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Explosive growth for a constrained
Hastings–Levitov aggregation model

Nathanaël Berestycki and Vittoria Silvestri

Abstract. We consider a constrained version of the HL(0) Hastings–Levitov model of
aggregation in the complex plane, in which particles can only attach to the part of the cluster
that has already been grown. Although one might expect that this gives rise to a non-trivial
limiting shape, we prove that the cluster grows explosively: in the upper half plane, the aggregate
accumulates infinite diameter as soon as it reaches positive capacity. More precisely, we show that
after nt particles of (half-plane) capacity 1/(2n) have attached, the diameter of the shape is highly
concentrated around

√
t logn, uniformly in t∈[0, T ]. This illustrates a new instability phenomenon

for the growth of single trees/fjords in unconstrained HL(0).

1. Introduction

We study the growth of an aggregate on the upper half-plane, described by the
composition of random conformal maps, which is a modification of the well known
Hastings–Levitov HL(0) aggregation model. Let us succinctly describe it. Each
map represents the arrival of a new particle, and the randomness comes from the
attachment locations on the boundary of the aggregate.

Denote by H={z∈C:�(z)>0} the upper half-plane. For n≥1 let F :H→C be
the slit map

(1.1) F (z)=
√

z2−1/n,

which grows a vertical slit of length 1/
√
n and half–plane capacity 1/(2n) at 0 (see

Figure 1 below).
Then, if x∈R, the map

Fx(z)=x+
√

(z−x)2−1/n
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Figure 1. The map F growing a slit of height 1/
√
n at the origin.

grows a vertical slit of height 1/
√
n at x. We use this to define a growth model

as follows. Let Φ0(z)=z, Φ1(z)=F (z) with F as in (1.1) above, and denote(1)
by K1=H\Φ1(H) the closure of the complement of Φ1(H) in H, so that K1 is a
compact set consisting of a vertical slit at 0. Denote by Γ1(z)=Φ−1

1 (z) the associated
mapping–out function. Then Γ1 maps the slit K1 to the interval [−L1, R1] on the
real line, with L1=R1=1/

√
n. To the initial cluster K1 we attach particles as

follows. Suppose inductively that for k≥1 we have defined the map Φk that grows
a random compact set Kk, which we think of as the cluster up to the kth arrival.
Let Γk=Φ−1

k denote the associated mapping out function, and assume that Γk(Kk)
is an interval on the real line, call it [−Lk, Rk]. Then choose a uniformly random
point xk+1 on [−Lk, Rk], and set

(1.2) Φk+1 =Φk ¨Fxk
, Kk+1 =H\Φk+1(H).

Note that Kk+1=Kk∪Pk+1 where Pk+1=Φk([xk+1, xk+1+i/
√
n]) represents the

(k+1)th particle. Unfolding the recursion, we see that this growth mechanism
corresponds to setting

Φk(z)=Fx1 ¨Fx2 ¨ ... ¨Fxk
(z),

for x1, x2...xk random points with x1=0 and xj+1∼Uniform[−Lj , Rj ] for j≥1. We
refer to xk as the attachment location of the kth particle Pk, since it determines
the location Φk−1(xk) at which the kth particles attaches to the cluster Kk−1 (see
Figure 2 below). Note that Lk, Rk≥0 for all k≥1 by construction.

The above model is a variant of the well-known Hastings–Levitov model HL(0),
where the growth usually takes place outside the unit disc D={|z|≤1}, rather than
on the upper half–plane H [4], [6], [14] and [15] (see however [3] by Berger, Procaccia
and Turner, where this model is introduced in the upper half-plane).

We call this new model constrained Hastings–Levitov, as the particles are
only allowed to attach on the boundary of the grown region, rather than everywhere
on the real line. In other words, the growth of the cluster is restricted to a single
tree. See Figure 3 for a simulation of constrained HL(0) outside the unit disc.

(1) For a set K⊆H and a map f :H→C, we write f(K)={f(z):z∈K}.
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Figure 2. The map Φk maps the interval [−Lk, Rk] to the cluster Kk with k particles.

Figure 3. Restricted HL(0) on the outside of the unit disc. To (approximately) quote Magritte,
this is not a shape theorem.

1.1. Main results

The question is to describe the shape of the cluster Kn for large n. This is
implicitly obtained by solving Loewner equation

(1.3)

⎧⎨⎩ḟ
(n)
t (z)= ∂zf

(n)
t (z)

∫
R

1
x−z

μ
(n)
t (dx)

f
(n)
0 (z)=z

driven by the random measure

(1.4) μ
(n)
t (dx)=

∞∑
k=0

1
(
t∈

[k
n
,
k+1
n

))
δxk

(dx),

where δx denotes the Dirac’s delta measure centered at x∈R, and x1, x2... denote
the attachment locations of subsequent particles on the real line. Note that, by
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definition of the model, xk is uniformly distributed in the interval [−Lk−1, Rk−1],
so we start by describing the asymptotic behaviour of this random interval for large
n.

To state the main result, write λk=Lk+Rk for the length of the interval after k
arrivals. As the half-plane capacity of each particle is 1/(2n) and half-plane capacity
is additive, we obtain a half-plane capacity of order O(1) when k=tn particles are
added to the aggregate. Based on this simple observation we typically expect a
nontrivial shape in this regime; this is in particular what happens for unconstrained
HL(0), and seems consistent with the simulations in Figure 3. However this turns
out to not be the case: indeed our results show that after nt particles the diameter
diverges like

√
t logn. To prove this, the key is to understand the size of the interval

in which particles are allowed to attach after we map out the cluster. This is
specified by the result below:

Theorem 1.1. For any ε>0 and T>0 it holds that

P

(
sup

t∈[(logn)9/n,T ]

∣∣∣ Rnt√
t logn

− 1
2

∣∣∣≤ ε

)
≥ 1−e−c(logn)2

for n large enough (n≥n0(ε, T )). Here c=c(ε, T ) is a constant which may depend

on ε and T but not on n. Moreover, the same holds with Lnt in place of Rnt. In

particular

(1.5) P

(
sup

t∈[(logn)9/n,T ]

∣∣∣ λnt√
t logn

−1
∣∣∣≤ ε

)
≥ 1−2e−c(logn)2

for n large enough.

