Positive Mass Theorem on Manifolds admitting Corners along a Hypersurface

Pengzi Miao

Department of Mathematics Stanford University Stanford, CA 94305 USA mpengzi@math.stanford.edu

Abstract

We study a class of non-smooth asymptotically flat manifolds on which metrics fail to be C^1 across a hypersurface Σ . We first give an approximation scheme to mollify the metric, then we show that the Positive Mass Theorem [8] still holds on these manifolds if a geometric boundary condition is satisfied by metrics separated by Σ .

1 Introduction and Statement of Results

The well-known Positive Mass Theorem in general relativity was first proved by R. Schoen and S.T. Yau in [8] for smooth asymptotically flat manifolds with non-negative scalar curvature. It is interesting to know on what kind of non-smooth Riemannian manifolds their techniques and results can be generalized. In this paper we study this question in a special setting where the metric fails to be C^1 across a hypersurface.

e-print archive: http://lanl.arXiv.org/abs/math-ph/0212025

Let $n \geq 3$ be a dimension for which the classical PMT [8] holds. Let $\alpha \in (0,1)$ be a fixed number and M be an oriented n-dimensional smooth differentiable manifold with no boundary. We assume that there exists a compact domain $\Omega \subset M$ so that $M \setminus \Omega$ is diffeomorphic to \mathbb{R}^n minus a ball and $\Sigma = \partial \Omega$ is a smooth hypersurface in M.

Definition 1. A metric \mathcal{G} admitting corners along Σ is defined to be a pair of (g_-, g_+) , where g_- and g_+ are $C_{loc}^{2,\alpha}$ metrics on Ω and $M \setminus \overline{\Omega}$ so that they are C^2 up to the boundary and they induce the same metric on Σ .

Definition 2. Given $\mathcal{G} = (g_-, g_+)$, we say \mathcal{G} is asymptotically flat if the manifold $(M \setminus \Omega, g_+)$ is asymptotically flat in the usual sense (see [7]).

Definition 3. The mass of $\mathcal{G} = (g_-, g_+)$ is defined to be the mass of g_+ (see [7]) whenever the later exits.

One of our main motivation to study such a pair $\mathcal{G}=(g_-,g_+)$ is its implicit relation with Bartnik's quasi-local mass of the bounded Riemannian domain $(\overline{\Omega},g_-)$. It is generally conjectured that there exists a g_+ on $M\setminus\Omega$ so that $\mathcal{G}=(g_-,g_+)$ is a minimal mass extension of $(\overline{\Omega},g_-)$ in the sense of [1].

Under a geometric boundary condition which originated in [2], we prove the following Positive Mass Theorem for \mathcal{G} .

Theorem 1. Let $\mathcal{G} = (g_-, g_+)$ be an asymptotically flat metric admitting corners along Σ . Suppose that the scalar curvature of g_- , g_+ is non-negative in Ω , $M \setminus \overline{\Omega}$, and

$$H(\Sigma, g_{-}) \ge H(\Sigma, g_{+}),$$
 (H)

where $H(\Sigma, g_{-})$ and $H(\Sigma, g_{+})$ represent the mean curvature of Σ in $(\overline{\Omega}, g_{-})$ and $(M \setminus \Omega, g_{+})$ with respect to unit normal vectors pointing to the unbounded region. Then the mass of \mathcal{G} is non-negative. Furthermore, if $H(\Sigma, g_{-}) > H(\Sigma, g_{+})$ at some point on Σ , \mathcal{G} has a strict positive mass.

Remark 1. Under our sign convention for the mean curvature, we have that $H(S^{n-1}, g_o) = n - 1$, where S^{n-1} is the unit sphere in \mathbb{R}^n and g_o is the Euclidean metric.

One direct corollary of this theorem is that the boundary behavior of a metric g on $\overline{\Omega}$ imposes subtle restriction on the scalar curvature of g inside Ω . For instance, we have that

Corollary 1.1. There does not exist a metric g with non-negative scalar curvature on a standard ball $\overline{B} \subset \mathbb{R}^n$ so that ∂B is isometric to S^{n-1} and the mean curvature of ∂B in (\overline{B}, g) is greater but not equal to n-1.

Based on the work of H. Bray and F. Finster [4], we have a rigidity characterization of \mathcal{G} when its mass is zero.

Theorem 2. Let n=3 and g_-,g_+ satisfy all the assumptions in Theorem 1. If g_- and g_+ are at least $C^{3,\alpha}_{loc}$, then the mass of g_+ being zero implies that g_- and g_+ are flat away from Σ and they induce the same second fundamental form on Σ . Hence, (Ω,g_-) and $(M\setminus\overline{\Omega},g_+)$ together can be isometrically identified with the Euclidean space (\mathbb{R}^3,g_o) .

To illustrate the relevance of Theorem 2 to the quasi-local mass of a bounded Riemannian domain, we mention the following corollary.

Corollary 1.2. Let (M^3, g) be a manifold with non-negative scalar curvature, possibly with boundary. Let g_{σ} be a metric on S^2 so that there exist two isometric embeddings $\phi_1: (S^2, g_{\sigma}) \to (\mathbb{R}^3, g_o)$ and $\phi_2: (S^2, g_{\sigma}) \to (M^3, g)$, where $\phi_1(S^2), \phi_2(S^2)$ each bounds a compact region Ω_1, Ω_2 in \mathbb{R}^3 , M^3 that has connected boundary. Then, if

$$H(\phi_2(S^2), g) \ge H(\phi_1(S^2), g_0),$$

 Ω_2 is isometric to Ω_1 . In particular, Ω_2 has trivial topology.

Remark 2. If we replace S^2 by an arbitrary compact surface Σ_g with genus $g \geq 1$, under the same assumption, our argument still works to show that the region bounded by $\phi_2(\Sigma_g)$ is flat.

2 Explanation of condition (H)

In this section we give a motivation for the geometric boundary condition (\mathbf{H}) . One will see that it can be interpreted as a statement that the scalar curvature of \mathcal{G} is distributionally non-negative across Σ .

Let g be a C^2 metric in a tubular neighborhood of Σ and ν be a unit normal vector field to Σ . Let K be the Gaussian curvature of Σ with respect to the induced metric $g|_{\Sigma}$ and R be the scalar curvature of g. Taking trace of the Gauss equation, we have that

$$2K = R - 2Ric(\nu, \nu) + H^2 - |A|^2, \tag{1}$$

where $Ric(\nu,\nu)$ is the Ricci curvature of g along ν , H and A are the mean curvature and the second fundamental form of Σ .

Assuming that Σ evolves with speed ν , we have the following evolution formula of the mean curvature

$$D_{\nu}H = -Ric(\nu, \nu) - |A|^2. \tag{2}$$

It follows from (1) and (2) that

$$R = 2K - (|A|^2 + H^2) - 2D_{\nu}H,\tag{3}$$

which suggests that $D_{\nu}H$ plays a dominant role in determining the sign of R if K, H and A are known to be bounded. In particular, for a metric $\mathcal{G} = (g_-, g_+)$ with $H(\Sigma, g_-) > H(\Sigma, g_+)$, the scalar curvature of \mathcal{G} across Σ looks like a positive Dirac-Delta function with support in Σ . Hence, the spirit of Theorem 1 is that PMT still holds even if the scalar curvature is only assumed to be distributionally non-negative across Σ .

Remark 3. The geometric boundary condition (**H**) was first introduced by R. Bartnik in [2], where he suggested the static metric extension conjecture for a bounded domain in a time-symmetric initial data set.

