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mirror principle (localization). Our results agree with B-model 
computations from solutions of Picard-Fuchs differential equa- 
tions constructed form the local geometry near a Fano sur- 
face within a Calabi-Yau manifold. We interpret the Gromov- 
Witten-type numbers from an enumerative point of view. We 
also describe the geometry of singular surfaces and show how 
the local invariants of singular surfaces agree with the smooth 
cases when they occur as complete intersections. 

1    Introduction 

"Local mirror symmetry" refers to a specialization of mirror symmetry 
techniques to address the geometry of Fano surfaces within Calabi-Yau 
manifolds. The procedure produces certain "invariants" associated to 
the surfaces. This paper is concerned with the proper definition and 
interpretation of these invariants. The techniques we develop are a 
synthesis of results of previous works (see [33], [42], [35], [37], [55]), with 
several new constructions. We have not found a cohesive explanation 
of local mirror symmetry in the literature. We offer this description 
in the hope that it will add to our understanding of the subject and 
perhaps help to advance local mirror symmetry towards higher genus 
computations. 

Mirror symmetry, or the calculation of Gromov-Witten invariants 
in Calabi-Yau threefolds,1 can now be approached in the traditional 
("B-model") way or by using localization techniques. The traditional 
approach involves solving the Picard-Fuchs equations governing the be- 
havior of period integrals of a Calabi-Yau manifold under deformations 
of complex structure, and converting the coefficients of the solutions 
near a point of maximal monodromy into Gromov-Witten invariants 
of the mirror manifold. Localization techniques, first developed by 
Kontsevich [44] and then improved by others [25], [50], offer a proof- 
without reference to a mirror manifold - that the numbers one obtains 
in this way are indeed the Gromov-Witten invariants as defined via the 
moduli space of maps. 

^e restrict the term "mirror symmetry" to mean an equivalence of quantum 
rings, rather than the more physical interpretation as an isomorphism of conformal 
field theories. 
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Likewise, local mirror symmetry has these two approaches. One 
finds that the mirror geometry is a Riemann surface with a meromor- 
phic differential. From this one is able to derive differential equations 
which yield the appropriate numerical invariants. Recall the geome- 
try. We wish to study a neighborhood of a surface S in a Calabi-Yau 
threefold X, then take a limit where this surface shrinks to zero size. 
In the first papers on the subject, these equations were derived by first 
finding a Calabi-Yau manifold containing the surface, then finding its 
mirror and "specializing" the Picard-Fuchs equations by taking an ap- 
propriate limit corresponding to the local geometry. Learning from this 
work, one is now able to write down the differential equations directly 
from the geometry of the surface (if it is toric). We use this method to 
perform our B-model calculations. 

We employ a localization approach developed in [50] for computing 
the Gromov-Witten-type invariants directly (the "A-model"). Since 
the adjunction formula and the Calabi-Yau condition of X tell us that 
the normal bundle of the surface is equal to the canonical bundle (in 
the smooth case), the local geometry is intrinsic to the surface. We 
define the Gromov-Witten-type invariants directly from Ks, following 
[25], [50]. We require S to be Fano (this should be related to the 
condition that S be able to vanish in X), which makes the bundle Ks 
"concave," thus allowing us to construct cohomology classes on moduli 
space of maps. We consider the numbers constructed in this way to be 
of Gromov-Witten type. 

In section 2, we review the mirror principle and apply it to the 
calculation of invariants for several surfaces. In section 3, we give the 
general procedure for toric varieties. We then calculate the invariants 
"by hand" for a few cases, as a way of checking and illucidating the 
procedure. In section 5, we describe the excess intersection formula and 
show that the local invariants simply account for the effective contri- 
bution to the number of curves in a Calabi-Yau manifold due to the 
presence of a holomorphic surface. 

In section 6, we develop all the machinery for performing B-model 
calculations without resorting to a specialization of period equations 
from a compact Calabi-Yau threefold containing the relevant local ge- 
ometry. Actually, a natural Weierstrass compactification exists for toric 
Fano geometries, and its decompactification (the limit of large elliptic 
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fiber) produces expressions intrinsic to the surface. In this sense, the 
end result makes no use of compact data. The procedure closely resem- 
bles the compact B-model technique of solving differential equations 
and taking combinations of solutions with different singular behaviors 
to produce a prepotential containing enumerative invariants as coeffi- 
cients. Many examples are included. 

In order to accommodate readers with either mathematical or physi- 
cal backgrounds, we have tried to be reasonably self-contained and have 
included several examples written out in considerable detail. Algebraic 
geometers may find these sections tedious, and may content themselves 
with the more general sections (e.g., 3, 4.2, 6.3). Physicists wishing to 
get a feel for the mathematics of A-model computations may choose to 
focus on the examples of section 4.1. 

2    Overview of the A-model 

In this section, we review the techniques for calculating invariants using 
localization. We will derive the numbers and speak loosely about their 
interpretation, leaving more rigorous explanations and interpretations 
for later sections. 

For smooth hypersurfaces in toric varieties, we define the Gromov- 
Witten invariants to be Chern classes of certain bundles over the moduli 
space of maps, defined as follows. Let Mo,o(d] P) be Kontsevich's mod- 
uli space of stable maps of genus zero with no marked points. A point 
in this space will be denoted (C, /), where / : C —>• P, P is some toric 
variety, and [/(C)] = d G ^(P)- Let Mo,i(d; P) be the same but with 
one marked point. Consider the diagram 

Mofi(d;P) <— Mo,i(d;P) —> P, 

where P is the toric variety in question, 

ev:Mo,i{d;~P)^~P 

is the evaluation map sending (C, /, *) i-> /(*), and 
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is the forgetting map sending (C, /, *) *-> (C, /). Let Q be a Calabi-Yau 
defined as the zero locus of sections of a convex2 bundle V over P. Then 
C/^is the bundle over Mo,o(d]P) defined by 

Ud = P*ev*V- 

The fibers of Uj over (C, /) are H0(C, f*V). We define the Kontsevich 
numbers Kj by 

^o,o(d;P) 

It is most desirable when dim .A4o,o(d; P) = rankt/^, so that iiQ is the 
top Chern class. 

The mirror principle is a procedure for evaluating the numbers Kd 
by a fancy version of localization. The idea, pursued in the next sec- 
tion, is as follows. When all spaces and bundles are torically described, 
the moduli spaces and the bundles we construct over them inherit torus 
actions (e.g., by moving the image curve). Thus, the integrals we de- 
fine can be localized to the fixed point loci. As we shall see in the next 
section, the multiplicativity of the characteristic classes we compute 
implies relations among their restrictions to the fixed loci. The reason 
for this is that the fixed loci of degree 7 maps includes stable curves 
constructed by gluing degree a and (3 maps, with a + (5 = 7. One then 
constructs an equivariant map to a "linear sigma model," which is an 
easily described toric space. Indeed, the linear sigma model is another 
compactification of the smooth stable maps, which can be modeled as 
polynomial maps. We then push/pull our problem to this linear sigma 
model, where the same gluing relations are found to hold. The notion 
of Euler data is any set of characteristic classes on the linear sigma 
model obeying these relations. They are not strong enough to uniquely 
determine the classes, but as the equivariant cohomology can be mod- 
eled as polynomials, two sets of Euler data which agree upon restric- 
tion to enough points may be thought of as equivalent ("linked Euler 
data"). It is not difficult to construct Euler data linked to the Euler 
data of the characteristic classes in which we are interested. Relating 
the linked Euler data, and therefore solving the problem in terms of 
simply-constructed polynomial classes, is done via a mirror transform, 

2 "Convex" means that H1 (C, f*V)=0 for (C, /) € .Mo,o (d; P). For the simplest 
example, P = P4 and V = 0(5), as in the next subsection. 
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which involves hypergeometric series familiar to B-model computations. 
However, no B-model constructions are used. These polynomial classes 
can easily be integrated, the answers then related to the numbers in 
which we are interested by the mirror transform. This procedure is 
used to evaluate the examples in this section which follow, as well as 
all other A-model calculations. 

Using the techniques of the mirror principle, we are able to build 
Euler data from many bundles over toric varieties. Typically, we have 
a direct sum of 0^ £>(/;) and 0^. £>(-%) over Pn, with l^kj > 0. In 
such a case, if J2i U + Ylj kj = n + 1 then we can obtain linked Euler 
data for the bundle C/^ whose fibers over a point (/, C) in .Mo,o(d; Pn) 
is a direct sum of ©^(C,/*^)) and fyH^CJ+Oikj)). In this 
situation, the rank of the bundle (which is J2i(dk + 1) + Ys(dkj — 1)) 
may be greater than the dimension D of .Mo,o(d; Pn) (which is D = 
(n + l){d+ 1) - 4). In that case, we compute the integral over moduli 
space of the Chern class cD(U^). The interpretations will be discussed 
in the examples. 

We begin with a convex bundle. 

2.1     (9(5) -+ P4 

Recall that this is the classic mirror symmetry calculation. We compute 
this by using the Euler data Pd = Yl^tifiH - m) As the rank of Ud 
equals the dimension of moduli space, we take the top Chern class of 
the bundle and call this K^ This has the standard interpretation: given 
a generic section with isolated zeros, the Chern class counts the number 
of zeros. If we take as a section the pull back of a quintic polynomial 
(which is a global section of 0(5)), then its zeros will be curves (C, /) on 
which the section vanishes identically. As the section vanishes along a 
Calabi-Yau quintic threefold, the curve must be mapped (with degree 
d) into the quintic - thus we have the interpretation as "number of 
rational curves." However, the contribution of curves of degree d/k, 
when k divides d, is also non-zero. In this case, we can compose any 
k—fold cover of the curve C with a map / of degree d/k into the quintic. 
This contribution is often called the "excess intersection." To calculate 
the contribution to the Chern class, we must look at how this space of 
A;—fold covers of C (which, as C = P1 in the smooth case, is equal to 
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Mo.oik^P1)) sits in the moduli space (i.e., look at its normal bundle). 
This calculation yields 1/A:3, and so if n^ is the number of rational 
curves of degree d in the quintic, we actually count 

k\d 

This double cover formula will be discussed in detail in section 5.1. 

In the appendix, several examples of other bundles over projective 
spaces are worked out. In the cases where the rank of Ud is greater 
(by n) than the dimension of moduli space, we take the highest Chern 
class that we can integate. The resulting numbers count the number of 
zeros of SQ A ... A sn, i.e., the places where n + 1 generic sections gain 
linear dependencies. A zero of so A ... A sn represents a point (C, /) 
in moduli space where /(C) vanishes somewhere in the n-dimensional 
linear system of so, • • • ? Sn- See the appendix for details. We turn now 
to the study of some concave bundles. 

2.2    0(-3) -> P2 

We think of 0(—3) as ifp2, the canonical bundle. This case is rele- 
vant to Calabi-Yau manifolds containing projective surfaces. A tubular 
neighborhood of the surface is equivalent to the total space of the canon- 
ical bundle (by the adjunction formula and the Calabi-Yau condition 
ci = 0). 

In this case, the rank of Ud (which is the bundle whose fiber over 
(C,/) is H1(C,f*Kp2)) is equal to the dimension of moduli space, so 
we are computing the top Chern class Kd = fj^—(dp*) csd-i(Ud)' From 
the KdS we arrive at the following n^'s. 
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d Kd 

1 3 
2 -6 
3 27 
4 -192 

5 1695 

6 -17064 

7 188454 

8 -2228160 

9 27748899 

10 -360012150 

Table 1. Local invariants for K^. 

The interpretation for the n/s is not as evident as for positive bun- 
dles, since no sections of Uj can be pulled back from sections of the 
canonical bundle (which has no sections). Instead, we have the follow- 
ing interpretation. 

Suppose the P2 exists within a Calabi-Yau manifold, and we are 
trying to count the number of curves in the same homology class as d 
times the hyperplane in P2. The analysis for the Calabi-Yau would go 
along the lines of the quintic above. However, there would necessarily 
be new families of zeros of your section corresponding to the families of 
degree d curves in the P2 within the Calabi-Yau. These new families 
would be isomorphic to M.Qfl(d, P2). On this space, we have to compute 
the contribution to the total Chern class. To do this, we would need 
to use the excess intersection formula. The result (see section 5.2) is 
precisely given by the Kj. Let us call once again n^ the integers derived 
from the Kd. Suppose now that we have two Calabi-Yau's, X0 and 
Xi, in the same family of complex structures, one of which (say Xi 
contains) a P2. Then the difference between nd(Xo) and nd(Xi) should 
be given by the rid- 

There are Calabi-Yau's, however, which generically contain a P2. 
The simplest examples are the following elliptic fibrations over a P2, 
A.) the degree 18 hypersurface in denoted by 
Pe 9111[18], with x = -540, h21 = 272, h11 = 2(0) 
B.j Pw,!,!^], X = "324, h21 = 165, hn = 3(1) 
C.) P3,3,i,i,i[9], X = -216, h21 = 112, h11 = 4(2). 
h11 contributions in brackets are non-toric divisors, in these cases they 
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correspond to additional components of the section, see below. 

A B C 
dF       0    1 2 0   1 2 0   1 2 

dB 

0 540 540 216 324 162 162 

1 3 -1080 143370 6 -432 10260 9 -324 3645 

2 -6  2700 -574560 -12 1080 -41688 -18  810 -14904 

3 27 -17280 5051970 54 -6912 378756 81 -5184 137781 

4 -192 154440- -57879900 -384 61776 - -4411260 -576 46332 - -1617570 

Table 2. Invariants of the three elliptic fibrations over P2 (B and F 
denote the class of a section and the elliptic fiber, respectively). 

For such Calabi-Yau's the Gromov-Witten invariants of the homol- 
ogy class of the base would be a multiple of the invariants for i^6a5e. 
In the above examples, we see from the first column the different mul- 
tiples which arise as we are counting curves in the homology class of a 
curve which is dual to the hyperplane class of the base P2. This ho- 
mology class sits inside a section of the elliptic fibration, and the mul- 
tiplicities come from the fact that the A,B,C fibrations admit 1,2,3 
sections. For example, if we write the ambient toric variety for case 
C as P((Dp2 © (9p2 © (9p2(—3)), a section is given by one of the three 
components of the vanishing locus of the coordinate on the fiber that 
transforms as 0{—3) over P2. 

Another interpretation of this number is as follows. The space 
Hl(Cif*K) represents obstructions to deformations of the curve C. 
Therefore, the top Chern class of the bundle whose fibers are Hl{C, f*K) 
represents the number of infinitesimal deformations in the family which 
represent finite deformations. Note this interpretation is equivalent to 
the one above. The numbers represent the effective number of curves 
of degree d in the Calabi-Yau "coming from" the P2. 

This procedure can be performed for any Fano surface. The Hirze- 
bruch (rational, ruled) surfaces are described in the Appendix 9. Next 
we discuss the general toric case. 
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3    The Mirror Principle for General Toric 
Manifolds 

In this section, we review the mirror principle for computations of 
Gromov-Witten invariants of a toric variety. For a summary of what 
follows, we refer the reader to the start of section 2. Our treatment is 
somewhat more general than that of [50], as we consider general toric 
varieties, though we omit some proofs which will be included in [51] . 