Note in particular that after nt arrivals, even though the capacity of the cluster
is of unit order, the length of the interval tends to infinity!

1.2. Geometric consequences and conjectures

We use Theorem 1.1 to deduce geometric information about the cluster Knt,
showing that it has diverging diameter in n.

Theorem 1.2. Let Diam(Knt)=sup{|x−y|:x, y∈Knt} denote the diameter of

Knt. Then
Diam(Knt)√

t logn
−→ 1
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in probability. Furthermore,

max
z∈Knt

{�(z)}≤
√

2t,

almost surely.

The above theorem says that the shape of the cluster is very elongated, being
of order O(1) in height and of order approximately

√
t logn in width.

It is tempting to conjecture that the cluster shape (viewed from the outside)
is more precisely described by the following Loewner–Kufarev evolution: namely,
denote by ft(z) the deterministic map solution to the Loewner equation

(1.6)

⎧⎨⎩ḟt(z)= ∂zft(z)
∫
R

1
x−z

μt(dx)

f0(z)=z,

where μt denotes the uniform measure on the interval
[
−

√
t logn
2 ,

√
t logn
2

]
. Recall

the conformal map Φk, defined in (1.2), which maps the upper half plane H to
Hk=H\Kk and grows the restricted Hastings–Levitov cluster Kk up to the kth

particle.
Since Φk can be described by a Loewner-Kufarev evolution driven by the mea-

sures μ(n)
t , which is close in a suitable sense to the deterministic measure μt defined

above, it is natural to guess that Φnt is close to the conformal map ft (indeed we
note that a related continuity statement of the Loewner–Kufarev equation was ob-
tained by [1], [7] and [8]). Indeed using such an approach (and a stronger uniform
continuity of the Loewner–Kufarev evolution), one can prove the following state-
ment: for any ε, t>0 and compact set K⊂H there exists a constant C(t,K) such
that

P

(
sup
z∈K

∣∣Φnt(z)−ft(z)
∣∣≤C(t,K) ε eventually in n

)
=1.

However, the conformal map ft, although deterministic, still depends on n and is
in the pointwise limit as n→∞ close to the trivial identity map, so this statement
in itself doesn’t convey useful information about the geometry of the cluster.

In fact, formulating a precise statement on how close Φnt needs to be to ft in
order to capture something meaningful is in itself not entirely trivial. At the very
least one would need to prove that the size of the difference between Φnt and ft is
smaller than the size of the discrepancy between ft and the identity map, and so
would need to be formulated quantitatively.

Let us expand a little on the orders of magnitude that we believe will be
involved. We believe that these can be deduced from Theorem 1.2: indeed, since
the half-plane capacity of Knt is t and the diameter is approximately

√
t logn, we
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believe that the typical height of the cluster is of order O(1/
√

logn) for a fixed time
t. Therefore we conjecture that |ft(z)−z| is of this order of magnitude too.

Simulations To complement this discussion we include some simulations of our
restricted HL(0) aggregation model on the upper half plane. These simulations do
not show the entire cluster but only an envelope of the cluster: roughly speaking
they show the conformal image of {z∈H:�(z)=ε} under the conformal map Φnt

sending H to H\Knt, for some small ε>0, and for various values of n and t; in fact
they are parametrised instead by N (the number of particles) and the individual size
(i.e., length) which is called d in these pictures (or equivalently, half-plane capacity
d2/2). The relation between these parameters is as follows:

d2 =1/n,
N = t/d2,

where N is the number of particles. See Figure 4 below.
We also include for these same simulations the image of the cluster under the

conformal map Φ−1
k , which is the interval [−Lk, Rk] of the real line, described by

Theorem 1.1 and crucial to the arguments of this paper. The simulations also show
the actual locations of where particle successively attach. See Figure 5 below.

1.3. Aggregation outside the unit disc

We have so far focused for convenience and ease on the situation in the upper-
half plane, but it is in fact more standard to consider HL(0) as an aggregation model
outside the unit disc (the recent paper [3] by Berger, Procaccia and Turner being
the exception). The model is defined similarly by replacing the upper-half plane
H with the unit disc D, and the elementary maps describing the slits are obtained
from F by conjugating with respect to a conformal map from C\D to H. See e.g.
[14] for details.

In order to keep the paper short and simple, we decided not to include results
related to this case, although it should not be hard to see that our techniques
apply to this setting as well, at least as long as the two arms of the cluster remain
macroscopically far apart (i.e., they do not shield the unit disc almost entirely). In
particular, we believe that the following result holds: for any 0<α<1, let τα denote
the first k≥1 such that the kth particle attaches at a position whose argument is
in [π(1−α), π(1+α)]. Then, for any 0<α<1, as n→∞,

(1.7) τα ∼ 2π2n(1−α)2

logn
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Figure 4. Simulations of cluster envelope at ε=10−5 with N=1000, 5000 and 10000 with d=0.1.
This corresponds to n=102 and t=10, 50 and 100 respectively.