3 Smoothing \mathcal{G} across Σ

Given $\mathcal{G} = (g_-, g_+)$ on M, we want to approximate \mathcal{G} by metrics which are C^2 across Σ .

First, we use the Gaussian coordinates of Σ to modify the differential structure on M so that \mathcal{G} becomes a continuous metric across Σ . Let $U^{2\epsilon}_{-}$ be a 2ϵ -tubular neighborhood of Σ in $(\overline{\Omega}, g_{-})$ for some $\epsilon > 0$. Let

$$\Phi_-: \Sigma \times (-2\epsilon, 0] \longrightarrow U_-^{2\epsilon}$$

be a diffeomorphism so that the pull back metric $\Phi_-^*(g_-)$ has the form $\Phi_-^*(g_-) = g_{-ij}(x,t)dx^idx^j + dt^2$, where t is the coordinate for $(-2\epsilon,0]$, (x^1,\ldots,x^{n-1}) are local coordinates for Σ and i,j runs through $1,\ldots,n-1$. Similarly, we have $\Phi_+: \Sigma \times [0,2\epsilon) \longrightarrow U_+^{2\epsilon}$, where $U_+^{2\epsilon}$ is a 2ϵ -tubular neighborhood of Σ in $(M \setminus \Omega, g_+)$ and $\Phi_+^*(g_+) = g_{+ij}(x,t)dx^idx^j + dt^2$. Identifying $U = U_-^{2\epsilon} \cup U_+^{2\epsilon}$ with $\Sigma \times (-2\epsilon, 2\epsilon)$, we define \tilde{M} to be a possibly new differentiable manifold with the background topological space M and the differential structure determined by the open covering $\{\Omega, M \setminus \overline{\Omega}, U\}$. Since $g_-|_{\Sigma} = g_+|_{\Sigma}$, \mathcal{G} becomes a continuous metric g on \tilde{M} . Inside $U = \Sigma \times (-2\epsilon, 2\epsilon)$, we have that

$$g = g_{ij}(x,t)dx^i dx^j + dt^2, (4)$$

where $g_{ij}(x,t) = g_{-ij}(x,t)$ when $t \leq 0$ and $g_{ij}(x,t) = g_{+ij}(x,t)$ when $t \geq 0$.

Second, we mollify the metric g inside U. Let $i \in \{0,1,2\}$, we define $S^i(\Sigma)$ to be the Banach space of C^i symmetric (0,2) tensors on Σ equipped with the usual C^i norm and $\mathcal{M}^i(\Sigma)$ to be the open and convex subset of $S^i(\Sigma)$ consisting of C^i metrics. By (4) we have a well defined path in each $\mathcal{M}^i(\Sigma)$,

$$\gamma: (-2\epsilon, 2\epsilon) \longrightarrow \mathcal{M}^2(\Sigma) \hookrightarrow \mathcal{M}^1(\Sigma) \hookrightarrow \mathcal{M}^0(\Sigma)$$
 (5)

where

$$\gamma(t) = g_{ij}(x,t)dx^i dx^j. (6)$$

By ass umption, γ is a continuous path in $\mathcal{M}^2(\Sigma)$ and a piecewise C^1 path in $\mathcal{M}^1(\Sigma)$. Hence, there exists L > 0 depending only on \mathcal{G} such that

$$\|\gamma(t) - \gamma(s)\|_{\mathcal{M}^1(\Sigma)} \le L|t - s|, \quad \forall s, t \in [-\frac{3}{2}\epsilon, \frac{3}{2}\epsilon]. \tag{7}$$

We choose $\phi(t) \in C_c^{\infty}([-1,1])$ to be a standard mollifier on \mathbb{R}^1 such that

$$0 \le \phi \le 1$$
 and $\int_{-1}^{1} \phi(t)dt = 1.$ (8)

Let $\sigma(t) \in C_c^{\infty}([-\frac{1}{2},\frac{1}{2}])$ be anther cut-off function such that

$$\begin{cases}
0 \le \sigma(t) \le \frac{1}{100} & t \in \mathbb{R}^1 \\
\sigma(t) = \frac{1}{100} & |t| < \frac{1}{4} \\
0 < \sigma(t) \le \frac{1}{100} & \frac{1}{4} < |t| < \frac{1}{2}.
\end{cases}$$
(9)

Given any $0 < \delta \ll \epsilon$, let

$$\sigma_{\delta}(t) = \delta^2 \sigma(\frac{t}{\delta}) \tag{10}$$

and we define

$$\gamma_{\delta}(s) = \int_{\mathbb{R}^{1}} \gamma(s - \sigma_{\delta}(s)t)\phi(t)dt, \qquad s \in (-\epsilon, \epsilon) \\
= \begin{cases}
\int_{\mathbb{R}^{1}} \gamma(t) \left(\frac{1}{\sigma_{\delta}(s)}\phi(\frac{s-t}{\sigma_{\delta}(s)})\right) dt, & \sigma_{\delta}(s) > 0 \\
\gamma(s), & \sigma_{\delta}(s) = 0,
\end{cases} (11)$$

where the integral takes place in $S^0(\Sigma)$. By the convexity of $\mathcal{M}^0(\Sigma)$ in $S^0(\Sigma)$, γ_{δ} is a path in $\mathcal{M}^0(\Sigma)$. We have the following elementary lemmas concerning the property of γ_{δ} and its relation with γ .

Lemma 3.1. $\gamma_{\delta}(s)$ is a C^2 path in $\mathcal{M}^0(\Sigma)$ and a C^1 path in $\mathcal{M}^1(\Sigma)$.

Proof: Let $i \in \{1,2\}$. The fact that $\gamma: (-\epsilon, \epsilon) \longrightarrow \mathcal{M}^{2-i}(\Sigma)$ is C^i away from 0 implies that $\gamma_{\delta}: (-\epsilon, \epsilon) \longrightarrow \mathcal{M}^{2-i}(\Sigma)$ is C^i away from $[-\frac{\delta^2}{100}, \frac{\delta^2}{100}]$. For $s \in (-\frac{\delta}{4}, \frac{\delta}{4})$, $\sigma_{\delta}(s) = \frac{\delta^2}{100}$ and (11) turns into

$$\gamma_{\delta}(s) = \int_{\mathbb{R}^1} \gamma(t) \left(\frac{1}{\left(\frac{\delta^2}{100}\right)} \phi\left(\frac{s-t}{\left(\frac{\delta^2}{100}\right)}\right) \right) dt, \tag{12}$$

which is the standard mollification of γ by ϕ with a constant scaling factor $\frac{\delta^2}{100}$. Hence, $\gamma_{\delta}(s): (-\epsilon, \epsilon) \longrightarrow \mathcal{M}^{2-i}(\Sigma)$ is smooth in $(-\frac{\delta}{4}, \frac{\delta}{4})$.

Lemma 3.2. $\gamma_{\delta}(s)$ is a C^0 path in $\mathcal{M}^2(\Sigma)$ which is uniformly close to γ and agrees with γ outside $(-\frac{\delta}{2}, \frac{\delta}{2})$.