Throughout this section, we take our target manifold to be a smooth, 
toric and projective manifold P. That is, we are interested in rational 
curves that map into P. Let us write P as a quotient of an open affine 
variety: 

where G = (C*)Nc-M. We can write the ith action of G as 

(XU . . .  , XNc) -► (lA1*!, . . .  , Vqi>NCXNc), 

where v is an arbitrary element of C*. There is a T = (S1)1*0 action 
on P induced from its usual action on C^. This action has Nc fixed 
points which we denote by pi,... IPNC For example, for P = P4, 
T is (S1)5 and the fixed points are the points with one coordinate 
nonvanishing. 

The T-equivariant cohomology ring can be obtained from the ordi- 
nary ring as follows. Write the ordinary ring as a quotient 

Q[i?i,... ,BNC] 

I 

where Bi is the divisor class of Xi = 0 and / is an ideal generated by 
elements homogeneous in the B^s. For example, for P4 we have the 
ring 

 Q[B1,...,B5]  

(jBi — £2, Bi — #3, Bi — i?4, Bi — £5, B1B2B3B4B5) 

Let Ji, i = 1,... , M be the basis of nef divisors in H2(P, Z). We can 
write the B^s in terms of the J^'s: 

Bi — / v bijJj. 
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The equivariant ring is then 

Q[/ci,... ,ttAf ,Ai,... ,\NC] 

HT(P) = &  

where /T is generated by ^ ftjAj for i = 1,... , A^c and the nonlinear 
relations in / with Bi replaced by "^bijKj — At. In the case of P4 this 
is 

QfoAi,... >A5] 

Clearly, setting Aj to zero in HT(P) gives us the ordinary ring in which 
Kj can be identified with Jj. 

Having described the base and the torus action, we also need a 
bundle V to define the appropriate Gromov-Witten problem. For in- 
stance, if we are interested in rational curves in a complete intersection 
of divisors in P, then V is a direct sum of the associated line bundles. 
For local mirror symmetry, we can also take a concave line bundle as 
a component of V. More generally, we take V = V+ © V~, with V+ 

convex and V~ concave. 

Before proceeding to the next section, we introduce some notation 
for later use. Let Fj be the associated divisors of the line bundle sum- 
mands of V, by associating each line bundle to a divisor in the usual 
way. We write Fj as greater or less than zero, depending on whether it 
is convex or concave. Homology classes of curves in P will be written in 
the basis Hj Poincare dual to Jj. For instance, Mo,o(d] P) is the mod- 
uli space of stable maps with image homology class ^ ck-fft- Finally, x 
denotes a formal variable for the total Chern class. 

3.1    Fixed points and a Gluing Identity 

The pull-back of V to Mo,i(d]'P) by the evaluation map gives a bun- 
dle of the form e^*(y+) © ev*(V~). Then, in terms of the forgetful 
map from Aio,i(d] P) to .Mo,o(d; P)? we obtain a bundle on .Mo,o(d; P) 
p*ev*(V+) ®'R}p*ev*(V'~). The latter is the obstruction bundle Ug. 

On .Mo,o(d;P)j there is a torus action induced by the action on P, 
i.e., by moving the image curve under the torus action. A typical fixed 
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point of this action is (/^P1)3, where /(P1) is a P1 joining two T-fixed 
points in P. 

Another type of fixed point we consider is obtained by gluing. Let 
(fuCuXi) eMo,i(r;P) and C/^G,:^) € Mofi(d- f;P) be two fixed 
points. Then fi(xi) is a fixed point of P, i.e., one of the p^'s, say 
Pk. If f2(002) is also pk, let us glue them at the marked points to obtain 
(/, C1UC2) G Mofi(d; P), where /|Cl = /i, /|C2 = /2 and f(x1 X2) = Pk- 
Clearly, (/,Ci U C2) is a fixed point as (/i,Ci,xi) and (/2,C2,X2) are 
fixed points. Let us denote the loci of fixed points obtained by gluing 
as above FL(pk, r,d — r). Over Ci U C2, there is an exact sequence for 
V: 

o-+rv^ f*v e f;v -► v\fl{xl)=Mx2) -> o. (2) 

The long exact cohomology sequence then gives us a gluing identity 

^MUj) = oriUrMU^), (3) 

where 0? = CT(^
+
)/CT(^~) is the T-equivariant Chern class of V. 

This relation will generate one on the linear sigma model to which 
we now turn. 

3.2    The spaces Mj and JV^ 

Because Mo,o(d]~P) is a rather unwieldy space, the gluing identity we 
found in the last section seems not to be useful. However, we will 
find, using the gluing identity, a similar identity on a toric manifold 
Nj. We devote this section mainly to describing Nj and its relation to 

M),o(djP). 

First we consider Mj= .Mo,o((l5 d); P1 x P). We will call TTI and 7r2 
the projections to the first and second factors of P1 x P respectively. 
Since 7r2 maps to P, one might consider a map from M^ to .Mo,o(d; P) 
sending (/, C) to (7^ o /, C). However, this is not necessarily a stable 
map. If it is unstable, ^o f maps some components of C to points, so 

3 We apologize for reversing notation from the previous section, and writing (/, C) 
instead of (C, /). This is to agree with [50] which we closely follow in this section. 
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if we let C be the curve obtained by deleting these components, there 
is a map TT : Mj -» Mo$(d; P) which sends (/, C) to fa o /, C). 

Let us now recall some facts about maps from P1. A regular map 
to P is equivalently a choice of generic sections of Opi(f*Bi • i^pi), 
i = l,... , Nc- For example, a map of degree d from P1 to P4 gives five 
generic sections of C?pi(d), i.e., five degree d polynomials. If one takes 
five arbitrary sections, constrained only by being not all identically zero, 
one gets a rational map instead. Generalizing this, arbitrary sections 
of Opi(f*Bi • Hpi) which are not in A give rational maps to P. The 
space Nj is the space of all such maps with f*(Ji) = diJpi, where 
Jpi • if pi = 1. Explicitly, we can write it as a quotient space. Defining 
D = Y^ djHj, we have 

e^0(p1,q(si.D))-A 
G 

N.=    Wi11       V17       l^W   -^))    -   ^ /^ 

There is a map ^ : Mj —>- iV^, which we now describe. Take (/, C) G 
Mj and decompose C as a union Co U Ci U ... U CN of not neccesarily 
irreducible curves, so that Cj for j > 0 meets Co at a point, and Co is 
isomorphic to P1 under TTIO/. Since Co = P1,7r20/|co can ^e regarded 
as a point in iVjy^/fcb)]? where [/i] denotes the homology class of fi. We 
can also represent 7T2 0 flcj for j > 0 by elements in N^o/^.)], except 
that since the maps are to have domain Co, in this case we take the 
rational map from Co that vanishes only at Xj = Cj fl Co and belongs 
to NfaoftCj)]. 

Having now N + 1 representatives, compose them via the map 

iVfi ® N?2 -» Nf1+f2 

given by multiplying sections of 0(Bi). The result, since J2i=ofa 0 

/(C^] = D, is a point in iV^. Thus we have obtained a map from Mj 
to Nd, 

To illustrate, let us take the case of P4 again. Here (/, C) is a 
degree (1, d) map. Let us decompose C as before into Co U ... U CAT, 

with Xi = Ci Pi Co and TTI o /|Co an isomorphism. The image of ^ is 
a rational morphism given as a map by 7r2 o f\Co except at the points 
x^ At Xi, a, generic hyperplane of P4 pulled back vanishes to the order 
given by the multiplicity of fa o /(Ci)] in terms of a generator. 
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So far we have discussed the spaces and the maps between them. 
We now briefly describe the torus actions they admit. Clearly, Mj 
has an Sl x T action induced from an action on P1 x P. In suitable 
coordinates, the Sl action is [WQJ ^i] —* [eaWQ,Wi[. 

Since sections of (Dpi (1) is also a one-dimensional projective space, 
there is an S*1 action on ^(P1, C?pi(l)). This induces an action on 
sections of (9pi (d). Njis defined by the latter, so it admits an S'1 action. 
In addition, it has a T-action induced from the action on O(Bi). 

The map TT is obviously T-equivariant, since the T-actions are in- 
duced from P. It is shown in [51] that ip is (51 x T)-equivariant. 
Summarizing, we have the following maps: 

Nd^ Mj-^Mofiti?) **- MoMP) -^ P. 

Pushing and pulling our problem to Nj, we define 

Qi=1>i**or(Ui). 

3.3    Euler data 

In this section we will derive from the gluing identity a simpler identity 
on Nj. Recall that the gluing identity holds over fixed loci FL(pi, r,d — 
r) G Mofi(d\ P). Therefore, an identity holds over 7r~1(FL(pi, r,d — r)) 
in Mg under pull-back by TT. We next turn to describing a sublocus of 
7r~l(FL(pi,r,d — r)) which, as we will see later is mapped by ip to a 
fixed point in JV^. 

Let Fpuf denote the fixed point loci in Mo,i(r] P) with the marked 
point mapped to p^ Let (/i, Cu xx) G FPit? and (/2, C2, X2) G Fpij_f be 
two points. We define a point (/, C) in Mj as follows. For C we take 
(Co = P1) UCi UC2, with Co flCi = xi and Co nC2 = rrs. For the map 
/, we define it by giving the projections TTI O / and ^2° f- We require 
TTI o /(Ci) = 0, TTI o /(C2) = 00 and TTI O /|CO be an isomorphism. This 
"fixes" TTI o /, since any other choice is related by an automorphism of 
the domain curve preserving Xi and X2, which is irrelevant in Mj. We 
require 1x2 ° f to map Ci as fu C2 as /2 and Co to fi(xi). Clearly, TT 

maps (/, C) to a point in FL(pi,r,d - f).   Let us denote the loci of 
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such (/, C)'s by MFL(pi, r,d — r). By construction, it is isomorphic to 
FVif x Fpij_f. 

We verify (/, C) is a fixed point. fi(Ci) and pi are fixed in P, so / is 
T-fixed. The 51-action fixes only 0 and oo on the first factor of P1 x P. 
Nevertheless, the point (/, CQ U CI U C2) remains fixed under the S'1 

action, as we need to divide out by automorphisms of Co preserving Xi 
and X2. 

We now compare the maps just constructed with the fixed points 
of Ng. It will be most convenient to do so by describing the latter 
in terms of rational morphisms. So take a point in iV^, viewed as a 
rational morphism from Co = P1. Let xi,... , x^ be the points where 
it is undefined. At x^ the chosen sections of 0{Bj'D) vanish to certain 
orders, including possibly zero. A generic section of 0(Jj • D) = 0(dj) 
vanishes to order, say rj at xi. Any section of a line bundle 0(L) pulled 
back by the map then vanishes at xi at least to order L • Ylrj^j' 

Therefore the rational morphism is equivalent to the data of a reg- 
ular map from Co and a curve class for each bad point. The classes for 
the bad points indicate the multiplicity of vanishing of a generic section 
of a pulled-back line bundle. Altogether, the class of the image of the 
regular map and the curve classes we associate to the bad points sum 
to D, since a generic section of O(L) must have exactly L • D zeroes. 

Now we can deduce the fixed points of iV^. The T-action moves 
the image of a rational morphism, whereas the S'1 action rotates the 
domain P1 about an axis joining 0 and 00. So a fixed point is a rational 
map, undefined at 0 and 00, whose image is a fixed point of P. Let us 
denote them by p^ where pi denotes a fixed point of P, and YlriHi 
determines orders of vanishing of pulled-back line bundles at the point 
0 G P1. Clearly, ip maps the fixed points in Mj* discussed earlier to the 
fixed point p^f. 

We now use the Atiyah-Bott formula for localization to relate re- 
strictions of Q^to p^? (which we denote by Qjipi,?)) to cri^Uj). Ex- 
plicitly, 

where ^>Pi f is the equivariant Thorn class of the normal bundle of pif 
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in iV^. To evaluate the last integral, we need the equivariant euler class 
of the normal bundle of MFL(pi, r, d — r) in Mj. 

Since MFLfa, r,d—r) = FPifXFpij_f, we have contributions from 

the normal bundles of FPif G M^i(r\ P) and F  j_f G .Mo,i(d — f; P). 

They are respectively e{N{FVifjM^i{r\ P))) and e{N{Fpi^/~M^1{d- 

f; P))). Points in MFL(pi, f, d—r) have domain of the form C0UC1UC2, 
where Ci PI Co = £1, and C2 fl Co = X2. Now let Lf denote the line 
bundle on ./Wo,i(r;P) whose fiber at (/i,Ci,a;i) is the tangent line at 
xi* Then we can write the contributions from deforming xi and X2 as 
e(Lf ®TXlCo) = a + Ci(Lf) and a + Ci(L^_f), respectively. In addition, 
automorphisms of Co which do not fix xi and X2 need to be included. 
They can be shown to give weights of TXICQ and TX2CQ, SO there is 
an extra factor of (a)(—a). Finally, normal directions which move the 
image of the marked point from pi have to be excluded, so we divide 
by the weights of TPiP, 

This yields, after using (3), 

nv(v,)QMr) = ^PM*,/^ EI _ e{Nima + CliLf)) 

We introduce some more notation. Let «. r be the member of 
the S1 x T equivariant cohomology ring of Nj whose weight at the 
fixed point p^f is Kj(pi) + Vja. Clearly, K^Q = K,J. The identity 
e(TViY)e{piflNd = e(pif/N?)e(piig/Nj_f) then implies 

&  (Pi)Qj(Pif) = QriPi,o)Qd-r(Pi,o)- (5) 

Here the overbar - is an automorphism of the 5'1 x T equivariant 
cohomology ring with a = — a and 'K~J= KJJ- A sequence of equivari- 
ant cohomology classes satisfying (5) is called in [50] a set of f2y-Euler 
data. 
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3.4    Linked Euler data 

If we knew the values of Qj at all fixed points, we would also know 
Qj as a class. Since we do not know this, we will use equivariance to 
compute Qj at certain points, for example, those that correspond to 
the T-invariant P^s in P. It turns out that this is also sufficient, as we 
will find Euler data which agree with Q^at those points, and a suitable 
comparison between the two gives us the rest. 

Before we begin the computation, we first describe a T-equivariant 
map from N$ — P to iV^. Sections of 0(Bi • D) over P1 are polynomials 
in WQ and Wi, where w^ and Wi are as before coordinates so that the 51 

action takes the form [tuo? ^i] —)> [eawo, wi]. Each polynomial contains 
a unique monomial invariant under the Sl action. By sending the 
coordinates of a point to the coefficients of the invariant monomials, 
we hence obtain a map Ig from iVg to iV^. 

We begin with the case of a convex line bundle 0(L), where L 
denotes the associated divisor. Let (/^P1) be a point in A4o,o(rf;P) 
with /(P1) being a multiple of the T-invariant P1 joining pi and pj 
in P. The fiber of the obstruction bundle at (Z,?1) is H*(O{L - £>)), 
which is spanned in appropriate coordinates for the P1 by UQUi'D~k, 
k = 0,... , L - D. 

