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Abstract

We study the topological sector of N = 2 sigma-models with H-flux.
It has been known for a long time that the target-space geometry of
these theories is not Kähler and can be described in terms of a pair of
complex structures, which do not commute, in general, and are parallel
with respect to two different connections with torsion. Recently an alter-
native description of this geometry was found, which involves a pair of
commuting twisted generalized complex structures on the target space.
In this paper, we define and study the analogs of A and B-models for
N = 2 sigma-models with H-flux and show that the results are naturally
expressed in the language of twisted generalized complex geometry. For
example, the space of topological observables is given by the cohomology
of a Lie algebroid associated to one of the two twisted generalized complex
structures. We determine the topological scalar product, which endows
the algebra of observables with the structure of a Frobenius algebra.
We also discuss mirror symmetry for twisted generalized Calabi–Yau
manifolds.
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1 Introduction

It was pointed out by Witten [19] in 1988 that one can construct interesting
examples of topological field theories by “twisting” supersymmetric field
theories. This observation turned out to be very important for quantum
field theory and string theory, since observables in topologically twisted
theories are effectively computable on one hand and can be interpreted in
terms of the untwisted theory on the other. In other words, supersymmetric
field theories tend to have large integrable sectors.

From the string theory viewpoint, the most important class of supersym-
metric field theories admitting a topological twist are sigma-models with
(2, 2) supersymmetry. Usually one considers the case when the B-field is a
closed 2-form, in which case (2, 2) supersymmetry requires the target M to
be a Kähler manifold. In this case, the theory admits two different twists,
which give rise to two different topological field theories, known as the A and
B-models.1 In any topological field theory, observables form a supercommu-
tative ring. For the A-model, this ring turns out to be a deformation of the
complex de Rham cohomology ring of M , which is known as the quantum
cohomology ring. It depends on the symplectic (Kähler) form on M , but
not on its complex structure. For the B-model, the ring of observables turns
out to be isomorphic to

⊕p,qH
p(ΛqT 1,0M),

which obviously depends only on the complex structure of M . Furthermore,
it turns out that all correlators in the A-model are symplectic invariants
of M , while all correlators in the B-model are invariants of the complex
structure on M [20].

In this paper, we analyze more general topological sigma-models for which
H = dB is not necessarily zero. It is well known that for H �= 0 (2, 2) super-
symmetry requires the target manifold M to be “Kähler with torsion” [2].
This means that we have two different complex structures I± for right movers
and left movers, such that the Riemannian metric g is Hermitian with respect
to either one of them, and I+ and I− are parallel with respect to two different
connections with torsion. The torsion is proportional to ±H. The presence
of torsion implies that the geometry is not Kähler (the forms ω± = gI±
are not closed). Upon topological twisting, one obtains a topological field

1More precisely, the B-model makes sense on the quantum level if and only if M is a
Calabi–Yau manifold. For the A-model, the Calabi–Yau condition is unnecessary.
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theory, and one would like to describe its correlators in terms of geometric
data on M . As in the Kähler case, there are two different twists (A and B),
and by analogy one expects that the correlators of either model depend only
on “half” of the available geometric data. Furthermore, it is plausible that
there exist pairs of (2, 2) sigma-models with H-flux for which the A-model
are B-model are “exchanged.” This would provide an interesting general-
ization of mirror symmetry to non-Kähler manifolds.

The main result of the paper is that topological observables can be
described in terms of a (twisted) generalized complex structure on M . This
notion was introduced by Hitchin [6] and studied in detail by Gualtieri [5];
we review it below. One can show that the geometric data H, g, I+, I− can be
repackaged as a pair of commuting twisted generalized complex structures
on M [5]. We show in this paper that on the classical level the ring of topolo-
gical observables and the topological metric on this ring depend only on one
of the two twisted generalized complex structures. This strongly suggests
that all the correlators of either A or B-model (encoded by an appropriate
Frobenius manifold) are invariants of only one twisted generalized complex
structure. Therefore, if M and M ′ are related by mirror symmetry (i.e., if
the A-model of M is isomorphic to the B-model of M ′ and vice versa), then
the appropriate moduli spaces of twisted generalized complex structures on
M and M ′ will be isomorphic.

To state our results more precisely, we need to recall the definition of
the (twisted) generalized complex structure (TGC-structure for short). Let
M be a smooth even-dimensional manifold, and let H be a closed 3-form
on M . The bundle TM ⊕ TM∗ has an interesting binary operation, called
the twisted Dorfman bracket. It is defined, for arbitrary X, Y ∈ Γ(TM) and
ξ, η ∈ Γ(TM∗), as

(X ⊕ ξ) ◦ (Y ⊕ η) = [X, Y ] ⊕ (LXη − iY dξ + ιY ιXH).

It is not skew-symmetric, but satisfies a kind of Jacobi identity. Its skew-
symmetrization is called the twisted Courant bracket and does not satisfy
the Jacobi identity. The bundle TM ⊕ TM∗ also has an obvious pseudo-
Euclidean metric of signature (n, n), which we call q. For a detailed discus-
sion of the Dorfman and Courant brackets and their geometric meaning, see
Ref. [16].

A TGC-structure on M is a bundle map J from TM ⊕ TM∗ to itself
which satisfies the following three requirements.

• J 2 = −1.
• J preserves q, i.e., q(J u, J v) = q(u, v) for any u, v ∈ TM ⊕ TM∗.
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• The eigenbundle of J with eigenvalue i is closed with respect to the
twisted Dorfman bracket. (One may replace the Dorfman bracket with
the Courant bracket without any harm.)

In the special case H = 0, the adjective “twisted” is dropped everywhere,
and one gets the notion of a generalized complex structure (GC-structure).

To any TGC-structure on M , one can canonically associate a complex Lie
algebroid E (which is, roughly, a complex vector bundle with a Lie bracket
which has properties similar to that of a complexification of the tangent
bundle of M). From any complex, Lie algebroid E, one can construct a
differential complex whose underlying vector space is the space of sections
of Λ•(E∗) (which generalizes the complexified de Rham complex of M).
We will show that the space of topological observables is isomorphic to the
cohomology of this differential complex. We will also write down a formula
for the metric on the cohomology, which makes it into a supercommuta-
tive Frobenius algebra. Both the ring structure and the topological metric
depend only on one of the two TGC-structures available.

Even if H = 0, one can consider the situation when I+ �= I−. This is
possible, for example, when M is hyper-Kähler, and there is a family of
complex structure parametrized by S2 and compatible with a fixed Rie-
mannian metric g. This case was considered in Ref. [10], where the relation
with GC-structures was first noted. In this paper, we extend the results of
Ref. [10] to the case H �= 0. The relation of twisted generalized complex
geometry with N = 2 supersymmetric sigma-models has also been studied
in Refs. [11,12]. This subject may also be relevant to flux compactifications
of superstring theories [4].