Proof: The continuity of $\gamma_{\delta}: (-\epsilon, \epsilon) \longrightarrow \mathcal{M}^2(\Sigma)$ follows directly from that of γ . The estimate

$$\|\gamma_{\delta}(s) - \gamma(s)\|_{\mathcal{M}^{2}(\Sigma)} = \left\| \int_{\mathbb{R}^{1}} \left(\gamma(s - \sigma_{\delta}(s)t) - \gamma(s) \right) \phi(t) dt \right\|_{\mathcal{M}^{2}(\Sigma)}$$

$$\leq \int_{\mathbb{R}^{1}} \|\gamma(s - \sigma_{\delta}(s)t) - \gamma(s)\|_{\mathcal{M}^{2}(\Sigma)} \phi(t) dt \quad (13)$$

shows it is uniformly close to γ . Finally, $\sigma_{\delta}(s) = 0$ for $|s| > \frac{\delta}{2}$ implies

$$\gamma_{\delta}(s) = \int_{\mathbb{R}^1} \gamma(s)\phi(t)dt = \gamma(s). \tag{14}$$

Lemma 3.3. $\|\gamma_{\delta}(s) - \gamma(s)\|_{\mathcal{M}^{0}(\Sigma)} \leq L\delta^{2}$, for $s \in (-\epsilon, \epsilon)$.

Proof: It follows from (7) that

$$\|\gamma_{\delta}(s) - \gamma(s)\|_{\mathcal{M}^{0}(\Sigma)} \leq \int_{\mathbb{R}^{1}} \|\gamma(s - \sigma_{\delta}(s)t) - \gamma(s)\|_{\mathcal{M}^{0}(\Sigma)} \phi(t) dt$$

$$\leq L\delta^{2}. \tag{15}$$

Now we define

$$g_{\delta} = \begin{cases} \gamma_{\delta}(t) + dt^{2}, & (x,t) \in \Sigma \times (-\epsilon, \epsilon) \\ g, & (x,t) \notin \Sigma \times (-\epsilon, \epsilon). \end{cases}$$
(16)

Lemma 3.1, 3.2 and 3.3 imply that g_{δ} is a globally C^2 metric on \tilde{M} which agrees with g outside a strip region $\Sigma \times (-\frac{\delta}{2}, \frac{\delta}{2})$ and is uniformly close to g in C^0 topology.

Next, we proceed to estimate the scalar curvature of g_{δ} . We use the notations defined in section 2 with a lower index δ to denote the corresponding quantities of g_{δ} . By (16), the vector field $\frac{\partial}{\partial t}$ is perpendicular to the slice $\Sigma \times \{t\}$ for each $t \in (-\epsilon, \epsilon)$. Hence, inside $\Sigma \times (-\epsilon, \epsilon)$, (3) shows that

$$R_{\delta}(x,t) = 2K_{\delta}(x,t) - (|A_{\delta}(x,t)|^2 + H_{\delta}(x,t)^2) - 2\frac{\partial}{\partial t}H_{\delta}(x,t). \tag{17}$$

We will estimate each term on the right of (17). First we note that $K_{\delta}(x,t)$ is determined only by $\gamma_{\delta}(t)$, Lemma 3.2 then implies that $K_{\delta}(x,t)$ is bounded by constants depending only on $\gamma: (-\epsilon, \epsilon) \longrightarrow \mathcal{M}^2(\Sigma)$.

To estimate $A_{\delta}(x,t)$ and $H_{\delta}(x,t)$, we compute the first order derivative of $\gamma_{\delta}: (-\epsilon, \epsilon) \longrightarrow \mathcal{M}^{0}(\Sigma)$ because of the definition

$$A_{\delta ij}(x,t) = <\frac{\partial}{\partial x^j}, \nabla^{\delta}_{\frac{\partial}{\partial x^i}} \partial_t > = \frac{1}{2} \frac{\partial}{\partial t} \gamma_{\delta ij}(x,t). \tag{18}$$

By (11) we have that

$$\frac{\partial}{\partial t} \gamma_{\delta ij}(x,t) = \frac{\partial}{\partial t} \int_{\mathbb{R}^1} \gamma_{ij}(t - \sigma_{\delta}(t)s) \phi(s) ds.$$
 (19)

When $|t| > \frac{\delta^2}{100}$, (19) gives that

$$\frac{\partial}{\partial t} \gamma_{\delta ij}(x,t) = \int_{\mathbb{R}^1} \frac{d}{dt} \{ \gamma_{ij}(t - \sigma_{\delta}(t)s) \} \phi(s) ds$$

$$= \int_{\mathbb{R}^1} \gamma'_{ij}(t - \sigma_{\delta}(t)s) \{ 1 - s\delta\sigma'(\frac{t}{\delta}) \} \phi(s) ds. \tag{20}$$

When $|t| < \frac{\delta}{4}$, (12) implies that

$$\frac{\partial}{\partial t} \gamma_{\delta ij}(x,t) = \frac{\partial}{\partial t} \int_{\mathbb{R}^1} \gamma_{ij}(s) \left\{ \frac{100}{\delta^2} \phi(\frac{100(t-s)}{\delta^2}) \right\} ds$$

$$= \int_{\mathbb{R}^1} \gamma_{ij}(s) \frac{d}{dt} \left\{ \frac{100}{\delta^2} \phi(\frac{100(t-s)}{\delta^2}) \right\} ds$$

$$= (-1) \int_{\mathbb{R}^1} \gamma_{ij}(s) \frac{d}{ds} \left\{ \frac{100}{\delta^2} \phi(\frac{100(t-s)}{\delta^2}) \right\} ds$$

$$= (-1) \int_{-\infty}^0 \gamma_{ij}(s) \frac{d}{ds} \left\{ \frac{100}{\delta^2} \phi(\frac{100(t-s)}{\delta^2}) \right\} ds$$

$$+ (-1) \int_0^\infty \gamma_{ij}(s) \frac{d}{ds} \left\{ \frac{100}{\delta^2} \phi(\frac{100(t-s)}{\delta^2}) \right\} ds. \tag{21}$$

Integrating by parts and considering the fact $\gamma(t)$ is continuous at 0, we have that

$$\frac{\partial}{\partial t} \gamma_{\delta ij}(x,t) = \int_{\mathbb{R}^1} \gamma'_{ij}(s) \left\{ \frac{100}{\delta^2} \phi(\frac{100(t-s)}{\delta^2}) \right\} ds$$

$$= \int_{\mathbb{R}^1} \gamma'_{ij}(t-\sigma_{\delta}(t)s)\phi(s)ds. \tag{22}$$

Therefore, for every $t \in (-\epsilon, \epsilon)$, we have that

$$\frac{\partial}{\partial t} \gamma_{\delta ij}(x,t) = \int_{\mathbb{R}^1} \gamma'_{ij}(t - \sigma_{\delta}(t)s) \left\{ 1 - s\delta\sigma'(\frac{t}{\delta}) \right\} \phi(s) ds, \tag{23}$$

which shows that $A_{\delta}(x,t)$ is bounded by constants depending only on $\gamma:$ $(-\epsilon,\epsilon) \longrightarrow \mathcal{M}^0(\Sigma)$. Since $H_{\delta}(x,t) = g_{\delta}^{ij} A_{\delta ij}$, Lemma 3.2 and (23) also imply that $H_{\delta}(x,t)$ is bounded by constants depending only on $\gamma: (-\epsilon,\epsilon) \longrightarrow \mathcal{M}^0(\Sigma)$.

