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Abstract

In this paper, we will discuss gauged linear sigma model descriptions of
toric stacks. Toric stacks have a simple description in terms of (symplec-
tic, GIT) C× quotients of homogeneous coordinates, in exactly the same
form as toric varieties. We describe the physics of the gauged linear sigma
models that formally coincide with the mathematical description of toric
stacks and check that physical predictions of those gauged linear sigma
models exactly match the corresponding stacks. We also see in examples
that when a given toric stack has multiple presentations in a form acces-
sible as a gauged linear sigma model, that the IR physics of those different
presentations matches, so that the IR physics is presentation-independent,
making it reasonable to associate CFTs to stacks, not just presenta-
tions of stacks. We discuss mirror symmetry for stacks, using Morrison–
Plesser–Hori–Vafa techniques to compute mirrors explicitly, and also find
a natural generalization of Batyrev’s mirror conjecture. In the process of
studying mirror symmetry, we find some new abstract CFTs, involving
fields valued in roots of unity.
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1 Introduction

String compactifications on stacks are described in [1]. Briefly, every1 stack
has a presentation as a global quotient by a group [X/G]. A sigma model on
such a presentation is simply a G-gauged sigma model on X. Now, a given
stack can have many presentations of that form, yielding very different phys-
ical theories. However, we have argued in [1], and will check further here,
that the gauged sigma models defined by different presentations of a single
stack all lie in the same universality class of worldsheet RG flow. This we
take to be the central consistency condition for the notion of “string com-
pactification on a stack” to be well-defined. In checking consistency of this
hypothesis, one runs into many potential obstacles, perhaps most impor-
tantly a mismatch between physical deformations and stack deformations;
these issues are addressed in detail in [1].

Just as toric varieties provide a nontrivial set of examples that are easy to
analyse, there is a notion of toric stacks [2], which have analogous properties.
Just as toric varieties can be described by gauged linear sigma models, so
too can toric stacks, and this paper is devoted to explaining the relevant
physics of such gauged linear sigma models.

A gauged linear sigma model describing a toric stack looks very much
like a gauged linear sigma model describing a toric variety, except that the
charges with respect to some of the U(1)’s will typically be nonminimal.
Now, due to peculiar properties of two-dimensional quantum field theories,
a two-dimensional gauge theory with fields of nonminimal charges is not the

1Under extremely mild technical conditions, essentially irrelevant for physics, as
explained in [1].
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same as a two-dimensional gauge theory with fields of minimal charges —
the two physical theories are distinguished by nonperturbative effects, as we
shall explicitly see shortly.

Just as the physics of the two-dimensional CPN−1 model plays an impor-
tant role in understanding the physics of traditional gauged linear sigma
models, the physics of analogous models describing gerbes over projective
spaces, which we shall call the GPN−1 models, play an important role in
understanding gauged linear sigma models for toric stacks, and we shall
spend much of this paper describing such models. A gerbe, the reader should
recall, is a local orbifold by a noneffectively acting group, and as with all
local orbifolds, can be expressed as a global quotient by a larger group. The
GPN−1 models we shall consider correspond to Zk gerbes over projective
spaces, meaning that they describe local orbifolds by trivially acting Zk’s.
The easiest nontrivial example of such a gerbe can be expressed in a form
almost identical to the CPN−1 model, except that the fields all have charge
k rather than charge 1, which is one way to describe a local orbifold by a
noneffectively acting Zk.

We begin in Section 2 by giving a general explanation for why two-
dimensional gauge theories with nonminimal charges are physically distinct
from two-dimensional gauge theories with minimal charges. The basic rea-
son is nonperturbative effects: the charge dictates which line bundle a Higgs
field couples to, and different line bundles mean different zero modes, hence
different anomalies, different correlation functions, and thus different physi-
cal theories. We shall see many examples of this distinction throughout this
paper.

In Section 3, we study examples of Zk gerbes over projective spaces,
which we describe using gauged linear sigma models (in which the fields have
nonminimal U(1) charges). We compute physical properties of these models,
such as quantum cohomology rings. Since we can compute quantum coho-
mology rings without knowing classical cohomology rings, our computations
give a very nontrivial check of the massless spectrum conjecture presented
in [1]. We also are able to check presentation-independence of universality
classes, as some of these gerbes have multiple realizations in gauged linear
sigma models of rather different-looking forms, so, e.g., we can repeat cal-
culations in each different gauged linear sigma model and check that the
results are independent of presentation.

In Section 4, we briefly outline some more general examples of toric stacks
and their properties. We briefly outline the analogue of flops for stacks. We
also briefly discuss weighted projective stacks — just like weighted projec-
tive spaces, except singularities are replaced by local orbifold structures.
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We observe that the quantum cohomology results of [3] immediately gener-
alize to toric stacks.

In Section 5, we discuss Calabi–Yau gerbes, realized as complete intersec-
tions in toric stacks. Physically, the corresponding gauged linear sigma mod-
els are easy to describe: for each U(1), the degree of the hypersurface must
match the sum of the charges of the chiral superfields, just as usual. This
turns out to give an easy physics derivation of a mathematical result that all
gerbes over Calabi–Yau’s are themselves Calabi–Yau. We study phases of
the analogue of the quintic in a gerbe over P4 and use the spectrum of the
Landau–Ginzburg orbifold (now a noneffective orbifold, an extension of the
usual Z5 by a trivially acting Zk) to give a very strong check of the general
massless spectrum conjecture presented in [1] for strings on stacks.

In Section 6, we study mirror symmetry for stacks. We begin by comput-
ing Toda duals to the gerbes over projective spaces described in Section 3. In
addition to getting another check of presentation-independence, by verifying
that the Toda dual depends upon the gerbe and not the presentation thereof,
we find that the Toda duals contain fields valued in roots of unity, a result we
verify by checking correlation functions in the Toda duals and comparing to
quantum cohomology results from Section 3. Such fields are (to the authors)
rather unusual in physics, though we also saw them from independent lines
of reasoning in [4], when studying marginal deformations of noneffective
orbifolds. We discuss the mirror of the gerby quintic, and gerby minimal
models, and present a conjecture for a generalization of Batyrev’s mirror
conjecture to hypersurfaces in toric stacks. Now, the data defining a toric
stack looks much like the data defining a toric variety, except that the fan
is decorated by some abelian finite-group data. By adding fields valued in
roots of unity to terms in superpotentials of Landau–Ginzburg models, for
example, we generate Newton polyhedra with symmetric data, making an
analogue of Batyrev’s conjecture possible. Note that, yet again, we see fields
valued in roots of unity.

Finally, in an appendix, we review the [2] description of toric stacks.

2 Two-dimensional gauge theories with nonminimal charges

Since the gauged linear sigma models for many toric stacks describe chiral
superfields with nonminimal U(1) charges, let us take a few moments to
explain in general terms why nonperturbative effects distinguish such
theories from two-dimensional gauge theories with minimal charges. Later
we shall see numerous physical properties that differ between the theories,
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from correlation functions to R-symmetry anomalies, but in this section, we
shall just review the basic principles. (We would like to thank J. Distler and
R. Plesser for providing the detailed argument that we give in this section.)
For a different discussion of two-dimensional gauge theories with fermions of
nonminimal charges, see [5, Section 4]. (The discussion there is most applica-
ble to the present situation when m � M , in the notation of that reference.)

To be specific, consider a gauged linear sigma model with a single U(1)
gauge field, and with chiral superfields, all of charge k, with k > 1. (Math-
ematically, this corresponds to a gerbe on a projective space, as we shall
review in the next section.) One might argue that this theory should be
the same as a theory with chiral superfields of charge 1, as follows. Since
instanton number is essentially monopole number, from Dirac quantization
since the electrons have charges a multiple of k, the instantons must have
charge a multiple of 1/k, and so zero modes of the Higgs fields in a min-
imal nonzero instanton background would be sections of O(k/k) = O(1),
just as in a minimal charge GLSM. Making the charges nonminimal has not
changed the physics. In order to recover the physics we have described, we
require the Higgs fields to have charge k while the instanton numbers are
integral, not fractional.

Closer analysis reveals subtleties. Let us break up the analysis into two
separate cases: first, the case that the worldsheet is noncompact and second,
that the worldsheet is compact. For both cases, it will be important that
the worldsheet theory is two-dimensional.

First, the noncompact case. Since the θ angle couples to Tr F , we can
determine the instanton numbers through the periodicity of θ. Suppose
we have the physical theory described above, namely a GLSM with Higgs
fields of charge k, plus two more massive fields, of charges +1 and −1. In
a two-dimensional theory, the θ angle acts as an electric field, which can be
screened by pair production, and that screening determines the periodicity
of θ. If the only objects we could pair produce were the Higgs fields of charge
k, then the theta angle would have periodicity 2πk, and so the instanton
numbers would be multiples of 1/k. However, since the space is noncompact,
and the electric field fills the entire space, we can also pair produce arbitrary
numbers of the massive fields, which have charges ±1, and so the θ angle
has periodicity 2π, so the instantons have integral charges.

We can phrase this more simply as follows. In a theory with only Higgs
fields of charge k, the instanton numbers are multiples of 1/k, and so the
resulting physics is equivalent to that of a GLSM with minimal charges.
However, if we add other fields of charge ±1, then the instanton numbers
are integral, and if those fields become massive, and we work at an energy
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scale below that of the masses of the fields, then we have a theory with Higgs
fields of charge k, and integral instanton numbers, giving us the physics that
corresponds to a gerbe target.

Thus, we see in the noncompact case that there are two possible physical
theories described by Higgs fields of charge k: one is equivalent to the GLSM
with minimal charges, and the other describes the gerbe.

The analysis for the compact worldsheet case is much shorter. Strictly
speaking, to define the theory nonperturbatively on a compact space, we
must specify, by hand, the bundles that the Higgs fields couple to. If the
gauge field is described by a line bundle L, then coupling all of the Higgs
fields to L⊗k is a different prescription from coupling all of the Higgs fields
to L. As a result, the spectrum of zero modes differs between the two
theories, hence correlation functions and anomalies differ between the two
theories, and so the two physical theories are very different, as we shall see
in examples later.

We shall assume throughout this paper that the worldsheet is compact,
though as we have argued the same subtlety shows up for noncompact world-
sheets.

