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Removability of product sets for Sobolev
functions in the plane

Ugo Bindini and Tapio Rajala

Abstract. We study conditions on closed sets C,F⊂R making the product C×F removable
or non-removable for W 1,p. The main results show that the Hausdorff-dimension of the smaller
dimensional component C determines a critical exponent above which the product is removable for
some positive measure sets F , but below which the product is not removable for another collection
of positive measure totally disconnected sets F . Moreover, if the set C is Ahlfors-regular, the
above removability holds for any totally disconnected F .

1. Introduction

In this paper we study the Sobolev-removability of closed subsets of the Eu-
clidean plane. The Sobolev space W 1,p(Ω), for 1≤p≤∞ and a domain Ω⊂R

2,
consists of f∈Lp(Ω) for which the weak first order partial derivatives ∂if are also
in Lp(Ω). A subset E⊂R

2 of Lebesgue measure zero is called removable for W 1,p,
or simply p-removable, for 1≤p≤∞, if W 1,p(R2\E)=W 1,p(R2) as sets. Since E has
Lebesgue measure zero, E is removable for W 1,p if and only if every u∈W 1,p(R2\E)
has an Lp-representative that is absolutely continuous on almost every line-segment
parallel to the coordinate axis.

Let us make some observations on p-removable sets. By Hölder’s inequality,
p-removable sets are also q-removable for every q>p. In particular, each p-removable
set is ∞-removable. Hence, the complement of a p-removable set is always quasi-
convex meaning that any two points in the complement can be joined by a curve
in the complement whose length is comparable to the distance between the points.
Since the sets E we consider have Lebesgue measure zero, the quasi-convexity of the
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complement implies that closed p-removable sets are actually metrically removable,
see [11, Proposition 3.3].

Ahlfors and Beurling [1] studied removable sets for analytic functions with finite
Dirichlet integral (see also the work of Carleson [4]). This class of sets coincides
with planar 2-removable sets. Consequently, a lot of work was done on removable
sets for quasiconformal maps that are globally homeomorphisms, see for instance
[3], [7], [9], [10], [14], [15], [26] and [27]. Let us point out that Sobolev-removability
has also been considered for globally continuous functions; see for example [21] and
references therein. The version of Sobolev-removability we consider here can be
characterized via condenser capacities or extremal distances [1], [2], [8], [23], [25], [27]
and [29]. However, these conditions are not easy to check. Because of this, Koskela
[17] and Wu [28] considered Sobolev-removability in terms of different kinds of
porosities that are easier to verify. Removability of porous sets for weighted Sobolev
spaces [6] and (weighted) Orlicz-Sobolev spaces [12], [13] has also been studied.
Generalizations of the removability results in the spirit of Ahlfors and Beurling
have been done for weighted Sobolev spaces, see for example [5].

The sets E whose p-removability we consider here are of the form E=C×F

where C,F⊂R are closed. If C or F contains an interval of positive length, it is
easy to see that the set E is not W 1,p-removable for any 1≤p≤∞. Therefore, we
may assume that both C and F are totally disconnected. Now, on one hand, if both
C and F have zero Lebesgue measure, the set E is automatically W 1,p-removable
since almost every line segment parallel to a coordinate axis has empty intersection
with E. On the other hand, if C and F both have positive Lebesgue measure, the
set E has positive Lebesgue measure, hence cannot be removable. We have reduced
our study to the following.

Problem 1.1. Let 1≤p≤∞ and C,F⊂R be totally disconnected closed subsets
with C having zero Lebesgue measure and F positive Lebesgue measure. Under
what conditions on C and F is the set C×F removable for W 1,p?

Examples of p-removable and non-removable product sets of the type consid-
ered in Problem 1.1 have appeared in [17], [28, Example 2], and [19, Lemma 4.4].
In the case p=1, the answer to Problem 1.1 is easy: Every set C×F with F pos-
itive Lebesgue measure and C �=∅ is non-removable for W 1,1 by the isoperimetric
inequality. For 1<p<2 partial answers were given by Koskela [17]. In this paper we
generalize his results to give partial answers to Problem 1.1 for the range 2<p<∞.

