We will show that

$$
B_{9}^{\prime} u^{42} \in I\left(X_{9}\right) \quad \text { and } \quad B_{10}^{\prime} u^{52} \in I\left(X_{10}\right)
$$

Consider the elements

$$
B_{9}:=\left(2 e_{2}-e_{3}\right)\left(2 e_{3}-e_{4}\right)\left(2 e_{6}-e_{7}\right) e_{1}^{31} \in K\left(\bar{X}_{9}\right)^{(42)} \quad \text { and } \quad B_{10}:=2 e_{10} B_{9} \in K\left(\bar{X}_{10}\right)^{(52)},
$$ where the equality defining B_{10} is an equality of formal expressions. We have $B_{9} \in$ $K\left(X_{9}\right)^{(42)}$ and $B_{10} \in K\left(X_{10}\right)^{(52)}$ by Lemma 2.12. (For the sake of clarification, let us recall that $K\left(X_{n}\right)=K\left(\bar{X}_{n}\right)$ and $e_{i} \in K\left(\bar{X}_{n}\right)^{(i)}$; however the inclusion $K\left(X_{n}\right)^{(i)} \subset$

$K\left(\bar{X}_{n}\right)^{(i)}$ can be strict.) Moreover, the classes of $B_{9}^{\prime} u^{42} \in \widetilde{K}^{42}\left(X_{9}\right)$ and $B_{10}^{\prime} u^{52} \in$ $\widetilde{K}^{52}\left(X_{10}\right)$ modulo $t \widetilde{K}^{43}\left(X_{9}\right), t \widetilde{K}^{53}\left(X_{10}\right)$ are represented by

$$
B_{9} u^{42} \in \widetilde{K}^{42}\left(X_{9}\right) \quad \text { and } \quad B_{10} u^{52} \in \widetilde{K}^{52}\left(X_{10}\right)
$$

respectively. Since

$$
t \widetilde{K}^{43}\left(X_{9}\right) \subset I\left(X_{9}\right) \quad \text { and } \quad t \widetilde{K}^{53}\left(X_{10}\right) \subset I\left(X_{10}\right)
$$

it suffices to show that

$$
B_{9} u^{42} \in I\left(X_{9}\right) \quad \text { and } \quad B_{10} u^{52} \in I\left(X_{10}\right)
$$

We are going to prove first that

$$
\begin{equation*}
B_{9} u^{42} \in I\left(\bar{X}_{9}\right)^{5} \quad \text { and } \quad B_{10} u^{52} \in I\left(\bar{X}_{10}\right)^{6} . \tag{3.5}
\end{equation*}
$$

For this, we expand the element B_{9} as follows:

$$
\begin{equation*}
\left(2^{3} e_{2} e_{3} e_{6}-2^{2}\left(e_{2} e_{3} e_{7}+e_{2} e_{4} e_{6}+e_{3}^{2} e_{6}\right)+2\left(e_{2} e_{4} e_{7}+e_{3}^{2} e_{7}+e_{3} e_{4} e_{6}\right)-e_{3} e_{4} e_{7}\right) \cdot e_{1}^{31} \tag{3.6}
\end{equation*}
$$

Using the relations

$$
\begin{equation*}
\left(e_{i} u^{i}\right)^{2} \equiv e_{2 i} u^{2 i}, e_{12} u^{12} \equiv 0, \quad \text { and } \quad e_{16} u^{16} \equiv 0 \quad \bmod I\left(\bar{X}_{n}\right) \tag{3.7}
\end{equation*}
$$

for $i \geq 1$ and $n=9,10$, we easily see that each term in (3.6) multiplied by u^{42} is contained in $I\left(\bar{X}_{9}\right)^{5}$ except for the term

$$
\begin{equation*}
2\left(e_{3}^{2} e_{7} e_{1}^{31}\right) u^{42}=2 t^{2} \cdot\left(e_{3}^{2} e_{1}^{7}\right) u^{13} \cdot\left(e_{7} e_{1}^{24}\right) u^{31} \tag{3.8}
\end{equation*}
$$