We are interested in these physical theories because they often crop up
in describing stacks. Since stacks are defined via their incoming maps, a
precise definition of which bundles the superfields couple to is part of the
definition of the stack, and so there is no ambiguity in which physical theory
to associate to a given (presentation of a) stack.

3 Gerbes over projective spaces and quantum cohomology

In this section, we will discuss basic properties of physical theories describing
gerbes over projective spaces, the gerby analogue of the old “CPN−1 mod-
els.” We will occasionally refer to these gerby analogues as GPN−1 models,
or more specifically, Gk

aP
N−1 models, for a Zk gerbe on PN−1 classified by

a mod k ∈ Zk = H2 (
PN−1,Zk

)

In this notation, therefore, Gk
aP

N−1 = Gk
a+kP

N−1.

3.1 First example: Zk gerbe on PN−1

Let us begin with an easy example of a gerbe over projective space PN−1.
The projective space itself is described by a gauged linear sigma model with
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N chiral superfields xi, each of charge one with respect to a gauged U(1).
Mathematically, the projective space is the quotient

PN−1 =
CN − 0

C×

We can describe gerbes on projective spaces in a very similar fashion. In
particular, the Zk gerbe on PN−1 that generates all of the Zk gerbes is given
by the quotient

[
CN − 0

C×

]

where the C× acts by k times the minimal amount. The characteristic class
of this gerbe is

−1 ∈ Zk = H2(PN−1,Zk)

essentially because CN − 0 with the natural projection to PN−1 is the total
space of OPN−1(−1). Clearly, this corresponds to a gauged linear sigma
model with N chiral superfields xi, each of charge k under a gauged U(1).

So, in this example, one describes a gerbe over a projective space, instead
of a projective space, simply by multiplying all the charges by k.

We obtained the description of nonminimal charges from the description
of the quotient, but there is also another way to obtain this description,
and that is directly from the definition of the gerbe. Described as a quotient
stack [(CN − 0)/C×], a map into the gerbe is a pair consisting of a principal
C× bundle L over the worldsheet, together with a C×-equivariant map from
the total space of L into CN − 0, where the C× acts by k times the usual
amount. Now, mathematically, a pair consisting of a principal C× bundle
P together with a map P → C, equivariant with respect to a C× action
that rotates the C k times, is equivalent to a pair consisting of a line bundle
L together with a section of L⊗k. We can see this as follows. Starting
with the pair (P, φ: tot(P ) → C), construct the pair (L, s ∈ H0(X, Lk)) by
setting L = P ×χ C and s(x) = [(p, φ(p))]. Here we have:

• χ : C× → C× is the character α → αk;
• P ×χ C is the associated line bundle. It is given explicitly as the quo-

tient of P × C by the C× action in which α ∈ C× acts on (p, z) as
(p · α−1, α−kz).

• [(p, φ(p))] ∈ Lx denotes the C× orbit of the point (p, φ(p)) ∈ Px × C.
Note that [(p, φ(p))] is independent of the choice of p ∈ Px since φ is
χ-equivariant.
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Conversely, given (L, s), take P to be the frame bundle of L, i.e., L with
the zero section removed. The pullback of L to P is canonically trivial-
ized since the tautological section is a frame. The pullback of s to P is
then a section of the trivial bundle, i.e., a map from P to C. It is then
straightforward to check that this map is equivariant. In particular, a set
of not-simultaneously vanishing maps from tot(P ) to C is equivalent to a
set of not-simultaneously-vanishing Higgs fields. Thus, the data describing
the gerbe as a quotient stack is equivalent to data describing line bundles
with sections of L⊗k (taking into account D-terms), which is manifestly the
description of the Higgs fields. Thus, one can recover the nonminimal charge
description directly from the definition of the gerbe.

Before describing how the nonperturbative physics of this two-dimensional
gauge theory differs from that of the ordinary CPN−1 model, let us take
a moment to understand why this two-dimensional gauge theory should
correspond to the gerbe. In the ordinary CPN−1 model, D-terms restrict
the classical Higgs vacua to a sphere S2N−1, so gauging U(1) rotations
leaves

S2N−1

U(1)
= PN−1

In the present case, we are gauging a U(1) that acts by k rotations of the
U(1) fibres of the principal U(1) bundle over PN−1 whose total space is the
sphere S2N−1. Since the U(1) rotates k times instead of once, locally this is
the same as a trivially acting Zk orbifold of PN−1 — the expectation values
of the Higgs fields do not completely break the gauge symmetry, but only
break it to a noneffectively acting subgroup. However, because the sphere
S2N−1 is a nontrivial U(1) bundle, the resulting local orbifold is not the
same as the global orbifold [PN−1/Zk].

We have seen in numerous examples in [4] that orbifolding by a nonef-
fectively acting group does not reproduce the original theory. To be consis-
tent, one would expect that two-dimensional gauge theories with nonmini-
mal charges must differ from two-dimensional gauge theories with minimal
charges.

Perturbatively in QFT, multiplying all the charges by a nonzero constant
has absolutely no effect on the theory. However, nonperturbatively, it can
have an effect, as the charges determine which bundles each field cou-
ples to, as discussed in Section 2. For example, in a degree d instanton
background, in the gauged linear sigma model describing merely PN−1, the
xi are holomorphic sections of O(d), whereas in the linear sigma model
describing the gerbe, the xi are holomorphic sections of O(kd).
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Just as in the ordinary CPN−1 model, where the axial U(1)R is broken
to Z2N by anomalies, here the same U(1)R is broken to Z2kN . We can
derive this from e.g., [6, equation (3.4)], or alternatively, since the low-
energy theory can be approximated by the CPN−1 model with a restriction
that degrees of maps are divided by k (as we shall see explicitly in a few
moments), we can do a Riemann–Roch computation in the worldsheet A
model. Furthermore, following the methods of [5], it is natural to conjecture
that the IR limit of this theory develops a mass gap and has kN vacua, just
as the ordinary CPN−1 model has a gap and N vacua. We shall confirm
that speculation in Section 6.1, when we derive and analyse the Toda theory
corresponding to this model.

Now that we have begun to see some of the reasons why this theory is
physically distinct from the ordinary CPN−1 model, let us check the relation
between this theory and the mathematics of gerbes.

The first check we shall perform involves the Witten index. In the ordi-
nary CPN−1 model, the Witten index Tr (−)F computes the Euler char-
acteristic of the target, PN−1. In the present case, given a mass gap and
kN vacua in the IR, the Witten index of the present theory is kN . Now,
as described in more detail in [1], the relevant notion of Euler characteris-
tic for stacks is the Euler characteristic of the associated inertia stack (the
“orbifold Euler characteristic,” for stacks presented as global quotients by
finite groups), and for the gerbe at hand, the Euler characteristic of the asso-
ciated inertia stack is precisely kN , in agreement with the Witten index.

Now, let us study linear sigma model moduli spaces and quantum coho-
mology and compare these physical properties to what one expects mathe-
matically for the gerbe.

The linear sigma model moduli space is obtained by expanding worldsheet
fields in a basis of zero modes. The coefficients in the expansion are the
homogeneous coordinates on the moduli space and are given the same U(1)
charges as the original field. In the present case, for what morally are degree
d maps, we have that xi ∈ Γ(O(kd)) for the gauged linear sigma model with
nonminimal charges. We exclude coefficients such that all the xi ≡ 0, leaving
us with

M =

[
CN(kd+1) − 0

C×

]

where all fields have charge k with respect to the C×.

If the fields all had charge 1 with respect to the C×, then M = PN(kd+1)−1.
However, since they have charge k, if we are careful about the quotient,
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then we must interpret the moduli “space” M as itself being a stack, and
in particular, a Zk gerbe over PN(kd+1)−1.

Before computing quantum cohomology, let us compare these physical
statements to the mathematics of maps into gerbes. First, each map from
P1 into a Zk gerbe has a Zk’s worth of automorphisms. If we keep track of
those automorphisms, then our moduli “space” of maps does not have a set
of points, so much as a category of points, in which each point is replaced
by a copy of the classifying stack BZk. This is exactly the local structure of
a Zk gerbe. In other words, on mathematical grounds, because maps from
the worldsheet into the gerbe have automorphisms, we should expect that
the moduli ‘space’ should have the structure of a gerbe, a Zk gerbe in fact,
and that is exactly what we see in the linear sigma model moduli space.

We can check even more. Our nonperturbative interpretation of nonmin-
imal charges ensures that the degree of each map in the moduli space is
a multiple of k. This physical consequence of nonminimal charges has a
mathematical explanation in terms of gerbes. Since there is a projection
map from the Zk gerbe into the underlying manifold PN−1, each map from
the worldsheet P1 into the gerbe also defines a map f from P1 into PN−1.
Now, a map from P1 into a gerbe G is the same as a map f into PN−1

together with a trivialization2 of f∗G. Equivalently, the natural map

f∗ : H2 (
PN−1,Zk

)
−→ H2 (

P1,Zk

)

should be identically zero, otherwise the pullback f∗G would not have a
trivialization. But

H2 (
PN−1,Zk

)
= H2 (

P1,Zk

)
= Zk

and the natural map f∗ : Zk → Zk is multiplication by the degree of the
map. Hence, for a gerbe on PN−1 of characteristic class n mod k, if we let d

2A map from P1 into the gerbe G over M defines a map from P1 into the fibre product
P1 ×M G = f∗G, and such a map is a trivialization. This is seen perhaps most easily if
we replace gerbes with bundles. If G is a bundle over a space X, and we are given a
map f : P1 → X, then since there is a canonical map f∗G → G, a map P1 → f∗G can
be composed with that canonical map to give a map g : P1 → G, such that f = π ◦ g for
π : G → X. Conversely, given a map g : P1 → G, if we let f = π ◦ g, then we can define a
map P1 → f∗G as follows. Recall

f∗G = {(x, e) ∈ P1 × G|f(x) = π(e)}

so given g : P1 → G, we can map x �→ (x, g(x)) ∈ f∗G, for x ∈ P1. The argument for G a
gerbe instead of a bundle is virtually identical.
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denote the degree of the map f : P1 → PN−1, then we have that

d (n mod k) = 0 mod k

In the present case, n = −1, so we have that d must be divisible by k.
Conversely, any map from P1 → PN−1 of degree a multiple of k, together
with a section of the trivial gerbe on P1, defines a map from the worldsheet
P1 into the gerbe.