Figure 5. Simulations of the allowed interval with N=5000 and 10000 (second and third simulations
in Figure 4).

in probability, where Xn∼Yn in probability as n→∞ means Xn/Yn→1 in proba-
bility. Observe that the surprising phenomenon here is that τα=o(n).
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1.4. Heuristic relation to instability in unconstrained Hastings–Levitov

Compared to the unconstrained model (especially the disc one discussed in
Section 1.3), the only difference with our constrained model is that particles can
only attach to the tree generated by the first particle. In other words, the con-
strained model describes the growth of a single tree. From this perspective, the
explosive growth demonstrated in Theorem 1.1 shows a fundamental instability
property which seems not to have been noticed before: left to its own devices, a
single tree or fjord grows explosively. The existence of a shape theorem for regular
(i.e., unconstrained) HL(0) appears from this point of view nothing short of miracu-
lous: essentially, this suggests that multiple fjords and subtrees are “canceling each
other out” from the point of view of conformal maps.

We believe that this effect becomes less pronounced when particle sizes are
rescaled according to the derivative of the conformal map at the location where
particles attach – this is for instance the situation of the HL(α), for α>0 (see e.g.
[9], [12] and [13] for a definition and some fine properties of the model).

It has been proposed (and indeed proved for α<1 in [12] for the unconstrained
model) that compensating the size of the particles by a power of the derivative
of the conformal map has an overall identical effect as keeping the size fixed but
reweighing the law of the attachment by a power of the harmonic measure. In the
constrained model however we expect that these two models behave differently for
every α>0, and the constrained model might well remain explosive even for values
of α above α=1.

1.5. Sketch of proof of Theorem 1.1 and heuristics

The main argument for proving Theorem 1.1 will consist in the following esti-
mate. Call α(t)=Rnt/

√
logn. We wish to show that α(t)�

√
t. Roughly speaking

we show that

(1.8) dα

dt
≈ 1

8α(t) .

This comes from a dyadic decomposition where we consider the contribution to the
position of the front Rnt of particles arriving at time k∈[nt, n(t+h)] in a dyadic
interval Ij=[Rk−2j+1, Rk−2j ] of length 2j at distance 2j from the right front Rk.
Here one should think that 2j is much smaller than n, but at least 1/

√
n; with the

minimal distance 1/
√
n determined by the behaviour of the conformal map which

uniformises a single particle. We show that the contribution to the push of the front
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of scale j during this interval is, roughly,

Δj ≈nh× |Ij |
2α

√
logn

× log 2
n2j+1 ≈ h log 2

4α
√

logn

where the first term nh is the total number of particles arriving during the interval,
the second term corresponds to the probability for a particle to fall in Ij , and the
last term gives the average push caused by such a particle. Since the right hand
side does not depend on j, we see that all scales contribute equally. This is the
reason beyond the explosive growth.

Summed over all scales, this gives

R(t+h)n−Rtn ≈
∑
j

Δj ≈
h
√

logn
8α(t)

where the constant 8 comes from the fact the smallest dyadic scale starts at distance
1/

√
n from the tip of the interval. Dividing by

√
logn to express the left hand side

in terms of α, this suggests that α(t) satisfies the differential equation (1.8).
Equivalently, starting from very small α(0), we show that the time (measured

in units of 1/n) for α to double is roughly α2 (that is, we must add roughly α2n

particles). More precisely, starting from an initial value α(0)=αn, the solution to
this ODE is

α(t)= (1/2)
√

t+α2
n/4,

so that, for arbitrary δ>0, the time it takes to reach αn(1+δ) is

t=4α2
n((1+δ)2−1)=4α2

n(2δ+δ2)≈ 8δα2
n.

2. Proof of Theorem 1.1

Fix t∈(0, T ] and ε>0 as in the statement of Theorem 1.1. Let δ>0 denote
a constant to be chosen later, possibly depending on ε. Recall that for 1≤k≤nT

we denote by λk the length of the interval of the cluster under the mapping out
function Γk, so that λk=Lk+Rk. Define

l(n)= (logn)3√
n

,

and introduce the stopping times

T1 = inf{i≥ 1 :λi ≥ l(n)},
Tk = inf{i≥Tk−1 :λi ≥ (1+δ)λTk−1}, k≥ 2.
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We start by showing that, once the length of the interval exceeds l(n), the time it
takes for it to grow by a factor 1+δ cannot be too small.

Write Fn=σ(x1, x2...xn) for the σ–algebra generated by the attachment loca-
tions up to the nth arrival, for n≥1.

Proposition 2.1. (Lower bound on doubling time) For any k≥2 it holds that

P

(
Tk−Tk−1 ≥

(
2δ

1+ε

)
n

lognλ
2
Tk−1

∣∣∣FTk−1

)
≥ 1−e−c(logn)2

for n large enough. Here c=c(ε, δ) is a constant which may depend on ε and δ but

not on n nor k.

Proof. Write mk=
( 2δ

1+ε

)
n

lognλ
2
Tk−1

for brevity. Then

P

(
Tk−Tk−1 <mk

∣∣∣FTk−1

)
≤P(λTk−1+mk

≥ (1+δ)λTk−1)

≤P

(
RTk−1+mk

≥RTk−1 + δ

2λTk−1

∣∣FTk−1

)
+P

(
LTk−1+mk

≥LTk−1 + δ

2λTk−1

∣∣FTk−1

)
.

We bound the first term in the right hand side. The second term can be bounded
using exactly the same argument.

The idea is to decompose over dyadic scales [2j , 2j+1) corresponding to the
distance between the right end of the interval and the position of the particle that
attaches. Define

jmin = inf
{
j ∈Z : 2j ≥ 1√

n

}
,

jmax = inf
{
j ∈Z : 2j ≥

√
T logn

}
.

For i≥1 and jmin≤j≤jmax, let

Ii,min =(Ri−2jmin , Ri],
Ii,j =(Ri−2j+1, Ri−2j ].