Similarly, each term in (3.6), considered as an element of $K\left(\bar{X}_{10}\right)$ and multiplied by $2 e_{10} u^{52}$, is contained in $I\left(\bar{X}_{10}\right)^{6}$ except for the term

$$
\begin{equation*}
2^{2} e_{10}\left(e_{3}^{2} e_{7} e_{1}^{31}\right) u^{52}=2^{2} t^{2} \cdot\left(e_{3}^{2} e_{1}^{7}\right) u^{13} \cdot\left(e_{7} e_{10} e_{1}^{24}\right) u^{41} \tag{3.9}
\end{equation*}
$$

By the following Lemmas 3.10 and 3.14, the terms in (3.8) and (3.9) are contained in $I\left(\bar{X}_{9}\right)^{5}$ and $I\left(\bar{X}_{10}\right)^{6}$, respectively. This proves inclusions (3.5).

It follows by (2.1) and (2.11) that $B_{9} u^{42}$ is congruent modulo $I\left(X_{9}\right)$ to an element of

$$
\left(2^{3} t^{2}\right) \widetilde{K}^{44}\left(\bar{X}_{9}\right)+\left(2^{2} t^{3}\right) \widetilde{K}^{45}\left(\bar{X}_{9}\right)
$$

whereas $B_{10} u^{52}$ is congruent modulo $I\left(X_{10}\right)$ to an element of

$$
\left(2^{4} t^{2}\right) \widetilde{K}^{54}\left(\bar{X}_{10}\right)+\left(2^{3} t^{3}\right) \widetilde{K}^{55}\left(\bar{X}_{10}\right)
$$

According to (2.8) with $n=9,10$, these elements are of the shape $\left(\left(2^{3} l\right) a+\left(2^{2} p\right) b\right) u^{42}$ and $\left(\left(2^{4} l\right) c+\left(2^{3} p\right) d\right) u^{52}$, respectively (for some integers $\left.a, b, c, d\right)$. Therefore, by Lemma 3.16, we conclude that $B_{9} u^{42} \in I\left(X_{9}\right)$ and $B_{10} u^{52} \in I\left(X_{10}\right)$.

Lemma 3.10. For X_{9}, one has $\left(e_{7} \cdot e_{1}^{24}\right) u^{31} \in I\left(\bar{X}_{9}\right)^{2}$.
Proof. Let $x=\left(e_{7} \cdot e_{1}^{24}\right) u^{31} \in \widetilde{K}^{31}\left(\bar{X}_{9}\right)$ and define $f_{i}:=e_{i} u^{i} \in \widetilde{K}^{i}\left(\bar{X}_{9}\right)$ for $i \geq 1$. Then, by (3.7), we get

$$
\begin{equation*}
x=f_{7} f_{1}^{8} f_{1}^{8} f_{1}^{8} \equiv f_{7} \cdot f_{8}^{2} \cdot f_{8} \quad \bmod I\left(\bar{X}_{9}\right)^{2} \tag{3.11}
\end{equation*}
$$

We need to calculate e_{8}^{2} modulo $K\left(\bar{X}_{9}\right)^{(18)}+2 K\left(\bar{X}_{9}\right)^{(17)}$. This can be done using the K-theoretical Pieri formula [4, Theorem 1.2] involving some combinatorial calculations. To avoid them, we provide an alternative method using a partially split generic quadratic form.

Let us consider a quadratic form q^{\prime} of dimension 19 which is the orthogonal sum of three hyperbolic planes with a 13 -dimensional generic quadratic form q_{6}^{\prime}. The generic quadratic form here (without any condition like the triviality of its discriminant or Clifford invariant, considered so far) is given by a generic torsor under the orthogonal group $\mathrm{O}(13)$. It can also be defined in an elementary way using free variables for its coefficients (see [10, §9] for details).

Let X_{9}^{\prime} be the highest orthogonal grassmannian of q^{\prime}. The Grothendieck rings $K\left(\overline{X_{9}^{\prime}}\right)$ and $K\left(\overline{X_{9}}\right)$ are identified canonically. For $i=7,8,9$, the element e_{i} is in $K\left(X_{9}^{\prime}\right)^{(i)}$. By (2.3), the difference $e_{8}^{2}-2 e_{7} e_{9}$ is in $K\left(X_{9}^{\prime}\right) \cap K\left(\bar{X}_{9}\right)^{(17)}$.