Thus, not only does the fact that the linear sigma model moduli “space”
is a gerbe has a mathematical interpretation in terms of properties of maps
into gerbes, but also the fact that the maps have degree a multiple of k also
naturally agrees with what one expects for gerbes. Put more simply, the
linear sigma model moduli ‘space’ is a compactification of the moduli space
of maps into the gerbe.

Next let us outline a physical prediction for the quantum cohomology of
this gerbe, which will also further illustrate how the physical theory for the
gerbe is distinct from the physical theory for the underlying space.

For the projective space PN−1, the linear sigma model moduli space for
degree d maps is given by PN(d+1)−1, so the A model has correlation func-
tions of the form <XN(d+1)−1> = qd (with X corresponding to the gener-
ator of degree two cohomology) defining3 a quantum cohomology relation
XN = q.

For the gerbe under consideration, we have seen that the linear sigma
model moduli space is given by a Zk gerbe over PN(kd+1)−1, so from the
dimension of the moduli space, we see that in the gerbe theory, we have cor-
relators of the form <XN(kd+1)−1> = qd (with X a pullback to the gerbe of
degree two cohomology), defining a quantum cohomology relation XkN = q.
Since the quantum cohomology ring of this gauged linear sigma model with
nonminimal charges is not isomorphic to the quantum cohomology ring of
the underlying space PN−1, or more simply, the correlation functions are
different, we see that the physical theory corresponding to the gerbe really
is different from the theory with minimal charges.

There is another way to derive this quantum cohomology relation in the
gerbe theory, using methods of [3]. By using one-loop effective actions, the
authors of [3] derived a general expression for quantum cohomology for toric

3One fast way to think about the quantum cohomology relations in simple cases is that
they can be used to generate all of the correlators from the classical correlation functions.
Here, if X generates degree two cohomology, then since PN−1 is (N − 1)-dimensional, the
nonzero classical correlation function is <XN−1> = 1, so we can use the relation XN = q
to derive the general correlation function above from the classical correlation function.
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targets from the gauged linear sigma model. Applying [3, equation (3.44)]
to the present example, we find

N∏

1

(kσ)k = exp(2πiτ)

or, after appropriate redefinitions, we have that

σkN = q

the same quantum cohomology relation we derived above.

3.2 Alternate presentation of the first example

In this section, let us discuss an alternate presentation of the gerbe discussed
in the previous section, as a check that the physics captured mathematically
by the stack is presentation-independent.

Consider a gauged linear sigma model with N chiral superfields xi, and
another chiral superfield z, with two gauged U(1)’s, under which the chiral
superfields have charges

xi z
λ 1 −1
µ 0 k

Associated to each U(1) is a D-term:
∑

i

|xi|2 − |z|2 = rλ

k|z|2 = rµ

We shall assume that rµ � 0, so that z �= 0. In this case, were we not
gauging the second U(1), the resulting toric variety would be the total space
of the principal U(1) bundle over PN−1 of degree −1. By gauging the second
U(1), we are gauging rotations of the fibre of that principal U(1) bundle.
If k = 1, the resulting toric variety is, mathematically, PN−1. If k > 1,
then mathematically we have a Zk gerbe on PN−1, the same gerbe as that
discussed in the last section.

Let us study the physics of this gauged linear sigma model and check that
if k > 1, not only is the nonperturbative physics distinct from that of the
PN−1 model, but also that the A model twist of this gauged linear sigma
model has isomorphic properties to the model discussed in the last section
(so that the physics is presentation-independent, essentially).
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In fact, before doing detailed calculations, we can immediately perform a
quick test4 that this really is an alternate presentation of the first example.
Note that by redefining C× actions, we can map this model to one described
by homogeneous coordinates with weights as follows:

xi z

λkµ k 0
µ 0 k

This is almost the same as the model we started with, except for the extra
homogeneous coordinate. In fact, this model describes the previous presen-
tation of the gerbe, tensored with a single homogeneous coordinate modded
out by a C× that acts with weight k — which is a presentation of the trivial
gerbe BZk = [point/Zk]. Now, our map between C× actions has nontrivial
kernel; schematically, we have a short exact sequence

0 −→ Zk −→ (λ, µ) −→
(
λkµ, µ

)
−→ 0

so, we can relate the theories defined by the two sets of C× actions as
(
λkµ, µ

)
=

[
(λ, µ)
Zk

]

The Zk quotient on the right side of the equation above acts trivially, glob-
ally, and as discussed in [1], the corresponding physical theory of such a
global trivial quotient is a tensor product

(
λkµ, µ

)
= (λ, µ) ⊗

[
point
Zk

]

In particular, note this is precisely consistent with our underlying conjec-
ture that stacks classify universality classes of gauged sigma models. The
(λkµ, µ) theory is, explicitly, a tensor product of the theory defined by the
first presentation of the Zk gerbe over PN−1, with a theory defined by
a presentation of the trivial gerbe BZk = [point/Zk]. Our analysis of C×

actions reveals that the (λkµ, µ) theory is also a tensor product of the theory
defined by the (λ, µ) presentation of the Zk gerbe over PN−1 with a pre-
sentation of the trivial gerbe BZk. These two descriptions of the (λk, µ)
theory have matching universality classes, so long as stacks really do classify
universality classes.

Now that we have analysed C× actions, let us turn to other tests of our
conjecture that stacks classify universality classes of gauged sigma models.

4We would like to thank K. Hori for suggesting this test to us.
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The linear sigma model moduli space is now defined by two integers d1,
d2, associated to the gauged U(1)’s λ, µ, respectively. The zero modes of
the chiral superfields are given by

xi ∈ Γ (O(d1))

z ∈ Γ (O(−d1 + kd2))

Let us assume for simplicity that d1 ≥ 0 and −d1 + kd2 ≥ 0. Then, following
the same analysis as before, the linear sigma model moduli “space” looks like
a Zk gerbe over PN(d1+1)−1 × P−d1+kd2 , where the homogeneous coordinates
xia and zb (from the zero modes of the xi and z) have weights under two
U(1)’s as

xia zb

λ 1 −1
µ 0 k

From the dimensions of the moduli spaces, correlators in an A model twist
of a lower energy theory look like they should have two generators, X, Y ,
with correlation functions

〈XN(d1+1)−1Y −d1+kd2〉 = qd1
1 qd2

2

which given the classical correlation function 〈XN−1〉 = 1 define quantum
cohomology relations

XNY −1 = q1

Y k = q2

Note, however, that the quantum cohomology ring with two generators X,
Y and relations as above is isomorphic to the ring with one generator X
and relation XkN = q (for q = q2q

k
1 ). In other words, the quantum coho-

mology ring of this theory is isomorphic to the quantum cohomology ring
of the theory of Section 3.1. This means that the A model correlators are
isomorphic between these two theories, exactly as one would expect if they
lie in the same universality class.

Let us check this result by using the methods of [3]. Applying [3, equation
(3.44)] to the present case, we have

(
N∏

1

σ1

)

(−σ1 + kσ2)
−1 = exp(2πiτ1)

(−σ1 + kσ2)
k = exp(2πiτ2)
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By making the identifications

X ∼ σ1

Y ∼ −σ1 + kσ2

we recover the quantum cohomology relations derived previously.

3.3 More gerbes on projective spaces and alternative
presentations

Let us begin by describing a Zk gerbe on PN−1 with characteristic class in
H2(S2,Zk) given by −n mod k, i.e., the Gk

−nP
N−1 model.

Mathematically, we can describe this gerbe as a C× quotient of the total
space of a principal C× bundle over PN−1, with the property that c1 mod k =
−n mod k, in which the C× rotates the fibres n times.

To describe that quotient, consider a linear sigma model with N chiral
superfields xi plus z, and two C× actions, with weights as shown:

xi z
λ 1 −n
µ 0 k

We shall assume that n is positive. The D-terms are
∑

i

|xi|2 − n|z|2 = rλ

k|z|2 = rµ

We shall assume that rµ � 0 and rλ � 0. If rµ �= 0, then z �= 0, and the
remaining D-term disallows xi = 0 for all i. Thus, we are quotienting

(
CN − 0

)
× C×

by a pair of C× actions.

Mathematically, this gauged linear sigma model should describe a gerbe
over PN−1 classified by −n mod k, and we shall check that physical proper-
ties of this gauged linear sigma model are reflected in mathematical proper-
ties of the gerbe.

Since shifting n → n + k changes the presentation but leaves the gerbe
invariant, the statement that stacks classify universality classes implies that
the pertinent physics should be invariant under n → n + k, and we shall
check that statement.
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Let us consider curve counting in this gerbe, following the same procedure
as in the last few examples. First, note that a single integer no longer suffices
to specify the degree of the maps, we must specify two integers d1, d2. Then,
expanding fields in zero modes to get the linear sigma model moduli space,
we have

xi ∈ H0 (
P1,O(d1)

)
= Cd1+1

z ∈ H0 (
P1,O(−nd1 + kd2)

)
= C−nd1+kd2+1

(For simplicity, we shall assume that d1 ≥ 0 and −kd1 + nd2 ≥ 0.) The
resulting moduli space M can be described in GLSM language as N(d1 + 1)
homogeneous coordinates xia, −nd1 + kd2 + 1 homogeneous coordinates zb,
with a pair of C× actions under which the homogeneous coordinates have
weights

xia zb

λ′ 1 −n
µ′ 0 k

The resulting linear sigma model moduli “space” is a Zk-gerbe over a pro-
jectivization of the vector bundle O(−n)⊕−nd1+kd2+1 over PN(d1+1)−1, or,
more simply, a Zk-gerbe over P−nd1+kd2 × PN(d1+1)−1.

As before, given the moduli space, in a simple example of this form, we can
now compute quantum cohomology in the A model twist of a lower energy
theory. Correlators have two generators X, Y , and from the dimension of
the moduli space, we can read off the correlation functions

〈XN(d1+1)−1Y −nd1+kd2〉 = qd1
1 qd2

2 (3.1)

From these correlation functions, it is clear that with respect to the gener-
ators X, Y , the quantum cohomology ring is defined by the relations

XNY −n = q1

Y k = q2

Note that we immediately recover the previous example as a special case.