These intervals actually depend on time and are random, but they have fixed width
|Ii,j |=2j , and a given particle arriving at time i+1 attaches in one and only interval
Ii,j for some j.

Let us describe the effect that a new arrival xi+1 at time i+1 has on the interval
[−Li, Ri].
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Lemma 2.2. Suppose a new particle attaches at time i at position x∈Ii,j with

j≥jmin, so that x is at least distance 1/
√
n from Ri. Then we have deterministically:

Ri+1−Ri ≤
1

2n(Ri−x)

and

Ri+1−Ri ≥
1

2n(Ri−x)−
C

(Ri−x)3n2 ,

for C absolute constant.

Proof. Observe that Ri+1 is obtained from Ri by applying the map

w −→x+
√

(w−x)2+1/n

so that
Ri+1 =x+

√
z2+1/n, with z =Ri−x.

By convexity of the square root function,

Ri+1 ≤x+
√

z2+1/n

≤x+z(1+ 1
2z2n

)=x+z+ 1
2zn

=Ri+
1

2zn =Ri+
1

n(Ri−x) ,

which gives the desired upper bound. On the other hand, for the lower bound, by
a Taylor expansion of

√
1+x near zero,

Ri+1 ≥Ri+1/(2nz)−C/(n2z3)

(which is valid since z≥1/
√
n by assumption on x). Since z=Ri−x we get the

desired inequality. �

Lemma 2.3. In the same setting as above the following hold:

E(Ri+1−Ri|xi+1 ∈ Ii,j)≤
log 2
n2j+1 ,

E(Ri+1−Ri|xi+1 ∈ Ii,j)≥
log 2
n2j+1 −

C

n223j ,

Var(Ri+1−Ri|xi+1 ∈ Ii,j)≤
C

n222j ,

where here and throughout the article C is an absolute constant that may change

from line to line.
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Proof. For the first upper bound, we use Lemma 2.2 and note that, condition-
ally on xi+1∈Ii,j , xi+1 is uniformly distributed over Ii,j , so that

E(Ri+1−Ri|xi+1 ∈ Ii,j)≤
∫ 2j+1

2j

dx

2nx2j = log 2
n2j+1 ,

as desired. For the lower bound, we proceed similarly and note that

E(Ri+1−Ri|xi+1 ∈ Ii,j)≥
∫ Ri−2j

Ri−2j+1

1
2(Ri−x)

dx

n2j −
∫ Ri−2j

Ri−2j+1

C

(Ri−x)3
dx

n22j

≥ log 2
n2j+1 −

C

n22j

∫ 2j+1

2j

du

u3 ≥ log 2
n2j+1 −

C

n223j

as desired. Finally,

Var(Ri+1−Ri|xi+1 ∈ Ii,j)≤E((Ri+1−Ri)2|xi+1 ∈ Ii,j)

≤
∫ 2j+1

2j

1
n2x2

dx

2j+1 ≤ C

n222j ,

as desired. �

Let us now go back to the proof of Proposition 2.1. For i∈[Tk−1+1, Tk−1+mk]
let xi denote the attachment locations of the particles, and for jmin≤j≤jmax, let

Δj =
Tk−1+mk−1∑

i=Tk−1

1{xi+1∈Ii,j}(Ri+1−Ri)

denote the push to the right front caused by particles arriving in Ii,j during the
phase [Tk−1, Tk−1+mk] (recall that the actual positions of the intervals Ii,j change
at each step, but their length is fixed). Note that

E(Δj |FTk−1) =
Tk−1+mk−1∑

i=Tk−1

E(1{xi+1∈Ii,j}(Ri+1−Ri)|FTk−1)

=
Tk−1+mk−1∑

i=Tk−1

E(Ri+1−Ri|xi+1 ∈ Ii,j)P(xi+1 ∈ Ii,j)

≤
Tk−1+mk−1∑

i=Tk−1

log 2
n2j+1

|Ii,j |
λTk−1

= log 2
2nλTk−1

mk =
(

δ

1+ε

)
λTk−1

log2 n
.
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Lemma 2.4. For k≥2, δ>0 and any ε∈(0, 1] it holds that

P

⎛⎝ jmax∑
j=jmin

Δj <
δ

2

(
1− ε

8

)
λTk−1

∣∣∣FTk−1

⎞⎠≥ 1−e−c(logn)2

for n large enough (n≥n0(ε, T )), where c=c(δ, ε) is a constant that may depend on

δ and ε.

Proof. For jmin≤j≤jmax set

Dj =Δj−
(

δ

1+ε

)
λTk−1

log2 n
.

In words, Dj is obtained by subtracting from Δj an upper-bound on the conditional
expectation of the push for each particle using Lemma 2.3. Therefore, for each jmin≤
j≤jmax, Dj is the terminal value at time mk of a supermartingale. Furthermore, its
total quadratic variation Qj at time mk (i.e. the sum of the conditional variances
of the increments) is bounded by

Qj ≤
Tk−1+mk−1∑

i=Tk−1

E((Ri+1−Ri)2|xi+1 ∈ Ii,j)P(xi+1 ∈ Ii,j |Fi)

≤
Tk−1+mk−1∑

i=Tk−1

C

n222j
|Ii,j |
λTk−1

= C

n222j
2j

λTk−1

mk

=C

(
2δ

1+ε

)
λTk−1

2jn logn =: b,

where the last equality defines b. Note also that each jump is bounded by K= 1
n2j .