We claim that $K\left(X_{9}^{\prime}\right) \cap K\left(\bar{X}_{9}\right)^{(i)}=K\left(X_{9}^{\prime}\right)^{(i)}$ for any $i \in \mathbb{Z}$. The claim is a consequence of the fact that the Chow group $\mathrm{CH}\left(X_{9}^{\prime}\right)$ is free of torsion. To prove the fact, one uses the decomposition [3, Theorem 7.5] of the Chow motive of X_{9}^{\prime} in a direct sum of shifted motives of X_{6}^{\prime} - the highest orthogonal grassmannian of q_{6}^{\prime}, implying that the graded group $\mathrm{CH}\left(X_{9}^{\prime}\right)$ is a direct sum of shifted copies of $\mathrm{CH}\left(X_{6}^{\prime}\right)$. The latter group is torsion free by [10, Corollary 6.2].

Having obtained the above claim, we conclude that the difference $e_{8}^{2}-2 e_{7} e_{9}$ is in $K\left(X_{9}^{\prime}\right)^{(17)}$. Taken modulo $K\left(X_{9}^{\prime}\right)^{(18)}+2 K\left(X_{9}^{\prime}\right)^{(17)}$, it yields an element in the image of the restriction homomorphism $\operatorname{res}^{17}: \mathrm{Ch}^{17}\left(X_{9}^{\prime}\right) \rightarrow \mathrm{Ch}^{17}\left(\bar{X}_{9}\right)$ of the modulo 2 Chow groups. By [17, Main Theorem 5.8] (see also [5, Theorem 87.7]), the image of the ring homomorphism res: $\mathrm{Ch}\left(X_{9}^{\prime}\right) \rightarrow \mathrm{Ch}\left(\bar{X}_{9}\right)$ of the total modulo 2 Chow groups is, as a ring, generated by e_{7}, e_{8}, e_{9}. In particular, any element of $\operatorname{Im}\left(\mathrm{res}^{17}\right)$ is a multiple of $e_{8} e_{9}$. Thus we have the formula

$$
\begin{equation*}
e_{8}^{2} \equiv 2 e_{7} e_{9}+m e_{8} e_{9} \quad \bmod K\left(\bar{X}_{9}\right)^{(18)}+2 K\left(\bar{X}_{9}\right)^{(17)} \tag{3.12}
\end{equation*}
$$

with some integer m.
Turning back to (3.11), since

$$
e_{7}^{2} \in 2 K\left(\bar{X}_{9}\right)^{(14)}+K\left(\bar{X}_{9}\right)^{(15)},
$$

it follows from (3.12) that

$$
\begin{equation*}
f_{7} \cdot\left(f_{8}\right)^{2} \equiv t \cdot m e_{7} e_{8} e_{9} u^{24} \quad \bmod I\left(\bar{X}_{9}\right)^{2} \tag{3.13}
\end{equation*}
$$

Furthermore, since

$$
e_{8}^{2} \in 2 K\left(\bar{X}_{9}\right)^{(16)}+K\left(\bar{X}_{9}\right)^{(17)},
$$

we get by (3.11) and (3.13) that

$$
x \equiv t \cdot m e_{7} e_{8}^{2} e_{9} u^{32} \equiv 0 \quad \bmod I\left(\bar{X}_{9}\right)^{2} .
$$

Lemma 3.14. For X_{10}, one has $\left(e_{7} \cdot e_{10} \cdot e_{1}^{24}\right) u^{41} \in I\left(\bar{X}_{10}\right)^{2}$.
Proof. Let $x=\left(e_{7} \cdot e_{10} \cdot e_{1}^{24}\right) u^{41} \in \widetilde{K}^{41}\left(\bar{X}_{10}\right)$ and $f_{i}:=e_{i} u^{i} \in \widetilde{K}^{i}\left(\bar{X}_{10}\right)$ for $i \geq 1$. Then, by (3.7) we get

$$
x=f_{7} f_{10} f_{1}^{8} f_{1}^{8} f_{1}^{8} \equiv f_{7} \cdot f_{10} \cdot f_{8}^{2} \cdot f_{8} \quad \bmod I\left(\bar{X}_{10}\right)^{2}
$$