Note that if we shift n → n + k, which leaves the gerbe invariant, the
resulting moduli space is equivalent to the moduli space with d′

1 = d1 and
d′

2 = −d1 + d2. Since physically we sum over all degrees, A model physics
can only depend upon n mod k. Similarly, under n → n + k, the quantum
cohomology ring is invariant — the new relations are equivalent to the old
ones, with q′

1 = q1/q2. Thus, A model results only depend upon n and k in
the combination n mod k, consistent with the assumption that universality
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classes of gauged sigma models are classified by stacks, not by presentations
thereof.

Let us check this quantum cohomology calculation by using the methods
of [3]. Applying [3, equationn (3.44)] to the present case gives us

(
N∏

1

σ1

)

(−nσ1 + kσ2)
−n = exp(2πit1)

(−nσ1 + kσ2)
k = exp(2πit2)

If we make the identifications

X ∼ σ1

Y ∼ −nσ1 + kσ2

then we recover the previous expression for quantum cohomology.

The reader should note that the quantum cohomology relations we have
derived give a product structure on the cohomology of the inertia stacks
associated to these gerbes, which all look like k disjoint copies of the gerbe.
In computing quantum cohomology, starting only with what should be
untwisted sector fields, we have implicitly recovered twist fields as well.
Also note this provides a check of the claim in [1] that the massless spec-
trum of a string on a stack should be counted by cohomology of the inertia
stack.

In passing, note that when n = 0, i.e., when the gerbe is trivial, the
quantum cohomology ring above is a product of the quantum cohomology
of the ordinary PN−1 model and a twist field, agreeing with general results
on factorizability of physical theories associated to trivial gerbes presented
in [4].

4 More general toric stacks

For the most part, we concentrate in this paper on the special case of gauged
linear sigma models for Zk gerbes over projective spaces, as in our opinion
those give very clear illustrations of the pertinent physics. Gauged linear
sigma models for more general toric stacks are very similar, in that they
typically look like gauged linear sigma models on toric varieties, except that
the charges with respect to some of the U(1)’s are nonminimal. The only
exceptions are those toric stacks whose GLSM description is identical to that
traditionally associated to certain special toric varieties, as we shall discuss
in Subsection 4.3.
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4.1 Stacks over Hirzebruch surfaces

Just to give some easy examples of more general toric stacks and their
corresponding gauged linear sigma models, let us consider Hirzebruch
surfaces. Recall that these surfaces, traditionally denoted Fn and indexed
by integers, correspond to total spaces of P1-bundles over P1’s. They can
be described with gauged linear sigma models very simply as follows. Let
s, t, u, v be homogeneous coordinates; then the gauged linear sigma model
has two U(1)’s, call them λ, µ, under which the homogeneous coordinates
have charges as follows:

s t u v
λ 1 1 n 0
µ 0 0 1 1

The homogeneous coordinates s, t act as homogeneous coordinates on the
base of the P1 bundle, and the coordinates u, v act as homogeneous coor-
dinates on the fibre of the P1 bundle.

Suppose you wanted to describe a Zk gerbe over the base of the P1 bun-
dle. Then, a gauged linear sigma model for such a toric stack would have
homogeneous coordinates s, t, u, v, with charges

s t u v
λ k k kn 0
µ 0 0 1 1

Similarly, a Zk gerbe over the fibre of the P1 bundle could be described as

s t u v
λ 1 1 n 0
µ 0 0 k k

and so forth.

4.2 Analogue of flops

In gauged linear sigma models studied in the past, varying the Fayet–
Iliopoulos parameters through different geometric phases has the effect of
realizing birational transformations. The same statement is true of gauged
linear sigma models describing toric stacks, for the basic reason that vary-
ing the Fayet–Iliopoulos parameters only changes the exceptional set of
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the quotient, so on a Zariski-open subset, the resulting stacks will be
isomorphic.

Let us illustrate this with a gerby analogue of a classic example from
[7] — flopping between the two small resolutions of a conifold singularity.

Consider the linear sigma model with five chiral superfields a, b, c, d, e,
and C× actions as below:

a b c d e
λ 1 1 −1 −1 k
µ 0 0 0 0 n

If we omitted e and µ, then we would recover the small resolutions of the
affine conifold. The corresponding D terms are

|a|2 + |b|2 − |c|2 − |d|2 + k|e|2 = rλ

n|e|2 = rµ

We shall assume that rµ � 0, so that e �= 0. Integrating out e leaves us with
a single D-term given by

|a|2 + |b|2 − |c|2 − |d|2 = rλ −
(

k

n

)
rµ

When rλ − (k/n)rµ � 0, the D-term dictates an exceptional set
{c = d = 0}, so that we are left with the quotient

C2 ×
(
C2 − 0

)
× C×

C× × C×

which appears to be a Zn gerbe over one small resolution of the conifold.

When rλ − (k/n)rµ � 0, the D-term gives the exceptional set {a = b = 0}.
We are left with the quotient

(
C2 − 0

)
× C2 × C×

C× × C×

describing a gerbe over the other small resolution.

4.3 Weighted projective stacks

We have so far discussed toric stacks that can be described by gauged linear
sigma models with nonminimal charges. However, there are some toric
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stacks whose corresponding gauged linear sigma models look identical to
that traditionally associated to the underlying space.

The easiest examples of such toric stacks are the weighted projective
stacks. These are defined in exactly the same way as weighted projective
spaces, except that one takes a stacky quotient instead of an ordinary quo-
tient. For example, a weighted projective space WPn

k1,k2,... is defined as the
quotient

Cn+1 − {0}
C×

where the C× acts on the homogeneous coordinates with weights (k1, k2, . . .).
The corresponding weighted projective stack is defined in almost exactly the
same way as the stack quotient

[
Cn+1 − {0}

C×

]

where the C× acts on the homogeneous coordinates with weights (k1, k2, . . .),
exactly the same as for the weighted projective space. The local quotient sin-
gularities of the weighted projective space are replaced by stacky structures
in the weighted projective stack.

As a trivial example, recall one of the presentations of the Gk
−1P

N−1 gerbe
is as a weighted projective stack, which could be called WPN−1

[k,k,...,k].

Traditionally, gauged linear sigma models with a single U(1) and mini-
mal charges (k1, k2, . . .) are believed to be associated to weighted projective
spaces. However, the present work makes us suspect that, away from cou-
pling extremes, such gauged linear sigma models might be more sensibly
associated to weighted projective stacks, instead of spaces. One way to test
this conjecture might be to examine quantum cohomology computations à
la [3] and compare them to results obtained by other methods for ordinary
weighted projective spaces (which must first be resolved before the quantum
cohomology can be defined). We shall not speculate further on this subtle
distinction of interpretations in this paper.

4.4 Quantum cohomology for toric stacks

There is now an easy prediction for part of the quantum cohomology of
a toric stack. In [3], predictions for quantum cohomology of toric vari-
eties were derived by computing one-loop corrections to effective actions in
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gauged linear sigma models. However, the authors of [3] were aware [8]
of the physical distinction between gauged linear sigma models with min-
imal and nonminimal charges, and although they did not understand the
mathematical interpretation, were careful to write down results also valid
for gauged linear sigma models with nonminimal charges. Thus, on the face
of it, the quantum cohomology calculations in [3] should also apply equally
well to toric stacks, not just toric varieties. Indeed, we have checked that
statement in previous sections by comparing several calculations of quantum
cohomology for Zk gerbes on projective spaces, some of those calculations
coming from [3].

Now, we should qualify this statement slightly. We have argued in [1] that
massless spectra should be computed by associated inertia stacks. Gauged
linear sigma models, however, only seem to have direct UV access to the
untwisted part of the associated inertia stack. Thus, one expects that the
quantum cohomology predictions of [3] would not be predictions for the full
quantum cohomology ring of a toric stack, but only part of it. Curiously,
despite that expectation, the quantum cohomology rings we derived previ-
ously for Zk gerbes over projective spaces were product structures on the
cohomology of the entire inertia stack, not just one sector. Although the
gauged linear sigma models only have direct UV access to part of the inertia
stack, the quantum cohomology relations that one derives at least sometimes
seem to know about all of the inertia stack. It is not clear whether that will
be the case for all toric varieties, however.

In [9], a proposal was made for quantum cohomology rings of stacks.
Their proposal was based on purely mathematical extrapolations of existing
quantum cohomology calculations and made the assumption (not checked
until [1]) that the right notion of massless spectrum should be given by
inertia stacks. It would be interesting to compare their proposal for quantum
cohomology of stacks to the physics results outlined in this paper.

5 Calabi–Yau gerbes

In [1], the notion of “Calabi–Yau” for stacks is discussed extensively, and it
is argued that the “correct” notion is the naive one: a stack should be said to
be Calabi–Yau if its canonical bundle is trivial. For Calabi–Yau gerbes, this
constraint turns out to be rather trivial, as the canonical bundle of the gerbe
is just a pullback of the canonical bundle of the underlying variety. Thus, a
gerbe is Calabi–Yau if and only if the underlying variety is Calabi–Yau.

In this section, we shall discuss some Calabi–Yau gerbes.
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5.1 Example: three-fold in Gk
−1P

4 and Landau–Ginzburg
orbifolds

One easy way to construct some examples of gauged-linear-sigma-model
presentations of gerbes over Calabi–Yau manifolds is to start with a gauged
linear sigma model describing the Calabi–Yau and multiply the U(1) charges
of all fields by a constant, much as in the example discussed in Section 3.1.
As already discussed, although perturbatively multiplying the charges of
all the fields by a constant has no effect, nonperturbatively the resulting
theory is different, so the full physical theory on a gerbe (for nonzero gauge
coupling) is distinct from the sigma model on the underlying manifold.

For example, consider the quintic hypersurface in P4. As in [7], this is
described by chiral superfields xi of charge 1 under a U(1), together with a
chiral superfield p of charge −5, and a superpotential of the form

W = pG(xi)

where G is the homogeneous polynomial of degree 5 defining the hypersur-
face. If we multiply the charges of all fields by k, so that the xi have charge
k and p has charge −5k, then the superpotential remains gauge-invariant,
and the D-terms have the same form as before.

Clearly this process can be repeated for any Calabi–Yau, reflecting the
fact discussed in [1] that all (Deligne–Mumford) gerbes over Calabi–Yau
manifolds are themselves Calabi–Yau.