Choose a basis so that ui = 0 is mapped to p;, and UQ — 0 mapped 
to pj. Since the section u^'D does not vanish at u\ = 0, its weight is 
equal to the weight of L at p^ which we denote by L(pi). Similarly, 
Ui'D has weight L(pj). Hence the induced weight on UI/UQ is (L(pj) — 
L(pi))/(L • D), giving us the weights of all sections. 

Since (/, P1) is fixed by T, the corresponding loci '0(7r~1((/, P1))) in 
iVj*is, by equivariance, fixed by a dimT subgroup of S1 x T. The points 
in ip(7r~l((f, P1))) represent a regular map from a P1 to the T-invariant 
P1 joining pi and pj. Therefore any two points in '0(7r_1((/, P1))) 
differ by an automorphism of the domain. Explicitly, we can consider 
coordinates [u^^i] as before. Let r] denote the point which sends 
[WQ = 1,11/1 = 0] to Pi and [WQ = 0,^i = 1] to pj. Any other point, 
thought of as a map, factors via rj by an automorphism [ii/o,Wi] —> 
[awo + bwi, CWQ + dwi]. We can therefore find the relevant subgroup of 
S'1 x T by choosing the element of S'1 to cancel the induced weight of 
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T on WI/WQ. Explicitly, we have a = (L(pi) — L(pj))/(L • D), so that 
the value of Qj is 

^{x + Lip^ + ka). 
k 

The weight of K^ under (51 x T)/(a - (L(p<) - L(^))/(L • D)) at 
any point in '0(7r~1((/, P1))) is the same as its weight under T at the 
corresponding point obtained by setting WQ to zero. For 77, setting WQ 

to zero gives a point in Ng which can be thought of as a rational map 
to pj. Since Ig is equivariant, the weight of Ki j at this point is the same 
as the weight of ^ at pj. Thus, as ^ h^iipj) — L(pj), the value of Q^ 
is the same as the value of Pj, where Pj is given by 

n(x + J2li^d + ka) 

To simplify our computations, we take a partial nonequivariant limit 
by replacing ^ with J^. Then Pj reduces to r(x, L, L • D + 1,0), where 
F is defined as follows: 

fltifo+ * + (*-!)")     if i>J 
r(y,K,i,j)=h i£i=j 

[n&to+K+k*) if*<j. 

Similarly, the case of a concave line bundle gives T(x, L, —L • C, 1). 
For a direct sum, since the Chern class is multiplicative and the product 
of the cases just considered is a valid Euler data, the product gives us 
the appropriate value of Pg. 

Let us form a series: 

HGA[Q](f) 

\DeNE(P)-0 i ) 

(6) 

where by Qj we mean its partially nonequivariant limit, as described 
above, and NE(P) is the set of curve classes in P which have nonneg- 
ative intersection with the effective divisors of P. 
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A similar series can be constructed from the partial nonequivariant 
limit of Pj as follows: 

HGB%=e-^Jila{      Y,      Xln^Bii-Bi-D^) 
\DeNE(P)-0   » 

•  H ffaFu-Fi-D,!) 
i:Fi<0 

i:Fi>0 / 

If we take the example of the quintic in P4, dimi^P, Z) = 1, so 
we have 

HGB[t] = e-«° fc n^i^ + Sg-ma) + ^ (7) 

For local mirror symmetry, we can take V = Kp2, giving 

UGBW = e->*(Ylrt2<'-3a + mi-±).        (8) 

To compare HGB^ and HGA[f], let us expand HGB\j\ at large 
a, keeping terms to order l/a. It is shown in [51] that HGA\T\ has 
the form ^^(1 — (^T^)/a). Equating the two expressions gives us 
f in terms of t. Then setting HGA[f(j)) = HGB[j?\ gives us QD as a 
function of Ji and a, from which we may obtain Kp [51]: 

(2-E^)^ 
a3 = ^ c-E^^/^jJJ f (0, B,, -Bj ■ D, 0).      (9) 
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4    Explicit Verification Through Fixed- 
Point Methods 

4.1    Some examples 

Though the techniques of section one are extremely powerful, it is often 
satisfying - and a good check of one's methods - to do some compu- 
tations by hand. In this section, we outline fixed point techniques for 
doing so, and walk through several examples. In this way, we have ver- 
ified many of the results in the appendices for low degrees (d = 1, 2,3). 
Readers familiar with such exercises may wish to skip to the next sub- 
section. 

All the bundles described in section 2 are equivariant with respect 
to the torus T-action which acts naturally on the toric manifold P. Let 
t G T be a group element acting on P. Then if (C, /, *) G .Mo,i(<i; P) 
and (C, /) G .Mo,o(d; P) the induced torus action sends theses points to 
(C, to/, *) and (C,to/), respectively. The bundle actions are induced 
by the natural T-action on the canonical bundle, K. 

Now that we understand the torus action, what are the fixed point 
theorems? First of all, we work in the realm of equivariant character- 
istic classes, which live in the equivariant cohomology ring H^(M) of a 
manifold, M. Let </> G H^(M) be an equivariant cohomology class. The 
integration formula of Atiyah and Bott is 

/ 0 = V   f   (   ^ 

where the sum is over fixed point sets P, ip is the embedding in M, 
and e(z/p) is the Euler class of the normal bundle vp along P. For P 
consisting of isolated points and (/> the Chern class (determinant), we 
get the ratio of the product of the weights of the T-action on the fibers 
at P (numerator) over the product of the weights of the T-action on the 
tangent bundle to M at P (denominator). One needs only to determine 
the fiber and tangent bundle at P and figure out the weights. 

Let's start with degree one (Ki) for the quintic (0(5) —>► P4). Let 
Xi i-> afXi, i = 1,... ,5, be the (C*)5 action on C5 (P4 = P(C5)), 
where a G (C*)5 and the A^ are the weights. The fixed curves are P^-, 
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where i,j run from 1 to 5 : P^ = {Xk = 0, k j^ z,j}. Since / is a 
degree one map, we may equate C = /(C) and the pull-back of 0(5) is 
therefore equal to (9(5) on Ce. Recall the bundle (9(5) on P1. Its global 
sections are degree five polynomials in the homogeneous coordinates 
[X, F], so a convenient basis is {XaF5~a, a = 0,... , 5} (or ua in a local 
coordinate u — X/Y). The weights of these sections are a/i + (5 — a)i/, 
if /x and i/ are the weights of the torus (C*)2 action on C2. The map 
/ : Ce -> P4 looks like [X,Y] \-> [... , X,... , F,... ] with non-zero 
entries only in the ith and jth positions. Therefore, the weights of Ui 
at the fixed point (C, /) are aA^ + (5 — a)Aj, a = 0... 5. To take the 
top Chern class we take the product of these six weights. 

We have to divide this product by the product of the weights of the 
normal bundle, which in this case (the image /(C) is smooth) are the 
weights of H0(C,f*N), where N is the normal bundle to /(C). More 
generally, we take sections of the pull-back of TP4 and remove sections 
of Tc. The normal bundle of P^- is equal to (9(1) 0 (9(1) 0 0(1), each 
corresponding to a direction normal to /(C) and each of which has two 
sections. Let w = Xj/Xi be a coordinate along C = Pij on the patch 
Xi ^ 0. If Zk = Xk/Xi is a local coordinate of P4, then delk = ^- is a 
normal vector field on C with weight A*. — A*, wdk is the other normal 
vector field corresponding to the direction A;, and has weight A^ — \j. 

Summing over the (       J = 20 choices of image curve P^ gives us 

1"^n^(^-^(A,-AJ)-
2875' 

the familiar result. 

Let's try degree two (K2) for K^2. The dimension of A4o,o(^;P2) is 
3d — 1 = 5 for d — 2. What are the fixed points? Well, the image of 
(C, /) must an invariant curve, so there are two choices for degree two. 
Either the image is a smooth P1 or the union of two P^s. There are 

three fixed points on P2 and therefore 11=3 invariant P^-'s.   If 

the image is a smooth P1, the domain curve may either be a smooth 
P1, in which case the map is a double cover (let's call this case la), or 
it may have two component P^s joined at a node (let's call this case 
lb). If the image has two components, the domain must as well. Let's 
call this case 2. 
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For case la, the situation is similar to the quintic case above. The 
tangent space to moduli space consists of sections ofH0(C, f*N), where 
JV is the normal bundle to the image curve. That is, we take H®(C, f*TP2) 
and delete those sections from H0(TC). Since TP2|/(C) ^ 0{2) 0 (9(1) 
and / is a degree 2 map, we have /*TP2 ^ 0(4) 0 0(2), which has 5 
+ 3 = 8 sections. TC = 0(2) has three sections, leaving us with five 
total. If /(C) = Pij, then the 0(2) sections are dk,wdk,w2dk, where 
k 7^ z,j, w is the coordinate on C, and zm = Xm/Xi are inhomoge- 
neous coordinates on P2. The degree two map is, in these coordinates, 
w H-» (ZJ = w2, Zk = 0). Note that dk is the only non-vanishing section 
at w = 0, and the others are obtained by successive multiplications by 
w. Notice that w inherits the weight (Xj — \i)/2 by requiring equiv- 
ariance. The weights are, so far, A; — A^, (A* + AJ)/2 — A*;, A^ — A^. 
For the 0(A) sections, the procedure is similar, only we must remove 
the weights 0, ±(Aj — AJ)/2, as these correspond to the tangent vectors 
dw, wdw, w2dw. We are left with ±(Xj — \i) giving a total of five. 

The weights of H1(C,f*Kp2) are easily calculated for the curve 
C by using Serre duality. That is, if one thinks (naively) of sections 
of a vector bundle E as elements of d cohomology, and recalling that 
the canonical bundle K is the bundle of holomorphic top forms, then 
Hk(E) pairs with Hn~k(E* ® K) by wedging and contracting E with 
its dual E*, then integrating. Thus, Hk(E) ^ Hn-k(E* ® K)*. For 
a curve, C, we have Hl(PK^2) 2£ H0(f*K^ ® Kc)*. Let's compute. 
K'l ^ 0(-3) as a bundle, and Kc = C?pi(-2), so Z*^1 ® Kc = 
0(2 - (+3) — 2) = 0(4), and the five sections can be obtained in the 
usual way once we have a non-vanishing one at w = 0. Such a section 
is gf: A gf- ® dw, and has weight 2Xi - Xj - Xk + (Xj - A;)/2. In all, 

then the weights of H^{f*K^l ® Kc) are 2Ai - A^ - Xk + m(Xj - Ai)/2, 
m — 1,... , 5. For the dual space H1(f*Kp2) we must take the negatives 
of these weights. So much for case la. 

Cases lb and 2 the domain curves have two components (say, Ci 
and C2), so we must understand what is meant, for example, by f*TP2 

and TC in order to calculate the normal bundle. TC is locally free 
(like a vector bundle) everywhere except at the singularity. There, 
we require tangent vectors to vanish. The canonical bundle, Kc, is 
defined as a line bundle of holomorphic differentials, with the following 
construction at the singularity. Let f(w)dw be a differential along Ci, 
and let g(z)dz be a differential along C2 where the singularity is taken 
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to be (z = 0) ~ (w = 0). To define a differential along the total space, 
we allow / and g to have up to simple poles at the origin, with the 
requirement that the total residue vanish: veswf + veszg = 0. What this 
does is serve as an identification, at the singularity, of the fibers of the 
canonical bundles of the two components. In this way, we arrive at a 
line "bundle." This canonical bundle, when restricted to a component 
Ci, looks like Kdip)^ where the "(p)" indicates twisting by the point, 
i.e., allowing poles. 

At this point, we can proceed with the calculation. Consider case 
2, for which the map / is a bijection. The sections of Hl(f*Kp2) = 
H0(f*(Kp2) can be looked at on each component, where Kcld is as 
above. Hence on d we have 

i d     d a     d a     d 
wozi      az2 OZi      OZ2 OZi      OZ2 

On the the other component, we have three analogous sections, but two 
with poles need to be identified, since they are related by the require- 
ment of no total residue. Indeed, this identification is compatible with 
equivariance, since ^dw has zero weight. All in all, we have weights 
(recalling duality) Xj + \k - 2Ai, \k- \i,\k- Xj, Xj - Xh Xj - Xk. 

The normal bundle to moduli space consists of sections of the pull- 
back of tangent vectors on P2, less global tangent vectors on C. In 
addition, we include TpCi <g> T^^, which is a factor corresponding to 
a normal direction in which the node is resolved [44] . Since the maps 
from components are degree one for these cases, we can take as sections 
of the normal bundles (two each) dw,zdw and dz,wdz. Here we have 
identified the coordinate of the other component with the coordinate 
of P2 normal to the component. The TpCi ® TpC2 piece gives dw®dz. 
In total, the weights are A; — Aj, A^ — Aj, Xi — Xk, Xj — A^, 2A; — Aj — A^. 

One checks that the product of the numerator weights divided by 
the denominator weights is equal to —1. Since there are three graphs 
of this type, the total contribution to K2 is —3. Graphs whose image is 
a single fixed P1 contribute —21/8,4 giving K2 = —45/8. 

4 Because we are considering integrals in the sense of orbifolds, we must divide 
out the contribution of each graph by the order of the automorphism group of the 
map. Automorphisms are maps 7 : C -> C such that / o 7 = /. Cases la and lb 
have Z2 automorphism groups. 
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In physics, local mirror symmetry is all that is needed to describe the 
effective quantum field theory from compactification on a Calabi-Yau 
manifold which contains a holomorphic surface, if we take an appropri- 
ate limit. In this limit, the global structure of the Calabi-Yau manifold 
becomes irrelevant (hence the term "local"), and we can learn about the 
field theory by studying the local geometry of the surface - its canon- 
ical bundle. We can therefore construct appropriate surfaces to study 
aspects of four-dimensional gauge theories of our choosing [35] . The 
growth of the Gromov-Witten invariants (or their local construction) 
in a specified degree over the base P1 is related to the Seiberg-Witten 
coefficient at that degree in the instanton expansion of the holomorphic 
prepotential of the gauge theory. For example, the holomorphic vanish- 
ing cycles of an An singularity fibered over a P1 give SU(n + 1) gauge 
theory (the McKay correspondence, essentially), and one can construct 
a Calabi-Yau manifold containing this geometry to check this [35], [42]. 
In this case, the local surface is singular, as it is several intersecting 
P^s fibered over a P1 (for Ai we can take two Hirzebruch surfaces 
intersecting in a common section. For this reason, it is important to 
understand the case where the surface is singular, as well. We will have 
more to say about this in section 6. 

4.2    General procedure for fixed-point computations 

Following [44] and [27], we can compute the weights of our bundles 
explicitly. Each connected component of the fixed point set is described 
by a graph, F, which is a collection of vertices, edges, and flags. The 
graph contains the data of the fixed map, which includes the image 
P^s, the degrees of the maps to the fixed curves, and the way they are 
glued together. 