To estimate $\frac{\partial}{\partial t}H_{\delta}(x,t)$, we need to compute the second order derivative of $\gamma_{\delta}: (-\epsilon, \epsilon) \longrightarrow \mathcal{M}^{0}(\Sigma)$. A similar calculation as above gives that, for $|t| > \frac{\delta^{2}}{100}$,

$$\frac{\partial^{2}}{\partial^{2}t}\gamma_{\delta ij}(x,t) = \int_{\mathbb{R}^{1}} \gamma_{ij}''(t-\sigma_{\delta}(t)s) \left\{1-s\delta\sigma'(\frac{t}{\delta})\right\}^{2} \phi(s)ds + \int_{\mathbb{R}^{1}} \gamma_{ij}'(t-\sigma_{\delta}(t)s) \left\{-s\sigma''(\frac{t}{\delta})\right\} \phi(s)ds \qquad (24)$$

and, for $|t| < \frac{\delta}{4}$,

$$\frac{\partial^{2}}{\partial^{2}t}\gamma_{\delta ij}(x,t) = \int_{\mathbb{R}^{1}}\gamma_{ij}''(t-\sigma_{\delta}(t)s)\phi(s)ds + \left\{g_{+ij}'(0) - g_{-ij}'(0)\right\} \left\{\frac{100}{\delta^{2}}\phi(\frac{100t}{\delta^{2}})\right\}.$$
(25)

Since

$$\frac{\partial}{\partial t} H_{\delta}(x,t) = \frac{\partial}{\partial t} \left\{ g_{\delta}^{ij}(x,t) \right\} A_{\delta ij}(x,t) + g_{\delta}^{ij}(x,t) \frac{\partial}{\partial t} A_{\delta ij}(x,t), \tag{26}$$

(24), (23) and Lemma 3.2 imply that, outside $\Sigma \times \left[-\frac{100}{\delta^2}, \frac{100}{\delta^2}\right]$, $\frac{\partial}{\partial t} H_{\delta}(x, t)$ is bounded by constants only depending on $\gamma: (-\epsilon, \epsilon) \longrightarrow \mathcal{M}^0(\Sigma)$. On the other hand, inside $\Sigma \times \left[-\frac{\delta^2}{100}, \frac{\delta^2}{100}\right]$, (25) and (26) show that

$$\frac{\partial}{\partial t} H_{\delta}(x,t) = \frac{\partial}{\partial t} \left\{ g_{\delta}^{ij}(x,t) \right\} A_{\delta ij}(x,t) +
\frac{1}{2} g_{\delta}^{ij}(x,t) \left\{ \int_{\mathbb{R}^{1}} \gamma_{ij}^{"}(t - \sigma_{\delta}(t)s)\phi(s)ds \right\} +
\frac{1}{2} g_{\delta}^{ij}(x,t) \left\{ g_{+ij}^{'}(0) - g_{-ij}^{'}(0) \right\} \left\{ \frac{100}{\delta^{2}} \phi(\frac{100t}{\delta^{2}}) \right\}.$$
(27)

The first two terms on the right are bounded by constants depending only on $\gamma: (-\epsilon, \epsilon) \longrightarrow \mathcal{M}^0(\Sigma)$. For the third one, we rewrite it as

$$\frac{1}{2} \left\{ g_{\delta}^{ij}(x,t) - g^{ij}(x,0) \right\} \left\{ g_{+ij}'(0) - g_{-ij}'(0) \right\} \left\{ \frac{100}{\delta^2} \phi(\frac{100t}{\delta^2}) \right\} + \left\{ H(\Sigma, g_+)(x) - H(\Sigma, g_-)(x) \right\} \left\{ \frac{100}{\delta^2} \phi(\frac{100t}{\delta^2}) \right\}.$$
(28)

By (7), Lemma 3.3 and the fact $|t| \leq \frac{\delta^2}{100}$, we have that

$$|g_{\delta}^{ij}(x,t) - g^{ij}(x,0)| \leq |g_{\delta}^{ij}(x,t) - g^{ij}(x,t)| + |g^{ij}(x,t) - g^{ij}(x,0)|$$

$$\leq CL\delta^{2} + CL\delta^{2},$$
(29)

where C > 0 only depends on \mathcal{G} . Hence, we conclude that

$$\frac{\partial}{\partial t}H_{\delta}(x,t) = O(1) + \left\{H(\Sigma, g_{+})(x) - H(\Sigma, g_{-})(x)\right\} \left\{\frac{100}{\delta^{2}}\phi(\frac{100t}{\delta^{2}})\right\}$$
(30)

inside $\Sigma \times [-\frac{\delta^2}{100}, \frac{\delta^2}{100}]$, where O(1) represents bounded quantities with bounds depending only on \mathcal{G} .

We summarize the features of $\{g_{\delta}\}$ in the following proposition.

Proposition 3.1. Let $\mathcal{G} = (g_-, g_+)$ be a metric admitting corners along Σ . Then \exists a family of C^2 metrics $\{g_{\delta}\}_{0<\delta\leq\delta_0}$ on \tilde{M} so that g_{δ} is uniformly close to g on \tilde{M} , $g_{\delta} = g$ outside $\Sigma \times (-\frac{\delta}{2}, \frac{\delta}{2})$ and the scalar curvature of g_{δ} satisfies

$$R_{\delta}(x,t) = O(1), \quad for \ (x,t) \in \Sigma \times \left\{ \frac{\delta^{2}}{100} < |t| \le \frac{\delta}{2} \right\}$$

$$R_{\delta}(x,t) = O(1) + \left\{ H(\Sigma,g_{-})(x) - H(\Sigma,g_{+})(x) \right\} \left\{ \frac{100}{\delta^{2}} \phi(\frac{100t}{\delta^{2}}) \right\},$$

$$for \ (x,t) \in \Sigma \times \left[-\frac{\delta^{2}}{100}, \frac{\delta^{2}}{100} \right],$$
(32)

where O(1) represents quantities that are bounded by constants depending only on \mathcal{G} , but not on δ .

In case $H(\Sigma, g_{-}) \equiv H(\Sigma, g_{+})$, the following corollary generalizes a reflecting argument used by H. Bray in his proof of the Riemannian Penrose Inequality [3].

Corollary 3.1. Given $\mathcal{G} = (g_-, g_+)$, if $H(\Sigma, g_-) \equiv H(\Sigma, g_+)$, then \exists a family of C^2 metrics $\{g_\delta\}_{0<\delta\leq\delta_0}$ on \tilde{M} so that g_δ is uniformly close to g on \tilde{M} , $g_\delta = g$ outside $\Sigma \times (-\frac{\delta}{2}, \frac{\delta}{2})$ and the scalar curvature of g_δ is uniformly bounded inside $\Sigma \times [-\frac{\delta}{2}, \frac{\delta}{2}]$ with bounds depending only on \mathcal{G} , but not on δ .

4 Proof of Theorem 1

We fix the following notations. Given a function f, we let f_+ and f_- denote the positive and negative part of f, i.e. $f = f_+ - f_-$ and $|f| = f_+ + f_-$. Given a metric g, we define the conformal Laplacian of g to be $L_g(u) = \Delta_g u - c_n R(g) u$, where $c_n = \frac{n-2}{4(n-1)}$ and R(g) is the scalar curvature of g. The mass of g will be denoted by m(g) if it exists. Finally, we let C_0, C_1, C_2, \ldots represent constants depending only on \mathcal{G} .

Throughout this section, we assume that $R(g_-), R(g_+) \geq 0$ in $\Omega, M \setminus \overline{\Omega}$, and $H(\Sigma, g_-)(x) \geq H(\Sigma, g_+)(x)$ for all $x \in \Sigma$.