By the same arguments as in Lemma 3.10, using the orthogonal sum of (this time) four hyperbolic planes and q_{6}^{\prime} (or the K-theoretical Pieri formula [4, Theorem 1.2]), we show that

$$
\begin{equation*}
e_{8}^{2} \equiv 2\left(e_{7} e_{9}-e_{6} e_{10}\right)+m e_{8} e_{9}+m^{\prime} e_{7} e_{10} \quad \bmod 2 K\left(\bar{X}_{10}\right)^{(17)}+K\left(\bar{X}_{10}\right)^{(18)} \tag{3.15}
\end{equation*}
$$

for some integers m and m^{\prime}. Since, besides, $e_{i}^{2} \in 2 K\left(\bar{X}_{10}\right)^{(2 i)}+K\left(\bar{X}_{10}\right)^{(2 i+1)}$ for $i=7,8,10$, it follows by (3.15) that $x \in I\left(\bar{X}_{10}\right)^{2}$.

Lemma 3.16. For X_{9}, one has $\left(2^{3} l\right) u^{42},\left(2^{2} p\right) u^{42} \in I\left(X_{9}\right) \subset \widetilde{K}\left(X_{9}\right)$. For X_{10}, one has $\left(2^{4} l\right) u^{52},\left(2^{3} p\right) u^{52} \in I\left(X_{10}\right) \subset \widetilde{K}\left(X_{10}\right)$.

Proof. Consider two elements $C_{9} u^{42} \in \widetilde{K}\left(X_{9}\right)$ and $C_{10} u^{52} \in \widetilde{K}\left(X_{10}\right)$, where

$$
C_{9}:=\left(2 e_{2}-e_{3}\right)\left(2 e_{4}-e_{5}\right)\left(2 e_{6}-e_{7}\right) e_{1}^{30} \in K\left(X_{9}\right)^{(42)}
$$

and $C_{10} \in K\left(X_{10}\right)^{(52)}$, defined by the formal equality $C_{10}:=2 e_{10} C_{9}$.
We expand C_{9} as follows:
$\left[2^{3}\left(e_{2} e_{4} e_{6}\right)-2^{2}\left(e_{2} e_{4} e_{7}+e_{2} e_{5} e_{6}+e_{3} e_{4} e_{6}\right)+2\left(e_{2} e_{5} e_{7}+e_{3} e_{4} e_{7}+e_{3} e_{5} e_{6}\right)-\left(e_{3} e_{5} e_{7}\right)\right] \cdot e_{1}^{30}$.
By (3.7), we see that each term in (3.17), multiplied by u^{42}, is contained in $I\left(\bar{X}_{9}\right)^{5}$ except for the following two terms

$$
\begin{equation*}
2\left(e_{3} e_{5} e_{6} e_{1}^{30}\right) u^{42} \quad \text { and } \quad\left(e_{3} e_{5} e_{7} e_{1}^{30}\right) u^{42} \tag{3.18}
\end{equation*}
$$

Similarly, each term in (3.17), considered in $K\left(\bar{X}_{10}\right)$ and multiplied by $2 e_{10} u^{52}$, is contained in $I\left(\bar{X}_{10}\right)^{6}$ except for the following two terms

$$
\begin{equation*}
2^{2}\left(e_{3} e_{5} e_{6} e_{10} e_{1}^{30}\right) u^{52} \quad \text { and } \quad 2\left(e_{3} e_{5} e_{7} e_{10} e_{1}^{30}\right) u^{52} \tag{3.19}
\end{equation*}
$$

By Lemmas 3.10 and 3.14, the second terms in (3.18) and in (3.19) are contained in $I\left(\bar{X}_{9}\right)^{5}$ and $I\left(\bar{X}_{10}\right)^{6}$, respectively. By Lemmas 3.24 and 3.25, we obtain

$$
C_{9} u^{42} \equiv 2^{2} t^{2}\left(e_{2} \ldots e_{9}\right) u^{44} \quad \bmod I\left(\bar{X}_{9}\right)^{5}
$$

and

$$
\begin{equation*}
C_{10} u^{52} \equiv 2^{3} t^{2}\left(e_{2} \ldots e_{10}\right) u^{54} \quad \bmod I\left(\bar{X}_{10}\right)^{6} . \tag{3.20}
\end{equation*}
$$