Koskela considered the case C={0} and observed in [17, Theorem 2.2] that
{0}×F is not p-removable for 1≤p≤2, when H1(F )>0 and F=[0, 1]\

⋃∞
i=1 Ii with

Ii pairwise disjoint open intervals with
∑∞

i=1 |Ii|2−p<∞. The generalization of this
result is done in Theorem 1.2 below. In the other direction, Koskela proved in [17,
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Theorem 2.3] that {0}×F is p-removable for 1<p<2, if for almost every x∈F there
exist a sequence of numbers ri↘0 and a constant c so that (x−rix,+ri)\F contains
an interval of length cr

1/(2−p)
i . We generalize this result in Theorem 1.3.

In [17] and [28] different porosity parameters of sets determined the
p-removability. In our results the porosity type conditions have only a secondary
role and the main parameter is the Hausdorff dimension of the set C. Some ideas of
the proofs we present here were present in [19, Lemma 4.4], where also the dimension
of C was seen to affect the p-removability.

Our main results (Theorem 1.2 and Theorem 1.3) connect the Hausdorff di-
mension of C with the p-removability of C×F in the following way. They roughly
say that C×F is not p-removable for some F , but is q-removable for other F when

p<
2−dim(C)
1−dim(C) <q.

Thus, the dimension of C is sharp for the transition between non-removable and re-
movable examples. However, we emphasize that in our results the positive measure
set F needs to be thick (Theorem 1.2) or thin (Theorem 1.3) enough.

The threshold (2−dim(C))/(1−dim(C)) has been observed already earlier in
similar contexts. For instance in [18, Theorem 3.1] in connection to the validity
of (1, p)-Poincaré inequality in the complement of a Cantor diamond construction.
This is very much related to the question of removability since by Koskela [17],
the removability of a measure zero set is equivalent to the validity of a Poincaré
inequality for the complement.

Theorem 1.2. Let 2≤p<∞ and s> p−2
p−1 . Then for any closed subset C⊂R

with Hs(C)>0 and any set F of the form F=[0, 1]\
⋃∞

j=1 Ij , where Ij are open

intervals satisfying

(1)
∞∑
j=1

|Ij |1−(1−s)(p−1)
<∞,

and H1(F )>0, the set C×F is not p-removable. Moreover, the set C×F is not

removable even for W 1,p-functions that are continuous on the whole plane.

We do not know what are the sets C in Theorem 1.2 for which C×F is not
p-removable for every closed set F⊂R of positive Lebesgue measure. On one hand,
if C is a singleton, the p-removability depends on F by the results of Koskela [17],
as we already discussed above. On the other hand, in Section 4 we show that if C
is Ahlfors s-regular with 0<s<1, then the p-removability is independent of F .
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Theorem 1.3. Let 2≤p<∞ and s< p−2
p−1 . Suppose that C⊂R is a closed set

with Hs(C)<∞ and that F⊂R is a closed set for which at H1-almost every point

y∈F there exists ry>0 and cy>0 so that for any 0<r<ry we have

(2) H1([y−r, y+r]\F )≥ cyr
(1−s)(p−1).

Then the set C×F is p-removable.

Notice that (1−s)(p−1)>1 in Theorem 1.3 with the choices of p and s. Thus,
there exist closed sets F⊂R of positive Lebesgue measure that satisfy (2) at every
point y∈F . One might wonder why in Theorem 1.3 we require (2) for all small
scales r instead of a sequence of scales as in [17, Theorem A]. One reason for our
stricter requirement is that in our proof we argue using a sequence of dyadic scales.
Even if this could be avoided, the fact that we assume the Hausdorff measure of
C to be finite would force us to work on many scales at once. Replacing the
Hausdorff measure assumption by box counting dimension assumption might yield
the analogous result with a weaker requirement on F .