The phases of this gauged linear sigma model have the same general form
as for the ordinary quintic. For large positive r, we recover a Calabi–Yau
hypersurface in Gk

−1P
4, which is a gerbe over the quintic.

For large negative r, we recover a Landau–Ginzburg orbifold phase. In
this phase, p �= 0, and its vacuum expectation value breaks the U(1) to Z5k.
If we let ξ denote a generator of the (5k)th roots of unity, then the residual
gauge group action on the fields xi is generated by

xi −→ ξkxi

for each i, since each xi has charge k. As a result, although the orbifold
group is Z5k, only Z5k/Zk = Z5 acts effectively. Thus, the Landau–Ginzburg
orbifold corresponding to this Calabi–Yau gerbe is a noneffective orbifold.

Orbifolds by noneffectively acting groups are discussed extensively in [1].
Although only the Z5 acts effectively, the physical theory is significantly
different from the Z5 orbifold. In particular, we can now calculate the
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massless spectrum, and essentially because Z5k is abelian, we can immedi-
ately read off that the massless spectrum should be given by k copies of the
massless spectrum of the Z5 Landau–Ginzburg orbifold that corresponds to
an ordinary quintic — for each twisted sector of the Z5 Landau–Ginzburg
orbifold, we get k copies in the present noneffective orbifold.

It is clear, in fact, that one will obtain results of a similar character for
Landau–Ginzburg orbifolds corresponding to hypersurfaces in any weighted
projective space.

Now, we can use this calculation to provide an important check of the
closed string massless spectrum conjecture presented in [1]. There, we con-
jectured that the closed string massless spectrum of the IR fixed point of a
gauged sigma model was given by the cohomology of the associated inertia
stack. This agrees with standard results for orbifolds by finite effectively
acting groups, and we argue extensively in [1] that this is also the correct
result for orbifolds by finite noneffectively acting groups. However, for stacks
that cannot be presented as quotients by finite groups, it is not currently pos-
sible to directly calculate the massless spectrum of the IR fixed point, as all
presentations are as massive UV theories. Landau–Ginzburg orbifolds pro-
vide a workaround for this technical issue. Although the Landau–Ginzburg
orbifold spectrum need not be precisely the same as that of the large-radius
theory, in typical cases it is closely related.

Now, for this example of a Zk gerbe over the quintic, the associated inertia
stack is k disjoint copies of the gerbe, and so the cohomology of the inertia
stack is given by k copies of the cohomology of the quintic. We computed
above that the massless spectrum of the Landau–Ginzburg orbifold associ-
ated to our Calabi–Yau gerbe is given by k copies of the massless spectrum
of the Landau–Ginzburg Z5 orbifold associated to the ordinary quintic, in
perfect agreement with the conjecture that massless spectra should be com-
puted by the inertia stack. The same result follows for other easy exam-
ples of Calabi–Yau hypersurfaces. Thus, by computing spectra at Landau–
Ginzburg points, we have obtained very strong evidence for the conjecture
that massless spectra of strings on stacks should be counted by the inertia
stack, in the case of stacks that cannot be presented as global quotients by
finite groups.

5.2 Example: Calabi–Yau in Gk
−nP

N−1 and GLSM phases

In the previous section, we discussed Calabi–Yau stacks built physically
from gauged linear sigma models with nonminimal charges. As discussed
earlier, we can also describe gerbes and stacks as e.g., U(1) quotients of
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total spaces of principal U(1) bundles. In this section, we shall outline the
relevant physics of such descriptions.

Recall that banded Zk gerbes over PN−1, i.e., the Gk
−nP

N−1 model, can
be described as a gauged linear sigma model with N chiral superfields xi

and one chiral superfield z with charges under a pair of U(1)’s as

xi z
λ 1 −n
µ 0 k

with D-terms constraining the z to be nonzero. A Calabi–Yau hypersurface
in such an object is {zG(xi) = 0}, where G(xi) is of degree N in the xi.
Because of the D-term constraint, there is no new {z = 0} branch, the solu-
tions of zG(xi) = 0 are the same as the solutions of G(xi) = 0. Clearly, for
any Calabi–Yau presented as a hypersurface in a projective space, we can
trivially construct a Calabi–Yau gerbe, in agreement with general observa-
tions [1] that a Calabi–Yau gerbe is merely a gerbe over a Calabi–Yau variety.

There is an obvious way to build a full gauged linear sigma model with
a superpotential realizing the Calabi–Yau described above. Following the
usual procedure, add a chiral superfield p with charges (n − N, −k) under
(λ, µ). The superpotential of the theory is given by pzG(xi), and we have
D-terms given by

∑

i

|xi|2 − n|y|2 + (n − N)|p|2 = rλ

k|y|2 − k|p|2 = rµ

The analysis of the GLSM phases is straightforward. For n ≤ N , we have
a geometric phase where the Fayet–Iliopoulos terms are given by rλ � 0,
rµ � 0. In that regime, assuming a smooth hypersurface, y �= 0, p = 0, and
not all the xi vanish.

However, we do not seem to ever have an ordinary Landau–Ginzburg
phase in these models, merely hybrid Landau–Ginzburg phases at best. For
example, when rλ � 0 and rµ � 0, we have y �= 0, and either p = 0 (and
some xi nonzero) or all of the xi = 0 (and p �= 0). The second branch would
correspond to a Landau–Ginzburg phase, but because of the first branch,
this is not what one would ordinarily call an honest Landau–Ginzburg point.

Also note that if n > N , then we do not seem to have a purely geometric
phase any longer. In the regime rλ � 0, we are merely guaranteed that not
all of the {xi, p} vanish. Thus, in this phase, we have a new branch.
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6 Mirrors to stacks

In this section, we will discuss how gauged-linear-sigma-model-based meth-
ods of [6, 10] for computing mirrors can be applied to the gauged linear
sigma model descriptions of gerbes discussed in this paper. We will begin
with the A model on gerbes on projective spaces and derive corresponding
Toda theories and then discuss the mirror of strings on gerbes on quintic
three-folds.

6.1 Toda theories corresponding to gerbes on projective spaces

For simplicity, we shall begin with gerbes on P1 and shall derive Toda the-
ories from several presentations. Then, we shall briefly outline gerbes on
more general projective spaces.

6.1.1 Toda theory for Gk
−1P

N−1

Recall that the Gk
−1P

N−1 model is described by N chiral superfields xi,
each of charge k with respect to a gauged U(1). In other words, it can be
presented identically to the CPN−1 model, except that the gauge charges
are minimal.

Following the prescription of [6, 10], the “mirror” theory should be
described by N neutral chiral superfields Yi, with one gauge multiplet Σ,
and an effective superpotential

W̃ = Σ (kY1 + · · · + kYN ) +
N∑

i=1

exp(−Yi)

where we are being sloppy about FI terms and factors, which will not play
an essential role in our discussion. Integrating out the Yi yields an effective
superpotential for Σ identical to that obtained by one-loop calculations in [3].
If instead we integrate out Σ, then in principle we are left with an effective
Landau–Ginzburg theory whose B model correlators should match the A
model correlation functions of the Gk

−1P
N−1 model.

Integrating out Σ is slightly subtle. It gives the constraint

k (Y1 + · · · + YN ) = 0

Because the Yi are periodic, it is not quite right to divide out the k. Rather,
this constraint says that exp(−YN ) only matches

exp(Y1) exp(Y2) · · · exp(YN−1)
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up to a kth root of unity, call it Υ. Thus, integrating out Σ gives us an
effective superpotential

W̃ = exp(−Y1) + · · · + exp(−YN−1) + Υ
N−1∏

i=1

exp(Yi)

We will derive this same result from an alternative presentation of the gerbe
in the next section.

6.1.2 Toda theory for Gk
−nP

N−1

Recall that the Gk
−nP

N−1 models are described by a gauged linear sigma
model with N chiral superfields xi and one chiral superfield z, charged with
respect to a pair of U(1) gauge symmetries as follows:

xi z
λ 1 −n
µ 0 k

Following the prescription of [6, 10], the “mirror” theory can be obtained
from a theory with neutral chiral superfields Y1, Y2, . . ., YN , Yz, correspond-
ing to the xi and z chiral superfields, and two gauge multiplets Σλ, Σµ, with
a superpotential5

W̃ = Σλ (Y1 + · · ·YN − nYz) + Σµ (kYz) +
N∑

i=1

exp(−Yi) + exp(−Yz)

Integrating out the Y ’s returns an effective superpotential for the Σ’s iden-
tical to that calculated from one-loop effects in [3]. Integrating out the Σ’s
gives the constraints6

Y1 + · · · + YN − nYz = 0
kYz = 0

and an effective superpotential

W̃ = exp(−Y1) + · · · + exp(−YN−1)

+ exp(Y1) exp(Y2) · · · exp(YN−1)Υ−n + Υ (6.1)

where Υ = exp(Yz), and hence is constrained by Υk = 1, and where we have
eliminated the field YN using the other constraint equation. (Note that

5We are being sloppy about FI terms and scales. A meticulous reader will find it
trivially easy to reinsert both in our expressions.

6The two constraints below would be the D-term equations, if we had included FI terms
above.
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since the Y ’s are periodic, the constraint kYz = 0 does not eliminate Yz, but
rather merely forces it to define a kth root of unity.)

This new theory, with N − 1 neutral chiral superfields Y1, . . . , YN−1,
together with a Zk-valued field Υ, and the effective superpotential above, is
our proposed Toda mirror to the Gk

−nP
N−1 model in the sense that A model

correlation functions of the latter can be calculated as B model correlation
functions of the former. We will show in the next section that correlation
functions do indeed match.

In passing, note that for n = 1, this theory specializes to our earlier result
for the first presentation of the Gk

−1P
N−1 model.

6.1.3 Check of correlation functions of Toda duals

To check that the Toda theories just described really do correspond to the
gerby PN−1 models Gk

−nP
N−1, we shall compute the B model correlation

functions of the Toda theory and check that they match the A model corre-
lation functions of the gerby PN−1 models.

In fact, let us back up one step further and first review how B model
periods are calculated in the Toda theory corresponding to the ordinary
CPN−1 model.