Applying Freedman’s martingale inequality (Proposition 2.1 in [5]) we deduce that,
with

a=
δλTk−1

log2 n

(
1

1+ε/2−
1

1+ε

)
(note that Ka�b as n→∞),

P

(
Δj ≥

δλTk−1

log2 n

1
(1+ε/2)

∣∣∣FTk−1

)
=P(Dj ≥ a,Qj ≤ b |FTk−1)

≤ exp
(
− a2

Ka+b

)
≤ exp

(
−c

n2jλTk−1

logn

)
≤ e−c(logn)2
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since 2j≥1/
√
n and λTk−1≥λT1≥l(n). Here c is a constant that may depend on δ

and ε. This bound can be summed over all scales, to get that

P

(
∃j ∈ [jmin, jmax] :Δj ≥

δλTk−1

(log2 n)(1+ε/2)

∣∣∣FTk−1

)
≤ (jmax−jmin)P

(
Δj ≥

δλTk−1

(log2 n)(1+ε/2)

∣∣∣FTk−1

)
≤ (log2 n)e−c(logn)2 ≤ e−c′(logn)2

for n large enough. We used that jmax−jmin≤ 1
2 (log2 n)(1+ε/4) for n large enough

(n≥n0(ε, T )). It follows that, except on an event of probability at most
exp(−c(logn)2), it holds that

jmax∑
j=jmin

Δj ≤
jmax∑

j=jmin

δλTk−1

(log2 n)(1+ε/2) ≤
δ

2

(
1− ε

8

)
λTk−1(2.1)

for n large enough, as long as ε≤1, which we assumed. �

It remains to bound the displacement caused by particles arriving closer than
1/

√
n from the right front, which is encoded in

Δmin =
Tk−1+mk−1∑

i=Tk−1

1{xi+1∈Ii,min}(Ri+1−Ri).

Lemma 2.5. For k≥2 and any ε, δ>0 it holds that

P

(
Δmin <

(
6δ

1+ε

)
λTk−1

logn

∣∣∣FTk−1

)
≥ 1−e−c(logn)2

for n large enough, where c is a constant that may depend on δ and ε.

Proof. This can be bounded crudely: indeed, note that if xi+1∈Ii,min then

Ri+1−Ri ≤ 1/
√
n

so

Δmin ≤
1√
n
Nmin, where Nmin =#{Tk−1+1≤ i≤Tk−1+mk :xi ∈ Ii,min}.

Note that Nmin is dominated by a sum of independent indicator random variables
where the probability of success is at most

pmin = 2√
nλTk−1

,
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since λi≥λTk−1 for all i≥Tk−1 and 2jmin−1<1/
√
n. Hence

(2.2) E(Nmin)≤mkpmin =
(

4δ
1+ε

) √
n

lognλTk−1 ,

We conclude the proof of the lemma with the elementary fact on binomial random
variables (which can also be deduced from Friedman’s inequality) that for some
c>0,

P(Nmin ≥ (3/2)mkpmin)≤ exp(−cmkpmin),

which implies that

P

(
Δmin ≥

3
2
mkpmin√

n

∣∣∣FTk−1

)
≤P(Nmin ≥ (3/2)mkpmin)

≤ exp(−cmkpmin)
≤ exp(−c(logn)2)

as λTk−1≥l(n)=(log n)3/
√
n since k≥2 by assumption. This, together with (2.2),

concludes the proof. �

To conclude the proof of Proposition 2.1 we note that

RTk−1+mk
−RTk−1 =

Tk−1+mk−1∑
i=Tk−1

(Ri+1−Ri)=
jmax∑

j=jmin

Δj+Δmin.

from which, putting Lemmas 2.4 and 2.5 together, for k≥2 we obtain

P

(
RTk−1+mk

−RTk−1 ≥
δ

2λTk−1

∣∣∣FTk−1

)
≤P

( jmax∑
j=jmin

Δj+Δmin ≥
δ

2λTk−1

∣∣∣FTk−1

)

≤P

( jmax∑
j=jmin

Δj ≥
δ

2

(
1− ε

8

)
λTk−1

∣∣∣FTk−1

)
+P

(
Δmin ≥

δε

16λTk−1

∣∣∣FTk−1

)
≤ 2e−c(logn)2

for n large enough (n≥n0(ε, T )). Similarly, one shows that

P

(
LTk−1+mk

−LTk−1 ≥
δ

2λTk−1

∣∣∣FTk−1

)
≤ 2e−c(logn)2 ,

and so
P(Tk−Tk−1 <mk|FTk−1)≤ 4e−c(logn)2

for n large enough. �
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To derive the upper bound on the growth, for any t∈(0, T ] define

S(t)= inf{i≥ 1 :λi ≥
√

t logn}.

Note that S(t) also depends on n, but we choose not to highlight this in the notation.
We will use Proposition 2.1 to show that for any ε>0

(2.3) P

(
inf

t∈(0,T ]

S(t)
nt

<
1

(1+ε)5

)
≤ e−c(logn)2

for n large enough (n≥n0(ε, T )). To see this, note that for any k≥2

λTk
≤ (1+δ)λTk−1 + 2√

n
≤ (1+δ)k−1λT1 + 2(k−1)√

n
,

since the length of the interval increases by at most 1/
√
n in each direction upon a

new arrival. Now using that λT1≤l(n)+2/
√
n we get

λTk
≤ (1+δ)k−1

(
l(n)+ 2√

n

)
+ 2(k−1)√

n
≤ (1+δ)k−1 (logn)3√

n
(1+ε),

where the last inequality holds as long as

(2.4) 2k≤ ε(logn)3.

It follows that if we let K(t) denote the largest integer such that

(2.5) (1+δ)K(t)−1 <

√
nt

(logn)5/2(1+ε)
,

then λTK(t)<
√
t logn, which forces S(t)≥TK(t). Note that such K(t) satisfies (2.4)

for n large enough (n≥n0(ε, δ, T )). Thus

P

(
inf

t∈(0,T ]

S(t)
nt

<
1

(1+ε)5

)
≤P

(
inf

t∈(0,T ]

TK(t)

nt
<

1
(1+ε)5

)

≤P

⎛⎝ inf
t∈(0,T ]

1
nt

K(t)∑
k=2

(Tk−Tk−1)<
1

(1+ε)5

⎞⎠ .