The organization of the paper is as follows. In Section 2, we give a brief
review of (2, 2) supersymmetric sigma-models. Our emphasis is on their
relation to generalized complex geometry. In Section 3, we construct the
topological theories by “twisting” (2, 2) supersymmetric sigma-models with
H-flux. In particular, we discuss the relevance of the twisted generalized
Calabi–Yau condition for our construction. The Ramond–Ramond ground
states of the (2, 2) theory are studied in Section 4. The results of this section
are used to prove that the space of topological observables is given by an
associated Lie algebroid cohomology. In Section 5, we discuss the topolo-
gical metric on the space of observables in the topologically twisted theory
and write down a formula for tree-level topological correlators, neglecting
quantum corrections. In Section 6, we discuss possible quantum corrections
due to worldsheet instantons. In Section 7, we discuss the implications
of our results, including a possible generalization of mirror symmetry to
non-Kähler manifolds with H-flux.
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2 The geometry of (2,2) supersymmetric sigma-models

We start by reviewing (2, 2) supersymmetric sigma-models and setting up
the notation. It is well known that the bosonic sigma model in 1 + 1 dimen-
sions with any Riemannian target manifold M admits a (1, 1) supersym-
metric extension. The action of the (1, 1)-extended theory has a superfield
formulation:

S =
1
2

∫
d2σd2θ

(
gab(Φ) + Bab(Φ)

)
D+ΦaD−Φb. (2.1)

Here Φa = φa + θ+ψa
+ + θ−ψa

− + θ−θ+F a are (1, 1) superfields (components
of a supermap from a (1, 1) superworldsheet to the bosonic target M), g is a
Riemannian metric on M , and H = dB is a real closed 3-form on M . Note
that if H defines a non-trivial class in H3(M), then B is only locally well
defined. The super covariant derivatives D± are defined by

D+ =
∂

∂θ+ + iθ+∂+, D− =
∂

∂θ− + iθ−∂−, ∂± ≡ ∂0 ± ∂1.

The action is invariant under the standard supersymmetry generated by

Q+ =
∂

∂θ+ − iθ+∂+, Q− =
∂

∂θ− − iθ−∂−.

When the target manifold M possesses additional structure, the theory
may possess a larger supersymmetry. For example, it is well known that
when (M, g) is Kähler and H = 0, the theory has (2, 2) supersymmetry. A
natural question is whether (2, 2) supersymmetry implies Kähler geometry.
This has been answered in the negative by Gates et al. [2]. It is shown
there that the general form of a second supersymmetry (as opposed to the
standard one generated by Q± above) is

δ̃Φa = (ε̃+Q̃+ + ε̃−Q̃−)Φa = ε̃+I+(Φ)a
bD+Φb + ε̃−I−(Φ)a

bD+Φb,

where the tensors Ia
±b satisfy the following constraints. First, the condition

that the above transformation generates a separate (on-shell) (1, 1) super-
symmetry, which commutes with the standard one, requires I+, I− to be a
pair of integrable almost complex structures on TM . Second, the invariance
of the action (2.1) requires that the metric g be Hermitian with respect to
both I+ and I−, and that the tensors I± are covariantly constant with respect
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to certain affine connections with torsion. More explicitly, one must have

∇(±)
a I±

b
c = ∂aI±

b
c + Γ±

b
adI±

d
c − Γ±

d
acI±

b
d = 0,

with the affine connections defined by

Γ±
a
bc = Γa

bc ± 1
2
gadHdbc.

Here Γa
bc is the Levi–Civita connection:

Γa
bc =

1
2
gad(∂bgdc + ∂cgbd − ∂dgbc).

Note that in general (g, I+) and (g, I−) do not define Kähler structures (i.e.,
the 2-forms ω± = gI± are not closed) due to the presence of torsion in Γ±.

An interesting special case is when [I+, I−] = 0. In this case, one can
simultaneously diagonalize I± and one can decompose TM = ker(I+ − I−) ⊕
ker(I+ + I−). It was shown in [2] that ker(I+ − I−) is integrable to N = 2
chiral superfields whilst ker(I+ + I−) is integrable to twisted chiral super-
fields. Such a manifold is said to admit a product structure defined by
P = I+I−. Locally, it is a product of two Kähler manifolds, but glob-
ally it is not Kähler in general. Another interesting class of examples
is provided by hyper-Kähler manifolds, which admit a family of complex
structures parametrized by x ∈ S2. One may take I+ and I− to be any
two complex structures parametrized by two points x± ∈ S2. We refer to
Refs. [1, 2, 8, 13,15] for more details on these and related issues.

Remarkably, the geometric data required by generic (2, 2) supersymmetry
are equivalent to those which define the so-called twisted generalized Kähler
structure [5]. Here we briefly recall the definitions which are needed later.
Let M be a real manifold of dimension 2n. As already mentioned in the
introduction, the bundle TM ⊕ TM∗ has a natural pseudo-Euclidean scalar
product of signature (2n, 2n) which we will denote q. A twisted generalized
complex structure on M is a section I of End(TM ⊕ TM∗) which preserves
q, satisfies I2 = −1, and such that its i-eigenbundle is closed with respect
to the twisted Courant bracket. A twisted generalized Kähler structure on
M is a pair of commuting twisted generalized complex structures, (J1,J2),
such that G = −qJ1J2 defines a positive-definite metric on TM ⊕ TM∗. It
is shown in Ref. [5] that specifying a twisted generalized Kähler structure is
equivalent to specifying g, H, I+, and I− satisfying the constraints of (2, 2)
supersymmetry. Explicitly, the two commuting twisted generalized complex
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structures can be taken as

J1 =

(
Ĩ −α

δω −Ĩt

)
, J2 =

(
δI −β

ω̃ −δIt

)
(2.2)

with

Ĩ =
I+ + I−

2
, δI =

I+ − I−
2

β =
ω−1

+ + ω−1
−

2
, α =

ω−1
+ − ω−1

−
2

ω̃ =
ω+ + ω−

2
, δω =

ω+ − ω−
2

.

It can be shown that both α and β are (possibly degenerate) Poisson
bivectors [13].

3 Construction of topological theories

3.1 Twisting

In this section, we construct topologically twisted versions of (2, 2)
sigma-models without assuming I+ = I−. In fact, the case H = 0, I+ �= I−
has already been analyzed in [10]. It is shown there that the space of local
observables of the topologically twisted theory can be identified with the
cohomology of a certain Lie algebroid associated to generalized complex
structure. We will analyze the general case.

We follow the approach pioneered in Ref. [20], which dealt with the case
when M is a Kähler manifold, with vanishing H-field, and I+ = I−. If there
is a non-anomalous U(1) R-symmetry satisfying an integrality constraint (for
any state the sum of spin and one-half the R-charge must be integral), then
one may shift the spin of all fields by one-half of their R-charges and obtain
a topological field theory. In the case when the target space is a Kähler
manifold, there are two classical U(1) R-symmetries: the vector R-symmetry
U(1)V and the axial R-symmetry U(1)A. At the quantum level, U(1)V

remains a good symmetry, while U(1)A suffers from an anomaly unless M
satisfies the condition c1(TM) = 0. Twisting by the vector R-symmetry
yields the so-called A-model, while twisting by the axial R-symmetry (if it
is not anomalous) yields the B-model.

It is not difficult to see that the construction in Ref. [20] can be applied
to the more general case at hand. The two complex structures, I±, induce
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two different decompositions of the complexified tangent bundle

TMC 	 T 1,0
+ ⊕ T 0,1

+ 	 T 1,0
− ⊕ T 0,1

− .

Under such decompositions, the fermionic fields ψ± splits accordingly into
the holomorphic and anti-holomorphic components:

ψ+ =
1
2
(1 − iI+)ψ+ +

1
2
(1 + iI+)ψ+,

ψ− =
1
2
(1 − iI−)ψ− +

1
2
(1 + iI−)ψ−.