Let us fix some notation. To each connected component of f~l{v), 
where p is a fixed point of P, we have a vertex, v. We call Cv = f~l(p) 
the pre-image of p, and if p = pj, we say that i(v) = j (so i is a map 
from {vertices} to {1... n + 1}). Let val(v) be the number of special 
(marked or nodal) points on Cv (for us equal to the number of edges 
with v as their vertex). The connected components of the pre-image of 
a fixed line P^- are denoted Ce. An edge consists of Ce together with the 
data i(e),j(e) e {1,... ,n + 1} encoding the image /(C) = jP;(e)j(e)> 
and de the degree of the map f\Ce. If there is no confusion, we will write 
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i and j for i(e) and j(e). Note that in the case of higher genus maps, the 
genus g > 0 components of the domain curve must map to fixed points 
Cv as there are no invariant curves of higher genus. In particular, the 
Ce are all of genus zero. We call a pair (v, e) where Cv and Ce intersect 
non-trivially a "flag," F. For F = (v,e), we define i(F) — i(v). 

The fixed point set corresponding to a graph T is then equal to a 
product over vertices of the moduli space of genus g(v) curves with 
val(v) marked points: Mr = Y[vMg(y)9Va^v). 

The calculation of the weights along the fixed point sets follows from 
a simple, general observation. Given two varieties, Yi and I2, X = YiU 

Y2 may be singular, but we can construct the maps YiflY^ it ^1 U ^2 —> 

X, from which we construct maps of sheaves of holomorphic functions: 

OX^OY^OYI^OYM. 

All maps are obtained from inclusions except the last map, which sends 
(/i> /b) to fi — /2, so this sequence is exact. 

For a graph with domain curve C which is equal to the union of all 
its components, things are simple because there are at most pairwise 
non-trivial intersections, those being points. Thus we have the sequence 

0-> Oc -► 0Oc, e® Oce -► ©0«, -► o,        (10) 
t; e F 

where rr^ = C^nCe if F = (v, e), and the second map sends (g\cv, h\ce) 
to g — h on the point of intersection (if it exists). 

We will use the long exact sequence associated to this short exact 
sequence in two ways. The fixed point formula tells us we need to 
compute the weights of our bundle Ud (whose fibers are Hl(C, f*Kp2)). 
When C is singular, we need to use the above sequence twisted by (or 
tensored by) f*K-p2. Then using concavity of the canonical bundle, 
which states that f*Kp2 has no global sections on Ce, the long exact 
sequence reads 

0 -► tfo(c,/*Kp2) -». 0i7o(c„rKp2) © 0Ho(ce,rKp2) 
v e 

-►0tfp»|/(„)->ff1(c,/*tfpO 
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->®H1(Cv,rKr>) @($H\CeJ*K^) -> 0. 
v e 

(ii) 

The last term in the first line follows since xF is a point, which is 
why the last term in the second line is zero. Note that f*K-p2 is trivial 
as a bundle on Cv, since Cv is mapped to a point. However, this trivial 
line bundle has non-trivial weight equal to A* = — SA^ + A; + A^ + A^, 
where i = i(F). This will affect equivariant Chern classes nontrivially. 
For example, H0(CV, f*Kp2) is one-dimensional (constant section) with 
the same weight - let's call it C^. H1(Cv,f*Kp2) is thus equal to 
Hl(Cv, O) ® CA;. Also, since Hl(Cv, O) are global holomorphic differ- 
entials, which may be integrated against cycles, we see that Hl(Cv, O), 
as a bundle over the fixed point component Mg^v^vai^ in moduli space, 
is equal to the dual E* of the rank g(v) Hodge bundle, E. We are inter- 
ested in Cg(E* <g) CAJ. The Chern character (not class) is well-behaved 
under tensor product, from which we can conclude [27] 

c9(£* ® CA,) = Pg{KE*) = J2Kog^(E*), 
r=0 

where we have defined the polynomial P^Aj, E*) 

We know more about (11). Hl(Ce, f*K-p2) can be computed exactly 
as in case la from the previous section, giving weights A, + m(A; — X)j), 
m = 1,... , ?>de — 1. Also, H0(Ce, f*K<p2) = 0 by convexity, which tells 
us as well that H0(C,f*Kp2) = 0 (obvious if you think of the map). 
Therefore the map to flags on the first line of (11) is 1 — 1, which is also 
obvious as it is restriction of constant sections (zero at a point iff the 
section is identically zero). Thus the weights from the top line which 
map into H1(C,f*Kp2) are HF Az(F)/rL^M- Noting that there are 
val(v) flags with v as their vertex, and combining with the weights from 
the middle term on the second line of (11), we have 

IKr-1^)^)'^)!! 
3de-l 

Yl At + m(Ai - A,-) 
m=l 

(12) 

For the genus zero case, the polynomials involving the Hodge bundle 
disappear. 

If we twist the sequence (10) by /*TP2 we can deduce the informa- 
tion we need to compute #0(C, /*TP2) - H^C, /*TP2), which is most 



LOCAL MIRROR SYMMETRY 521 

of what is needed to compute the virtual normal bundle to the fixed 
point locus.5 However, a complete exposition for higher genus, where 
concavity or convexity is not enough to guarantee a smooth moduli 
space, is beyond the scope of this paper, and we refer the reader to the 
discussion in section four of [27] , with whose notation this paper is 
largely compatible. The genus zero case has been worked out in full by 
[44] (see the formula at the end of section 3.3.4). 

The upshot is that we can determine all the weights and classes 
of the bundles restricted to the fixed point loci systematically. After 
dividing numerator (Chern class) by denominator (Euler class of nor- 
mal bundle), one has polynomial class of degree equal to the dimension 
of the fixed locus. What's left is to integrate these classes over the 
moduli spaces of curves (not maps) M^^)^^) at each vertex. These 
integrals obey famous recursion relations [68], which entirely determine 
them. A program for doing just this has been written by [18] . With 
this, and an algorithm for summing over graphs (with appropriate sym- 
metry factors), one can completely automate the calculation of higher 
genus Gromov-Witten invariants. Subtleties remain, however, regard- 
ing multicovers [62], [38], [66]. 

5    Virtual Classes and the Excess Intersec- 
tion Formula 

One of the foundations of the theory of the moduli space of maps has 
been the construction of the virtual class [49], [6]. A given space of 
maps .M(/?,X) may be of the wrong dimension, and the virtual class 
provides a way to correct for this. We consider the "correct dimension" 
to be one imposed either by physical theory, or by the requirement 
that the essential behavior of the moduli space be invariant under de- 
formations of X (this may include topological deformations of X, or 

5 When g ^ 0, the moduli space of maps is not smooth (convexity/concavity 
is no longer valid), and one has to take care to define integration of forms in the 
expected ("top") dimension, as the moduli space will contain components other 
dimensions. To do so, one must define a cycle of the expected dimension - the 
virtual fundamental class ([6] , [49] ). [27] proved that with these definitions, the 
Atiyah-Bott localization formulas continue to hold, with the normal bundle replaced 
by an appropriately defined virtual normal bundle. 
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just deformations of symplectic or almost complex structures). The 
virtual class is a class in the cohomology (or Chow) ring of M(P,X)] 
its principal properties are that it is a class in the cohomology ring of 
the expected dimension, and that numbers calculated by integrating 
over the virtual class are invariant under deformations of X. See [49], 
[6] for more exact and accurate statements. One main theme of this 
paper is to use the invariance under deformation to either calculate 
these numbers, or to explain the significance of a calculation. 

The idea of a cohomology class (or cohomology calculation) which 
corrects for "improper behavior" has been around for a long time in 
intersection theory. One example is the excess intersection formula. If 
we attempt to intersect various classes in a cohomology ring, and if 
we choose representatives of those classes which fail to intersect trans- 
versely, the resulting dimension of the intersection may be too large. 
The excess intersection formula allows us to perform a further calcula- 
tion on this locus to determine the actual class of the intersection. The 
purpose of this section is to describe the excess intersection formula for 
degeneracy loci of vector bundles, and to use this formula to evaluate 
or explain some mirror symmetry computations. In the cases we ex- 
amine, the moduli space of maps to our space X can be given as the 
degeneracy locus of a vector bundle on a larger space of maps. In each 
case that these degeneracy loci are of dimension larger than expected, 
the virtual class will turn out to be the same as the construction given 
by the excess intersection formula. The virtual class and the excess in- 
tersection formula are both aspects of the single idea mentioned above, 
and have as common element in their construction the notion of the 
refined intersection class [21]. 

To a vector bundle E of rank r on a smooth algebraic variety X 
of dimension n, we associate the Chern classes, Cj{E), j = 0,... ,r, 
and also the total Chern class c(E) = 1 + Ci(E) + C2(E) H h cr(E). 
These classes are elements of the cohomology ring of X. The class 
Cj(E) represents a class of codimension j in X, and in particular the 
class cn(E) is a class in codimension n, and can be associated with a 
number. For any class a in the ring, the symbol fx a means to throw 
away all parts of a except those parts in degree n, and evaluate the 
number associated to those parts. 

For a vector bundle E whose rank is greater or equal to the dimen- 
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sion n of X, we are often interested in calculating the number associated 
to cn(E), or in the previous notation, fxc(E). One way to compute 
Chern classes is to realize them as degeneracy loci of linear combina- 
tions of sections. If E is of rank r > n, and we take r — n + 1 generic 
global sections ai,... , crr_n+i, the locus of points where <Ti,... , ay_n+i 
fail to be linearly independent represents the class cn(E). Often this 
way of interpreting the Chern classes is the one which has the most 
geometric meaning. The statement "generic" above means that if we 
carry out this procedure and find out that the degeneracy locus is of 
the correct dimension (that is: points), then the sections were generic 
enough. 

Sometimes the sections we can get our hands on to try and calculate 
Jxc(E) with are not generic in this sense, and the degeneracy locus 
consists of some components which are positive dimensional. In this 
situation, the excess intersection formula tells us how to associate to 
each positive dimensional connected component of the degeneracy locus 
a number, called the "excess intersection contribution". This number is 
the number of points which the component "morally" accounts for. Part 
of the excess intersection theorem is the assertion that the sum of the 
excess intersection contributions over all the connected components of 
the degeneracy locus, and the sum of the remaining isolated points add 
up to fx c(E). This corresponds to the invariance of numbers computed 
using the virtual class under deformations of the target manifold. 

Let Y be one of the connected components described above. Let's 
assume for simplicity that Y is actually a submanifold of M. In this sit- 
uation the excess intersection formula says that the excess intersection 
contribution of Y is 

i C(E) (13) 
y C(NY/M) 

Here Ny/M is the normal bundle of Y in M, and the expression after 
the integral sign makes sense, since C(NY/M) is an element of a graded 
ring whose degree zero part is 1, and so C(NY/M) may be inverted in 
that ring. 
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5.1    Rational curves on the quintic threefold 

As an example of an application of the excess intersection formula to 
explain the significance of a calculation, let us review the count of the 
rational curves on a quintic threefold as explained by Kontsevich [44]. 
Let Md = Moo(d, P4) be the moduli space of maps of genus zero curves 
of degree d to P4. Md is of dimension 5d + 1. Let Ud be the vector 
bundle on Md whose fiber at any stable map (C, /) is H0(C, f*Op4(5)); 
this is a bundle of rank 5rf+1. The numbers K* = JM c(Ud) have been 
computed by mirror symmetry, and the first few are Ki = 2875, Kz = 
4876875/8, and Ks = 8564575000/27. To try and find a geometric 
interpretation of these numbers, we compute fM c(Ud) by finding a 
global section of Ud and examining its degeneracy locus. Let F be 
a generic section of C?p4(5) on P4 which cuts out a smooth quintic 
threefold X. We pull F back to give us a global section of C/d, which 
we call ad- The degeneracy locus of ad in Md consists of those maps 
(C, /) with /(C) contained in this quintic threefold. This observation 
allows us to use the Kd to compute the number of rational curves of 
degree d on the quintic threefold X. 

In degree 1 the degeneracy locus consists of one point for every line 
mapping into X, and so we see that Ki = 2875 is the number of lines in 
a quintic threefold. In degree two, the degeneracy locus of 02 consists 
of an isolated point for every degree two rational curve in X, and 2875 
positive dimensional loci, each one consisting of maps which map two 
to one onto a line in X. To calculate the actual number of degree two 
rational curves in X, we compute the excess intersection contribution of 
each of these positive dimensional components, and subtract from the 
previously computed total of 4876875/8. We now compute this excess 
intersection contribution. 

For each line / in X, let YJ be the submanifold of M2 parameterizing 
two to one covers of I. The normal bundle of / in P4 is A^/p4 = (9/(1) 0 
(9/(1) © Oi(l). A calculation on the tangent space of M2 shows that the 
normal bundle NY1/M2 

is (at a maP (C>/)) equal to H0(C,f*Ni/p4). 

Since the line / is sitting in the quintic threefold X, its normal 
bundle maps naturally to the normal bundle of X in P4, with kernel 
the normal bundle of / in X. This gives us an exact sequence: 

0 —► 0/(-l) © 0/(-l) —► 7V//P4 —► (9/(5) —► 0. 
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Let V2 be the bundle on Yi whose fiber at a map (C, /) is Hl{C, 
f*Oi(—l)). The above short exact sequence on / gives us the sequence 

0 —> NYl/M2 —> E2 —^ V2 © 1^ —^ 0 

of bundles on M2.   The multiplicative properties of Chern classes in 
short exact sequences shows us that the excess contribution of Yi is: 

Aj C(NYl/M2)        JYi 

This last number is the Aspinwall-Morrison computation of l/d3, or 
in this case, 1/8. This gives the number of actual degree two rational 
curves on a quintic threefold as 4876875/8 - 2875/8 = 609250. 

Under the assumption that each rational curve in X is isolated and 
smooth, then similar computations give the famous formula [11] 

k\d 

where rid is the number of rational curves in degree d. A caveat: It 
has been shown that this assumption is false in at least one instance 
- in degree five, some of the rational curves are plane curves with six 
nodes [67]. This doesn't affect the computation until you try to calcu- 
late multiple cover contributions from these curves. For example,6 in 
degree ten we have double covers of these nodal curves. The moduli 
space of double covers of a (once) nodal rational curve has two com- 
ponents: one being degree two maps to the normalization of the nodal 
curve, which contributes 1/8 as for the smooth case; the other being 
a single point representing two disconnected copies of the normaliza- 
tion mapping down to the singular curve. If P, Q represent the points 
on the normalization which are to be identified for the nodal curve, 
there is a uniqe map from a domain curve with two components and 
one node, where the node is mapped to P on one copy and Q on the 
other (these points are identified). This double cover does not factor 
through the normalization. If we have n such curves, their double cov- 
ers contribute n/8 + n. The integers rid obtained from the formula (14) 
need to be shifted to have the proper enumerative interpretation ("ex- 
perimentally," this shift is integral, though this has not been proven 
[15]). 