The proof of Theorem 1.2 is inspired by the proof of [19, Lemma 4.4] by the sec-
ond named author together with Koskela and Zhang. In [19, Lemma 4.4], the non-
removability was proven for a more regular set C, while the removability was done
via a curve condition to which we return in Section 4. The proof of Theorem 1.2 is
done in Section 2 while Theorem 1.3 is proven in Section 3. In the final Section 4
we study the relations between p-removability, curve conditions, and Ahlfors regu-
larity and lower porosity of C. In particular, we show that for Ahlfors-regular C

the p-removability of C×F is independent of F . The non-removability of C×F for
Ahlfors-regular C might still depend on F .

2. Proof of Theorem 1.2

In this section we prove Theorem 1.2. The proof is similar to the proof of
[19, Lemma 4.4], where a standard Cantor staircase function was extended by hand
from horizontal lines passing through F to the whole set R

2\(C×F ). This was
possible because of the regularity of the Cantor set C that was used. In the proof
of Theorem 1.2 we give a more general construction of a suitable Cantor staircase
function via Frostman’s Lemma, and an extension of the staircase function via
averages.

Up to taking a subset of C, we can assume that 0<Hs(C)<∞ and that C is
compact (say, C⊂[0, 1]). For R>1, we will construct a function u∈W 1,p((−R,R)2\
(C×F )) which is not absolutely continuous on any segment (−R,R)×{y} for y∈F .
It follows that u cannot be in W 1,p((−R,R)2).
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By Frostman’s Lemma (see for instance [20, Theorem 8.8]), there exists a Borel
probability measure μ concentrated on C satisfying

(3) μ(B(x, r))≤ cF r
s

for some constant cF >0.
We define on [0, 1] the non-decreasing function f(x)=μ([0, x]) and we extend it

to the interval (−R,R) by letting f=0 on (−R, 0) and f=1 on (1, R). Observe that
f is not absolutely continuous, since it is constant H1-a.e. on [0, 1], but f(1)−f(0)=
1. However, since s>0, the function f is Hölder-continuous.

We extend the function f to (−R,R)×[0,+∞) by letting

(4) v(x, y)= 1
2y

∫ x+y

x−y

f(t) dt.

The function v is also Hölder-continuous by the Hölder-continuity of f .

Lemma 2.1. The extension v defined in (4) is differentiable on (−R,R)×
(0,+∞), and

∇v(x, y)= 1
2y (f(x+y)−f(x−y), f(x+y)+f(x−y)−2v(x, y)) .

In particular,

|∇v(x, y)| ≤ f(x+y)−f(x−y)√
2y

= μ((x−y, x+y))√
2y

.

Proof. By the Leibniz integral rule we have

dv

dx
(x, y)= 1

2y
d

dx

∫ x+y

x−y

f(t) dt= f(x+y)−f(x−y)
2y

and

dv

dy
(x, y) = −1

2y2

∫ x+y

x−y

f(t) dt+ 1
2y

d

dy

∫ x+y

x−y

f(t) dt

= 1
2y (−2v(x, y)+f(x+y)+f(x−y)) .

The final estimate comes from the fact that f is non-decreasing, which implies

v(x, y)= 1
2y

∫ x+y

x−y

f(t) dt≥ f(x−y). �
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It will be useful to estimate the integral of |∇v| on a rectangle (−R,R)×(0, r).
For 0<y<r, let {(xi−ri, xi+ri)}i be a finite cover of C with disjoint intervals of
radii ri<y. Then we have

∫ R

−R

μ((x−y, x+y)) dx=
∫ R

−R

∑
i

μ((x−y, x+y)∩(xi−ri, xi+ri)) dx

≤
∑
i

∫ xi+2y

xi−2y
μ((x−y, x+y)∩(xi−ri, xi+ri)) dx

≤ 4y
∑
i

μ((xi−ri, xi+ri))= 4y,

where we used that μ is a probability measure on C. Combining this with Lemma 2.1
and (3) yields

∫ r

0

∫ R

−R

|∇v|p dx dy≤ 2−
p
2

∫ r

0

∫ R

−R

μ((x−y, x+y))p

yp
dx dy

≤ 2−
p
2 cF

∫ r

0

ys(p−1)

yp

∫ R

−R

μ((x−y, x+y)) dx dy

≤ 22− p
2 cF

∫ r

0
y(s−1)(p−1) dy.