At the classical level, there are two inequivalent ways to assign U(1)
R-charges to fermions (the bosons having zero charge):

U(1)V : qV

(
1
2
(1 − iI+)ψ+

)
= −1, qV

(
1
2
(1 − iI−)ψ−

)
= −1

U(1)A: qA

(
1
2
(1 − iI+)ψ+

)
= −1, qA

(
1
2
(1 − iI−)ψ−

)
= 1

The topological twisting is achieved by shifting the spin of fermions either by
qV /2 or qA/2. We will call the corresponding topological theories generalized
A and B-models. Note that flipping the sign of I− exchanges them.

So far our analysis has been at the classical level. For the generalized
A and B-models to make sense as quantum field theories, one must require
that the U(1) symmetry used in the twisting be anomaly-free. The anomalies
are easily computed by the Atiyah–Singer index theorem, and the resulting
conditions are

U(1)V : c1(T
1,0
− ) − c1(T

1,0
+ ) = 0

U(1)A: c1(T
1,0
− ) + c1(T

1,0
+ ) = 0 (3.1)

It is possible to express the anomaly conditions in terms of twisted genera-
lized complex structures. Recall that (2, 2) supersymmetry requires M to be
a twisted generalized Kähler manifold, with two commuting twisted gener-
alized complex structures (J1,J2) and positive definite metric G = −qJ1J2
on TM ⊕ TM∗. Let C± be the ±1 eigenbundles of G. The natural projec-
tion from TM ⊕ TM∗ to TM induces bundle isomorphisms π±: C± 	 TM .
The twisted generalized complex structure J1 induces two complex struc-
tures on TM , one from π+: C+ → TM and the other from π−: C− → TM .
These are the two complex structures I± which appeared above. Let E1
and E2 denote the i-eigenbundles of J1 and J2, respectively. Since J1
and J2 commute, one has the further decompositions E1 = E+

1 ⊕ E−
1 and
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E2 = E+
2 ⊕ E−

2 , where the superscripts ± label the eigenvalues ±i of the
other twisted generalized complex structure. It follows that

C± ⊗ C = E±
1 ⊕ (E±

1 )∗ = E±
2 ⊕ (E±

2 )∗.

Now we can rewrite the conditions Equation (3.1) in terms of bundles E1
and E2:

U(1)V : c1(E2) = 0

U(1)A: c1(E1) = 0. (3.2)

It seems natural to call either of these conditions a twisted generalized
Calabi–Yau condition (for J1 and J2, respectively). However, this name is
already reserved for a somewhat stronger condition introduced by Hitchin [6]
and Gualtieri [5]. The Hitchin–Gualtieri condition on J implies the vanish-
ing of c1(E), but the converse is not true in general. Physically, the vanishing
of c1(E) is also not sufficient for the topological twist to make sense. We
will see in Sections 4 and 5 that the topological twist makes sense if and
only if the Hitchin–Gualtieri condition is satisfied.

As already mentioned, flipping the relative sign of I± exchanges the
generalized A and B-models. This is consistent with the anomaly-cancel-
lation condition, since changing the relative sign of I± is equivalent to
exchanging J1 and J2.

3.2 BRST cohomology of operators

Next we describe the BRST operator and BRST-invariant observables. We
shall focus mainly on the generalized B-model, since the A-model can be
obtained from it by flipping the sign of I−. As we just discussed, (M, J1)
must be a twisted generalized Calabi–Yau manifold. After the topological
twist, (1 + iI+)ψ+ and (1 + iI−)ψ− become sections of T 0,1

+ and T 0,1
− , respec-

tively.2 On the other hand, (1 − iI+)ψ+ and (1 − iI−)ψ− become worldsheet
spin-1 fields and they should not appear in the BRST variation of φ. We
obtain two scalar nilpotent operators from the original supersymmetry gen-
erators: QL = (Q+ + iQ̃+)/2 and QR = i(Q− + iQ̃−)/2. The overall factor
of i in the expression of QR is for later convenience. The N = 2 supersym-
metry algebra implies that Q2

L = 0, Q2
R = 0, and {QL, QR} = 0. We take

the BRST operator of the generalized B-model to be QBRST = QL + QR.

2Actually, these are sections of the pullbacks of T 0,1
+ and T 0,1

− . However, we shall slightly
abuse the notation by not spelling out explicitly the word “pullback” in the following.
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To simplify notation, let us define:

χ ≡ 1
2
(1 + iI+)ψ+, λ ≡ i

2
(1 + iI−)ψ−.

The scalar fields transform under QL and QR as follows:

{QL, φa} = χa

{QL, χa} = 0

{QL, λa} = −Γ−
a
bcχ

bλc

{QR, φa} = λa

{QR, λa} = 0

{QR, χa} = −Γ+
a
bcλ

bχc. (3.3)

Local observables of the topological theory must take the following form

Of = fa1···ap;b1···bqχ
a1 · · ·χapλb1 · · ·λbq ,

where f is totally anti-symmetric in a’s as well as in b’s. Recall that χ ∈
Γ(T 0,1

+ ), λ ∈ Γ(T 0,1
− ), so one can regard f as a section of Ω0,p

+ (M) ⊗ Ω0,q
− (M).

Here the subscripts ± remind us with respect to which complex structure
the differential forms are decomposed. Next we must require that Of be
annihilated by the BRST operator QL + QR. To write down the action of
QL on Of , it is convenient to regard f as a (0, p) form for the complex
structure I+, with values in Ω0,q

− (M). A straightforward calculation gives

{QL,Of} = OD̄(+)f
.

Here D̄(+) is a covariantization of the ordinary Dolbeault operator ∂̄

corresponding to I+. The covariantization uses the connection on Ω0,q
− (M)

coming from the connection Γ− on TM . On the other hand, one can regard
f as a (0, q) form for I−, taking values in Ω0,p

+ (M). One gets

{QR,Of} = OD̄(−)f
,

where D̄(−) now stands for a covariantization of Dolbeault operator ∂̄ for I−
using the connection Γ+ on TM .

The space of local observables has a natural bigrading by the left and
right moving R-charges. With respect to it, QL has grade (1, 0), and QR
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has grade (0, 1). The local observables fit into the following bicomplex:

...
...

...

· · · �� Op−1,q+1 ��

��

Op,q+1 ��

QR

��

Op+1,q+1 ��

��

. . .

· · · QL �� Op−1,q
QL ��

��

Op,q
QL ��

QR

��

Op+1,q
QL ��

��

. . .

· · · �� Op−1,q−1 ��

��

Op,q−1 ��

QR

��

Op+1,q−1 ��

��

. . .

...

��

...

QR

��

...

��

The total cohomology of this bicomplex is the space of “physical” observables
in our topological theory. As usual, this means that there are two spectral
sequences which converge to the BRST cohomology H∗

QBRST
. In practice,

the computation is usually quite involved, unless the spectral sequences
degenerate at a very early stage.

3.3 Relation with twisted generalized complex structures

In the special case H = 0, it has been argued in [10] that the BRST complex
coincides with the cohomology of the Lie algebroid E1 associated with the
generalized complex structure J1. We will show that the statement is true
for arbitrary H.

First let us recall the necessary definitions. A Lie algebroid, by definition,
is a real vector bundle E over a manifold M equipped with two structures: a
Lie bracket [·, ·] on the space of smooth sections of E, and a bundle morphism
a: E → TM , called the anchor map. These data satisfy two compatibility
conditions:

(i) a([s1, s2]) = [a(s1), a(s2)] ∀s1, s2 ∈ Γ(E), i.e., a is a homomorphism of
Lie algebras.