4.1 Conformal Deformation

We want to modify $\{g_{\delta}\}$ on \tilde{M} to get C^2 metrics with non-negative scalar curvature. For that purpose we use conformal deformation. The following fundamental lemma is due to Schoen and Yau. Interested readers may refer to [8] for a detailed proof.

Lemma 4.1. [8] Let g be a C^2 asymptotically flat metric on \tilde{M} and f be a function that has the same decay rate at ∞ as R(g), then \exists a number $\epsilon_0 > 0$ depending only on the C^0 norm of g and the decay rate of g, ∂g and $\partial \partial g$ at ∞ so that if

$$\left\{ \int_{\tilde{M}} |f_-|^{\frac{n}{2}} dg \right\}^{\frac{2}{n}} < \epsilon_0, \tag{33}$$

then

$$\begin{cases}
\Delta_g u - c_n f u = 0 \\
\lim_{x \to \infty} u = 1
\end{cases}$$
(34)

has a C^2 positive solution u defined on \tilde{M} so that $u = 1 + \frac{A}{|x|^{n-2}} + \omega$ for some constant A and some function ω , where $\omega = O(|x|^{1-n})$ and $\partial \omega = O(|x|^{-n})$.

For each δ , we consider the following equation

$$\begin{cases}
 \Delta_{g_{\delta}} u_{\delta} + c_n R_{\delta} - u_{\delta} = 0 \\
 \lim_{x \to \infty} u_{\delta} = 1.
\end{cases}$$
(35)

It follows from Proposition 3.1 and assumptions on $R(g_{-})$ and $R(g_{+})$ that

$$\begin{cases}
R_{\delta-} = 0, & \text{outside } \Sigma \times \left[-\frac{\delta}{2}, \frac{\delta}{2} \right] \\
|R_{\delta-}| \le C_0, & \text{inside } \Sigma \times \left[-\frac{\delta}{2}, \frac{\delta}{2} \right].
\end{cases}$$
(36)

Therefore, (33) holds with f and g replaced by $-R_{\delta-}$ and g_{δ} , for sufficiently small δ . We note that ϵ_0 can be chosen to be independent on δ because of Proposition 3.1. Hence the solution to (35) exists by Lemma 4.1. We have the following L^{∞} and $C^{2,\alpha}$ estimate for $\{u_{\delta}\}$.

Proposition 4.1. $\lim_{\delta \to 0} \|u_{\delta} - 1\|_{L^{\infty}(\tilde{M})} = 0$ and $\|u_{\delta}\|_{C^{2,\alpha}(K)} \leq C_K$. Here K is any compact set in $\tilde{M} \setminus \Sigma$ and C_K only depends on g and K.

Proof: It suffices to obtain the L^{∞} estimate of $|u_{\delta}-1|$ because, once it is established, the $C^{2,\alpha}$ estimate will follow directly from the fact $\Delta_g u_{\delta} = 0$ outside $\Sigma \times [-\frac{\delta}{2}, \frac{\delta}{2}]$ and the standard Schauder theory. Let $w_{\delta} = u_{\delta} - 1$, we have that

$$\Delta_{q_{\delta}} w_{\delta} + c_n R_{\delta} - w_{\delta} = -c_n R_{\delta} - \tag{37}$$

where $w_{\delta} = \frac{A_{\delta}}{|x|^{n-2}} + \omega_{\delta}$ for some constant A_{δ} and some function ω_{δ} with the decay rate in Lemma 4.1. Multiply (37) by w_{δ} and integrate over \tilde{M} ,

$$\int_{\tilde{M}} (w_{\delta} \triangle_{g_{\delta}} w_{\delta} + c_n R_{\delta} - w_{\delta}^2) \ dg_{\delta} = \int_{\tilde{M}} -c_n R_{\delta} - w_{\delta} \ dg_{\delta}. \tag{38}$$

Integrating by parts and using Hölder Inequality, we have that

$$\int_{\tilde{M}} |\nabla_{g_{\delta}} w_{\delta}|^{2} dg_{\delta} \leq c_{n} \left(\int_{\tilde{M}} |R_{\delta-}|^{\frac{n}{2}} dg_{\delta} \right)^{\frac{2}{n}} \left(\int_{\tilde{M}} w_{\delta}^{\frac{2n}{n-2}} dg_{\delta} \right)^{\frac{n-2}{n}} + c_{n} \left(\int_{\tilde{M}} |R_{\delta-}|^{\frac{2n}{n+2}} dg_{\delta} \right)^{\frac{n+2}{2n}} \left(\int_{\tilde{M}} w_{\delta}^{\frac{2n}{n-2}} dg_{\delta} \right)^{\frac{n-2}{2n}} (39)$$

On the other hand, the Sobolev Inequality gives that

$$\left(\int_{\tilde{M}} w_{\delta}^{\frac{2n}{n-2}} dg_{\delta}\right)^{\frac{n-2}{n}} \le C_{\delta} \int_{\tilde{M}} |\nabla_{g_{\delta}} w_{\delta}|^2 dg_{\delta},\tag{40}$$

where C_{δ} denotes the Sobolev Constant of the metric g_{δ} . It follows from (39), (40) and the elementary inequality $ab \leq \frac{a^2}{2} + \frac{b^2}{2}$ that

$$\left(\int_{\tilde{M}} w_{\delta}^{\frac{2n}{n-2}} dg_{\delta}\right)^{\frac{n-2}{n}} \leq C_{\delta} c_{n} \left(\int_{\tilde{M}} |R_{\delta-}|^{\frac{n}{2}} dg_{\delta}\right)^{\frac{2}{n}} \left(\int_{\tilde{M}} w_{\delta}^{\frac{2n}{n-2}} dg_{\delta}\right)^{\frac{n-2}{n}} + \frac{1}{2} C_{\delta}^{2} c_{n}^{2} \left(\int_{\tilde{M}} |R_{\delta-}|^{\frac{2n}{n+2}} dg_{\delta}\right)^{\frac{n+2}{n}} + \frac{1}{2} \left(\int_{\tilde{M}} w_{\delta}^{\frac{2n}{n-2}} dg_{\delta}\right)^{\frac{n-2}{n}}.$$
(41)

We note that Proposition 3.1 implies that C_{δ} is uniformly close to the Sobolev Constant of g. Hence, for sufficiently small δ , (41) gives that

$$\left(\int_{\tilde{M}} w_{\delta}^{\frac{2n}{n-2}} dg_{\delta}\right)^{\frac{n-2}{n}} \le C\left(\int_{\tilde{M}} |R_{\delta-}|^{\frac{2n}{n+2}} dg_{\delta}\right)^{\frac{n+2}{n}} = o(1), \text{ as } \delta \to 0.$$
 (42)

This $L^{\frac{2n}{n-2}}$ estimate and (37) imply the supremum estimate for w_{δ}

$$\sup_{\tilde{M}} |w_{\delta}| \leq C \left\{ \left(\int_{\tilde{M}} w_{\delta}^{\frac{2n}{n-2}} dg_{\delta} \right)^{\frac{n-2}{2n}} + \left(\int_{\tilde{M}} |R_{\delta-}|^{\frac{n}{n-2}} dg_{\delta} \right)^{\frac{n-2}{n}} \right\}$$

$$= o(1) \text{ as } \delta \to 0$$

$$(43)$$

by the standard linear theory (Theorem 8.17 in [5]).