(5)

We now define the function u as u(x, y)=v(x,dist(y, F )). As the composition
of a Lipschitz-continuous mapping (x, y) �→(x,dist(y, F )) and a Hölder-continuous
function v, the function u is also Hölder-continuous. Observe that u(x, y)=f(x) for
every y∈F , so u is not absolutely continuous on every segment (−R,R)×{y}, y∈F .

Since by hypothesis (s−1)(p−1)>−1, making use of (5), for each interval Ij
in the complement of F we have

∫
Ij

∫ R

−R

|∇u|p dx dy=2
∫ |Ij |/2

0

∫ R

−R

|∇v|p dx dy≤ c(p, s)cF |Ij |1−(1−s)(p−1)
,

where c(p, s)=21+ p
2−s(p−1). By summing over j and using (1) we obtain that

u∈W 1,p((−R,R)2\(C×F )),

as wanted.
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3. Proof of Theorem 1.3

Let u∈W 1,p(R2\E). We aim at showing that u∈W 1,p(R2), which holds exactly
when u has an Lp-representative that is ACL in R

2. Without changing the notation,
let u be the continuous ACL representative of u in R

2\E. Since H1(C)=0, u

is absolutely continuous on almost every vertical line-segment in R
2. Hence, we

only need to verify that u is absolutely continuous on almost every horizontal line-
segment.

Let us write α=(1−s)(p−1). Let y∈F be such that there exist cy>0 and ry>0
so that for any 0<r<ry we have

(6) H1((y−r, y+r)\F )≥ cyr
α.

By assumption, such constants exist for almost every y. Let us abbreviate f(x)=
u(x, y). It remains to show that f is absolutely continuous.

Let 0<δ<ry. Recalling that Hs(C)<∞, we take a collection of open intervals
{Ji}ni=1 such that C⊂

⋃n
i=1 Ji, |Ji|<δ for all i and

(7)
n∑

i=1
|Ji|s ≤ 2Hs(C).

Without loss of generality, we may assume that no point in R is contained in more
than two different intervals Ji. Define for every i the open square

Qi =Ji×
(
y− 1

2 |Ji| , y+ 1
2 |Ji|

)
.

Lemma 3.1. For every i we have the inequality

(8)
∣∣∣∣ inf
x∈Ji

f(x)− sup
x∈Ji

f(x)
∣∣∣∣≤ c(s, p, y) |Ji|

s
q ‖∇u‖Lp(Qi),

where 1
p + 1

q =1 and c(s, p, y)>0 is a constant depending only on s, p, and y.

Assuming for the moment Lemma 3.1, we conclude the proof as follows. By
Hölder’s inequality, (7), and (8) we obtain

n∑
i=1

∣∣∣∣ inf
x∈Ji

f(x)− sup
x∈Ji

f(x)
∣∣∣∣≤

(
n∑

i=1
|Ji|s

) 1
q
(

n∑
i=1

|Ji|−
sp
q

∣∣∣∣ inf
x∈Ji

f(x)− sup
x∈Ji

f(x)
∣∣∣∣
p
) 1

p

≤ (2Hs(C))
1
q

(
n∑

i=1
c(s, p, y) ‖∇u‖pLp(Qi)

) 1
p

≤ c(s, p, y) (2Hs(C))
1
q ‖∇u‖Lp(R×[y−δ,y+δ]) −→ 0
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as δ→0. Since f is absolutely continuous outside C, the above shows that f is
absolutely continuous on the whole R.

It remains to prove Lemma 3.1.

Proof of Lemma 3.1. Fix i∈{1, ..., n} and let I⊂J⊂Ji be intervals such that
|J |=2 |I|. By (6), the open set K=(y−|I| , y+|I|)\F satisfies H1(K)≥cy |I|α. De-
fine a collection γt : [0, 1]→Qi, t∈[0, 1] of curves so that each γt is the concatenation
of three line-segments γ1

t , γ2
t , and γ3

t that are defined as follows. Write J=[a, b],
I=[c, d] and set x1(t)=a+t(b−a) and x2(t)=c+t(d−c). Define

y(t)= inf
{
ỹ ∈ [y−|I|, y+|I|] : H1(K∩(−∞, ỹ])≥ tH1(K)

}
.