(ii) [f · s1, s2] = f · [s1, s2] − a(s2)(f) · s1, ∀f ∈ C∞(M),∀s1, s2 ∈ Γ(E).

If we take E = TM , a = id, and the bracket to be the ordinary commutator
of vector fields, then both conditions are obviously satisfied. Thus a Lie
algebroid over M should be thought of as a “generalized tangent bundle.”
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A complex Lie algebroid is defined similarly, except that E is a complex
vector bundle, and TM is replaced with its complexification TMC.

There is an alternative, and perhaps more intuitive, way to think about
Lie algebroids. For any vector bundle E, we may consider a graded super-
manifold ΠE, i.e., the total space of the bundle E with the fiber directions
regarded as odd and having degree 1. It turns out that there is a one-to-one
correspondence between Lie-algebroid structures on E and degree 1 odd vec-
tor fields Q on ΠE satisfying {Q, Q} = 2Q2 = 0 [18]. The correspondence
goes as follows. Let (xb, ξμ) be local coordinates on ΠE, where xb are local
coordinates on M , and ξμ are linear coordinates on the fiber. Any degree 1
odd vector field on ΠE has the form

Q = ab
μξμ ∂

∂xb
+ cμ

νρξ
νξρ ∂

∂ξμ
,

where ab
μ and cμ

νρ are locally defined functions on M . Let eμ be the basis of
sections of E dual to the coordinates ξμ. Define a map a: E → TM by

a(eμ) = ab
μ

∂

∂xb

and a bracket by

[eν , eρ] = cμ
νρeμ.

One can show that these data define on E the structure of a Lie algebroid
if and only if Q2 = 0.

Identifying functions on ΠE with sections of the graded bundle Λ•E∗, we
may regard Q as a differential on the space of sections of this bundle. We will
call the resulting complex the canonical complex of the Lie algebroid, and
its cohomology will be called the Lie algebroid cohomology. Let us take, for
example, E = TM , with a the identity map, and the standard Lie bracket.
Then the canonical complex is the complex of differential forms on M , with
Q being the usual de Rham differential and the Lie algebroid cohomology is
simply the de Rham cohomology of M .

To every twisted generalized complex manifold (M, H, J ), one can
associate a complex Lie algebroid by letting E be the eigenbundle of J
with eigenvalue −i. The bracket on E is induced by the Courant bracket
on TM ⊕ TM∗, and the anchor map is the projection to TMC. The associ-
ated complex controls the deformations of the twisted generalized complex
structure on M (with H fixed). We claim that the BRST complex discussed
above is isomorphic to the Lie algebroid complex associated to the twisted
generalized complex manifold (M, H, J = J1).
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To see the relation between the two complexes, let us define new fermionic
coordinates:

ψa =
1√
2
(ψa

+ + iψa
−), ρa =

1√
2
gab(ψb

+ − iψb
−). (3.4)

One may regard ψ and ρ as fermion fields taking values in the pullback of
TMC and TM∗

C
, respectively. Their anticommutation relations are

{ψa, ψb} = {ρa, ρb} = 0, {ψa(σ), ρb(σ′)} = δa
b δ(σ − σ′). (3.5)

It is convenient to introduce a fermion field

Ψ =
(

ψ

ρ

)

taking values in TMC ⊕ TM∗
C
. In terms of Ψ, the anticommutation relations

read
{Ψ(σ)α, Ψ(σ′)β} =

(
q−1)αβ

δ(σ − σ′),

where q is the canonical scalar product on TMC ⊕ TM∗
C

which plays such a
fundamental role in generalized complex geometry.

It is easy to check that(
χ + λ

g(χ − λ)

)
= (1 + iJ1)Ψ.

Therefore any function of the bosonic coordinates φi and fermionic scalars
χ, λ can be rewritten as a function on ΠE, where E is the eigenbundle
of J1 with eigenvalue −i. Thus the graded vector spaces underlying the
two complexes are naturally isomorphic. It remains to show that the BRST
differential QBRST coincides with the Lie algebroid differential Q. One could
check this by a direct computation, but there is a more efficient route to
this goal, with the added advantage of making the isomorphism of the two
complexes more obvious. To explain this indirect proof, we must first discuss
ground states in the Ramond–Ramond sector.

4 Ramond–Ramond ground states

4.1 Cohomology of states and differential forms

So far we have been discussing the BRST cohomology of operators in the
twisted theory. One may also consider the BRST cohomology of states. In
a topological field theory, there is a state-operator isomorphism, so the two
cohomologies are identical. In the physical (untwisted) SCFT, the cohomo-
logy of operators is reinterpreted as the chiral ring, while the cohomology
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of states is reinterpreted as the space of zero-energy states in the Ramond–
Ramond sector. The isomorphism between these two spaces is given by the
spectral flow.

In this section, we compute the space of ground states in the RR sector
from scratch. There are several reasons to do this. First, it may be inter-
esting to consider N = 2 sigma-models with H-flux when the U(1)A charge
is anomalous, i.e., the condition Equation (3.1) is not fulfilled, or more gen-
erally, when the twisted generalized Calabi–Yau condition is not fulfilled.
Such theories cannot be topologically twisted, but both the chiral ring and
the space of RR ground states are perfectly well defined and in general non-
isomorphic. In the Kähler case (H = 0), this is a familiar situation: the
chiral ring is given by H•(Λ•TX), while the space of RR ground states is
H•(Ω•

X). Only in the Calabi–Yau case are the two spaces naturally isomor-
phic. Second, if we use the point-particle approximation and replace the 2d
sigma-model with supersymmetric quantum mechanics (this approximation
can be shown to be exact as far as RR ground states are concerned), then
the Hilbert space of the theory can be naturally identified with the space
of differential forms on X (of all degrees). The supercharge becomes a dif-
ferential operator on forms, and can be easily computed. We will see that
this operator is exactly the differential associated to the twisted generalized
complex structure J1 in Ref. [5]. From this, one can infer without any com-
putations that the chiral ring coincides with the Lie algebroid cohomology
associated to J1. This is the result claimed in the end of the previous sec-
tion, except that we do not need to assume the existence of the topological
twist.

Let us start by writing down the Noether charges associated with Q+ and
Q− in the point-particle approximation:3

Q+ = ψa
+gabφ̇

b − i

6
Habcψ

a
+ψb

+ψc
+

Q− = ψa
−gabφ̇

b +
i

6
Habcψ

a
−ψb

−ψc
−. (4.1)

Let Q= Q+ + iQ− and Q∗ = Q+ − iQ−. The supersymmetry algebra implies
that

Q2 = Q∗2 = 0, {Q, Q∗} = 4H
where H is the Hamiltonian of the supersymmetric quantum mechanics:

H =
1
2
gabφ̇

aφ̇b − 1
4
R

(+)
abcdψ

a
+ψb

+ψc
−ψd

−.

By the standard Hodge–de Rham argument, the supersymmetric ground
states are in one-to-one correspondence with the elements of Q-cohomology.