Now we define

$$\tilde{g}_{\delta} = u_{\delta}^{\frac{4}{n-2}} g_{\delta}. \tag{44}$$

It follows from Proposition 4.1 that, passing to a subsequence, $\{\tilde{g}_{\delta}\}$ converges to g in C^0 topology on \tilde{M} and in C^2 topology on compact sets away from Σ . By the conformal transformation formulae of scalar curvature [7], we also have that

$$\tilde{R}_{\delta} = -c_n^{-1} u_{\delta}^{-(\frac{n+2}{n-2})} L_{g_{\delta}}(u_{\delta}) = u_{\delta}^{\frac{4}{2-n}} R_{\delta+} \ge 0, \tag{45}$$

where \tilde{R}_{δ} represents the scalar curvature of \tilde{g}_{δ} .

Lemma 4.2. The mass of \tilde{g}_{δ} converges to the mass of \mathcal{G} .

Proof: A straightforward calculation using the definition of mass reveals that

$$m(\tilde{g}_{\delta}) = m(g_{\delta}) + (n-1)A_{\delta}, \tag{46}$$

where A_{δ} is given by the expansion $u_{\delta}(x) = 1 + A_{\delta}|x|^{2-n} + O(|x|^{1-n})$. Applying integration by parts to (35) multiplied by u_{δ} , we have that

$$(2-n)\omega_n A_{\delta} = \int_{\tilde{M}} \left[|\nabla_{g_{\delta}} u_{\delta}|^2 - c_n R_{\delta} - u_{\delta}^2 \right] dg_{\delta}, \tag{47}$$

where ω_n is the volume of the n-1 dimensional unit sphere in \mathbb{R}^n . It follows from that (46) and (47) that

$$m(g_{\delta}) = m(\tilde{g}_{\delta}) + \frac{n-1}{n-2}\omega_n \int_{\tilde{M}} \left[|\nabla_{g_{\delta}} u_{\delta}|^2 - c_n R_{\delta} - u_{\delta}^2 \right] dg_{\delta}. \tag{48}$$

We note that the integral term above approaches 0 by Proposition 4.1, (36) and (39). Hence, we have that

$$\lim_{\delta \to 0} m(\tilde{g}_{\delta}) = \lim_{\delta \to 0} m(g_{\delta}) = m(\mathcal{G}).$$

Applying the classical PMT [8] to each \tilde{g}_{δ} , we have that $m(\tilde{g}_{\delta}) \geq 0$. Thus, the non-negativity of $m(\mathcal{G})$ follows directly from Lemma 4.2.

4.2 Scalar Curvature Concentration

In this subsection, we assume that there exists strict jump of mean curvature across Σ , i.e.

$$H(\Sigma, g_{-})(x) > H(\Sigma, g_{+})(x)$$
 for some $x \in \Sigma$.

We will prove that \mathcal{G} has a strict positive mass.

Since $H(\Sigma, g_{-})$ and $H(\Sigma, g_{+})$ both are continuous functions on Σ , we can choose a compact set $K \subset \Sigma$ so that

$$H(\Sigma, g_{-})(x) - H(\Sigma, g_{+})(x) \ge \eta, \quad \forall x \in K$$
(49)

for some fixed $\eta > 0$. By Proposition 3.1, we have that

$$R_{\delta+}(x,t) \ge \eta \left\{ \frac{100}{\delta^2} \phi(\frac{100t}{\delta^2}) \right\} - C_0, \quad \forall (x,t) \in K \times \left[-\frac{\delta^2}{100}, \frac{\delta^2}{100} \right],$$
 (50)

which suggests that the scalar curvature of g_{δ} and \tilde{g}_{δ} has a fixed amount of concentration on K.

To exploit this fact, we use conformal deformation again to make \tilde{g}_{δ} even scalar flat. Since $\tilde{R}_{\delta} = u_{\delta}^{\frac{4}{2-n}} R_{\delta+} \geq 0$, \exists a C^2 positive solution to the following equations

By the maximum principle, we have that

$$0 < v_{\delta} \le 1. \tag{52}$$

Now define

$$\hat{g}_{\delta} = v_{\delta}^{\frac{4}{n-2}} \tilde{g}_{\delta}. \tag{53}$$

Similar to previous discussion, we know that \hat{g}_{δ} is an asymptotically flat metric and the scalar curvature of \hat{g}_{δ} is identically zero. Furthermore, $m(\hat{g}_{\delta})$ and $m(\tilde{g}_{\delta})$ are related by

$$m(\tilde{g}_{\delta}) = m(\hat{g}_{\delta}) + \frac{n-1}{n-2} \omega_n \int_{\tilde{M}} \left[|\nabla_{\tilde{g}_{\delta}} v_{\delta}|^2 + c_n \tilde{R}_{\delta} v_{\delta}^2 \right] d\tilde{g}_{\delta}, \tag{54}$$

where $m(\hat{g}_{\delta}) \geq 0$ by the classical PMT. Hence, to prove $m(\mathcal{G}) > 0$, it suffices to show the integral term in (54) has a strict positive lower bound.

Proposition 4.2.

$$\inf_{\delta>0} \left\{ \int_{\tilde{M}} \left[|\nabla_{\tilde{g}_{\delta}} v_{\delta}|^2 + c_n \tilde{R}_{\delta} v_{\delta}^2 \right] d\tilde{g}_{\delta} \right\} > 0$$
 (55)

Proof: Assume (55) is not true, passing to a subsequence, we may assume that

$$\lim_{\delta \to 0} \int_{\tilde{M}} \left[|\nabla_{\tilde{g}_{\delta}} v_{\delta}|^2 + c_n \tilde{R}_{\delta} v_{\delta}^2 \right] d\tilde{g}_{\delta} = 0.$$
 (56)

Since $\tilde{R}_{\delta} \geq 0$, (56) is equivalent to

$$\lim_{\delta \to 0} \int_{\tilde{M}} |\nabla_{\tilde{g}_{\delta}} v_{\delta}|^2 d\tilde{g}_{\delta} = 0 \quad \text{and} \quad \lim_{\delta \to 0} \int_{\tilde{M}} \tilde{R}_{\delta} v_{\delta}^2 d\tilde{g}_{\delta} = 0.$$
 (57)

Outside $\Sigma \times [-\frac{\delta}{2}, \frac{\delta}{2}]$, we have $g_{\delta} = g$. Hence, (51) becomes

$$\Delta_{\tilde{g}_{\delta}} v_{\delta} - c_n \left(u_{\delta}^{\frac{4}{2-n}} R(g)_+ \right) v_{\delta} = 0.$$
 (58)

It follows from Proposition 4.1, (52) and Schauder Estimates that, passing to a subsequence, v_{δ} converges to a function v in C^2 topology on compact sets away from Σ . By (57), we have that

$$\int_{\tilde{M}\backslash\Sigma} |\nabla_g v|^2 \ dg = 0,\tag{59}$$

which shows that v is a constant on Ω and $\tilde{M} \setminus \overline{\Omega}$.