Now, γ1
t is taken to be the line-segment from (x1(t), y) to (x1(t), y(t)), γ2

t the line-
segment from (x1(t), y(t)) to (x2(t), y(t)), and γ3

t the line-segment from (x2(t), y(t))
to (x2(t), y). Notice that the image of γt does not intersect E for H1-almost every
t∈[0, 1].

By integrating over the curves γt we obtain∣∣∣∣ 1
|I|

∫
I

f(x) dx− 1
|J |

∫
J

f(x) dx
∣∣∣∣=

∣∣∣∣
∫ 1

0
u(γt(1))−u(γt(0)) dt

∣∣∣∣
≤
∫ 1

0
|u(γt(1))−u(γt(0))| dt

≤
∫ 1

0

∫
γt

|∇u(z)| ds(z) dt

=
3∑

k=1

∫ 1

0

∫
γk
t

|∇u(z)| ds(z) dt

First we treat the integrals along the vertical lines γ1
t , γ

3
t . By Hölder’s inequal-

ity we have ∫ 1

0

∫
γ1
t

|∇u(z)| ds(z) dt≤
∫ 1

0

∫ y+ 1
2 |Ji|

y− 1
2 |Ji|

|∇u(x1(t), z)| dz dt

=
∫
I

∫ y+ 1
2 |Ji|

y− 1
2 |Ji|

|∇u(x, z)| dz dx

≤ (|I|·|J |) 1
q ‖∇u‖Lp(Qi)

= c(p)δ
2−s
q |J |

s
q ‖∇u‖Lp(Qi) .

A similar computation shows that
∫ 1
0
∫
γ3
t
|∇u(z)| ds(z) dt≤c(p)δ

2−s
q |J |

s
q

‖∇u‖Lp(Qi).
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To evaluate the integrals along γ2
t , observe that the map t �→y(t) is piecewise

affine (on a countable union of open intervals) with y′(t)= 1
H1(K) a.e. on (0, 1).

Thus we have

∫ 1

0

∫
γ1
t

|∇u(z)| ds(z) dt≤
∫
J×K

H1(K)−1 |∇u(w, z)| dw dz

≤ |J |
1
q H1(K)

1
q−1 ‖∇u‖Lp(J×K)

≤ 2
α
p c

− 1
p

y |J |
1
q−α

p ‖∇u‖Lp(Qi) =2
α
p c

− 1
p

y |J |
s
q ‖∇u‖Lp(Qi) ,

where we used H1(K)≥2−αcy |J |α and the definition of α.
By putting all together we get

(9)
∣∣∣∣ 1
|I|

∫
I

f(x) dx− 1
|J |

∫
J

f(x) dx
∣∣∣∣≤ c(s, p, y) |J |

s
q ‖∇u‖Lp(Qi) .

Now, let z1, z2∈Ji be such that

∣∣∣∣ inf
x∈Ji

f(x)− sup
x∈Ji

f(x)
∣∣∣∣≤ 2 |f(z1)−f(z2)| .

Let {Ik}∞k=1 be subintervals of Ji so that I1=Ji, z1∈Ik for every k∈N, and |Ik|=
2 |Ik+1| for every k∈N. Now, by (9), we have

∣∣∣∣f(z1)−
1
|Ji|

∫
Ji

f(x) dx
∣∣∣∣≤

∞∑
k=1

∣∣∣∣∣ 1
|Ik|

∫
Ik

f(x) dx− 1
|Ik+1|

∫
Ik+1

f(x) dx

∣∣∣∣∣
≤

∞∑
k=1

c(s, p, y) |Ik|
s
q ‖∇u‖Lp(Qi)

≤ c(s, p, y) |Ji|
s
q ‖∇u‖Lp(Qi).