3We use the same symbols for the generators and their associated charges.
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The charge Q can be thought of as an operator on differential forms via
canonical quantization. The classical phase space of the supersymmetric
quantum mechanical system is TM ⊕ Π(TM⊕ TM), where Π(TM⊕ TM) is
the parity reversal of TM⊕ TM . The two “fermionic” copies of TM come
from ψ+ and ψ−. The symplectic form on TM is the standard one, while
the symplectic form in the odd directions (which is actually symmetric) is
given by the Riemannian metric g:

{ψa
±, ψb

±}P.B. = −igab, {ψa
±, ψb

∓}P.B. = 0.

Canonical quantization identifies the Hilbert space with L2(S), the space
of square-integrable sections of the spin bundle S = S(TM⊕ TM). In the
case at hand, TM ⊕ TM has a natural complex polarization, using which
the spin bundle S can be identified with ∧•(TM∗). In other words, instead
of ψ±, we use the coordinates ψ and ρ, which can be quantized by letting
ψa be a wedge product with dxa, and letting ρb be a contraction with the
vector field ∂

∂xb .

Now we discuss how N = 1 supercharges Q and Q∗ act on the Hilbert
space. Let us first consider the case H = 0. Following the standard quan-
tization procedure, one can easily show that Q = −i

√
2ψa∇a, with ∇ being

the covariant derivative on the sections of the spin bundle S(TM ⊕ TM) that
is induced from the Levi–Civita connection on TM , and with ψa acting as a
Clifford multiplication. Under the isomorphism S(TM⊕ TM) 	 ∧•(TM∗),
Q is identified with the de Rham differential d, up to a factor −i

√
2. This

is the familiar statement that the space of ground states in an N = 1 super-
symmetric quantum mechanics is isomorphic to the de Rham cohomology
of the target space. Now let us consider the case H �= 0. Using (3.4) and
(4.1) one can show that

Q = −
√

2iψa∇a +
√

2i

6
Habcψ

aψbψc

Q∗ = −
√

2igabρb∇a +
√

2i

6
Habcρaρbρc

Up to a numerical factor −
√

2i, Q is identified with a twisted de Rham
operator

dH = d − H∧

while Q∗ is identified with its adjoint. Therefore the supersymmetric ground
states are in one-to-one correspondence with the dH -cohomology. This state-
ment is also well known [17].
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It remains to identify the BRST operator, QBRST, in this context. The
R-current is given by

J = − i

2
(ω+(ψ+, ψ+) + ω−(ψ−, ψ−)),

under which (1 + iI+)ψ+ and (1 + iI−)ψ− have charge +1 by canonical
anticommutation relations. For our purpose, it will be more convenient
to express J in terms of the fermions ψ, ρ:

J = − i

2
(δω(ψ, ψ) − α(ρ, ρ) − 2〈Ĩψ, ρ〉).

As discussed above, quantization amounts to substitutions:

ψa ←→ dxa∧, ρa ←→ ι∂/∂xa ≡ ιa.

Then the R-current is identified with the following operator on differential
forms:

J = −i(δω ∧ −ια − ιĨ)

where ια is the contraction with the Poisson bivector α, and ιĨ is defined in
a local coordinate basis as

ιĨ = Ĩa
b(dxb∧) ◦ ιa.

Note that δω, α, and Ĩ can be read off J1 (Equation (2.2)), and therefore
the operator J depends only on the TGC-structure J1.

The BRST operator is given by

QBRST =
1
2
(Q + [J, Q]).

Since Q = dH , it is clear that QBRST depends only on the 3-form H and the
twisted generalized complex structure J1. In the following two subsections,
we will relate QBRST to a differential operator on forms defined in Ref. [5]
as well as to the canonical complex of the Lie algebroid E.

4.2 Differential forms on a twisted generalized complex manifold

To proceed further, we need to discuss some properties of differential forms
on a twisted generalized complex manifold. Recall that on an ordinary com-
plex manifold, the space of differential forms is graded by a pair of integers,
the first integer being the ordinary degree of a form, and the second integer
being the difference between the number of holomorphic and antiholomor-
phic indices. If we think of a form as a function on a supermanifold ΠTM ,
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then the first integer is the eigenvalue of a differential operator

deg = θa ∂

∂θa
,

while the second integer is the eigenvalue of

−i · ιI = −iIa
bθ

b ∂

∂θa
,

where Ia
b is the complex structure tensor. The existence of the second grad-

ing allows us to decompose the de Rham differential d into a holomor-
phic exterior differential ∂ and its antiholomorphic twin ∂̄. Now, following
Gualtieri [5], we will define analogs of −i · ιI , ∂, and ∂̄ for twisted generalized
complex manifolds.

Recall that TM ⊕ TM∗ acts on Ω•(M) via the spinor representation. Con-
sider the subbundle E of TMC ⊕ TM∗

C
defined as the eigenbundle of the

TGC-structure J with eigenvalue −i, and its complex-conjugate Ē. Since
E is isotropic with respect to the form q, one may regard elements of E
as annihilation operators, and elements of Ē as creation operators, which
act on the fermionic Fock space Ω•(M). In other words, the complex struc-
ture J on the vector bundle TM ⊕ TM∗ allows one to identify the Clifford
algebra generated by TMC ⊕ TM∗

C
with the fermionic creation–annihilation

algebra generated by E ⊕ Ē. In each fiber of Ω•(M), we thus have a vac-
uum vector, defined up to a factor by the condition that E annihilates it.
These vacuum vectors fit into a complex line bundle U0 over M , which is
obviously a subbundle of Ω•(M). We will call it the canonical line bundle of
the TGC-manifold (M, J ). If J arises from an ordinary complex structure
on M , then U0 is the bundle of top-degree holomorphic forms on the corre-
sponding complex manifold. In general, U0 does not have a definite degree
(i.e., its sections are inhomogeneous forms).

More generally, we can decompose Ω•(M) into a direct sum

U0 ⊕ U1 ⊕ · · · ⊕ U2n

where U0 is the canonical line bundle for the TGC structure J , and
Uk = ∧kĒ · U0. Fiberwise, this is simply a decomposition of the fermionic
Fock space into subspaces with a definite fermion number. Thus we obtained
a grading of the space of differential forms Ω•(M) by a non-negative integer
k. In the case when J arises from an ordinary complex structure I, this
grading reduces to i · ιI + n, where n is the complex dimension of M .

The analogue of the de Rham operator d is the “twisted” de Rham oper-
ator operator dH = d − H. The analogs of the Dolbeault operators ∂ and ∂̄
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are defined as follows:

∂̄H = πk+1 ◦ dH : Γ(Uk) −→ Γ(Uk+1)

∂H = πk−1 ◦ dH : Γ(Uk) −→ Γ(Uk−1).

Note that all these constructions make sense even when J fails to be
integrable with respect to the twisted Courant bracket. It turns out that
J is integrable with respect to the twisted Courant bracket if and only if
dH = ∂H + ∂̄H . This was proved in Ref. [5] in the case H = 0, but one can
easily modify the argument so that it applies in general. For the sake of
completeness, we provide a proof in the appendix. Similarly, the Dolbeault
operators can be defined for almost complex manifolds, but the identity
d = ∂ + ∂̄ holds if and only if the almost complex structure is integrable.

The twisted generalized Calabi–Yau condition that we mentioned above
can be formulated in terms of the canonical line bundle U0 [5,6]. Namely, a
TGC-manifold is called a TG-Calabi–Yau manifold if there exists a nowhere
vanishing section Ω of U0 which is dH -closed. In view of the definition of
U0, this is the same as requiring

∂̄HΩ = 0.