Now, using that λTk
≥(1+δ)k−1l(n) for all k≥2 by definition of the stopping times

Tk’s, it is easy to check that

1
(1+ε)3(1+δ) ≤

1
nt

K(t)∑
k=2

mk
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for all t∈(0, T ]. Taking δ=ε we get

P

(
inf

t∈(0,T ]

S(t)
nt

<
1

(1+ε)5

)
≤P

⎛⎝∃t∈ (0, T ] :
K(t)∑
k=2

(Tk−Tk−1)<
K(t)∑
k=2

mk

⎞⎠
=P

(
∃ 2≤K ≤K(T ) :

K∑
k=2

(Tk−Tk−1)<
K∑

k=2

mk

)

≤
K(T )∑
K=2

P (∃ 2≤ k≤K :Tk−Tk−1 <mk)

≤
K(T )∑
K=2

K∑
k=2

E(P(Tk−Tk−1 <mk|FTk−1))

≤ (K(T ))2e−c(logn)2 ≤ e−c′(logn)2

for n large enough (depending on ε and T ). Here we have used Proposition 2.1 in
the fourth inequality, and (2.5) in the last one.

We now turn to showing that the doubling time cannot be too large.
To start with, we need to control the time T1 it takes to get to minimal length

l(n)=(log n)3/
√
n. It is easy to check that, while λi≤l(n), one has

Ri+1−Ri ≥
1√

n(logn)4

for n large enough (n larger than an absolute constant): simply use(2) that the
minimal push to the right is obtained when the new particle lands at the left end
xi+1=−Li. It follows that λi+1−λi≥1/(

√
n(logn)4), from which we deduce that,

deterministically, T1≤(logn)7.
Now, once the interval has reached minimal length l(n), it cannot grow too

slowly, as shown in the next proposition.

Proposition 2.6. (Upper bound on doubling time) For any k≥2 it holds that

P

(
Tk−Tk−1 < 2δ(1+ε) n

lognλ
2
Tk−1

∣∣∣FTk−1

)
≥ 1−e−c(logn)2

for n large enough (n≥n0(ε, T )). Here c=c(δ, ε) is a constant which may depend

on ε and δ but not on n nor k.

(2) Here we are using the half–plane geometry.
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Proof. This can be proved reasoning as in Proposition 2.1. Write

nk =2δ(1+ε) n

lognλ
2
Tk−1

for brevity, and define

Δ̃j =
Tk−1+nk−1∑

i=Tk−1

1{xi+1∈Ii,j}(Ri+1−Ri)

for j̃min≤j≤jmax, where jmax is as before, and j̃min is chosen, depending on ε, so
that (

log 2
2n − C

n222j

)
≥ logn

2n
1+ε/2
1+ε

,

where C is the absolute constant in Lemma 2.2. This ensures that

E(Δ̃j |FTk−1)≥ δ(1+ε/2)
λTk−1

log2 n
.

Thus
−Δ̃j+δ(1+ε/2)

λTk−1

log2 n

is the terminal value at time nk of a supermartingale, and one again concludes by
Freedman’s inequality that

P

(
Δ̃j <

δλTk−1

log2 n

∣∣∣FTk−1

)
≤ e−c(logn)2

for n large enough, depending on ε and T , and a constant c=c(δ, ε). This can be
summed over all scales j̃min≤j≤jmax to get that, since

RTk−1+nk
−RTk−1 =

Tk−1+nk−1∑
i=Tk−1

(Ri+1−Ri)≥
jmax∑

j=j̃min

Δj ,

for k≥2 it holds that

P

(
RTk−1+nk

−RTk−1 <
δ

2λTk−1 |FTk−1

)
≤P

( jmax∑
j=j̃min

Δ̃j <
δ

2λTk−1

∣∣∣FTk−1

)
≤ e−c(logn)2

for n large enough. The results follows by observing that the same bound holds for
LTk−1+nk

−LTk−1 . �
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We now discuss how the above result allows to conclude that the interval cannot
grow too slowly, once it has reached minimal length l(n). We show that, with
t0(n)=(log n)8/n,

(2.6) P

(
sup

t∈[t0(n),T ]

S(t)
nt

> (1+ε)5
)
≤ e−c(logn)2

for n≥n0(ε, T ). For t∈[t0(n), T ] let K̃(t) denote the smallest integer such that

(1+δ) ˜K(t)−1 >

√
nt

(logn)5/2
,

so that

(2.7) (1+δ) ˜K(t)−2 ≤
√
nt

(logn)5/2
.

Then λT
˜K(t)

≥
√
t logn, which forces S(t)≤T

˜K(t). Moreover, since λTk
≤(1+δ)λTk−1 +

2/
√
n for all k≥2, it is easily checked that, by the choice of K̃(t),

1
nt

˜K(t)∑
k=2

nk ≤ (1+ε)2(1+δ)2

for all t∈(0, T ] and n large enough, depending only on δ, ε. Thus, taking again δ=ε,
we have that

P

(
sup

t∈[t0(n),T ]

S(t)
nt

> (1+ε)5
)
≤P

(
sup

t∈[t0(n),T ]

T
˜K(t)

nt
> (1+ε)5

)

≤P

(
sup

t∈[t0(n),T ]

T1

nt
> ε

)
+P

⎛⎝ sup
t∈[t0(n),T ]