Together with an analogous estimate for z2, we obtain

1
2

∣∣∣∣ inf
x∈Ji

f(x)− sup
x∈Ji

f(x)
∣∣∣∣≤ |f(z1)−f(z2)|

≤
∣∣∣∣f(z1)−

1
|Ji|

∫
Ji

f(x) dx
∣∣∣∣+

∣∣∣∣f(z2)−
1
|Ji|

∫
Ji

f(x) dx
∣∣∣∣

≤ 2c(s, p, y) |Ji|
s
q ‖∇u‖Lp(Qi). �



76 Ugo Bindini and Tapio Rajala

4. Curve-condition, porosity and Ahlfors-regular sets

In this section we study the case where the set E=C×F consists of a set F of
positive measure and a zero measure set C with more regularity. The most regular
case is when C is (Ahlfors) s-regular, that is, if there exists a constant cR>0 so
that

1
cR

rs ≤Hs((x−r, x+r)∩C)≤ cRr
s

for every x∈C and 0<r<diam(C). The set C in [19, Lemma 4.4] was not exactly
s-regular, but almost. A small perturbation to s-regularity was required there to
have the nonremovability at the critical exponent.

In [19, Lemma 4.4], the p-removability of C×F was proven via the following
sufficient condition from [16], [24]. Suppose E⊂R

2 is closed set of measure zero and
2≤p<∞. If there exists a constant cΓ>0 such that for every z1, z2∈R2\E there
exists a curve γ⊂R

2\E connecting z1 to z2 and satisfying

(10)
∫
γ

dist(z, E)
1

1−p ds(z)≤ cΓ |z1−z2|
p−2
p−1 ,

then E is p-removable. If the above holds, we say that E⊂R
2 satisfies the curve

condition (10).
By adapting the proof in [19], we get a p-removability result that is independent

of the structure of F .

Theorem 4.1. Let C⊂R be a closed s-regular set with 0<s<1, and F⊂R

totally disconnected closed set. Then C×F is p-removable for every p> 2−s
1−s .

A slightly more general result for p-removability via the curve condition (10)
than the one stated in Theorem 4.1 is in terms of porosity. Recall that a set
C⊂R is called uniformly lower α-porous, if for every x∈C and r>0 there exists
y∈(x−r, x+r) so that (y−αr, y+αr)∩C=∅.

Theorem 4.2. Let C⊂R be a closed uniformly lower α-porous set and F⊂R

totally disconnected closed set. Then C×F is p-removable for every p>p̂, where

p̂>2 depends only on the parameter α.

Proof of Theorems 4.1 and 4.2. Both of the theorems are proven by verifying
the condition (10). Towards verifying this condition, let z1, z2∈R2\E. Write these
points in coordinates as z1=(x1, y1) and z2=(x2, y2). Let us abbreviate r=|z1−z2|.
Since F is totally disconnected and E is closed, we may assume that y1, y2 /∈F .

Notice that an s-regular set is uniformly lower porous. Thus, in both cases by
porosity of C there exists a point x∈(x1−r, x1+r) so that (x−αr, x+αr)∩C=∅.
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We now connect z1 to z2 by concatenating three line-segments γ1, γ2, and γ3. The
curve γ1 connects (x1, y1) to (x, y1), γ2 connects (x, y1) to (x, y2), and γ3 connects
(x, y2) to (x2, y2). The choice of x now gives∫

γ2

dist(z, E)
1

1−p ds(z)≤
∫
γ2

(αr)
1

1−p ds(z)= (αr)
1

1−p |y1−y2| ≤α
1

1−p r
p−2
p−1

for the vertical part γ2.
For the horizontal parts γ1 and γ3 we first show that the following condition

holds for s-regular sets C and for uniformly lower α-porous sets C with some 0<s<1:
there exists a constant cs<∞ such that for all 0<δ≤1 and every −∞<a<b<∞,
the set (a, b)\C contains at most csδ−s connected components of length more than
δ |b−a|.