The topological part of the TG-Calabi–Yau condition (i.e., topological trivia-
lity of the line bundle U0) is equivalent to c1(E) = 0. We have seen above
that this condition ensures that the R-current necessary for twisting is non-
anomalous. The second part (the existence of a “twisted-holomorphic” sec-
tion Ω) is also quite important from the physical viewpoint: we will see that
it ensures the absence of BRST anomaly.

It is interesting to ask if the second part of the TG-Calabi–Yau condition
follows from the first one. The answer turns out to be negative, and this can
be seen already for ordinary Calabi–Yau manifolds.4 Namely, if c1(M) = 0
and M is not simply connected, it may happen that the canonical line bundle
is not trivial as a holomorphic line bundle (even though it is trivial topolo-
gically). In this case, there are no nowhere-vanishing holomorphic sections
of the canonical line bundle.

4.3 Cohomology of states and twisted generalized complex
structures

We are going to show that the BRST-cohomology of states is isomorphic to
the cohomology of ∂̄H on differential forms on the TGC-manifold (M, J1).

4We are grateful to Misha Verbitsky for explaining this to us.
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As a preliminary step, let us obtain a convenient explicit formula for the
grading operator on Ω•(M), defined in the previous subsection, in terms of
the twisted generalized complex structure J1. Let A = X + ξ ∈ Γ(TMC ⊕
TM∗

C
). It can be regarded as an endomorphism of ∧•TM∗

C
:

A · ρ = ιXρ + ξ ∧ ρ. (4.2)

On the other hand, J1 is an endomorphism of TMC ⊕ TM∗
C

with eigenvalues
i and −i. By definition, the grading operator R(J1) must satisfy

[R(J1), A] = −iJ1A, ∀A ∈ Γ(TMC ⊕ TM∗
C).

Obviously, this condition determines R(J1) up to a constant. Using the expl-
icit matrix form (2.2) of J1 , one gets

J1A · ρ = ιĨX + ια(ξ) − ιXδω ∧ −Ĩt(ξ) ∧ .

Then it is easy to check that the following is a solution to the above equation:

R(J1) = −i(δω ∧ −ια − ιĨ).

The general solution may differ from this only by a constant.

From the result of the last section, one immediately sees that under the
identification of Q ↔ dH and the identification of the Hilbert space as the
space of differential forms, the R-current generator J is identified as

J ←→ R(J1) + const.

The BRST operator QBRST then becomes

QBRST =
1
2
(
Q + [J, Q]

)

=
1
2
(
dH + [R(J1), dH ]

)
= ∂̄H

This is the desired result.

Now we can show that the BRST-cohomology of operators is isomorphic
to the Lie algebroid cohomology of E. Recall that the ∂̄H complex is a
differential graded module over the Lie algebroid complex (Λ•Ē, dL), i.e.,
the following identity holds for any section s of Λ•Ē and any differential
form ρ:

∂̄H(s · ρ) = (dLs) · ρ + (−1)|s|s · ∂̄Hρ.

This identity is proved in Ref. [5] for the case H = 0, but the proof is valid
more generally. Since we identified the space of sections of (Λ•Ē, dL) with
the space of operators, the space of forms with the Hilbert space of the
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SUSY quantum mechanics, and ∂̄H with the representation of the BRST
charge on the Hilbert space, it follows that

[QBRST, s] = dLs.

This implies that the cohomology of dL is isomorphic to the BRST coho-
mology of operators, as claimed.

5 Topological correlators and the Frobenius structure

For any N = 2 d = 2 field theory, we may consider the chiral ring, as well as
the cohomology of the supercharge QL + QR on the states in the Ramond
sector. The latter is a module over the former. The two spaces are not
isomorphic in general. But if the theory admits a topological B-twist, the two
spaces are always isomorphic, by virtue of the state-operator correspondence
in a topological field theory. More precisely, the space of states of a 2d TFT
is an algebra with a nondegenerate scalar product (·, ·) such that

(a, bc) = (ab, c).

Such algebras are called Frobenius. All topological correlators can be expre-
ssed in terms of the Frobenius structure on the space of states. For example,
genus zero correlators are given by

〈a1 · · · an〉g=0 = (a1, a2, . . . , an).

Consider now an N = 2 sigma-model for which condition (2.1) is satisfied,
and the U(1)A R-charge is non-anomalous. One expects that the theory
admits a topological B-twist, and therefore the chiral ring, which is known to
be isomorphic to the Lie algebroid cohomology of E1, is a supercommutative
Frobenius algebra. In fact, we will see that in order for a BRST-invariant
measure in the path-integral to exist, the target manifold must be a TG-
Calabi–Yau manifold, which is stronger than Equation (2.1).

Note that the Frobenius scalar product (·, ·) can be recovered from the
“trace” function:

Tr(a) = (1, a)

by letting (a, b) = Tr(ab). The name “trace” is used because Tr vanishes
on commutators (in the graded case, on graded commutators). Let Ω
be a ∂̄H -closed differential form which sits in the component U0. For a
twisted generalized Calabi–Yau such a form exists and is unique up to a
constant factor. Note that Ω is also dH -closed. Consider now a bundle
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automorphism p : TM ⊕ TM∗ which looks as follows:

p : (v, ξ) �−→ (v,−ξ), ∀v ∈ Γ(TM), ∀ξ ∈ Γ(TM∗).

This automorphism takes the form q to −q and maps the Courant bracket
twisted by H to the Courant bracket twisted by −H. It follows from
this that for any twisted generalized complex structure J the bundle map
J ′ = p−1J p is also a twisted generalized complex structure, for the opposite
H-field H ′ = −H. Moreover, it is easy to see that (M, −H, J ′) is a twisted
generalized Calabi–Yau if and only if (M, H, J ) is one. (From the physical
viewpoint, p corresponds to worldsheet parity transformation, and the above
facts are obvious.) In particular, we have a decomposition

∧•TM∗ ⊗ C = U ′
0 ⊕ U ′

1 ⊕ · · · ⊕ U ′
2n

Let Ω′ be the ∂̄H′-closed differential form which sits in the component U ′
0.

We claim that the trace function on the Lie algebroid cohomology is given by

Tr(α) ∼
∫

M
Ω′ ∧ α · Ω,

where α is a dL-closed section of Λ•(E∗
1).

To derive this formula, we recall that the Frobenius trace is computed
by the path-integral on a Riemann sphere with an insertion of the operator
corresponding to α. Since we are dealing with a topological theory, we
must also turn on a U(1) gauge field coupled to the R-current participating
in the twisting. This gauge field must be equal to the spin connection,
which means that the total flux through the sphere is 2π. Let us stretch
the sphere into a long and thin cigar, so that the insertion point of α is
somewhere in the middle portion. The value of the path-integral does not
change, of course, but it may now be evaluated more easily by reducing the
computation to the supersymmetric quantum mechanics. The path-integral
on each hemisphere gives a state in the Ramond–Ramond sector, which
may be approximated in the point-particle limit by a function of the zero-
modes. Bosonic zero-modes are simply coordinates on M , while fermionic
zero-modes are ψi, taking values in TMC. Thus the Ramond–Ramond state
is represented by a function on ΠTMC, i.e., by a (complex-valued) differential
form. We have described above how α acts on differential forms.