Thus for X_{9} we have

$$
\begin{equation*}
\left(C_{9}-2^{2} l\right) u^{42} \in \sum_{i=0}^{3}\left(2^{5-i} t^{i}\right) \widetilde{K}^{42+i}\left(\bar{X}_{9}\right) \tag{3.21}
\end{equation*}
$$

By (2.1) and (2.11), both groups $2^{5} \widetilde{K}^{42}\left(\bar{X}_{9}\right)$ and $\left(2^{4} t\right) \widetilde{K}^{43}\left(\bar{X}_{9}\right)$ are contained in $I\left(X_{9}\right)$. As $e_{1} C_{9} u^{42}=t\left(e_{1} C_{9} u^{43}\right) \in I\left(X_{9}\right)$, multiplying the element in (3.21) by e_{1} and 2 , respectively, we get from (3.21) and (2.8) with $n=9$ that

$$
\begin{equation*}
\left(2^{2} p+2^{3} a p\right) u^{42} \in I\left(X_{9}\right) \quad \text { and } \quad\left(2^{3} l+2^{3} b p\right) u^{42} \in I\left(X_{9}\right) \tag{3.22}
\end{equation*}
$$

for some integers a and b. As $\left(2^{3} p\right) u^{42}=e_{1} \cdot\left(2^{3} l+2^{3} b p\right) u^{42} \in I\left(X_{9}\right)$, the statement for X_{9} follows by (3.22).

For X_{10}, by (3.20), we similarly have

$$
\left(C_{10}-2^{3} l\right) u^{52} \in \sum_{i=0}^{3}\left(2^{6-i} t^{i}\right) \widetilde{K}^{52+i}\left(\bar{X}_{10}\right) .
$$

Thus, multiplying the element $\left(C_{10}-2^{3} l\right) u^{52}$ by e_{1} and 2 , respectively, we get

$$
\begin{equation*}
\left(2^{3} p+2^{4} c p\right) u^{52} \in I\left(X_{10}\right) \quad \text { and } \quad\left(2^{4} l+2^{4} d p\right) u^{52} \in I\left(X_{10}\right) \tag{3.23}
\end{equation*}
$$

for some integers c and d. Again, since $\left(2^{4} p\right) u^{52}=e_{1} \cdot\left(2^{4} l+2^{4} d p\right) u^{52} \in I\left(X_{10}\right)$, by (3.23) the proof of Lemma 3.16 is complete.

Lemma 3.24. $e_{1}^{30} u^{30} \equiv 2\left(e_{2} e_{4} e_{7} e_{8} e_{9}\right) u^{30} \bmod I\left(\bar{X}_{9}\right)^{2}$.

Proof. By (3.7) we have

$$
e_{1}^{30} u^{30}=f_{1}^{2} f_{1}^{4} f_{1}^{8} f_{1}^{8} f_{1}^{8} \equiv f_{2} f_{4} f_{8} f_{8}^{2} \quad \bmod I\left(\bar{X}_{9}\right)^{2}
$$

Hence, it follows by (3.12) that
$e_{1}^{30} u^{30} \equiv f_{2} f_{4} f_{8}\left(2 e_{7} e_{9}+m e_{8} e_{9}\right) u^{16} \equiv 2 f_{2} f_{4} f_{8}\left(e_{7} e_{9} u^{16}\right)=2 f_{2} f_{4} f_{8} f_{7} f_{9} \quad \bmod I\left(\bar{X}_{9}\right)^{2}$.
Here we use that $f_{i}^{2} \in I\left(\bar{X}_{n}\right)$ for $i>n / 2$ which follows from (2.3).
Lemma 3.25. $\left(e_{10} \cdot e_{1}^{30}\right) u^{40} \equiv 2\left(e_{2} e_{4} e_{7} e_{8} e_{9} e_{10}\right) u^{40} \bmod I\left(\bar{X}_{10}\right)^{2}$.
Proof. Let $x=\left(e_{10} \cdot e_{1}^{30}\right) u^{40}=f_{10} f_{1}^{2} f_{1}^{4} f_{1}^{8} f_{1}^{8} f_{1}^{8}$. Then, by (3.7) we have

$$
x \equiv f_{10} f_{2} f_{4} f_{8} f_{8}^{2} \quad \bmod I\left(\bar{X}_{10}\right)^{2}
$$