We claim that v=1 on $\tilde{M}\setminus\overline{\Omega}$. If not, we may assume $v=\beta<1$ by (52). We fix a $\delta_0\in(0,\epsilon)$ and denote the region inside $\Sigma\times\{\delta_0\}$ by Ω_{δ_0} . For each $\delta<\delta_0$, we let w_δ be the solution to the following equations

$$\begin{cases}
\Delta_{\tilde{g}_{\delta}} w_{\delta} = 0 & \text{on } \tilde{M} \setminus \overline{\Omega}_{\delta_{0}} \\
w_{\delta} = v_{\delta} & \text{on } \Sigma \times \{\delta_{0}\} \\
w_{\delta}(x) \to 1 & \text{at } \infty.
\end{cases}$$
(60)

Since w_{δ} minimizes the Dirichlet energy among all functions with the same boundary values, we have that

$$\int_{\tilde{M}\backslash \overline{\Omega}_{\delta_0}} |\nabla_{\tilde{g}_{\delta}} w_{\delta}|^2 \ d\tilde{g}_{\delta} \le \int_{\tilde{M}\backslash \overline{\Omega}_{\delta_0}} |\nabla_{\tilde{g}_{\delta}} v_{\delta}|^2 \ d\tilde{g}_{\delta}. \tag{61}$$

On the other hand, if we choose w to solve

we have that

$$\int_{\tilde{M}\backslash \overline{\Omega}_{\delta_0}} |\nabla_g w|^2 \ dg = \lim_{\delta \to 0} \int_{\tilde{M}\backslash \overline{\Omega}_{\delta_0}} |\nabla_{\tilde{g}_\delta} w_\delta|^2 \ d\tilde{g}_\delta, \tag{63}$$

because $\tilde{g}_{\delta} \to g$ uniformly on \tilde{M} and $v_{\delta} \to \beta$ uniformly on $\Sigma \times \{\delta_0\}$. Hence, it follows from (57), (61) and (63) that

$$\int_{\tilde{M}\backslash \overline{\Omega}_{\delta_0}} |\nabla_g w|^2 dg \le \lim_{\delta \to 0} \int_{\tilde{M}\backslash \overline{\Omega}_{\delta_0}} |\nabla_{\tilde{g}_\delta} v_\delta|^2 d\tilde{g}_\delta = 0, \tag{64}$$

which implies that w must be a constant. Since $\beta < 1$, we get a contradiction. Therefore, v = 1 on $\tilde{M} \setminus \overline{\Omega}$.

Next, we let μ , μ_{δ} denote the (n-1)-dimensional volume measure induced by g, \tilde{g}_{δ} on Σ and let e_{δ} denote the energy $\int_{\tilde{M}} |\nabla_{\tilde{g}_{\delta}} v_{\delta}|^2 d\tilde{g}_{\delta}$.

We fix $0 < \theta < 1$ and $0 < \sigma < \epsilon$. Since $v_{\delta} \to 1$ uniformly on compact set away from Σ , we have that

$$v_{\delta} > \theta \text{ on } \Sigma_{\sigma}, \text{ for } \delta \ll 1,$$
 (65)

where Σ_t is the slice $\Sigma \times \{t\}$. We do all the estimates inside the strip $N_{\sigma} = \Sigma \times [-\sigma, \sigma]$. First, we have that

$$\int_{\Sigma} \left\{ \int_{-\sigma}^{\sigma} |\nabla_{\tilde{g}_{\delta}} v_{\delta}(x, t)|^{2} dt \right\} d\mu_{\delta}(x) \leq C_{1} \int_{N_{\sigma}} |\nabla_{\tilde{g}_{\delta}} v_{\delta}|^{2} d\tilde{g}_{\delta} \leq C_{1} e_{\delta}.$$
 (66)

Let $l_{\delta}(x) = \int_{-\sigma}^{\sigma} |\nabla_{\tilde{g}_{\delta}} v_{\delta}(x,t)|^2 dt$, (66) becomes

$$\int_{\Sigma} l_{\delta}(x) \ d\mu_{\delta}(x) \le C_1 e_{\delta}. \tag{67}$$

For any $k > 1, \delta > 0$, we define

$$A_{\delta,k} = \left\{ x \in \Sigma \left| l_{\delta}(x) \le k \frac{C_1 e_{\delta}}{\mu_{\delta}(\Sigma)} \right. \right\}$$
 (68)

$$A_{\delta,k}^K = A_{\delta,k} \cap K \tag{69}$$

$$A_{\delta,k,\sigma}^K = A_{\delta,k}^K \times [-\sigma,\sigma]. \tag{70}$$

By (67) we have that

$$\mu_{\delta}(A_{\delta,k}) \ge (1 - \frac{1}{k})\mu_{\delta}(\Sigma). \tag{71}$$

Since μ_{δ} is uniformly close to μ , (71) implies that

$$\mu_{\delta}(A_{\delta,k}^K) \ge \frac{1}{2}\mu_{\delta}(K) \tag{72}$$

for some fixed large k and any $\delta \ll 1$.

For any $(x,t) \in A_{\delta,k,\sigma}^K$, we have that

$$|v_{\delta}(x,\sigma) - v_{\delta}(x,t)| \leq C_{2} \int_{-\sigma}^{\sigma} |\nabla_{\tilde{g}_{\delta}} v_{\delta}|(x,t)dt$$

$$\leq C_{2}(2\sigma)^{\frac{1}{2}} \left\{ \int_{-\sigma}^{\sigma} |\nabla_{\tilde{g}_{\delta}} v_{\delta}|^{2}(x,t)dt \right\}^{\frac{1}{2}}$$

$$= C_{2}(2\sigma)^{\frac{1}{2}} l_{\delta}(x)^{\frac{1}{2}}$$

$$\leq C_{2}(2\sigma)^{\frac{1}{2}} \left\{ k \frac{C_{1} e_{\delta}}{\mu_{\delta}(\Sigma)} \right\}^{\frac{1}{2}}. \tag{73}$$

It follows from (65) that

$$v_{\delta}(x,t) \ge \theta - C_2(2\sigma)^{\frac{1}{2}} \left\{ k \frac{C_1 e_{\delta}}{\mu_{\delta}(\Sigma)} \right\}^{\frac{1}{2}}.$$
 (74)

On the other hand, for $x \in A_{\delta,k}^K$, we have that

$$\int_{-\delta}^{\delta} \tilde{R}_{\delta}(x,t)dt \ge u_{\delta}^{\frac{4}{2-n}}(x) \int_{-\frac{\delta^{2}}{100}}^{\frac{\delta^{2}}{100}} \left\{ \eta \left\{ \frac{100}{\delta^{2}} \phi(\frac{100t}{\delta^{2}}) \right\} - C_{0} \right\} dt. \tag{75}$$

Therefore, we have the following estimate

$$\liminf_{\delta \to 0} \int_{A_{\delta,k,\sigma}^{K}} \tilde{R}_{\delta} v_{\delta}^{2} d\tilde{g}_{\delta} \geq \\
\liminf_{\delta \to 0} \left\{ \left\{ \theta - C_{2} \left\{ (2\sigma) k \frac{C_{1} e_{\delta}}{\mu_{\delta}(\Sigma)} \right\}^{\frac{1}{2}} \right\}^{2} \int_{A_{\delta,k,\sigma}^{K}} \tilde{R}_{\delta} d\tilde{g}_{\delta} \right\} \geq \\
\theta^{2} C_{3} \liminf_{\delta \to 0} \left\{ \int_{A_{\delta,k}^{K}} \left\{ \int_{-\delta}^{\delta} \tilde{R}_{\delta}(x,t) dt \right\} d\mu_{\delta} \right\} \geq \\
C_{3} \theta^{2} \eta \liminf_{\delta \to 0} \mu_{\delta}(A_{\delta,k}^{K}) \geq \\
\frac{1}{2} C_{3} \theta^{2} \eta \mu(K) > 0 \tag{76}$$

which is a contradiction to (57).

We conclude that \mathcal{G} has a strict positive mass in case there exists strict jump of mean curvature across Σ .