Let us first show this for an s-regular set C. Suppose that {Ii}ni=1 are the
connected components of (a, b)\C of length more than δ |b−a|. For each i let vi be
the left-most point of Ii. The sets ((vi−δ |b−a| , vi+δ |b−a|)∩C)⊂[a−|b−a| , b+
|b−a|] are pairwise disjoint. Thus, by s-regularity (notice that the left-most vi
might not be in C)

n−1
cR

(δ |b−a|)s ≤Hs([a−|b−a| , b+|b−a|]∩C)<cR(2 |b−a|)s,

which gives the claim for s-regular sets C.
Let us now suppose that C is uniformly lower α-porous, fix δ and denote

by {Ii}ni=1 the intervals of (a, b)\C of length at least δ |b−a|, and by {Ji}∞i=1 the
remaining intervals of (a, b)\C. Consider the set

C ′ =
{
z+t : z ∈C, t∈

(
−δ

2 |b−a| , δ2 |b−a|
)}

.

By a result of Salli [22, Theorem 3.5], we have

(11) H1(C ′)≤ c(α) |b−a| δ1−s,

where s= log 2
log

(
2−α
1−α

)∈(0, 1) and c(α) is a positive constant depending on α. Observe

that
⋃

i Ji⊂C ′ and, for every interval Ii, |Ii\C ′|≤|Ii|− δ
2 |b−a|. Thus, using (11),

we have

|b−a|=
n∑

i=1
|Ii|+

∞∑
i=1

|Ji|=
n∑

i=1
|Ii\C ′|+H1(C ′)≤ |b−a|− 1

2nδ |b−a|+c(α) |b−a| δ1−s,

yielding n≤2c(α)δ−s.
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Let us then estimate the integral along γ1. Without loss of generality we may
assume that x1<x. Denote by {Ji}i the collection of open intervals constituting the
connected components of (x1, x)\C. Let k0∈Z be so that 2−k0<|x−x1|≤2−k0+1.
Then ∫

γ1

dist(z, E)
1

1−p ds(z)≤
∑
i

2
∫ |Ji|

0
t

1
1−p dt=2p−1

p−2
∑
i

|Ji|
p−2
p−1

≤ c(p)
∞∑

k=k0

#
{
i : 2−k−1 < |Ji| ≤ 2−k

}
2−k p−2

p−1

≤ c(p)
∞∑

k=k0

cs2(k−k0)s2−k p−2
p−1

≤ c(p)
∞∑

k=k0

cs2
(k−k0)

(
s− p−2

p−1

)
|x−x1|

p−2
p−1

≤ c(p, s) |x−x1|
p−2
p−1 ≤ c(p, s) |z1−z2|

p−2
p−1

as long as s< p−2
p−1 .

The integral along γ3 is handled analogously. �

We end this section by showing that the p-removability results that are proven
via the curve condition (10) give removability only for porous sets.

Proposition 4.3. Suppose that E=C×F⊂R
2 is a compact set satisfying the

curve condition (10) and that F⊂R is a totally disconnected set with positive

Lebesgue measure. Then C is uniformly lower α-porous for some α>0.

Proof. Let cΓ>0 be the constant in (10). Let y∈F be a Lebesgue density-point
of F and ε:=

√
2c1−p

Γ . Then there exists r0>0 such that for all 0<r<r0 we have

(12) H1((y−r, y+r)\F )<εr.

Let x∈C and 0<r<r0. Define z̃1=(x−r/2, y) and z̃1=(x+r/2, y), and select points
z1∈B(z̃1, r/4)\E and z2∈B(z̃2, r/4)\E. Let γ⊂R

2\E be a curve connecting z1
to z2 and satisfying (10). Define A:=[x−7r/8, x+7r/8]×[y−r/2, y+r/2] and d:=
max {dist(z, E) : z∈γ∩A}. Now, by (10)

d
1

1−p
r

2 ≤
∫
γ∩A

dist(z, E)
1

1−p ds(z)≤ cΓ |z1−z2|
p−2
p−1 ≤ cΓ(2r)

p−2
p−1 .

Thus,
d≥ 2c1−p

Γ r=
√

2εr,
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which together with (12) gives the ε-porosity of C at x at the scale r. From the
compactness of C it then follows that C is uniformly lower α-porous for some
α>0. �
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