1
nt

˜K(t)∑
k=2

(Tk−Tk−1)> (1+ε)4
⎞⎠

≤P
(
T1 >ε(log n)8

)
+P

⎛⎝∃ t∈ [t0(n), T ] :
˜K(t)∑
k=2

(Tk−Tk−1)>
˜K(t)∑
k=2

nk

⎞⎠
≤P

(
∃ 2≤K ≤ K̃(T ) :

K∑
k=2

(Tk−Tk−1)>
K∑

k=2
nk

)

≤
˜K(T )∑
K=2

P (∃ 2≤ k≤K : Tk−Tk−1 >nk)

≤
˜K(T )∑
K=2

K∑
k=2

E(P(Tk−Tk−1 >nk|FTk−1))

≤ (K̃(T ))2e−c(logn)2 ≤ e−c′(logn)2
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for n large enough (n≥n0(ε, T )). The fourth inequality above holds for n large
enough so that ε(logn)8≥(logn)7, which makes P(T1>ε(log n)8) vanish. For the
last one we have used (2.7).

Putting together the upper and lower bounds (2.3) and (2.6) for S(t) we gather
that for any ε∈(0, 1] and T>0 it holds that

(2.8) P

(
nt

(1+ε)5 ≤S(t)≤nt(1+ε)5 ∀t∈ [t0(n), T ]
)
≥ 1−e−c(logn)2

for n large enough (depending on ε, T ). To deduce that a similar concentration
result holds for the length λnt we use that√

t logn≤S(t)≤
√

t logn+ 2√
n

for all t∈(0, T ]. This tells us that, on the event in (2.8),

λnt(1+ε)5 ≥λS(t) ≥
√

t logn ∀t∈ [t0(n), T ],

which implies

λnt ≥
√

t logn
(1+ε)5 ≥ (1−3ε)

√
t logn ∀t∈ [t0(n)(1+ε)5, T ]

for ε small enough (ε≤ε0 with ε0 absolute constant).
For the upper bound note that, again on the event in (2.8),

λnt(1−ε)5 ≤λS(t) ≤
√

t logn+ 2√
n
,

which implies

λnt ≤
√

t logn
(1−ε)5 + 2√

n
≤ (1+3ε)

√
t logn ∀t∈ [t0(n)(1−ε)5, T ]

for ε small enough (ε≤ε0 with ε0 absolute constant). This shows that for any ε>0
small enough, and any T>0, there exists n0(ε, T ) such that
(2.9)

P

(
(1−3ε)

√
t logn≤λnt ≤ (1+3ε)

√
t logn ∀t∈

[ (logn)9

n
, T

])
≥ 1−e−c(logn)2

for all n≥n0(ε, T ), which concludes the proof of (1.5).



Explosive growth for a constrained Hastings–Levitov aggregation model 61

It remains to deduce that Rnt and Lnt are both concentrated around 1
2
√
t logn.

We show that there exists an absolute constant ε0 such that for all ε∈(0, ε0) it holds

P

(√
t logn

2(1+ε)6 ≤Rnt ≤
1
2
√

t logn(1+ε)6 ∀t∈
[ (logn)9

n
, T

])
≥ 1−e−c(logn)2

for n large enough, and c constant independent of n. To this end, recall the defini-
tion of K(t) from (2.5), and note that for any t∈(t0(n), T ], restricting to the high
probability event {Tk−Tk−1≥mk for all 2≤k≤K(T )}, we have

TK(t) ≥
K(t)∑
k=2

(Tk−Tk−1)≥
K(t)∑
k=2

mk ≥
nt

(1+ε)5 .

It follows that

R nt
(1+ε)5

≤RTK(t) =RT1 +
K(t)∑
k=2

(RTk
−RTk−1)

for all t∈(t0(n), T ]. Restricting further to the event {Tk−Tk−1≤nk for all 2≤k≤
max{K(T ), K̃(T )}} we have that RTk

−RTk−1≤RTk−1+nk
−RTk−1 . It can be shown,

using exactly the same argument as the one of Proposition 2.1, that

P

(
RTk−1+nk

−RTk−1 ≤
δ

2(1+ε)2λTk−1 for all 2≤ k≤K(T )
)
≥ 1−e−c(logn)2

for n large enough (n≥n0(ε, T )). Thus, with probability exceeding 1−3e−c(logn)2 ,
we have that

R nt
(1+ε)5

≤λT1 + δ

2(1+ε)2
K(t)∑
k=2

λTk−1 ≤
(logn)3+2√

n
+ (1+ε)2

2
√

t logn≤ (1+ε)3

2
√
t logn

for all t∈(t0(n), T ], where in the second inequality we have used the definition of
K(t). Rearranging, this gives

P

(
Rnt ≤

(1+ε)6

2
√
t logn ∀t∈ (t0(n), T ]

)
≥ 1−2e−c(logn)2 .

Similarly, one shows that

P

(
Lnt ≤

(1+ε)6

2
√

t logn ∀t∈ (t0(n), T ]
)
≥ 1−2e−c(logn)2 .

Combining these with the lower bound in (2.9) we also deduce that, with probability
exceeding 1−5e−c(logn)2 ,

Rnt =λnt−Lnt ≥
√

t logn
(

1
(1+ε)3 −

1
2(1+ε)6

)
≥ 1

2(1+ε)6
√

t logn
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for all t∈[(logn)9/n, T ], where the last inequality holds as long as ε≤ε0 for some
absolute constant ε0>0. The same holds for Lnt, which concludes the proof of
Theorem 1.1.

3. Proof of Theorem 1.2

We first prove that the height of the cluster is deterministically bounded. This
comes from the simple observation that the half-plane capacity of Knt is determin-
istically given by t and the following simple lemma: if K is a compact H-hull such
that x+iy∈K for some x∈R, y>0 then

hcap(K)≥ y2/2.