Recall from [11] that given a B-twisted Landau–Ginzburg model with
superpotential W , if we define H = det (∂i∂jW ), then the tree-level correla-
tion functions can be calculated in the form

<F1 · · ·Fn> =
∑

dW=0

F1 · · ·Fn

H

where the Fi are polynomials in the chiral superfields, i.e., observables of
the B-twisted Landau–Ginzburg model.

The Toda theory corresponding to the ordinary PN−1 model is a B-twisted
Landau–Ginzburg model with superpotential

W = exp(Y1) + · · · + exp(YN−1) + exp(−Y1 − Y2 − · · · − YN−1)

Define Π = exp(−Y1 − Y2 − · · · − YN−1); then the classical vacua are defined
by

exp(Y1) = · · · = exp(YN−1) = Π
which implies that

(exp(Yi))
N = 1

for all i. When restricted to classical vacua, it is straightforward to compute
that the determinant H = NΠN−1. Thus, if we define X = exp(Y1), then
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for correlation functions we compute that

<Xm> =
∑ Xm

NXN−1

using the fact that at classical vacua, X = Π, and where the sum runs
over Nth roots of unity. This expression can only be nonvanishing when
m + 1 − N is divisible by N , and thus the only nonvanishing correlation
functions are

<XN−1>, <X2N−1>, <X3N−1>, · · ·

By comparison, recall that the ordinary PN−1 model has quantum cohomol-
ogy relation XN = q and classical correlation function <XN−1> = 1, from
which one computes that the nonvanishing correlation functions, beyond the
classical correlation function, are

<X2N−1> = q

<X3N−1> = q2

and so forth, in agreement with the Toda calculation above.

Now let us turn to the proposed Toda dual to the Gk
−nP

N−1 model.
Recall that this Toda theory has N − 1 neutral chiral superfields Yi, together
with a Zk-valued field Υ, and the effective superpotential (6.1). It is very
straightforward to generalize the methods of [11] to this situation. Since the
Zk-valued fields are annihilated by supersymmetry transformations, and so
do not have superpartners, we can immediately deduce:

• Each Zk-valued field is itself a BRST-invariant observable.
• As the Hessian factor is derived from F-terms and Yukawa couplings, in

a theory with Zk-valued fields, it is calculated only for complex-valued
chiral superfields, omitting the Zk-valued fields.

Otherwise the form of the calculations in [11] are unchanged. Thus, following
[11], tree-level correlators have the form

<F1 · · ·Fp> =
∑

dW=0

F1 · · ·Fp

H

where H is the determinant of the matrix of second derivatives of the super-
potential, taking derivatives corresponding to complex-valued chiral super-
fields, and the F ’s are combinations of exp(Yi) and Υ. The solutions of
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dW = 0 are given by

exp(−Yi) = exp(Y1) exp(Y2) · · · exp(YN−1)Υ−n

for all i, and as Υ is Zk-valued, all its values trivially satisfy dW = 0. Let
us define

Π = exp(Y1) exp(Y2) · · · exp(YN−1)Υ−n

so that the classical vacua can be described as

exp(−Y1) = exp(−Y2) = · · · = exp(−YN−1) = Π

Then, on the locus of classical vacua, it can be shown that

H = NΠN−1

Finally, let us define X = exp(−Y1), which from the work above we see
satisfies XN = Υ−n on the locus of classical vacua.

For reasons already outlined, correlation functions in this theory can then
be described as

<XmΥp> =
∑

dW=0

XmΥp

H

=
∑

Υ∈Zk

∑

XN=Υ−n

XmΥp

NXN−1

This sum will only be nonvanishing when

m − N + 1 = rN

for some integer r (taking advantage of XN = Υ−n) such that p − nr = sk
for some integer s (taking advantage of Υk = 1). For example, if

m − N + 1 = rN + ε

for some integer ε between 0 and N , then the correlation function has an
internal sum of the form

∑
X Xε over roots X on the classical locus, which

vanishes.

In any event, we see that the nonvanishing correlation functions in this
theory are of the form

<XN(r+1)−1Υnr+sk>

for integers r, s, which exactly matches our earlier result, equation (3.1) in
Section 3.3, for A model correlation functions in the Gk

−nP
N−1 model, if we

identify Y ∼ Υ−1.

Let us take a moment to discuss some alternative potential Toda theo-
ries corresponding to the Gk

−1P
N−1 model and reasons why they are not
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acceptable. For example, for the Gk
−1P

1 model, one natural guess for a
corresponding Toda theory would have superpotential

W = exp(kΘ) + exp(−kΘ)

just as the ordinary P1 model has corresponding Toda theory with super-
potential

W = exp(Θ) + exp(−Θ)

However, the periods of this Toda theory do not reproduce the A model
quantum cohomology calculations discussed earlier. Define X = exp(Θ);
then following [11]

<Xm> =
∑

dW=0

Xm

H

In the present case,

H = k2 (exp(kΘ) + exp(−kΘ)) = k2
(
Xk + X−k

)

and the classical vacua are defined by Xk = X−k or X2k = 1. Thus, the
classical vacua are the 2kth roots of unity, so we do at least have as many
classical vacua as expected. The B model correlation functions, however,
are more problematic:

<Xm> ∝
∑

Xm−k

where the sum is over 2kth roots of unity, and hence is only nonvanishing
when m − k is a multiple of 2k, which implies that the nonzero correlation
functions are

<Xk>, <X3k>, <X5k>, . . .

However, previously we have calculated for this model that the nonvanishing
correlation functions are given by

<X> = 1, <X2k+1> = q, <X4k+1> = q2, . . .

which does not match the result above, except in the trivial case k = 1.

Furthermore, the obvious extension of the alternate proposal above to
Gk

−1P
N−1, namely the Toda theory with superpotential

W = exp(kY1) + · · · + exp(kYN−1) + exp(−kY1 − kY2 − · · · − kYN−1)

not only does not have matching correlation functions, but does not even
have the expected number of classical vacua (it has kN(N − 1) instead
of kN).
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6.2 Mirrors to gerbes on the quintic

Let us begin our discussion of mirrors to gerbes over the quintic by appealing
to a simple minimal-model argument at the Fermat Landau–Ginzburg point
in the moduli space. As noticed previously in Section 5.1, the Landau–
Ginzburg orbifold corresponding to the quintic hypersurface in Gk

−1P
N−1 is

a noneffectively acting Z5k orbifold. Thus, at the Fermat point, the theory
can be constructed as a Z5k orbifold of a tensor product of five minimal
models, call them each M :

[
M ⊗ M ⊗ · · · ⊗ M

Z5k

]

Now, by ordinary mirror symmetry for the minimal models, we can replace
each M by the Z5 orbifold [M/Z5], leaving us with a Z5k orbifold of a tensor
product of five copies of [M/Z5]. As shown in [4], a noneffective Zkn orbifold
of a Zn orbifold is a trivially acting Zk orbifold. Thus, in the present case,
we are left with a trivially acting Zk orbifold of a Z4

5 orbifold of a tensor
product of five minimal models, i.e., a trivially acting Zk orbifold of the
mirror to the standard Landau–Ginzburg Fermat model.

In light of the result [4] that the mirror to a trivial gerbe is a trivial
gerbe over the mirror, the calculation above implies that, at the Fermat
Landau–Ginzburg point, the conformal field theory of the Z5k orbifold is
the same as a Z5 × Zk orbifold. Note that this statement is consistent with
partition functions: since Z5k is abelian, the g-loop partition function of the
Z5k orbifold is the same as that of the Z5 × Zk orbifold, for all g.

Let us now formally compute the mirror of the gerby quintic using the
methods of [6, 10, 12]. Since this is a hypersurface in a toric variety, and
not a toric variety, we shall use the trick of [12] of replacing the A model
on such a hypersurface with the A model on a toric supervariety, which can
be dualized using the methods of [6, 10] to an effective Landau–Ginzburg
theory whose B model correlation functions should duplicate the original A
model correlation functions. (Unfortunately, this is a many-to-one map, as
complex structure data is lost on the A side, corresponding to the fact that
the dual is fixed at one point in Kähler moduli space. Nevertheless, this will
give good insight into the structure of the mirrors.)

Following [6], let us first compute the mirror of the ambient gauged linear
sigma model with no superpotential. The mirror can be described start-
ing from a theory with neutral chiral superfields Y1, . . . , Y5, Yp and Σ, and
effective superpotential

W̃ = Σ (−5kYp + kY1 + · · · + kY5 − kr) +
∑

i

exp(−Yi) + exp(−Yp)
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where r is proportional to the Fayet–Iliopoulos term. (We have included
it here, with a suitable normalization, to make the result cleaner.) For
simplicity, we will assume that k is not divisible by 5. Integrating out Σ
gives us the constraint

kYp = −1
5
k (Y1 + · · · + Y5 − r)

Since the fields Y are periodic, if we define Xi = exp(−Yi/5), then we have
that

exp(−Yp) = Υ exp(−r/5)X1X2X3X4X5

where Υ is a kth root of unity, whose possible values must be summed over
in the path integral measure. Furthermore, because Xi = exp(−Yi/5), we
have identifications

Xi ∼ ωiXi

where ωi is a fifth root of unity. Using the assumption that 5 does not divide
k, the relation between Yp and the Yi tells us that

∏
i ωi = 1, so in fact we

must orbifold by Z4
5 rather than Z5

5. Thus, we have an effective Landau–
Ginzburg model of the mirror defined by the effective superpotential

W̃ = X5
1 + · · · + X5

5 + Υ exp
(
−r

5

)
X1X2X3X4X5

and the Z4
5 orbifold action described previously, where Υ is a kth root of

unity, and the path integral measure must sum over values of Υ. So far
we have only computed the mirror of the gauged linear sigma model with
vanishing superpotential. In this theory, the fundamental fields7 over which
the path integral measure sums are the Y ’s, not the X’s. It is easy to
check that turning on a superpotential, and proceeding as in [12], has the
ultimate effect only of changing the fundamental fields from the Y ’s to the
X’s. Otherwise, just as for the quintic in ordinary P4, the form of the
effective Landau–Ginzburg theory is the same between the two cases. In
particular, the effective Landau–Ginzburg theory dual to the A model on
the gerby quintic is defined by the superpotential above, with the field Υ
taking values in roots of unity.