It remains to identify the particular RR states arising from performing the
path-integral over each hemisphere, and then integrate over the zero-modes.
Since we are not inserting any operators on the hemispheres, the RR ground
state in question is the spectral flow of the unique vacuum state in the
NS sector, and therefore in the point-particle approximation is represented
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by the form Ω defined above.5 However, there is a subtlety related to
the choice of orientation. This subtlety arises because our identification
of RR states with differential forms depends on orientation: exchanging
left-moving and right-moving fermions is equivalent to performing a Hodge
duality on forms. In the physical language, Hodge duality is simply the
Fourier transform of fermionic zero-modes. If we induce the orientations
of both hemispheres from a global orientation of the Riemann sphere, then
the wave-function coming from one hemisphere will be given by a function of
the fermionic zero-modes ψi, while the wave-function from the other hemi-
sphere will be a function of the Fourier-dual zero-modes. In order to evaluate
the path-integral one first has to Fourier transform the second state, and
only then multiply the wave functions and integrate over the zero-modes.
Alternatively, we can choose the opposite orientation for the second hemi-
sphere, so that there is no need for Fourier transform. This also requires
flipping the sign of H, since the worldsheet theory is not parity-invariant.
We conclude that the wave function from the second hemisphere is given by
Ω′, and the path-integral in question is given by

Tr(α) ∼
∫

M
Ω′ ∧ α · Ω.

Let us check that this formula is BRST-invariant, i.e., that it vanishes if
α = dLβ for some β. Indeed, we have

Tr(dLβ) =
∫

M
Ω′ ∧ ∂̄H(β · Ω) =

∫
M

Ω′ ∧ (dH + [R(J1), dH ])(β · Ω).

Next we have to use the following two identities valid for any two forms γ, η:∫
M

γ ∧ dHη = −(−1)|γ|
∫

M
(dH′γ) ∧ η (5.1)

∫
M

γ ∧ R(J1)η = −
∫

M
(R(J ′

1)γ) ∧ η, (5.2)

where H ′ = −H and J ′ = p−1J p. Then we get

Tr(dLβ) = −(−1)|Ω′|
∫

M
((dH′ + [R(J ′

1), dH′ ])Ω′) ∧ β · Ω

= −(−1)|Ω′|
∫

M
∂̄H′Ω′ ∧ β · Ω = 0. (5.3)

5If a dH -closed section of the line bundle U0 does not exist, then supersymmetry is
spontaneously broken, i.e., there are no RR states with zero energy. From the point of
view of the topological theory, this means that the measure in the path-integral fails to
be BRST invariant, i.e., there is a BRST anomaly.
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Let us also check that this formula reduces to the known expressions in
the case of the ordinary A and B-models with H = 0 and I+ = I−. For
the ordinary B-model, J ′

1 = J1, Ω′ = Ω, and the form Ω is simply the top
holomorphic form on M . It is obvious that our formula for the trace function
reduces to the standard formula for the B-model [20]. For the A-model, the
situation is more interesting. The relevant generalized complex structure is
J2, and we have J ′

2 = −J2. The forms Ω and Ω′ are given by

Ω = eiω, Ω′ = e−iω.

The complex Lie algebroid for the A-model is isomorphic to TMC, thus the
Lie algebroid cohomology is isomorphic to the complex de Rham cohomol-
ogy. The usual formula for the Frobenius trace on H•(M) is

Tr(β) =
∫

M
β, β ∈ Ω•(M), dβ = 0.

This does not seem to agree with our formula. But one should keep in
mind that the identification between the Lie algebroid cohomology and de
Rham cohomology is non-trivial, and as a result, although the bundle Λ•E∗

2
is isomorphic to Ω•(M), the action of Ω•(M) on itself coming from the
action of Λ•E∗

2 on Ω•(M) is not given by the wedge product. To describe
this action, let us identify the space of sections of Ω•(M) with the graded
supermanifold ΠTM . Let α ∈ Ωk(M) be given by

α =
1
k!

αa1···ak
dxa1 ∧ · · · ∧ dxak .

The action we are after is obtained by associating to α the following
differential operator on ΠTM :

1
k!

αa1···ak
Da1 · · ·Dak ,

where

Da = θa + i(ω−1)ab ∂

∂θb
.

The operators Da anticommute, so this is well defined. On the other hand,
in the usual description of the A-model, the action of Ω•(M) on itself is
given by the ordinary wedge product (plus quantum corrections, which we
neglect in this paper).

The difference between our description of the A-model and the usual one
is due to a different identification of the fermionic fields with operators on
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forms. While we identified ψa with “creation” operators dxa and ρa with
“annihilation” operators, the usual identification is different:

ψī
+ �−→ dxī, ψi

− �−→ dxi, gījψ
j
+ �−→ ι ∂

∂xī
, gjīψ

ī
+ �−→ ι ∂

∂xj
.

This choice is related to ours by a Bogolyubov transformation. In the usual
description, the vacuum state with the lowest R-charge JL − JR is given by
the constant 0-form on M . It is easy to see that the Bogolyubov transforma-
tion maps it to the inhomogeneous form eiω. The same transformation also
maps the ordinary degree of a differential form to the nonstandard grad-
ing on Ω•(M) defined in Ref. [5] and explained above. Thus our formula
agrees with the standard one after a Bogolyubov transformation (and if one
neglects quantum corrections).

6 Towards the twisted generalized quantum cohomology ring

So far we have only discussed the classical ring structure on the space of
topological observables. In general, the actual ring structure is deformed by
quantum effects. A well-known example is the ordinary A-model, whose ring
of BRST-invariant observables (the quantum cohomology ring) is a defor-
mation of the de Rham cohomology ring H•(M, C) induced by worldsheet
instantons. In this section, we carry out the analysis for generic twisted topo-
logical sigma-model with H-flux and identify worldsheet instantons which
can contribute to the deformation of the ring structure. This section is
essentially an extension of the analysis of Section 8.2 of Ref. [10] to the case
H �= 0.

As is well known, the path integral of a (cohomological) TFT can be
localized around the QBRST invariant field configurations [20]. For our gen-
eralized B-model, the BRST variations of some of the fields are already given
in Equation (3.4). We will also need the following BRST transformations
for (1 − iI±)ψ±:

{
QBRST,

1
2
(1 − iI+)ψ+

}
=

i

2
(1 − iI+)∂+φ + · · ·

{
QBRST,

1
2
(1 − iI−)ψ−

}
= −1

2
(1 − iI+)∂−φ + · · ·

where the dots involve fermion bilinear terms. The BRST invariant config-
urations are given by setting the fermionic fields ψ± to zero and demanding

1
2
(1 − iI+)∂+φ = 0,

1
2
(1 − iI−)∂−φ = 0.
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In terms of the generalized complex structure, the above equation is
equivalent to

1
2
(1 − iJ1)

(
∂1φ

g∂0φ

)
= 0. (6.1)

This is the same instanton equation as obtained in Ref. [10] in the case of
H = 0, and the results of [10] carry over to our case. For reader’s conve-
nience, we summarize them below.

To find Euclidean instantons, we Wick-rotate ∂0 →
√

−1∂2 as in Ref. [10].
Equation (6.1) then leads to the following equations

ω̃∂1φ = 0, ∂1φ = −δI∂2φ

ω̃∂2φ = 0, ∂2φ = δI∂1φ.
(6.2)

It is not difficult to see that the solutions to Equations (6.2) are “twisted
generalized holomorphic maps” with respect to J2. The precise meaning of
this is as follows. The differential dφ composed with the natural embedding
j : TM → TM ⊕ TM∗ defines a map

j ◦ dφ: TΣ −→ TM ⊕ TM∗.