6We thank N.C. Leung for describing this example to us. 
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5.2    Calabi-Yau threefolds containing an algebraic 
surface 

Let us consider the situation where we have a Calabi-Yau threefold, 
X, in a toric variety, P, and a smooth algebraic surface, S, contained 
within X : 

B C X C P. (15) 

We assume as well that B is a Fano surface so that X may be de- 
formed so that B shrinks [59]. This is the scenario of interest to us 
in this paper. Now since there are holomorphic maps of many degrees 
into S, which therefore all lie within X, we will have an enormous de- 
generacy locus. If X is cut from some section 5, then at degree /? the 
whole space Mo^oiP^B) will be a zero set of the pull-back section §7 
Therefore, we will need to use the excess intersection formula to cal- 
culate the contribution of the surface to the Gromov-Witten invariants 
for X. From this, we will extract integers which account for the effective 
number of curves due to B. 

Mapping tangent vectors, we have from (15) the following exact 
sequence: 0 -> NB/X ->• NB/p ->• Nx/p -> 0. Note that NB/X = KB, 

by triviality of A3TX and the exact sequence TB -> TX -> NB/X- 

Therefore, we have 

0 —-> KB —► NB/P —► NX/P —> 0. 

Given ((7, /) G Mo,o(P]B), we can pull back these bundles and form 
the long exact sequence of cohomology: 

0   —> H0(C, PKB) —> H\C, f*NB/p) —> H\C, /*7Vx/p) _> 

—► H\C,rKB) —» H^CJ+NB/P) -+ .... 

Now H0(C,f*KB) = 0 since B is Fano (its canonical bundle is 
negative), and H1(CJf*NB/p) = 0 when B is a complete intersection 
of (of nef divisors), which we assume.   As a result, (16) becomes a 

/ 

7 Actually, /? labels a class in X which may be the image of a number of classes in 
B. In such a case, our invariants are only sensitive to the image class, and represent 
a sum of invariants indexed by classes in B. 
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short exact sequence of the bundles over Mofl(P;B) C .Mo,o(/?;P) 
whose fibers are the corresponding cohomology groups. The bundle 
(call it Up) with fiber H1(C,f*KB) is the one we use to define the 
local invariants. The bundle with fiber H0(C, f*NB/p) is NM(B)/M(P) 

(abbreviating the notation a bit). That with fiber H0(C,f*Nx/p) is 
the one used to define the (global) Gromov-Witten invariants for X - 
call it Ep. Therefore, we have 

0 —> Up —> NM(B)/M(P) —> Ep —> 0. 

Now using (13) with E = Ep] M = Mofi(P\ P); and Y = Mofl(p] B); 
the multiplicativity of the Chern class gives the contribution to the 
Gromov-Witten invariant of the threefold X from a surface B C X is 

Kp= [_ c(Up), (16) 

which is what we have been computing. 

Typically, the presence of a surface B C X may not be generic, 
so that X can be deformed to a threefold Xf not containing such a 
holomorphic surface. Let K* be the Gromov-Witten invariant of X, 
and let Kp be the Gromow-Witten of X'. These are equal, as the 
Gromov-Witten invariant is an intersection independent of deforma- 
tion: Kp = Kp'. For X1 we have an enumerative interpretation8 of 
Kp in terms of n^, the numbers of rational curves on X1. Let np be 
the numbers of rational curves on X, and let Kp be the integral in (16). 
For simplicity, let us assume that dimi^X') = 1, so that degree is 
labeled by an integer: ft — d. Then combining the enumerative inter- 
pretation with the interpretation of the excess intersection above, we 
find 

k\d k\d 

Subtracting, we find 

Kd = Y^Snd/k/k3. 
k\d 

8 Singular rational curves notwithstanding. 
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Here 8n = nf — n represents the effective number of curves coming from 
B. In the text, we typically write n for 8n. 

We therefore have an enumerative interpretation of the local invari- 
ants. After performing the 1/d3 reduction we get an integer represent- 
ing an effective number of curves (modulo multiple covers of singular 
curves, which should shift these integers). We should note that one 
might ask about rational curves in the Calabi-Yau manifold which in- 
tersect our Fano surface. Such a situation would make for a more 
complicated degeneracy locus, but it turns out this situation does not 
arise. Indeed, if C C X is a holomorphic curve in X meeting B trans- 
versely, then C • B > 0 (strictly greater). However, for C C B, we 
have 

C • B = f C^NB/X) = / C^KB) < 0, 
J D J D 

by the Fano condition. Therefore, C cannot lie in the image of ^(-B) 
in H2{X) - the only classes in which we are interested - and so our 
understanding of the numbers n^ is therefore complete. 

5.3    Singular geometries 

For physical applications, we will often want the surface B to be sin- 
gular. For example, in order to geometrically engineer SU{n + 1) su- 
persymmetric gauge theories in four dimensions, we consider the local 
geometry of an An singularity fibered over a P1. In fact, we take a 
resolution along each An fiber, so that the exceptional divisor over a 
point is a set of P^s intersecting according to the Dynkin diagram of 
SU{n + \). The total geometry of these exceptional divisors forms a sin- 
gular surface, which is a set of P1 bundles over P1 (Hirzebruch surfaces) 
intersecting along sections. In [35] it is shown how the local invariants 
we calculate can be used to derive the instanton contributions to the 
gauge couplings. Roughly speaking, the number of wrappings of the 
P1 base determines the instanton number, while the growth with fiber 
degree of the number of curves with a fixed wrapping along the base 
determines the corresponding invariant. 

It is clearly of interest, then, to be able to handle singular geome- 
tries. Actually, we will be able to do so without too much effort. Let 
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us consider an illustrative example. Define the singular surface Bf to 
be two P2's intersecting in a P1. This can be thought of as a singular 
quadric surface, since it can be represented as the zero locus of the 
reducible degree two polynomial 

in P3 with homogeneous coordinates [X,Y,Z]. The generic smooth 
quadric is a surface B = P1 x P1. If we express B as a hypersurface in 
P3, we can define the local invariants (indexed only by the generator of 
i?2(P3)) of B as an intersection calculation in .Mo,o(d; P3) as follows. 
Define the bundle 

£EEe>p3(2)ee>p3(-2). 

Then let SE = (s, 0) be a global section of E, where s is a quadric 
and 0 is the only global section of Ops(—2). Note that, by design, E 
restricted to the zero set of SE is equal to KB- We now define a bundle 
over ATo,o(d; P3) whose fibers over a point (C, /) are H0(C, /*£>p3(2))© 
H1(C,f*Op3(—2)). We then compute the top Chern class of the bun- 
dle, which can be calculated as in the previous subsections in terms 
of the zero locus of §£, which picks out maps into B = P1 x P1. The 
calculation gives the usual local invariant for P1 x P1, counting curves 
by their total degree d = di + G^, where di is the degree in Pj, i = 1, 2. 
The reason is that 0(2) \B = -/V^/ps, so the contribution from this part 
to the total Chern class cancels with the normal bundle to the map. 
(The local invariants are listed in the first column of Table 7.) 

Now note that this intersection calculation is independent of the 
section we use to compute it. In fact, if we use a reducible quadric 
whose zero locus is £', the calculation will reduce to one on the singular 
space Mofl(d; B'). The excess intersection formula tells us exactly which 
class to integrate over this (singular) space. In fact, integration over 
the singular space is only defined via the virtual fundamental class - 
which is constructed to yield the same answer. In degree one, this can 
all be checked explicitly in this example [26] . The upshot is that as 
our calculations are independent of deformations, we can deform our 
singular geometries to do local calulations in a simpler setting. In fact, 
this makes intuitive physical sense: the A-model should be independent 
of deformations. 

Another phenomenon that we note in examples is that the calcu- 
lation of the mirror principle can be performed without reference to 
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a specific bundle. In other words, the toric data defining any non- 
compact Calabi-Yau threefold works as input data. As a result, we can 
consider Calabi-Yau threefolds containing singular divisors and perform 
the calculation. For the example of A2 fibered over a sphere, we get the 
numbers in Table 4. Though this technique has not yet been proven to 
work, it is tantalizing to guess that the whole machinery makes sense 
for any non-compact threefold, with intersections taking place in the 
Chow ring and with an appropriately defined prepotential. 

In the next section, we will use the B-model to define differential 
equations whose solutions determine the local contributions we have 
been discussing. 

6    Local Mirror Symmetry: The B-Model 

In this section we describe the mirror symmetry calculation of the 
Gromov-Witten invariants for a (n — 1)-dimensional manifold B with 
Ci(B) > 0. We first approach this by using mirror symmetry for a com- 
pact, elliptically fibered Calabi-Yau n-fold9 X which contains B as a 
section, and taking then the volume of the fiber to infinity. If B is a 
Fano manifold or comes from a (n — l)-dimensional reflexive polyhe- 
dron a smooth Weierstrass Calabi-Yau manifold X with B as a section 
exists. Moreover the geometry of X depends only on B and therefore 
the limit can be described intrinsically from the geometry of B. This 
is an intermediate step. Later, we will define the objects relevant for 
the B-model calculation for B intrinsically, without referring to any 
embedding. Such an embedding, in fact, is in general not possible. 

6.1    Periods and differential equations for global 
mirror symmetry 

We briefly review the global case in the framework of toric geometry, 
following the ideas and notations of [2], [32]. According to [2], a mirror 
pair (X,X) with the property hp^{X) = hn-Piq(X) can be represented 

9We will state formulas for n-folds, when possible. 
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as the zero locus of the Newton polynomials10 (P = 0, P = 0) associated 
to a dual pair of reflexive (n + 1)-dimensional polyhedra (A, A). X is 
defined as hypersurface by the zero locus of 

i/(0       j=l 

in the toric ambient space PW^M, constructed by the complete fan S(A) 

associated to A. The sum (17) runs over r "relevant" points {u^} G A, 
which do not lie on codimension one faces and with z/0) we denote the 
unique interior point in A. The a* parametrize the complex structure 
deformations of X redundantly because of the induced (C*)n+2 actions 
on the Oi, which compensate Xi -> XiX^ P —> AQP, such that P = 0 is 
invariant. Invariant complex structure coordinates are combinations 

r—1 

^(-l^IIaf, (18) 
3=0 

where the l^\ j = 1,... , k = r — (n + 1) are an integral basis of linear 
relations among the extended "relevant" points P^ = (1,^) with 
i/W G rel(A), i.e., 

^;ZpV<)=0. (19) 

The Z^) have in the gauged linear sigma model [69] the role of charge 
vectors of the fields with respect to U{l)k. Moreover, if the ft) span a 
cone in the secondary fan of A, which correspond to a complete regular 
triangulation of A [23], then ft) span the dual cone (Mori cone) to the 
Kahler cone of Pw^), which is always contained in a Kahler cone of X 
and zi = 0 corresponds to a point of maximal unipotent monodromy, 
which by the mirror map [11], [32] corresponds to the large Kahler 
structure limit of X. 

The period integrals of X contain the information about the Gromov- 
Witten invariants of X (and vice versa). They are defined as integrals 

10The generalization to complete intersections in toric ambient spaces is worked 
out in [32] [4]. 
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of the unique holomorphic (n, 0)-form over the bn (= 2(/&2,i(-X") + 1) 
when n = 3) cycles Fj in the middle cohomology of X. The (n, 0)-form 
is given by a generalization of Griffiths residue expressions [29] 

o 1        f ao^ .,, dXi dXn+i 

and 70 is a contour around P = 0. General periods are then lii(zi) = 
Jr. Q, and for a particular cycle11 this leads to the following simple 
integral 

^-isW*-* <21) 

Because of the linear relations among the points (19), the expression 
II(aj) = ^n(^) fulfills the differential identities 

^fc)>o 6k)<o 
H , 

The fact that the z/W He on a hyperplane, together with (19) imply 
the same numbers of derivatives on both sides of (22), assuring equal- 
ity. Unlike the n(^) the ft (a*) are however not well defined under the 
C* action P -» \QP defined above. To obtain differential operators 
Z-kiQiiZi) annihilating II^) one uses (22), [0^^] = ra[, and the fact 
that H^ depends on the a* only through the invariant combinations Zi. 
Here we defined logarithmic derivatives 0ai = flt^:? 0i = ^^:- 

Example.   X is the degree 18 hypersurface in P(l, 1,1,6,9), with Euler 
number -540 and hi9i(X) = 2 and h2,i(X) = 272. The toric data are 

a.)    A = conv{[-6, -6,1,1], [-6,12,1,1], [0,0, -2,1], [0,0,1, -1], 

[12,-6,1,1]} 

b.)    rel(A) = {[0,0,0,0]; [1,0,2,3], [0,1,2,3], [-1, -1,2,3], [0,0,2,3], 

[0,0,-1,0], [0,0,0,-1]} 

11Which, when n = 3 is dual to the S3 which shrinks to zero at the generic point 
in the discriminant. 
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c.)   triang = {[0,1,2,4,5], [0,1,3,4,5], [0,1,3,4,6], [0,2,3,4,5], 

[0,1,2,4,6], [0,2,3,5,6], [0,1,2,5,6], 

[0,1,3,5,6], [0,2,3,4,6]} 

d.)     SKI = {X\ = X2 = Xz — 0, £4 = £5 = £6 = 0} 

e.)    /« = (-6; 0,0,0,1,2,3),        Z(2) = (0; 1,1,1,-3,0,0) 

f.)    Jl = 9   J?J2 = 3   Jx Jf = 1,    C2 Ji = 102,    c2J2 = 36.       (23) 

Here triang is a regular star triangulation of A, where the 4d sim- 
plices are specified by the indices of the points in rel(A). SUT denotes 
the Stanley Reisner Ideal. JiJkJi and C2JJ are the triple intersection 
numbers and the evaluation of the second chern class on the forms Jj, 
i.e., J C2Ji. Then by (17) X is given by 

P = ao + X-iXl[a1Xl + a2X2 + ^- + aA+^- + ^- = ao + E 

and the period (21) is easily integrated in the variables(18) zi =   4 I g
? 

a4 

n»=(2^/^=[5(-3 
. n=0 v\-\ \-VQ=n  ^ 

-   term constant in Xv 

-   term constant in Xi 

= E r(6ri + 1) 

rii^0 r(r2 + iWn - 3r2 + l)r(3r1 + l)r(2r1 + 1) 
Z1  Z2  . 

Likewise, it is easy to see that (22) leads to 

fix = QX{QX - W2) - 12(60i - 5)(60! - l)zi 

£2 = 02
3 - (l + ^ - 302)(2 + el - 302)(3 + 0! - 302)^2 , (24) 

where we factored from the first operator a degree four differential 
operator.   This is equivalent to discarding four solutions which have 
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incompatible behavior at the boundary of the moduli space to be peri- 
ods, while the remaining (2h2ii(X) + 2) solutions can be identified with 
period integrals for X. 