5 Zero Mass Case

Let $\mathcal{G} = (g_-, g_+)$ satisfy all the assumptions in Theorem 1 and $m(g_+) = 0$. The following corollary on $R(g_+), R(g_-)$ follows directly from Theorem 1.

Corollary 5.1. Under the above assumptions, g_{-} and g_{+} both have zero scalar curvature in Ω and $M \setminus \overline{\Omega}$.

Proof: First, we assume that $R(g_{-})$ is not identically zero in Ω . Let u be a positive solution to the equation

$$\begin{cases} \triangle_{g_{-}} u - c_n R(g_{-}) u = 0 & \text{on } \Omega \\ u = 1 & \text{on } \Sigma. \end{cases}$$
 (77)

Consider $\tilde{\mathcal{G}}=(\tilde{g}_-,g_+)$, where $\tilde{g}_-=u^{\frac{4}{n-2}}g_-$. Since u solves the conformal Laplacian of g_- , \tilde{g}_- has zero scalar curvature. By the strong maximum principle, we have $\frac{\partial u}{\partial \nu}>0$, where ν is the unit outward normal to Σ . A direct computation shows that

$$H(\Sigma, \tilde{g}_{-})(x) = H(\Sigma, g_{-})(x) + \frac{2}{n-2} \frac{\partial u}{\partial \nu}(x).$$
 (78)

Hence, $H(\Sigma, \tilde{g}_{-}) > H(\Sigma, g_{-}) \geq H(\Sigma, g_{+})$. Applying Theorem 1 to $\tilde{\mathcal{G}}$, we see that $m(\tilde{\mathcal{G}}) > 0$, which is a contradiction.

Second, we assume that $R(g_+)$ is not identically zero in $M \setminus \overline{\Omega}$. Let v be a positive solution to

Consider $\hat{\mathcal{G}} = (g_-, \hat{g}_+)$, where $\hat{g}_+ = v^{\frac{4}{n-2}}g_+$. A similar argument shows that \hat{g}_+ is scalar flat in $M \setminus \overline{\Omega}$ and $H(\Sigma, \hat{g}_+) < H(\Sigma, g_+) \leq H(\Sigma, g_-)$. Therefore, Theorem 1 implies that $m(\hat{\mathcal{G}}) > 0$. On the other hand, we have that

$$m(\hat{\mathcal{G}}) = m(\mathcal{G}) + A,\tag{80}$$

where $v=1+A|x|^{2-n}+O(|x|^{1-n})$. By the maximum principle, $A\leq 0$. Hence, $m(\mathcal{G})\geq m(\hat{\mathcal{G}})>0$, which is again a contradiction to the assumption that $m(\mathcal{G})=0$.

Corollary 5.1 only reveals information on the scalar curvature, it would be more interesting to know if $m(\mathcal{G}) = 0$ implies that \mathcal{G} is flat away from Σ . Such a type of questions has been studied by H. Bray and F. Finster in [4]. In particular, they obtained the following result concerning the mass and the curvature of a metric which can be approximated by smooth metrics in their sense.

Proposition 5.1. [4] Suppose $\{g_i\}$ is a sequence of C^3 , complete, asymptotically flat metrics on M^3 with non-negative scalar curvature and the total masses $\{m_i\}$ which converge to a possibly non-smooth limit metric g in the C^0 sense. Let U be the interior of the sets of points where this convergence of metrics is locally C^3 .

Then if the metrics $\{g_i\}$ have uniformly positive isoperimetric constants and their masses $\{m_i\}$ converges to zero, then g is flat in U.

Now we are in a position to show that, in case n = 3, \mathcal{G} is regular cross Σ and (M, \mathcal{G}) is isometric to (\mathbb{R}^3, g_o) .

Proof of Theorem 2: First, we show that g_{-} and g_{+} are flat in Ω and $M \setminus \overline{\Omega}$. Since g_{-} and g_{+} are $C^{3,\alpha}_{loc}$, it follows from the proof of Proposition 4.1 that $\{\tilde{g}_{\delta}\}$ converges to g locally in C^{3} away from Σ . By Proposition 3.1, we know that \tilde{g}_{δ} and g are uniformly close on \tilde{M} , hence $\{\tilde{g}_{\delta}\}$ has uniformly positive isoperimetric constants. By Lemma 4.2, we know that $\lim_{\delta \to 0} m(\tilde{g}_{\delta}) = 0$. Therefore, g_{-} and g_{+} are flat by Proposition 5.1.

Second, we show that $A_{-}=A_{+}$, where A_{-} and A_{+} are the second fundamental forms of Σ in $(\overline{\Omega}, g_{-})$ and $(M \setminus \Omega, g_{+})$. Taking trace of the

Codazzi equation and using the fact that g_-, g_+ is flat, we have that

$$\begin{cases}
div_{g_{\sigma}} A_{-} &= \nabla H(\Sigma, g_{-}) \\
div_{g_{\sigma}} A_{+} &= \nabla H(\Sigma, g_{+}),
\end{cases}$$
(81)

where g_{σ} is the induced metric $g_{-}|_{\Sigma} = g_{+}|_{\Sigma}$. On the other hand, Theorem 1 implies that $H(\Sigma, g_{-}) \equiv H(\Sigma, g_{+})$ on Σ . Hence,

$$div_{g_{\sigma}}(A_{-} - A_{+}) = 0$$
 and $tr_{g_{\sigma}}(A_{-} - A_{+}) = 0.$ (82)

We recall the fact that any divergence free and trace free (0,2) symmetric tensor on (S^2, g_{σ}) must vanish identically [6], thus we conclude that $A_{-} = A_{+}$. Now it follows from the fundamental theorem of surface theory in \mathbb{R}^3 that \mathcal{G} is actually C^2 across Σ . The classical PMT [8] then implies that (M, \mathcal{G}) is isometric to \mathbb{R}^3 with the standard metric.

Acknowledgments: I would like to thank my Ph.D. advisor Professor Richard Schoen for bringing up this problem and for his superb direction. I also would like to thank Professor Robert Bartnik and Professor Hubert Bray for many stimulating discussions.

References

- [1] Robert Bartnik. New definition of quasilocal mass. *Phys. Rev. Lett.*, 62(20):2346–2348, 1989.
- [2] Robert Bartnik. Energy in general relativity. In *Tsing Hua lectures on geometry & analysis (Hsinchu, 1990–1991)*, pages 5–27. Internat. Press, Cambridge, MA, 1997.
- [3] Hubert Bray. Proof of the riemannian penrose conjecture using the postive mass theorem. J. Differential Geom., 59(2):177-267, 2001.
- [4] Hubert Bray and Felix Finster. Curvature estimates and the positive mass theorem. Comm. Anal. Geom., 10(2):291-306, 2002.
- [5] Gilbarg David and Trudinger Neil S. Elliptic Partial Differential Equations of Second Order. Berlin: Springer-Verlag, 1983.
- [6] Heinz Hopf. Differential geometry in the large, volume 1000 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, second edition, 1989. Notes taken by Peter Lax and John W. Gray, With a preface by S. S. Chern, With a preface by K. Voss.

- [7] Richard Schoen. Variational theory for the total scalar curvature functional for riemannian metrics and related topics. In *Topics in the Calculus of Variations*. Lecture Notes in Math. 1365, pages 120–154. Berlin: Springer-Verlag, 1987.
- [8] Richard Schoen and Shing Tung Yau. On the proof of the positive mass conjecture in general relativity. Comm. Math. Phys., 65(1):45-76, 1979.