At the Fermat point, where the
∏

i Xi term decouples, the theory reduces
to a Z4

5 orbifold of a product of five minimal models, tensored with the theory
of the Zk-valued field Υ. However, as discussed in [4], tensoring with the

7As a result, for example, the untwisted part of the chiral ring in the dual to the theory
with no superpotential is given by the invariant part of C[Y1, Y2, . . . , Y5]/(∂W ) with W
of the form above, an infinite-dimensional vector space, reflecting the noncompactness of
the original theory. Turning on the superpotential in the original theory yields a dual
with chiral ring untwisted sector given by the invariant part of C[X1, X2, . . . , X5]/(∂W ),
a finite-dimensional vector space. We would like to thank A. Adams for discussions of
these matters.
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trivial theory of a Zk-valued field is equivalent to orbifolding by a trivially
acting Zk, so we recover the same result at the Fermat point that we derived
earlier using nothing more than standard facts about minimal models.

Away from the Fermat point, we see something interesting. The Zk-valued
field Υ, which at Fermat merely realizes a trivially acting Zk orbifold, now
mixes nontrivially with super-potential terms. Recall that the same sort
of structure appeared from an independent line of thought in [4] when dis-
cussing the interpretation of moduli in twisted sectors associated to trivially
acting group elements. In hindsight, this should not be surprising — both
here and in [4], we are ultimately studying the same sorts of problems,
namely deformations of stringy moduli appearing in gerbes. Thus, we should
not be surprised to see the same structures emerging in both cases.

6.3 Gerby minimal models

Let us take just a moment to outline some easy results concerning mirror
symmetry and noneffective orbifolds of minimal models.

Consider the Ad−1 minimal model, which arises as the IR fixed point of
the LG model of a single chiral superfield Φ with superpotential Φd. It is well
known that model is mirror to its orbifold by Zd, acting as Φ → exp(2πi/d)Φ.
We can generate an easy example of gerby mirrors in minimal models using
the result in [4] that for any CFT C, if we define C′ to be the orbifold
[C/Zd], then the orbifold [C′/Zdk] (where Zd is the quantum symmetry
and Zk acts trivially) is isomorphic to the orbifold [C/Zk]. Applied to the
minimal model above, this means that the Zdk orbifold of the Ad−1 minimal
model (where the Zdk acts by projecting to Zd, acting in the usual way,
with trivial Zk kernel) is isomorphic to the trivial Zk orbifold of the same
minimal model.

Furthermore, from the argument in [4] that trivial gerbes are mirror, one
expects that the trivial [Ad−1/Zk] orbifold should be mirror to [[Ad−1/Zd]/
Zk] ∼= [Ad−1/(Zd ⊕ Zk)], hence the Zkd and Zd ⊕ Zk orbifolds of the Ad−1
minimal model should be isomorphic. It is trivial to check that spectra
and g-loop partition functions match between two such orbifolds, hence the
result seems very plausible.

6.4 Analogue of Batyrev’s mirror conjecture for stacks

In order to find an analogue of Batyrev’s mirror conjecture [13], one faces
the following basic puzzle: since a toric stack is described in terms of a fan
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plus finite-group data associated to each edge (see the appendix for more
information), in order for reflexive polyhedra to encode mirrors, Newton
polygons must somehow be decorated with the same sort of finite group
data that appears in toric stacks.

This puzzle is related to the puzzle posed by deformation theory of stacks:
the only mathematical deformations of a stack are those in the untwisted
sector. Twist field moduli do not have a purely mathematical understanding.

We have seen how explicit mirror constructions solve the deformation
theory puzzle, by forcing us to introduce a new class of abstract CFTs, based
on Landau–Ginzburg orbifolds, in which the superpotential is deformed by
finite-group-valued fields, corresponding to giving a vev to a twist field in a
noneffective orbifold.

The solution to the puzzle in generalizing Batyrev’s conjecture to toric
stacks is the same: we need to consider the same general class of abstract
CFTs, in which superpotentials naturally include monomial terms with
finite-group factors.

It is now straightforward to generalize Batyrev’s conjecture. Recall that
in its ordinary form, given a Calabi–Yau hypersurface in a toric variety,
one first constructs the Newton polygon of possible monomial contributions
to the hypersurface and another polygon with faces over the cone of the
fan describing the ambient toric variety. (One typically scales so that each
polyhedron, on an integral lattice, has exactly one interior point.) So long
as these polyhedra are reflexive, the mirror is obtained by exchanging these
polyhedra: the mirror ambient toric variety has fan defined by the Newton
polyhedron of the original, and the monomials in a Calabi–Yau hypersurface
are described by the polyhedron over the fan of the original ambient toric
variety. (See [14] for a very readable discussion.)

To generalize this procedure to stacks, we proceed as follows. The stacky
fan of the mirror ambient toric variety is obtained by using the above con-
struction to get the basic fan, with finite-group data obtained by taking
the difference of finite-group factors between the monomial corresponding
to that corner of the polyhedron and the monomial corresponding to the
interior point. The Newton polyhedron of the mirror theory is obtained
from the same procedure as for the standard construction, with finite-group-
valued-field-factors obtained from the generators decorating each edge of the
stacky fan.

Let us work through a simple example, to make this process clearer. Let us
first review Batyrev’s mirror construction for elliptic curves, built as degree
three hypersurfaces in P2, and then we shall describe how to generalize this
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process to describe the mirror of the gerbe over an elliptic curve obtained
by restricting the Gk

−1P
2 model to the hypersurface.

In figure 1, we have shown the fan for the toric variety P2. In figure 2, we
have shown the Newton polyhedron for degree three hypersurfaces in P2.

The fan of the mirror ambient toric variety is obtained as the fan through
the faces of the Newton polyhedron and is shown in figure 2. It is straight-
forward to compute that this fan describes the toric variety P2/Z3, where
if we denote the homogeneous coordinates on P2 by [z0, z1, z2], and let ξ
generate the third roots of unity, then the generator of the Z3 acts as

[z0, z1, z2] −→
[
z0, ξz1, ξ

2z2
]

In a little more detail, if we let the three cones in the fan be denoted I, II, III,
where I is the cone covering the first quadrant and the others proceed coun-
terclockwise, then the coordinate patch corresponding to cone I is given by

SpecC
[
x2y, xy2, xy

]

the coordinate patch corresponding to cone II is given by

SpecC
[
x−2y−1, x−1y, x−1]

and the coordinate patch corresponding to cone III is given by

SpecC
[
xy−1, x−1y−2, y−1]

Figure 1: The fan for P2, with the mirror Newton polyhedron shown.
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Figure 2: The Newton polyhedron for degree three hypersurfaces in P2.
The three corner points, corresponding to cubes of the three homogeneous
coordinates, are labelled. The fan of the mirror ambient toric variety, the
fan over the faces of the Newton polyhedron, is shown.

We can relate this description to the homogeneous coordinates on P2 by
identifying

x ∼ z2
1

z0z2
, y ∼ z2

2
z0z1

The Newton polyhedron for degree three hypersurfaces in P2/Z3 has
monomials

{z3
0 , z

3
1 , z

3
2 , z0z1z2} = {1, x2y, xy2, xy}

and is shown in figure 3.

1

x y

xy

2

2

Figure 3: Newton polyhedron for degree three hypersurfaces in P2/Z3, with
fan over the faces shown.
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Note that the fan shown in figure 3, constructed from the mirror Newton
polyhedron, is the same as the fan of the original P2, so that applying the
mirror construction twice returns to the original toric variety and hypersur-
face.

Now that we have seen how Batyrev’s construction works for the case of
elliptic curves in P2, let us turn to a simple example of a toric stack. Con-
sider the Zk gerbe over P2 with characteristic class −1 mod k. As described
in more detail in the appendix, the stacky fan has underlying fan given by
the same fan as P2, and to the edges we associate generators of Z2 ⊕ Zk,
given by

(1, 0, 0)
(0, 1, 0)

(−1,−1, 1)
(6.2)

If we consider gerbes over ordinary elliptic curves, so that the possible mono-
mials do not have any finite-group factors, then the mirror ambient toric
stack has fan given by that for P2/Z3, and to the edges we associate gener-
ators of Z2 ⊕ Zk given by

(−1, 2, 0)
(2,−1, 0)

(−1,−1, 0)
(6.3)

Since there are no finite-group factors in the monomials, the generators of
Z2 ⊕ Zk do not extend into Zk. The Newton polygon of the mirror is con-
structed from the polygon over the fan of the ambient toric stack. The
possible monomials are weighted by finite-group data, in a fashion deter-
mined by the generators (6.2) of the original toric stack. Specifically, we
have monomial terms

{Υz3
0 , z

3
1 , z

3
2 , z0z1z2}

in the superpotential of the mirror Landau–Ginzburg theory, where Υ is a
Zk-valued field, which appears in the z3

0 monomial because the generator
associated to the corresponding edge of the toric fan extends into Zk. If the
generators associated to the edges had been

(1, 0, a)
(0, 1, b)

(−1,−1, c)

then the monomial terms in the superpotential of the mirror Landau–
Ginzburg model would have been

{Υcz3
0 , Υ

az3
1 , Υ

bz3
2 , z0z1z2}

Similarly, if there were additional finite-group factors in the defining data of
the stacky fan, there would be additional finite-group-valued fields appearing
in the mirror Landau–Ginzburg superpotentials.
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Also note that if we work with a stacky fan with Zk factors but no gen-
erator extends into those factors, and the superpotential has only ordinary
monomials — no finite-group-valued field factors — then the mirror of the
stack is the mirror Calabi–Yau, in the ordinary sense, in a stacky fan with
Zk factors. This can be interpreted as the statement that the mirror of
the trivial Zk-gerbe over a Calabi–Yau is the trivial Zk-gerbe over the mir-
ror Calabi–Yau, agreeing with easy general statements on mirrors of trivial
gerbes described in [1, 4].

In passing, note that the monomial-divisor mirror map now immediately
generalizes to toric stacks, as we have implicitly constructed a map between
generators of the Kähler-like deformations of the theories with finite-group-
valued fields, and the complex-structure-like deformations, in the same form
as the original monomial-divisor mirror map.

In order to properly understand whether this proposed generalization of
Batyrev’s mirror conjecture is physically correct, we would need to further
pursue properties of these new abstract CFTs constructed from Landau–
Ginzburg orbifolds with finite-group-valued fields. We will leave such a
study for future work, and for the purposes of this paper, content ourselves
with having merely elucidated the conjecture.