Note that in general at the point of maximal unipotent monodromy 
[11], [58], [32], [3] Zi = 0, TLQ = 1 + O(z) is the only holomorphic 
solution to the Picard-Fuchs system. Let us now12 set n = 3. In 
general, there will be /i2,i(X) logarithmic solutions of the form Ui = 
2^ log(^)no + holom., and 

*'" TW) (25) 

defines affine complex structure parameters of X, which at Zi = 0 can 
be identified with the complexified Kahler parameters U = iVol(Ci) + 
B(Ci) of X, following [11]. The relation (25) is called the "mirror map" 
and in particular, in the limit Vol(Ci) —> co one has 

logte) ~ -Volid). (26) 

/i2,i further solutions are quadratic, and one is cubic in the logarithm. 
These solutions are related to each other and to the quantum corrected 
triple intersection aj^ by special geometry, basically Griffith transver- 
sality13 f(diil) A fi = J(didjQ) A Q = 0. As a consequence, these 
quantities derive from a prepotential, which has the general form [11], 

[32] (LiaOr) = E^i £) 

+      J2      NnU3(qdi---q
d^) (27) 

di'-Altl(x) 

The relations are 

n = Ho 11, U, dtiF, 2F-Y, UduA , 

12Some aspects for the case of arbitrary n are discusses in [28], [41], [53]. 
13If n is even we get in general algebraic relations between the solutions and 

differential relations. The algebraic relations in the KS case are well known, in 
the 3-fold case we have special geometry, for 4-folds the algebraic and differential 
relations can be found in [28], [53], [41]. 
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Cij* = QtAjd^T = Ji-JrJk + y2 didjdkNr ^ (28) 
TTT 1 — (T 
{di} 

of the mirror X. 
where <f* = Y[i qf* and the Nft are then the Gromov-Witten invariants 

6.2    The limit of large elliptic fiber 

We now identify the classes of the curves d and define the limit of 
large fiber volume. Then we will use (25) to translate that into a 
limit in the complex structure deformations parameters Zi of X. Note 
that in Batyrev's construction the points i/W e rel(A) correspond to 
monomials in P as well as to divisors Di in PE(A) (in the example, 
Ps(A) = P(l,l,l,6,9)) which intersect X. Each /W defines a wall in 
the Kahler cone of X at which curves in the class [d] vanish. Moreover, 
the entries lf\ i — 1,... , r are the intersection of these curves Cj with 
the restriction Di of the divisors D^ i = 1,... ,r to X. From this 
information one can identify the classes [d] in X. It is convenient to 
use the Cox coordinate ring representation [14] PE(A) = {C[^i5 • • • xr]\ 

<S7^X}/(C*)/!:, where the C*-actions are given by Xi -> Xi(X^)li and 
SIZI denotes the Stanley Reisner Ideal. In these coordinates Di is 
simply given by Xi = 0 and the polynomial reads 

p=;c«*]>r'*(i)>+1- (29) 
i=Q        j=0 

In the example, 

P = xofalgufai, X2, xz) + xXxsfaixu X2, x3) +xl + xl) (30) 

has a smooth Weierstrass form. We notice, taking into account (23) 
parts d and e, that D4 meets X in a P2, the section of the Weierstrass 
form. As [C2] • D4 = -3, C2 must be contained in this P2, and from 
C2 - Di = 1, i = 1,2,3, it follows that C2 lies in that P2 with degree14 

14 As a consistency check, note that J2 which is the dual divisor to C2 must 
then have a component in the base P2 and one in the fiber direction, hence on 
dimensional grounds it can at most intersect quadratically comp (23), part f. 
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1. [Ci] • D4 = 1, hence Ci meets the section once and must be a 
curve in the fiber direction, whose volume goes to infinity in the large 
fiber limit. By this association /W = l^ and as log(zF) ~ -Vo^Cp), 

zF = 
a4^|aQ -¥ 0 is the correct complex structure limit. Next we pick 

the periods which stay finite in this limit - that is, whose cycle has 
still compact support. From (27), (28), and (23), part f, we see that 
the finite solutions are XIQ, HO^ and li^di — 3^)T. Moreover, as they 
do not contain log(zi) terms they satisfy in this limit (and are in fact 
determined by) the specialization of (24) as zi —> 0 : 

c = e3 + 3ze(3e + 2) (30 +1), (31) 

where we have put z = Z2 and 9 = 62. 

This differential equation comes from the relation of the points in 
the two dimensional face A^ = conv{i/i,... ,1/4} in A. We call the 
Newton polynomial for this set of points PB. We want to define a 
special limit of the finite U^z). The limit is as, a6 -> 0 in P, which is 
compatible with zF = 0. We define W = X$Xl and V = (X3X4)-

2. 
Then Jac - Xs, a/ = dW A ^ A ^ A ^, and UJ" = dW A ^ A ^. 
As 1/W is the non-compact direction, perpendicular to the compact 
plane, we remove the compactification point in the 1/WMoop, which 
becomes open. Hence 

no(z) = (2^ 4- /  Wfo + WPsf + 0(a5'a6) 

,    / x c      /* .      PB dXi     dX2 
= - log(e) " 77^3 /        log(1 + —)-F- A 

= C 

where P^ is PB with rescaled a^. 
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6.3    Local mirror symmetry for the canonical line 
bundle of a torically described surface 

We will generalize the example of the previous section to the situation 
where one has as smooth Weierstrass form for the threefold over some 
base B. The known list of bases which lead to smooth Weierstrass 
forms are Fano varieties and torically described bases whose fans are 
constructed from the polyhedra A^, which we display in figure 1. For 
these bases, we can demonstrate the property of admitting a smooth 
Weierstrass form by explicitly showing that total space constructed 
from A'i6ration = conv^z/f,^),^, 0,-1,0), (0,0,0,-1)} is smooth. 
Here z/f runs over the 2-tuple of the coordinates of points in A5 and 
for vEk one has the choice (2,3), (1,2), and (1,1) for the Es,E7,Ee 
respective fiber types described below. 

For the smooth fibrations, all topological data of X are expressible 
from the base topology and we have a surjective map i* : i/1'1(X) —>> 
Hl'l(B). Using the adjunction formula15 one finds (here we understand 
that on the left side we integrate over X and on the right side over B) 

Cs(X) = -2/ic1(5)2 

c2(X)JE - kc2(B) +k(j-l\ ci(fl)2,    C2(X)Ji = 12fcci(B) Ji 

J| = kcl(B),    J^Ji = kci(B)Ji,    JEJIJU - kJiJk, 

Here JE is a cohomology element supported on the elliptic fiber; its 
dual homology element is the base. The Ji are cohomology elements 
supported on curves in £?, with homology dual curves in B together with 
their fibers, k is the "number" of sections for the various Weierstrass 
forms, i.e., 1 for the E* form X6(l, 2,3), 2 for the E7 form X^l, 1,2), 
3 for the EQ form ^(l, 1,1) and 4 for the Db form ^^(l, 1,1,1); h is 
the dual Coxeter number associated with the groups: h = 30,18,12,8, 
respectively. 

From (27) and (28) we get that (were ci = Ci(-B)) 

dtEF = t2
Ec\ +tEYJ UM) + Utj{JjJi) + 0{q)dtiT 

15This calculation arises in the F-theory context [20]. 
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= tJsM) +tEj2 tjiJjJi) + 0{q) 
3 

and hence the unique finite combination in the £# —> ioo limit is given 
by 

H/m = ( dtE -^xidti I F, with ^^(JiJ^) = c^Jj       (32) 

We define new variables in the Mori cone IE = S and ti = ii — XiS 
such that Il/in = ^^"l^-^ioo, and by (28) we get a general form of the 
instanton expansion for the curves which live in the base 

gi,k -= Cs,i,k\qE=0 = JiJk + ~(CiJj + CiJk) 

fhhl(B) \ (? 
+ E      E  -XidildjdkNj-^, (33) 

where the d/ run only over degrees of classes in the base. Note that 
Fiocai = ^J7 is a potential for the metric ^j,. For the polyhedra 
2 — 14 Im(^j) becomes in a suitable limit the exact gauge coupling 
for an Af = 2 theory in 4 dimensions (Seiberg-Witten theory) [35] 
. Furthermore, all intersections in (33) are intersections in the two- 
dimensional base manifold and in this sense we have achieved the goal 
of formulating the mirror symmetry conjecture intrinsically from the 
geometric data of the base. It remains to construct a local Picard-Fuchs 

system which has Tiocai = Y%jJ[*\JiJ3) log^ ^0Szj + ^ log^ + ^o as 
the unique solution quadratic in the logarithms. 

As a generalization of the situation discussed in the last section, we 
propose the following data for local mirror symmetry: A convex n — 1 
dimensional polyhedron A^, PB its Newton polynomial, 

IU(zi) = [ n, 

Q = / log(PB)u : 70 : contour around PB = 0,    OJ = dXiXi 
dXn_ i 

,70 ^n-l 

Zi = T\Q>J    - (C*)n+2 — invariant complex structure variables, 
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{I®} a basis of linear relations among the pW G A^ = (1, A^), i.e., 
YA=I H  v® — 0 spanning the Mori cone of P&B. 

The non-compact local geometry TS(AB) is the canonical bundle over 
PAB. It is described by the incomplete fan S(AB), which is spanned 
in three dimensions (n = 3) by "extended" vectors v® = (1, ^), with 
v® G AB generate the lattice. 

The local mirror geometry is in these cases given by an elliptic 
curve which is defined in coordinates as (29), w.r.t. to (A^, A^) and 
a meromorphic two-form fl with nonvanishing residue. The number of 
independent cycles increases for the polyhedra 1 — 15 with the number 
of nonvanishing residue, which in physics play the role of scale or mass 
parameters. This is in contrast to the situation in the next section, 
where the genus of the Riemann surface will increase and with it the 
number of double logarithmic solutions. 

In particular, for the example discussed before we get from (29) that 
the mirror geometry is the elliptic curve given by the standard cubic in 
p2 

PB — diXi + dixl + ^3X3 + aQXiX2X3. 

An important intermediate step in the derivation of this form [2], which 
be useful later, is that the polynomial can also be represented by coor- 
dinates Yi, 

PB = aiYx + a^ + a3Y3 + a0Y0 , (34) 

with r relations n£i V = YQ 
0 , k = 1,... ,r. The x,- are then 

introduced by an suitable etale map, here Yi = xf, Y2 = x^ Y3 = xl 
and yo = X1X2X3, which satisfy identically the relation(s). 

The Tli(z) are now well-defined under C*-actions, up to a shift, and 
they satisfy directly 

n=n 
e^o 

(35) 

In particular Ho = 1 is always a solution. By the same procedure 
as indicated below (22), we now directly get the differential equation 
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(31). One can easily show that this differential equation has besides 
the constant solution a logarithmic and a double-logarithmic solution. 
The explicit form of the solutions can be given in general using the /W, 
i = 1,... m in specialized versions of the formulas which appeared in 
[32]: 

no(*) = J2 cfa P)4\P=O,    c(n, p) = 
n rLr(EJi '(na + pa) + l) 

IU(z) = dPin0\?=o,   nm+1 = ds? = ^(JiJfcHA-nolp-o-       (36) 
hj 

The predictions for the local mirror symmetry are then obtained 
using (25) and (33). 
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5 6 7 

® 
10 11 12 

Figure 1: Reflexive Polyhedra (A^) in two dimensions. Kp = Ai7_p 
for p = 1,... ,6. Ay^io are self-dual [43], [2]17. Case one is the 
polyhedron representing the P2; two, three and four are the Hirzebruch 
surfaces FQ = P1 x P1, Fi and F2 and the others are various blow-ups 
of these cases. Note that C2 = #2 simpl. and c\ = 12 — #2 simpl. The 
labeling starts with 0 for the inner point. The point to its right is point 
1 and the labels of the others increase counterclockwise. 

Below we give further data for local mirror symmetry calculation 
for some16 from of the polyhedra17 in Fig. 1: 

1. /(!) = (-3,1,1,1),    Ci=3Ji,    n^Jl 

2. *« = (-2,1,0,1,0),    l^ = (-2,0,1,0,1), 

Ci = 2J1 + 2J2,    K = J1J2 

3. Z« = (-2,1,0,1,0),    1® = (-1,0,1,-1,1), 

Ci = 3Ji + 2J2    n = JiJ2 + J% 

4. Z« = (-2,1,0,1,0),    ^ = (0,0,1,-2,1), 

d = 4Ji + 2 J2    71 = Ji J2 + 2 J* 

5. /(1) = (-1,1,-1,1,0,0),    /(2) = (-1,-1,1,0,0,1), 

Z<3> = (-1,0,1,-1,1,0) 

16 In the cases we do not treat explicitly, the Mori cone is non-simplicial. This 
means that there are several coordinate choices for the large complex structure 
variables, which correspond to the simplical cones in a simplicial decomposition of 
the Mori cone. This is merely a technical complication. We checked that for the 
simplicial subcones we get consistent instanton expansions from (33). 

17The polyhedra appeared only in the preprint version of [2] and are therefore 
reproduced here. We thank J. Stienstra for pointing out an omission in an earlier 
version. 
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CI = 3 Ji + 2 J2 + 2 J3    n = Jl + J2J1 + JiJz + J2 Jz 

6.   ^ = (-1,1,-1,1,0,0),    ^ = (0,0,0,1,-2,1), 

J(3> = (-1,0,1,-1,1,0) 
Ci = 4J3 + 2 J2 + 3 Ji 7e = J2^3 + 2 J32 + J2^i + 2 J3 Ji + Ji 

11. *« = (-1,0,-1,0,0,1,1), ^ = (0,0,1,0,1,-2,0), 

^ = (0,1,0,0, -2,1,0), l^ = (0,0,1,1,0,0, -2), 

d = 6 Ji + 4 J2 + 2 J3 + 3 J4 

U = 6Jf + 4Ji J2 + 2J2
2 + 2Ji J3 + J2 J3 + 3Ji J4 + 2J2 J4 + J3 J4 J42 

Here we use the short-hand notation TZ — J2JiJkfB JiJk and Ci = 
X^j Jifci(B)Ji- Below are further Picard-Fuchs systems derived using 
(35). 