Therefore, it follows by (3.15) and (2.3) that

$$
x \equiv 2 f_{10} f_{2} f_{4} f_{8}\left(e_{7} e_{9} u^{16}\right)=2 f_{10} f_{2} f_{4} f_{8} f_{7} f_{9} \quad \bmod I\left(\bar{X}_{10}\right)^{2}
$$

References

1. Borel, A., La cohomologie mod 2 de certains espaces homogènes, Comment. Math. Helv. 27 (1953), 165-197. MR0057541
2. Bruns, W. and Herzog, J., Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge, 1993. MR1251956
3. Chernousov, V., Gille, S. and Merkurjev, A., Motivic decomposition of isotropic projective homogeneous varieties, Duke Math. J. 126 (2005), 137159. MR2110630
4. Clifford, E., Thomas, H. and Yong, A., K-theoretic Schubert calculus for OG $(n, 2 n+1)$ and jeu de taquin for shifted increasing tableaux, J. Reine Angew. Math. 690 (2014), 51-63. MR3200334
5. Elman, R., Karpenko, N. and Merkurjev, A., The algebraic and geometric theory of quadratic forms, American Mathematical Society Colloquium Publications. 56, Am. Math. Soc., Providence, RI, 2008. MR2427530
6. Karpenko, N. A., Codimension 2 cycles on Severi-Brauer varieties, K-Theory 13 (1998), 305-330. MR1615533
7. Karpenko, N. A., Chow ring of generic flag varieties, Math. Nachr. 290 (2017), 2641-2647. MR3722500
8. Karpenko, N. A., Chow ring of generically twisted varieties of complete flags, Adv. Math. 306 (2017), 789-806. MR3581317
9. Karpenko, N. A., On generic flag varieties of $\operatorname{Spin}(11)$ and $\operatorname{Spin}(12)$, Manuscr. Math. 157 (2018), 13-21. MR3845756
10. Karpenko, N. A., On generic quadratic forms, Pac. J. Math. 297 (2018), 367380. MR3893432
11. Karpenko, N. A., A counter-example by Yagita, Int. J. Math. 31, 2050025 (2020), https://doi.org/10. MR4083249
12. Karpenko, N. A., A remark on connective K-theory, J. Algebra 560 (2020), 12111218. MR4118848
13. Merkurjev, A., Rost invariants of simply connected algebraic groups, in Cohomological invariants in Galois cohomology, Univ. Lecture Ser. 28, pp. 101-158, Am. Math. Soc., Providence, 2003. With a section by Skip Garibaldi. MR1999385
14. Panin, I. A., On the algebraic K-theory of twisted flag varieties, K-Theory 8 (1994), 541-585.
15. Primozic and Motivic, E., Steenrod operations in characteristic p, Forum Math. Sigma 8 (2020), 25. Paper No. e52. MR4176756
16. Totaro, B., The torsion index of the spin groups, Duke Math. J. 129 (2005), 249290. MR2165543
17. Vishik, A., On the Chow groups of quadratic Grassmannians, Doc. Math. 10 (2005), 111-130. (electronic). MR2148072
18. Wu, W-т., On squares in Grassmannian manifolds, Acta Sci. Sin. 2 (1953), 91115. MR0066650
19. Yagita, N., The gamma filtrations for the spin groups, Kodai Math. J. 44 (2021), 137-165. MR4298895

Sanghoon Baek
Department of Mathematical Sciences KAIST
291 Daehak-ro, Yuseong-gu
Daejeon KR 305-701
Republic of Korea
sanghoonbaek@kaist.ac.kr
mathsci.kaist.ac.kr/~sbaek

Nikita A. Karpenko
Mathematical \& Statistical Sciences
University of Alberta
Edmonton
Canada
karpenko@ualberta.ca
www.ualberta.ca/~karpenko

Received December 12, 2021
in revised form June 16, 2022

[^0]: The work of the first author was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1901-02. This paper has been accomplished during the second author's stay at the Max-Planck Institute for Mathematics in Bonn.