This can be proved using a simple reflection argument about the line {�(z)=x}
and monotonicity of the half-plane capacity; we leave the details to the reader (this
is implicit in [11], and explicitly proved in the note [10], see also Proposition 6.1 of
[2] for a closely related statement).

As a consequence, since hcap(Knt)=t then we deduce that

max
z∈Knt

{�(z)}≤
√

2t,

as desired.
Now let us turn to the diameter. The argument is based on estimating the

harmonic measure of Knt viewed from infinity (which is conformally invariant) and
relating this to the diameter, given that the cluster is necessarily very flat by the
above. We start with the lower bound on the diameter which is slightly easier.

Fix t>0. Let L=(1−ε)
√
t logn and denote by K=Knt for ease of notations.

Let z=iy with y>0 very large. Suppose for contradiction that Diam(K)≤L, so
K could fit in a rectangle R of height

√
2t and width L, in the upper half plane

and with the bottom side on the real line, and which we can assume to be centered
without loss of generality. See Figure 6. Then applying the conformal map gK , the
hull K is by definition mapped to the interval [−Lt, Rt]. Let R̃=gK(R\K). If we
then apply the conformal map g

˜R, then by monotonicity, we have

Rt ≤ r, Lt ≤ 


where −
 and r respectively are the extreme points of gR(∂R∩H). (See Figure 6).
In fact, by symmetry, note that 
=r. Furthermore, we claim that

(3.1) 
≤L/2+C,
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Figure 6. Composition of conformal maps gR=g
˜R ¨gK .

where C is a constant depending only on t. From here the contradiction (and thus
the lower bound) follows, since we know that min(Rt, Lt)≥(1−ε/2)(1/2)

√
t logn

with probability converging to 1 as n→∞.
This can be seen directly because the conformal map gR is known explicitly (it

is a Schwarz–Christoffel map, since D=H\R is a polygon), but it can be seen more
robustly as follows. Fix z=iy with y>0 very large. Let τD denote the first time at
which a Brownian motion B leaves the domain D. Let τ denote the first time that
the imaginary part of B reaches

√
2t. Let E be the event that |�(Bτ )|≤L/2.

P
iy(BτD ∈R) =P

iy(E)+P
z(BτD ∈R;Ec).

Now observe that P
z(E) may be computed through the integral over the interval

[−L/2, L/2] of a Cauchy distribution with scale parameter y′=y−
√

2t: hence after
a change of variables,

P
iy(E)=

∫ L/(2y′)

−L/(2y′)

1
π(x2+1)dx∼

L

πy

as y→∞ (and t>0 fixed), where an∼bn means that the ratio an/bn→1. Now let
us turn to Ec, and observe that if BτD∈R and Ec both hold, then necessarily
Brownian motion hits one of the vertical sides of the rectangle R before the real
line. In words, if I1, I2 are the vertical sides, and Di=H\Ii, then

({BτD ∈R}∩Ec)⊂
{
BτD1 ∈ I1

}
∪
{
BτD2 ∈ I2

}
Hence by symmetry between I1 and I2,

P
iy(BτD ∈R;Ec)≤ 2Piy(BτD1 ∈ I1)∼ 2cap(I1)

πy
,
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where cap(I) denotes the capacity of I from infinity in H (see [2], Section 4.1)
which, we remark, differs from the half–plane capacity hcap(I). Altogether, since
cap(I1)=2

√
2t (see [2], Section 6.1), we see that

(3.2) lim
y→∞

yPiy(BτD ∈R)≤L/π+4
√

2t/π.

To get the desired inequality on 
 we simply argue by conformal invariance:

(3.3) P
iy(BτD ∈R)=P

gR(iy)(BτH ∈ [−
, 
])∼ 2

πy

by a similar integration of the Cauchy distribution and the fact that gR(iy)∼iy.
Multiplying by y and letting y→∞, and comparing (3.3) with (3.2), we get

2

π

≤ L

π
+4

√
2t/π,

which proves (3.1) with C=
√

32t. This proves the desired lower bound on
Diam(Knt).

Now let us turn to the corresponding upper bound. We again argue by contra-
diction. Let L=(1+ε)

√
t logn. Suppose Diam(K)≥L. Then there exists a, b∈K

with |a−b|≥L. Since K is connected there is a curve in K connecting a to b (and so
its maximal height is at most

√
2t). We argue similarly as above. Let I1, I2 be the

vertical segments connecting a and b respectively to the real line; call x1 and x2 the
respective base points on R of I1 and I2. By translation we can assume x1=−x2
and by the triangle inequality |x1−x2|≥L−O(1). Let E={τH≤τH}={BτH ∈K}.

P
iy(BτH ∈ [x1, x2])=P

iy(BτH ∈ [x1, x2];E)+P(BτH ∈ [x1, x2];Ec).

For the same topological reasons as above, if BτH∈[x1, x2] and Ec both hold, it must
be the case that the Brownian motion B touched either I1 or I2 before the real line
(indeed, to enter the interval [x1, x2] the Brownian curve cannot avoid I1 and I2
without touching the curve connecting a and b, but then E holds). Therefore,

P
iy(BτH ∈ [x1, x2])≤P

iy(E)+P
iy(BτD1

∈ I1)+P
iy(BτD2

∈ I2).

Now we multiply by y and let y→∞. Using the same argument as above, we see
that the left hand side converges to |x1−x2|/π=L/π−O(1). The right hand side
has three terms. The first, by conformal invariance of Brownian motion, converges
to |Lt−Rt|/π. The second and third respectively converge to cap(I1) and cap(I2),
both of which are O(1). Consequently, we obtain

L≤ |Lt−Rt|+O(1).

By Theorem 1.1, the probability of the above tends to zero.
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