£fo = 0^ - 2zl(6l + 02)(1 + 20i + 202) 

£f° = e2
2 - 2z2(el + #2)(1 + 20! + 202) 

>Cf1=022-.zi(02-0i)(20i+02) 

C? = 01 (ft - 02) - ^2(201 + 02) (1 + 20i + 02) 
£f2 = 0i(0i + 02) - zi20i(20i + 1) 

C22 = 01 (01 + 02) - 22202(202 + 1) 

In general, linear combinations of the l^ may lead to to independent 
differential operators. For example, a complete system for the blown 
up F2 (polyhedron 6) is obtained using in addition to the l^\ i = 1,2,3, 
the linear relations l^ + l^ and 

d = 02(02 " 03 + 0l) - (-2 + 202 - 03)(-l + 202 - 03)2i, 

A = (202 - 03)(03 - 0l) - (1 + 02 " 03 + 0l)(-l + 03 + 01)^2, 
£3 = (-02 + 03 _ eM - (1 + 03 " 0i)(-l + 03 + dJZs, 

A = 02(03 - 0l) - (-1 + 202 - 03)(-l + 03 + 01)21^2, 
£5 = -((202 - 03)00 - (-2 + 03 + 0l)(-l + 03 + 01)^3- 

Using similar arguments as in section four of the second reference 
in [32] and the calculation of toric intersections as described in [60], 
[22], [16], one can show that (35) and (36) implies the appearance of 
the intersection numbers in (33). 
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Concrete instanton numbers for P2 appear in Table 1; for K^ 
KFl and KF2 in the appendix; and for the canonical bundles over the 
geometry defined by the polyhedra P5 and Pe in Table 3 below. 

di = 0 dz   0 1 

d2 
0 
1 

1 
1 0 

di = l ^3 0 1 

d2 
0 1 -2 
1 -2 3 

di =2 dz   0 1  2 

d2 
0 
1 -4  5 
2 5 -6 

di=3 da 0 1 2 3 
d2 
0 
1 -6 7 
2 -6 35 -32 
3 7 -32 27 

di=4 d3 0 1 2 3 4 
d2 
0 
1 -8 9 
2 -32 135 -110 
3 -8 135 -400 286 
4 9 -110 286 -192 

di = 5 da 0 1 2 3 4 5 
d2 
0 
1 -10 11 
2 -110 385 -288 
3 -110 1100 -2592 1651 
4 -10 385 -2592 5187 -3038 
5 11 -288 1651 -3038 1695 

Table 3: Invariants of dP2(polyhedron 5). The invariants for di = 0 sum to 
2 and for all other degrees di to zero. Note also that the invariants for the 
blow up of F2 (polyhedon 6) are related to the above by n[ ] i +.; = rr ^ 

"kjj' 

The KFo and KFl geometry18 describes in the double scaling limit 

18 This is true also for KF2, which can be seen as specialization in the complex 
structure moduli space of the KFo case. 
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N = 2 SU(2) Super-Yang-Mills theory [35]. Similarly in that limit the 
geometry of the canonical bundle over PA5 and PA6 describes N = 2 
517(2) Super-Yang-Mills theory with one matter multiplet in the fun- 
damental representation of SU(2) [35]. 

6.4    Fibered An cases and more general toric grid 
diagrams 

The fibered An geometry we will discuss here is motivated from physics 
[35]. Note that the complexified Kahler moduli of this geometry yield 
the vector moduli space for the Type II-A compactification and the elec- 
trically/magne tically charged BPS states come from even dimensional 
D-branes wrapping holomorphic curves/four-cycles. Mirror symmetry 
on the fiber relates it to the geometry considered in [39] for which the 
vector moduli space of a type II-B compactification emerges from its 
complex deformations. 

The type II-A geometry arises when inside a Calabi-Yau space an 
An sphere tree is fibered over a P1. Again we consider the limit in which 
all other Kahler parameters of the threefold which do not control the 
sizes of the mentioned P^s become large. In this case (33) becomes 
the exact gauge coupling of SU(n + 1) TV = 2 Seiberg-Witten theory 
when one takes a double-scaling limit in which the size of the fiber P1 

and the one of base P1 are taken small in a ratio described in [35]. 
We have already discussed the simplest cases: the Hirzebruch surfaces 
F2, FQ and Fi, which give rise to Ai theory. Next we consider the An 

generalization of the F2 case. We can describe it by TS(AB) as before 
(below (6.3)), but it clearly does not have the structure of a canonical 
bundle over a space. 

Figure 2: Toric diagrams (A^) for the An singularity fibered over P1. 
Note that these diagrams have unique triangulations. 

To obtain the local situation as a limit of a compact case, we can 
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consider a polyhedron A defined analogous to Aflbratwn described at the 
beginning of subsection 6.3. It turns out that for A2 (A3) A becomes 
reflexive only after adding the point(s) [1,0,1,1] ([1,0,0,1], [2,0,1,2]), 
giving us 2 (3) line bundles normal to the to the compact part of the 
local geometry. This is true more generally, i.e., one has n line bundles 
for An, but for large n it is not possible to embed the An singularity 
in a compact Calabi-Yau space. The n normal directions in the Kahler 
moduli space mean that the limit (32) leads to an n-dimensional linear 
space of finite double-logarithmic solutions whose coefficients reflect the 
directions in the normal Kahler moduli space in which the limit can be 
taken and for combinatorial reasons their number corresponds to the 
number of 'inner' points in the toric diagram. We denote a basis for 
these directions £*, i = 1,... ,n. The n double-logarithmic solutions 
come as we will see, given the meromorphic differential (6.3), from 
a genus n Riemann surface for the local mirror. The Gromov-Witten 
invariants, on the other hand, should not depend on the direction of the 
limit we take to obtain Il^n before matching it to the N^'m (33). They 
therefore become rather non-trivial invariants of the differential system 
(35). In the following, we explicitly describe for all n the solutions of 
this system corresponding to a preferred period basis, up to a choice of 
the double-logarithmic solutions. 

The generators of linear relations are 

Z<6> =(1,1,-2, 0, 0, 0, 0,..., 0, 0, 0, 0), 

lW =(0,0, 1,-2, 1, 0, 0,..., 0, 0, 0, 0), 

l^   =(0,0,   0,    1,-2,    1,   0,...,   0,    0,   0,   0), 

/(-D   =(0,0,   0,   0,    0,   0,   0,...,    1,-2,    1,   0), 

lW   -(0,0,   0,   0,   0,   0,   0,...,   0,    1,-2,    1). 

Using the etale map YQ = zs, Yi = j, Y2 = s and Yk = stk 2, 
k = 3,... , n + 3, solving YoY1 = K>2, Y^+2 = Y^v i = 2,... , n + 1 on 

the polynomial P = YA=O 
a^ one §e^s [35] 

P = sz + - + an+ls + anst + ... + &osin+1 • (37) 

This can be indentified, upon going to an affine patch 5 = 1 after 
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trivial redefinitions and the [35] limit, with the genus n SU(n + 1) 
curves for JV = 2 Super-Yang-Mills theory [40] . 

To obtain the complete solutions of the period system to the local 
mirror geometry (37), we have to specify the classical intersection terms 
in the n double-logarithmic solutions ds^. Using (37),(35), the rela- 
tion between the ideal of the principal part of the differential operator 
at the maximal unipotent point Zi = 0 and the logarithmic solutions of 
GKZ-systems as in section 4 of [32], as well as some algebra, we arrive 
at the following structure of the general double-logarithmic solution for 
arbitrary n (Ji ~ log(^)): 

K = J2yiJi(Jb + J22kJk)' (38) 
i=l k=l 

Here the coefficients of the jji can be viewed as logarithmic terms of 
dsi^F- This leads by (36) to an explicit basis of solutions. 

It remains to fix the Xi by requiring invariance of the Ng in (33) 
given the general solution (38) , which yields 

Xi = Mijyj, ij = 1,... ,n , (39) 

where M is the Cartan matrix of An.  Using this description, we can 
calculate the instantons for all An. 

In the following we give some explicit numbers for A2. We arrive 
at these same numbers from A-model techniques, even though this is a 
non-bundle case. 

<4 = 0 d2 0 1 

di 
0 -2 

1 -2 -2 

db = l d2 0 1 2 3 4 5 6 

di 
1 -2 -2 
2 -4 -6 -6 -2d3 - 2 .. 

3 -6 -10 -12 -12 -4d3 - 6 
4 -8 -14 -18 -20 -20 -6d3 - 12 .. 

5 -10 -18 -24 -28 -30 -30 -8^3- -20 
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db = 2 d2          0          1          2          3          4                        5         6 
di 

3 
4 
5 

-6     -10     -12     -12     -10  -4(rf3-l)-6 
-32      -70      -96    -110    -112                  -126   -192 

-110    -270    -416    -518    -576                  -630 

4 = 3 d2          0          1          2          3          4         5       6 

di 
4 
5 

-8     -14     -18     -20     -20    -20  -18 
-110    -270    -416    -518    -576  -630 

Table 4. Gromov-Witten invariants for local A2. For o^ > d^ we have 
ni,d2,d3 = -2(d2 - 1)4 - faidk - 1). 

For A 3: 

4 = 0 [4,4]    [0,0]   [1,0]    [0,1]    [1,1] 
di 

0 
1 

-2      -2      -2 
-2     -2                  -2 

db = l [d2, d4}    [0,0] [1,0] [1,1]   [2,0]    [2,1]   [2,2]    [3,0] [3,1]   [3,2] 
di 

1 
2 

3 

-2     -2 
-4     -6 

-6   -10 

-2 
-6     -6      -8     -6      -4 

-10   -12     -16   -12     -12 
-6     -6 

-18 

4 = 2 [4,4] [0,0]    [1,0]   [1,1]   [2,0]   [2,1] 
di 

3 
4 
5 

-6    -10   -10   -12   -16 
-32    -70   -70   -96 

-270  -110       - 

Table 5. Gromov-Witten invariants for local A3. 

Note that, as expected, at cfe = 0 the only Gromov-Witten invari- 
ants occur at the degrees a+ with A^a+ = — 2 where a+ are the vector 
of positive roots in the Cartan-Weyl basis. 

As a final example, we consider a toric grid diagram which admits 
a flop transition, describing in phase A two P2 connected by a P1. The 
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local geometry is defined by the C* operations generated by 

#> = (   0,-1,   0,-1,   1,   1),    Zg) = (   0,   1,   0,   1,-1,-1) 

42) = (   1,    1,   0,   1,   0,-3),    42) = (   1,   0,   0,   0,    1,-2) 

43) = (   0,    1,    1,   1,-3,   0),    43) = (   0,   0,    1,   0,-2,   1) 
SVJIA = {ooi = X2 = #4 = 0, £5 = Xfl = 0, 

#2 = #3 = #4 = 0, Xi = £3 = 0, 

si = £5 = 0, xs = x6 = 0} 

SIZIB = {X2 = X4 = 0, £1 = Xs = 0, 

£1 = £5 = 0, £3 = a:6 = 0} 

Figure 3: Two phases of a local Calabi-Yau manifold. Phase B is 
obtained by a flop transition. 

and the indicated Stanley-Reisner ideal. As in the A2 case the mirror 
geometry is given by a genus two Riemann surface. The space of double- 
logarithmic solutions is two dimensional and can be determined from 
(35). Local invariants follow then for the A and B phase via (33) from 
the following data 

'R<A = ylJl + y2{Jl-Jl),    xf = yu   ^ =-3(j/i - j/2),   x£ = 
nB = y1(2J1 J2 + Jx J3 + 2J2

2 + J32) + y2(J* + h J2) 

rrf = 2/2,   X2 = -3yi - 2y2,   x^ = -3yi - 2/2 - 

-3y2 

Below we list the Gromov-Witten invariants for the B phase of the 
(P2,P2) diagram Figure 3. The instantons of the A phase are related 
to the one in the B phase by njj^ = rcf^-.^j. The only degree for 
which this formula does not apply is n^0)0 = 1, which counts just the 
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flopped P1. 

<4 = 0 (k      0  1 

0 
1 

-2 
-2 -2 

db = 1 d2     0 1 2 3 4 5 6 

di 
0 1 3 5 7 9 11 13 
1 3 4 8 13 16 20 24 
2 5 8 9 15 21 27 33 
3 7 12 15 16 24 32 40 
4 9 16 21 24 25 35 45 
5 11 20 27 32 35 36 48 

db = 2 d2          0 1 2 3 4 5 6 

0 -6 -32 -110 -288 -644 

1 -10 -70 -270 -770 -1820 
2 -6 -10 -32 -126 -456 -1330 -3264 

3 -32 -70 -126 -300 -784 -2052 -4928 

4 -110 -270 -456 -784 -1584 -3360 -7260 

5 -288 -770 -1330 -2052 -3360 -6076 — 

4 = 3 d2       0 1 2 3 4    5 

di 
0 0 0 0 27 286 1651 

1 0 0 0 64 800 5184 

2 0 0 25 266 1998 11473 

3 27 64 266 1332 6260 26880 

4 286 800 1998 6260 21070 70362 

Table 6. Gromov-Witten invariants for the phase B in Fig. 3 

From the examples treated so far it should be clear how to proceed 
for a general toric grid diagram with n inner points and m boundary 
points. After choosing a triangulation and a corresponding basis of the 
m + n — 3 linear relations /W one analyses the principal part of the 
differential system (35) to obtain a basis of the double-logarithmic so- 
lutions. This is the only additional information needed to specify the 
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full set of the 2n + m-2 solutions from (36) . The general structure of 
the solutions will be as follows. Besides the constant solution, we get 
for each of the n inner points of the toric diagram, whose total num- 
ber equals the genus of the Riemann surface, one-single logarithmic 
solution and one double-logarithmic solution coming from the period 
integrals around a- and 6-type cycles of the Riemann surface. From 
additional boundary points in the toric grid diagram beyond 3 we get 
additional single-logarithmic solutions which correpond to residues of 
the meromorphic form (6.3). Together with (25) the solutions deter- 
mine (33) and hence the Gromov-Witten invariants, up to a choice of Xi 
and yj, which represents a choice of the bases for the double-logarithmic 
solutions. Requiring the Gromov-Witten invariants to be independent 
of this choice gives a linear relation Xi(yj). This produces the exact 
vacuum solutions and the BPS counting functions for those five dimen- 
sional theories, as discussed in [46], which come from arbitrary grid 
diagrams [48]. 

6.5    Cases with constraints 

The del Pezzo surfaces Bn can be constructed by blowing P2 up n times, 
0 < n < 8, in addition to P1 x P1. As is well known, the case n = 6 
can be represented as a cubic in P3 denoted by Xs(l, 1,1,1), and n = 
7,8 are representable as degree four and six hypersurfaces in weighted 
projective spaces: X^l, 1,1,2) and X6(l, 1,2,3), respectively. The n = 
5 case can be represented as the degree (2,2) complete intersection in 
P4 ^(l, M, M). In addition, the quadric in P3, ^(l, 1,1,1) is 
another representation of P1 x P1. In the representation given for the 
non-local Calabi-Yau geometry as the canonical bundle over this del 
Pezzo surfaces below, the map i* : H1,l(X) -> Hljl(B) is not onto, as 
in the previous cases. As a consequence the Gromow-Witten invariants 
are a sum over curves with degree di in classes in H1*1^) up to degree 
d = Ylidi- These cases have been considered before [42], [47], [56], [55] 

As all the weights in these representations are co-prime, the Kahler 
class associated to the hyperplane class of the ambient space is the 
only one which restricts to the surface (no exceptional divisors from 
the ambient space). We can recast the Chern classes of the surface 
and the of the canonical bundle over it in terms of this class J.  This 
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can be stated more generally for smooth complete intersections by 
the definition of the following formal weight or charge vectors l^ = 
(di(fc),... , dr(k)\wnk),. •. , w*(jfe)), where d^k) are the degree of the i'th 
polynomial, i = 1,... ,p, in the variables of the fe'th weighted projec- 
tive space, A; = 1,... , s. In terms of these we can express the total 
Chern class, by the adjunction formula, to obtain the following formal 
expansion 

c = nu nag+^wfa) nu EU ^.W^ (40) 

Integrals over the top class for the non-compact case are formally 
defined by multiplying with the volume form of the normal bundle 
V = IlLi 115=1 dmJ{k) and picking the coefficient of IlLi Jr(a(fc)"1)- 
Similarly wedge products of C2 with J and triple intersections are ob- 
tained.19 We start by summarizing the weight or charge vectors for the 
non-compact case (the compact cases are obtained by deleting the last 
entry): 

X2(l, 1,1,1) /  =   1 ;-21,1,1,1,-1) 

X2,2(1}1,1,1,1) /  =  1 -2,-2 1,1,1,1,1, -1) 
X3(l, 1,1,1) /  =   1 ;-31,1,1,1,-1) 

^4(1,1,1,2) I =  1 :-4 1,1,1,2,-1) 

X6(l,l,2,3) /  =   1 ;-6 1,l,2,3,-l). 