7 Conclusions

In this paper, we have discussed gauged linear sigma models with nonmini-
mal U(1) charges. Such theories, which describe quotients by noneffectively
acting C×’s, are physically distinct from their counterparts with minimal
charges (as we saw in the analogous case of finite noneffectively acting groups
in [4]), and can be understood mathematically as describing toric stacks.

Every stack has a presentation of the form [X/G], to which one associates
a G-gauged sigma model on X. However, such presentations are not unique.
We have argued in [1] and seen further examples here showing that stacks
classify universality classes of worldsheet RG flow in gauged sigma models.
Curiously, this seems to be true not only for Calabi–Yau stacks, but also for
the A model on more general stacks, as we have seen in examples here.

We have discussed quantum cohomology of gauged linear sigma mod-
els corresponding to toric stacks, as well as massless spectra of Landau–
Ginzburg models associated to gerby hypersurfaces, and seen how the results
in all such cases are consistent with the general conjecture for massless spec-
tra in gauged sigma models presented in [1], namely that the massless spec-
trum is the de Rham cohomology of the associated inertia stack.
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Finally, and perhaps most importantly, we have discussed mirror symme-
try for stacks and seen how fields valued in roots of unity play an important
role, in Toda duals to toric stacks, in the mirror to the gerby quintic, and
more generally in formulating Batyrev’s mirror conjecture for hypersurfaces
in toric stacks. Previously in [1, 4], we have seen such fields appearing when
understanding deformations along marginal operators in certain twisted sec-
tors of noneffective orbifolds and used them to give a very explicit under-
standing of the CFTs one obtains by such deformations. Here, although
fields valued in roots of unity are derived from completely independent lines
of reasoning, the root cause of their appearance is the same: their appear-
ance is again needed to understand moduli spaces of theories containing
noneffectively gauged sigma models at certain points.
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Appendix

Toric stacks

The paper [2] describes a construction of “toric stacks,” which are Deligne–
Mumford stacks over toric varieties.

Toric stacks are described as follows. Begin with a fan describing a toric
variety. (The toric stack will naturally live over the toric variety; technically,
the toric variety is known as the “moduli space” of the stack, though in this
context the term is a holdover from the historical development of stacks and
does not refer to any deformation theory.) Enlarge the lattice N to include
some finite-group factors, so that if for the original toric variety, N = Zd for
some d, then N is now of the form

Zd ⊕ Zq1 ⊕ · · · ⊕ Zqr

For ordinary toric varieties, each edge in the fan describes a map Z → N ,
defined by a generator of that edge. We do the same here — to each edge we
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associate an element of the abelian group N above. The freely generated part
of the image corresponds to the coordinates of a generator of the edge, and
the finite-group factors will determine the stack structure. The combination
of an ordinary fan, N , and the maps from edges to N forms what the authors
of [2] call a stacky fan.

We can determine C× charges in a gauged-linear-sigma-model-style pre-
sentation as follows. Let n be the number of edges in the fan and d the
dimension of the freely generated part of N . Define a (d + r) × r matrix Q
to have 0’s in its first d rows, then qi’s on the diagonal in the last r rows,
giving a matrix of the form

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0
· · ·

0 0 · · · 0
q1 · · · 0 0
0 q2 · · · 0
0 · · · qr−1 0
0 0 · · · qr

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Define a (d + r) × n matrix P to have, in each column, the image in N of
the corresponding edge. Then, the gauged-linear-sigma-model charges are
defined by the kernel of the (d + r) × (n + r) matrix [PQ], a result in close
analogy with the way gauged-linear-sigma-model charges are computed from
ordinary fans for ordinary toric varieties. Technically there can sometimes
be additional finite-group actions beyond the C×’s; we shall return to this
matter after describing a few basic examples.

Our first example is also example 2.1 in [2]. The underlying toric variety
is P1, with its trivial fan, and take N = Z ⊕ Z2. Since the toric variety is
one-dimensional, d = 1, and since there is only one finite-group factor r = 1,
and in fact the matrix Q is given by

[
0
2

]

To the first edge, we associate (2, 1) ∈ N , and to the second edge we associate
(−3, 0) ∈ N . Thus, the matrix P is given by

[
2 −3
1 0

]

The gauged-linear-sigma-model charges are computed as the solutions a, b,
c of the equation

[
2 −3 0
1 0 2

]
⎡

⎣
a
b
c

⎤

⎦ = 0
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The possible solutions are generated by
[
a b c

]
=

[
6 4 −3

]

We discard the value of c, and then the resulting stack can be realized by
a gauged linear sigma model acting on two chiral superfields, with a single
U(1), under which the chiral superfields have charges 6, 4. Truncating c may
seem somewhat artificial, but has a natural mathematical interpretation,
which we shall return to later.

Suppose we modify the example above slightly, using the same underlying
toric fan and the same N , but we modify the maps from the edges into N
so that they produce no torsion, i.e., to the edges we associate (2, 0) and
(−3, 0). Now when we compute the gauged linear sigma model charges as
the kernel of [

2 −3 0
0 0 2

]

we find that the charges are 3, 2. Adding the torsion forces us to use
nonminimal charges.

Technically, the example above describes more than just the weighted pro-
jective space WP3,2; it is actually the stack WP3,2 × BZ2. More generally,
putting all 0’s in a row of the P matrix will result in a BZr factor.

Let us take a moment to understand the details of the construction in [2] a
little better, which will allow us to see the origin of these finite-group factors.
The paper [2] defines a group DG(β) to be (Zn+r)∗ modulo the image of
the matrix [PQ]T. The same reference also defines a map β∨, which turns
out to be given by the composition of the inclusion

(Zn)∗ ↪→
(
Zn+r

)∗

and the projection
(
Zn+r

)∗ −→ DG(β).

This projection can be accomplished by contracting the elements of (Zn+r)∨

with elements of the kernel of [PQ], the same kernel that defines the gauged
linear sigma model charges. (The map β is the assignment of an element
of N to each edge of the fan, thus, a map Zn → N .) To compute finite-
group factors and their actions, we need to compute DG(β) and β∨ in each
example. The group one quotients by G = Hom(DG(β),C×). If DG(β) =
Zk for some k, then G = (C×)k, and we have an ordinary gauged linear
sigma model. If DG(β) contains finite-group factors, then we must quotient
by more than merely C×’s to obtain the toric stack. Furthermore, the action
of G on the homogeneous coordinates is defined by the map Hom(β∨,C×).
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In the first example we discussed above, DG(β) = Z. The map β∨ is the
composition of the inclusion

(
Z2)∗ −→

(
Z3)∗ :

[
a
b

]
−→

⎡

⎣
a
b
0

⎤

⎦

and the projection

(
Z3)∗ −→ Z :

⎡

⎣
a
b
c

⎤

⎦ −→ [64 − 3]

⎡

⎣
a
b
c

⎤

⎦ = 6a + 4b − 3c

More simply, the map β∨ is the map

(
Z2)∨ −→ Z :

[
a
b

]
−→ 6a + 4b

Since DG(β) = Z, G = C×, and the action of G on the homogeneous coor-
dinates is given by Hom (β∨,C×) or more simply,

(x, y) −→
(
λ6x, λ4y

)

More generally, it is clear from the form of the first inclusion map that the
C× charges of the homogeneous coordinates will be obtained by truncating
the kernel vectors.

In the second example we discussed above, DG(β) = Z ⊕ Z2. The map
β∨ is the composition of the inclusion above, plus the projection

(
Z3)∗ −→ Z ⊕ Z2 :

⎡

⎣
a
b
c

⎤

⎦ −→ [320]

⎡

⎣
a
b
c

⎤

⎦ = 3a + 2b

In other words, the map β∨ is the map

(
Z2)∨ −→ Z ⊕ Z2 :

[
a
b

]
−→ (3a + 2b) ⊕ 0

Here, G = C× ⊕ Z2, and dualizing β∨, we find that the action of C× on the
homogeneous coordinates is given by

(x, y) −→
(
λ3x, λ2y

)

and the Z2 acts trivially. Thus, here the toric stack is WP2,3 × BZ2.

We can also realize the gerbe of Section 3.1 in this language. Recall that
was a Zk gerbe over PN−1, which generated all of the Zk gerbes on PN−1.
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Since it is a Zk gerbe, the matrix Q is an N -element column vector of the
form

Q =

⎡

⎢
⎢
⎢
⎢
⎣

0
0

· · ·
0
k

⎤

⎥
⎥
⎥
⎥
⎦

and if we take the matrix P to be given by

P =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 · · · 0 −1
0 1 · · · 0 −1

· · ·
0 0 · · · 1 −1
0 0 · · · 0 1

⎤

⎥
⎥
⎥
⎥
⎦

then column vectors that solve the equation

[PQ]

⎡

⎢
⎢
⎣

a1
· · ·
aN

b

⎤

⎥
⎥
⎦ = 0

are generated by ⎡

⎢
⎢
⎢
⎢
⎣

a1
a2
· · ·
aN

b

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

k
k
· · ·
k

−1

⎤

⎥
⎥
⎥
⎥
⎦

from which we see the gauged-linear-sigma-model-type description in terms
of N chiral superfields each of charge k. It is straightforward to check that
DG(β) = Z, so there are no extra finite-group factors here.

We do not need to add any finite groups to the N lattice in order to
obtain a stack that is not a space; we can get stacks from the data defining
an ordinary toric variety, if it is singular. For a smooth toric variety, if we
reinterpret the same data defining the variety as a stack, then the resulting
stack will be the same as the original toric variety. However, if we take a
singular toric variety, such as the quotient space C2/Z2, and interpret the
fan data as a toric stack, then the resulting stack is not the space C2/Z2,
but rather is the stack [C2/Z2]. Similarly, weighted projective stacks are
described as toric stacks using the same fan and N lattice as for the corre-
sponding toric varieties, but merely reinterpreted as stacks.

This is how our conjectured extension of Batyrev’s mirror proposal to
stacks reproduces mirror symmetry for spaces. Interpreted as stacks, toric
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varieties such as the quotient space P2/Z3 are replaced by toric stacks
[P2/Z3], reproducing orbifold mirrors.
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