Equation (6.2) then says that j ◦ dφ intertwines the TGC structure J2 and
the complex structure on the worldsheet IΣ. That is,

J2(j ◦ dφ) = (j ◦ dφ)IΣ

Solutions of this equation generalize both the holomorphic maps of the
ordinary A-model and the constant maps of the ordinary B-model.

On general grounds, the ring structure of topological observables may
admit non-trivial quantum corrections coming from these worldsheet instan-
tons. We will not try to describe these corrections more precisely here. But
note that for a generic TGC-structure J2 the TG-holomorphic instanton
equation is much more restrictive than the ordinary holomorphic instanton
equation. Indeed, it requires the image of TΣ under dφ to lie in the kernel of
the map ω̃. For a generic J2 and at a generic point of M , the 2-form ω̃ is non-
degenerate, and so this condition does not allow non-constant instantons.
In other words, all non-trivial instantons must be contained in the subva-
riety, where ω̃ is degenerate. The extreme cases are the ordinary B-model,
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where ω̃ is a symplectic form and there are no nontrivial instantons, and the
ordinary A-model, where ω̃ vanishes identically.

7 Discussion

In this paper, we have studied the topological sector of (2, 2) sigma-models
with H-flux. We found that the results are very conveniently formulated
in terms of twisted generalized complex structures. For example, the chiral
ring is isomorphic (on the classical level) to the cohomology of a certain
Lie algebroid which controls the deformation theory of a twisted generalized
complex structure. On the quantum level, the two rings are isomorphic as
vector spaces, but the ring structures may be different due to worldsheet
instantons. It would be interesting to further study these quantum correc-
tions. In particular, we expect that the quantum ring structure depends only
on one of the two twisted generalized complex structures present. (This is
the analog of the statement that the quantum cohomology ring is indepen-
dent of the choice of the complex structure [20].) To prove this, one has to
show that varying the TGC-structure J2 changes the action of the sigma-
model by BRST-exact terms.

It is expected on general grounds that the moduli space of N = 2 SCFTs
is a product of two spaces, corresponding to deformations by elements of
the (c,c) and (a,c) rings. It follows from our work that for N = 2 sigma-
models with H-flux these two moduli spaces are identified with the moduli
spaces of two independent twisted generalized complex structures J1 and J2.
From the mathematical viewpoint, this means that the deformation theory
of twisted generalized Calabi–Yau manifolds is unobstructed. It would be
very interesting to prove this rigorously.

Recall that the well-known Kähler identities

∂∂∗ + ∂∗∂ = ∂̄∂̄∗ + ∂̄∗∂̄ =
1
2
(dd∗ + d∗d)

are interpreted physically as N = 2 supersymmetry relations. It follows
from the results of this paper that for twisted generalized Kähler manifolds
analogous relations hold true:

∂H∂∗
H + ∂∗

H∂H = ∂̄H ∂̄∗
H + ∂̄∗

H ∂̄H =
1
2
(dHd∗

H + d∗
HdH).

It should be clear that all the notions pertaining to ordinary N = 2 sigma-
models make sense when one allows for the possibility of H-flux. For exam-
ple, a pair of twisted generalized Calabi–Yau manifolds M and M ′ are called
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mirror if the generalized A-model of M is isomorphic to the generalized
B-model of M ′, and vice versa. In mathematical terms, this means that the
Frobenius manifold corresponding to deformations of the twisted general-
ized complex structure J1 on M is isomorphic to the Frobenius manifold
corresponding to deformations of J2 on M ′, and vice versa. Further, it is
possible to define the categories of generalized A and B-branes, and one
expects that mirror symmetry exchanges them. The geometry of general-
ized A and B-branes deserved further study; initial steps in this direction
have been made in Refs. [10, 21].

It would be very interesting to find examples of mirror pairs of twisted
generalized Calabi–Yau manifolds. There is a slight problem here though:
we do not expect any compact examples of twisted generalized Calabi–Yau
manifolds with H �= 0 to exist. If such an example existed, it would give
rise to a superconformal N = 2 sigma-model with integral central charge. By
rescaling the metric and the H-field (so that the volume of the manifold is
large), we would get a metric and an H-field on M which satisfy supergravity
equations of motion. But there are well-known theorems that force all such
smooth supergravity solutions to have zero H-field [3, 9, 14].

Note in this connection that the simplest non-trivial example of a TG
Kähler manifold M = S3 × S1 [5] is not a TG-Calabi–Yau manifold. Even
though the topological condition c1(E) = 0 is trivially satisfied (M has no
cohomology in degree 2), the line bundle U0 does not have a section which
is dH -closed.6

Thus to study mirror symmetry for twisted generalized Kähler manifolds,
we either have to work with non-compact manifolds or drop the Calabi–Yau
condition. Both possibilities are interesting. What we are lacking at present
is a generalization of the Kähler quotient (or toric geometry) construction.
This would provide us with a large supply of TG Kähler manifolds and
perhaps would also enable us to find their mirrors (cf. [7]). We plan to
return to this subject in the future.
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Appendix A

A twisted generalized almost complex structure is defined just like a twisted
generalized complex structure, except that the last condition (integrability
of E = ker(J + i) with respect to the Dorfman bracket) is dropped. Given
a TG almost complex structure J on (M, H), one can define operators ∂H

and ∂̄H on differential forms on M (see Section 4.2). In this appendix, we
prove the following integrability criterion for J .

Theorem A.1. The twisted generalized almost complex structure J is inte-
grable if and only if dH = ∂H + ∂̄H .

We shall outline a proof of the theorem following Gualtieri, who proved it
in the special case H = 0 [5]. Let ρ be an arbitrary differential form, and let
A = X + ξ, B = Y + η be arbitrary sections of E. It is straightforward to
show (using Equation (4.2) and the Cartan identities LX = ιX ◦ d + d ◦ ιX ,
ι[X,Y ] = [LX , ιY ]) that

A · B · dρ = d(BAρ) + B · d(Aρ) − A · d(Bρ) + [A, B]ρ (A.1)

A · B · (H ∧ ρ) = −ιY ιXH ∧ ρ + ιY H ∧ (Aρ)

− ιXH ∧ (Bρ) + H ∧ (ABρ) (A.2)

Subtracting (A.2) from (A.1), one obtains

A · B · dHρ = dH(BAρ) + B · dH(Aρ) − A · dH(Bρ) + [A, B]H · ρ. (A.3)

The rest of the proof now follows exactly as in Ref. [5]. First let us assume
that J is integrable. For ρ ∈ Γ(U0), (A.3) reduces to AB · dHρ = [A, B]H ·
ρ = 0. Since dHρ has no component in U0, it follows that d(Γ(U0)) ⊂ Γ(U1)
and thus dH = ∂H + ∂̄H holds for ρ ∈ Γ(U0). Now assume dH = ∂H + ∂̄H

holds for all Uk, 0 ≤ k < i, and let ρ ∈ Γ(Ui) and A, B ∈ Γ(E) as before.
Equation (A.3) now shows that AB · dHρ ∈ Γ(Ui−3 ⊕ Ui−1), which in turn
implies dHρ ∈ Γ(Ui−1 ⊕ Ui+1). By induction, one concludes that dH = ∂H +
∂̄H on ∧•TM∗ ⊗ C. The converse is also true by similar argument.
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