Using (40) we calculate for the cases in turn 

J J3 = -1,-4, -3, -2,-1 

/ Jc2 = 2,-4,-6,-8,-10 

/c3= 4,16, 24,36,60. 

The differential operators follow directly from (35) for the five cases 
they are 

£(1) = 03 _ ^^ + ^g ?       C(2) z=zeS + ^Q + ^20 ^ 

19There are minor disagreements with the classical integrals equation (4.18) in 
[47] as well as with the normalization of the instanton numbers for the case referred 
to as "conifold" in [47] . These data should all follow from (40) . 
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£(3) = 03 + 3z(30 + 1)(30 + 2)9 ,    /:(4) = 03 + 4z(40 + 1)(40 + 3)9 , 

£(5) = 93 + 12z(69 + 1)(69 + 5)9 . 

The principal discriminant appears in front of the highest derivative 
C = A^3 + ..., i.e., A = (1 + az) with a = -16,16,27,64,432, 
respectively. The following properties concerning the exponents at the 
critical loci of the discriminants are common: the discriminat appears 
with Ar r = — |, as for the conifold, and the zs appears with s = —(12+ 
f Jc2)/12. For these cases, the charge vectors and the topological data 
listed above give (using INSTANTON) the following invariants. 

*2(1, 1,1,1) Xa,2(l,l 1,1,1) ■Mi, 1,1,1) 
d rational elliptic rational elliptic rational elliptic 
1 -4 0 16 0 27 0 
2 -4 0 -20 0 -54 0 
3 -12 0 48 0 243 -4 
4 -48 9 -192 5 -1728 -135 
5 -240 136 960 -96 15255 -3132 
6 -1356 1616 -5436 1280 -153576 62976 
7 -8428 17560 33712 -14816 169086 -1187892 
8 -56000 183452 -224000 160784 -20053440 21731112 
9 -392040 1878664 1588160 -1688800 249740091 -391298442 

10 -2859120 19027840 -11436720 - -17416488 -3240109350 6985791864 

■MM ,1,2) x6(i,: 1,2,3) 
d rational elliptic rational elliptic 
1 56 0 252 -2 
2 -272 3 -9252 762 
3 3240 -224 848628 -246788 
4 -58432 12042 -114265008 76413073 
5 1303840 -574896 18958064400 -23436186174 
6 -33255216 26127574 -3589587111852 7209650619780 
7 930431208 -1163157616 744530011302420 -2232321201926988 
8 -27855628544 51336812456 -165076694998001856 696061505044554012 

Table 7: Gromov-Witten Invariants for local cases with constraints. 

As expected from the Segre embedding of P1 x P1 into P3 by the 
conic constraint, this case should correspond to the diagonal part of the 
local P1 x P1 case, i.e., J^+j^r nijXP = nr 

2( ' ' ' , which is indeed 
true. The Gromov-Witten invariants for the elliptic curves are calcu- 
lated using the holomorphic anomaly of the topological B-model [7] . 
(In [38] some of them are checked using localisation.) 
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7    Discussion 

We have established that mirror symmetry makes good sense in the lo- 
cal setting, with the enumerative invariants counting the effective con- 
tribution of the surface to the Gromov-Witten invariants of a would-be 
Calabi-Yau threefold which contains it. These invariants, defined and 
computed mathematically, are obtained through analyzing solutions to 
differential equations, as in the global case. As in previous works, we 
see the Seiberg-Witten curve arising from the B-model approach, if an 
N=2 gauge theory is geometrically engineered. 

Several interesting observations were made along the way. We 
found, analyzing a reducible quadric, that singular surfaces pose no 
obstacle to defining the local invariants. Indeed the A-model should be 
independent of deformations; equivalently, calculations of Chern classes 
by sections are independent of the choice of section. Further, rather as 
the canonical bundle description breaks down for singular surfaces, we 
find in the fibered An examples (in which the fibered sphere-trees rep- 
resent the singular surface) that the bundle structure does not appear 
to be necessary to proceed with the calculation. Heuristically, one can 
model not just the moduli space of maps as a projective variety, but in 
fact the whole vector bundle Ud- With intersections in the Chow ring 
and integration well-defined by virtue of a Thorn class, the procedure 
seems to yield the correct results. This technique needs to be devel- 
oped and made rigorous, but the numbers still agree with the B-model 
results in Table 4-5. 

The recent work of Vafa and Gopakumar [66] introduces a new 
interpretation of these numbers and their analogues at higher genus. 
In particular, those authors count the contributions of BPS states (D- 
branes) in a fixed homology class (but not fixed genus) to the full string 
partition function, which is a sum over topological partition functions 
at all genera. Their calculations tell us how to organize the partition 
functions in order to extract integers, which represent BPS states corre- 
sponding to cohomology classes on the full moduli space of BPS states20 

and transforming under a certain 377(2) action in a particular way. In 
genus zero, the contribution is equivalent to the Euler characteristic. 

20This is the standard reduction to a supersymmetric sigma model on a moduli 
space. 
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At degree three in P2, for example, a smooth degree three polynomial 
is an elliptic curve, and the D-brane moduli space includes the choice 
of a U(l) bundle over the curve, equivalently a point on the curve (if 
it is smooth). The choice of curves with points is shown in [66] to be 
a P8 bundle over P2, a space with Euler characteristic 27 (which is in- 
deed 713 for P2)- The singular curves, however, should be accompanied 
by their compactified Jacobians as in [70], but these can in general no 
longer be equated with the curves themselves. Further, the compacti- 
fied Jacobians of reducible curves (e.g., the cubic XYZ = 0 in P2) are 
particularly troublesome. Perhaps the non-compact direction in Kj>2 
leads to a resolution of these difficulties. It would be very interesting 
to mesh the Gromov-Witten and D-brane explanations of these local 
invariants. 

Having extended traditional mirror symmetry to the non-compact 
case, one naturally asks whether other viewpoints of mirror symmetry 
make sense in the non-compact setting. Is there any kind of special- 
Lagrangian fibration? It is likely that, if so, the fibers would be de- 
compactified tori, e.g., S1 x S1 x R. 21 This would be an interesting 
venue to the conjectures of [63]. In particular, once the Kahler-Einstein 
metric of the surface is known, Calabi [8] has given a method to find 
a Ricci-flat metric on the total space of the canonical bundle. In [63] 
it is argued that not only should the total D-brane moduli space of 
the special-Lagrangian torus be the mirror manifold, but also that the 
metric of the mirror should be computable by an instanton expansion 
involving holomorphic discs bounding the torus. The local setting of a 
degenerate fiber, such as has been studied and given an explicit metric 
in [61], may prove an illustrative starting point (though several of us 
have been unable to crack this example). 

What about the categorical mirror symmetry conjecture of Kontse- 
vich? Unfortunately, few explicit descriptions are known of the derived 
categories of coherent sheaves over non-compact spaces (or any spaces, 
for that matter). In two dimensions, however, the recent work of [34] 
gives a description of the derived category over resolutions of A-D-E 
singularities in two dimensions. The fibered versions of these spaces 
are just what we consider in this paper. It would be extremely inter- 
esting to calculate Fukaya's category in these examples, especially as 

21 Recently, [52] has found such a fibration for canonical bundles of projective 
spaces. 
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we currently have a real dearth testing grounds for Kontsevich's ideas. 

We feel that the local setting may be the best place for gleaning 
what's really at work in mirror symmetry and tying together our still 
fragmented understanding of this subject. 

8    Acknowledgements 

We are indebted to B. Lian, for explaining extensions of the mirror 
principle, and for helping us at various stages of this project; and to 
M. Roth, for explaining many algebro-geometric constructions and for 
his involvement at the early stages of our work. We thank them, as 
well as T. Graber, R. Pandharipande, and C. Vafa for many helpful 
discussions. The work of T.-M. Chiang and S.-T. Yau is supported in 
part by the NSF grant DMS-9709694; that of A. Klemm in part by 
a DFG Heisenberg fellowship and NSF Math/Phys DMS-9627351 and 
that of E. Zaslow in part by DE-F602-88ER-25065. 

9    Appendix: Examples (A-Model) 

9.1     0(4) -► P3 

This case is very similar, only we note that the rank of Ud is 4d +1 and 
the dimension of moduli space is 4d. Thus we must take the Chern class 
c±d integrated over the moduli space. Taking the next-to-top Chern 
class has the following interpretation. Instead of just counting the 
zeros of a section, SQ, we take two sections So and si and look at the 
zeros of s^ A Si, i.e., we look for points where the two sections are not 
linearly independent. The number of such points also has the following 
interpretation. Look at the P1 linear system generated by SQ and Si. If 
So A Si has a zero at a point (C, /) in moduli space, then some section 
asu + bsi vanishes identically on /(C), i.e., /(C) maps to the zero locus 
of asQ + bsi. Therefore, the interpretation of the next-to-top Chern class 
is as the number of rational curves in any member of the linear system 
generated by two linearly independent sections. 
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Of course, in this problem, we must account for multiple covers as 
above. After doing so, the numbers rid which we get are as follows: 

d rid 

1 320 
2 5016 

3 144192 
4 5489992 

5 247634752 
6 12472771416 

7 678995926336 

8 39156591980232 

9 2360737982593344 

10 147445147672907352 

Table 8. Gromov-Witten invariants for a K3 surface inside a Calabi- 
Yau threefold. 

Practically speaking, sections are simply quartic polynomials, and 
the zero loci are quartic K3 surfaces. Therefore, we are counting the 
number of rational curves in a pencil of quartic K3 surfaces. We may 
wish to compare our results with a Calabi-Yau manifold admitting a K3 
fibration. Of course, the number of curves will depend on the nature 
of the fibration. Our count pertains to a trivial total family, i.e., the 
zero locus of a polynomial of bi-degree (1,4) in P1 x P3. The degree 
8 hypersurface Calabi-Yau manifold in P2,2,2,i,i is a pencil of quartic 
surfaces fibered over P1 in a different way, though the counting differs 
only by a factor of two. Specifically, if we look at the Gromov-Witten 
invariants in the homology class of d times the fiber (for this example 
hn = 2, one class coming from the P1 base, one from the projective 
class of the K3 fiber), we get twice the numbers computed above. 

9.2     0(3) -> P2 

In this example, the rank of Ud is now 3d + 1 which is two greater 
than the dimension of Moo(d,P2), so we must take C(top-2)(f^)- The 
interpretation is similar to the case of 0(4) ->► P3. We count the 
number of rational curves in a two-dimensional family of cubic curves 
generated by three linearly independent sections of (9(3) (cubics). 
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The numbers n^ are: rii = 21,712 = 21, ns = 18,77,4 = 21, n^ = 
21, ne = 18, and so on, repeating these three values (as far as we have 
computed them explicitly). Some of the numbers can be easily verified. 
For example, the space of cubics on P2 (three variables) forms (modulo 
scale) a P9, while conies form a P5 and lines form a P2. In order 
for a cubic curve to admit a line, the polynomial must factor into a 
linear polynomial times a conic. To count the number of cubics in a 
P2 family which do so, we must look at the intersection of P2 C P2 

with the image V of m : P2 x P5 -» P9, which is just the map of 
multiplication of polynomials. The Poincare dual of the P2 family 
is just i?7, where H is the hyperplane class. Therefore, we wish to 
compute fvH = flp2xr5m*(H). Now the map m is linear in each of 
the coefficients (of the line and the polynomial of the conic), so we have 
m*(H) = Hi + H2, where the Hi are the hyperplane classes in P2 and 
P5, respectively. The integral just picks up the coefficient of HfH^ in 
(H1 + H2)7, which is 21. Note that the same analysis applies to 712, since 
we have already computed the number of cubics factoring into a conic 
(times a line). 

To compute 77,3 one needs more information about the discriminant 
locus of the P2 family. Similar calculations have been done in [10], 
where the authors consider a Calabi-Yau manifold which is a fibered 
by elliptic curves over a two-dimensional base. The numbers differ from 
the ones we have computed, since the fibration structure is different. 
Nevertheless, the repeating pattern of three numbers survives. 

9.3    KFn 

"Local mirror symmetry" of canonical bundle of Hirzebruch surfaces 
can also be computed. The results are as follows: 
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dp      0 1 2 3 4 5 6 
ds 
0 -2 0 0 0 0 0 
1 -2 -4 -6 -8 -10 -12 -14 
2 0 -6 -32 -110 -288 -644 -1280 

3 0 -8 -110 -756 -3556 -13072 -40338 

4 0 -10 -288 -3556 -27264 -153324 -690400 

5 0 -12 -644 -13072 -153324 -1252040 -7877210 

6 0 -14 -1280 -40338 -690400 -7877210 -67008672 

Table 9. Invariants of K^Q (B and F denote the P^s). 

dF   0 1 2 3 4 5 6 
dB 

0 -2 0 0 0 0 0 
1 1 3 5 7 9 11 13 
2 0 0 -6 -32 -110 -288 -644 

3 0 0 0 27 286 1651 6885 

4 0 0 0 0 -192 -3038 -25216 
5 0 0 0 0 0 1695 35870 

6 0 0 0 0 0 0 -17064 

Table 10. Invariants of KFl (B and F denote the base and fiber class 
respectively). 

The numbers for ds = dp in the above table are the same as that 
for K^2. As Fi is the blowup of P2 at a point and the homology class 
of a line in P2 pulled back to Fi is B + F, this is what we expect. 
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dF          0 1 2     3 4 5 6 
dB 

0 -2 0     0 0 0 0 
1 -1/2 -2 -4 -6 -8 -10 -12 
2 0 0 0  -6 -32 -110 -288 
3 0 0 0     0 -8 -110 -756 
4 0 0 0     0 0 -10 -288 
5 0 0 0     0 0 0 -12 
6 0 0 0     0 0 0 0 

Table 11. Invariants of KY2 (B and F denote the base and fiber class 
respectively). 

We do not understand the result of —1/2 above, but it reflects 
the fact that the moduli space of stable maps into the base, which is 
a curve of negative self-intersection, is not convex. Therefore the A- 
model calculation is suspect and we consider the B-model result of 0 
for this invariant to be the right answer. (For higher degree maps into 
the base, the A- and J5-model results agree again.) 
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