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Abstract

The purpose of this paper is to show that, under certain combinato-
rial conditions on the graph, parametric Feynman integrals can be real-
ized as periods on the complement of the determinant hypersurface D̂�

in affine space A
�2 , with � the number of loops of the Feynman graph.

The question of whether these are periods of mixed Tate motives can
then be reformulated as a question on a relative cohomology of the pair
(A�2

� D̂�, Σ̂�,g � (Σ̂�,g ∩ D̂�)) being a realization of a mixed Tate motive,
where Σ̂�,g is a normal crossing divisor depending only on the number
of loops and the genus of the graph. We show explicitly that the rela-
tive cohomology is a realization of a mixed Tate motive in the case of
three loops and we give alternative formulations of the main question
in the general case, by describing the locus Σ̂�,g � (Σ̂� ∩ D̂�) in terms of
intersections of unions of Schubert cells in flag varieties. We also discuss
different methods of regularization aimed at removing the divergences of
the Feynman integral.
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1 Introduction

The question of whether Feynman integrals arising in perturbative scalar
quantum field theory are periods of mixed Tate motives can be seen (see
[9,10]) as a question on whether certain relative cohomologies associated to
algebraic varieties defined by the data of the parametric representation of
the Feynman integral are realizations of mixed Tate motives. In this paper
we investigate another possible viewpoint on the problem, which leads us to
consider a different relative cohomology, defined in terms of the complement
of the affine determinant hypersurface and the locus where the hypersurface
intersects the image of a simplex under a linear map defined by the Feynman
graph. For all graphs with a given number of loops �, admitting a minimal
embedding in an orientable surface of genus g, and satisfying a natural com-
binatorial condition, we relate the question mentioned above to a problem
in the geometry of coordinate subspaces of an �-dimensional vector space,
which only depends on the genus g.

More precisely, we consider for each graph Γ as above and satisfying a
transparent combinatorial condition (summarized at the beginning of §5)
a normal crossing divisor Σ̂Γ in the affine space A

�2 of � × � matrices. We
observe that, modulo the issue of divergences, the parametric Feynman inte-
gral is a period of the pair (A�2

� D̂�, Σ̂Γ � (D̂� ∩ Σ̂Γ)), where D̂� is the
determinant hypersurface. We then observe that all these normal crossing
divisors Σ̂Γ may be immersed into a fixed normal crossing divisor Σ̂�,g, deter-
mined by the number of loops � and the embedding genus g; therefore, the
question of whether Feynman integrals are periods of mixed Tate motives
may be decided by verifying that the motive

m(A�2
� D̂�, Σ̂�,g � (D̂� ∩ Σ̂�,g)),

whose realization is the relative cohomology of the corresponding pair, is
mixed Tate. In fact, we show that verifying this assertion for g = 0 would
suffice to deal with all graphs Γ with b1(Γ) = � (and satisfying our combi-
natorial condition), simultaneously for all genera.

We approach this question by an inclusion–exclusion argument, reduc-
ing it to verifying that specific loci in A

�2 are mixed Tate (see §5.3). We
carry out this verification for � ≤ 3 loops (§6), showing that the motive
m(A9

� D̂3, Σ̂3,0 � (D̂3 ∩ Σ̂3,0) is mixed Tate. In doing so, we obtain explicit
formulae for the class [Σ̂3,0 � (D̂3 ∩ Σ̂3,0)] (corresponding to the ‘wheel
with three spokes’) and for the classes of strata of the same locus, in the
Grothendieck group of varieties. These classes may be assembled to construct
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the corresponding class for any graph with three loops (satisfying our combi-
natorial condition). This illustrates a simple case of our strategy: it follows
that, modulo the issue of divergences, Feynman integrals of graphs with
three or fewer loops are indeed periods of mixed Tate motives. Carrying out
the same strategy for a larger number of loops is a worthwhile project.

At present, the restriction to � ≤ 3 is dictated by the fact that only in this
case we are able to provide an explicit description as mixed Tate motives
of the manifolds of frames F(V1, . . . , V�) that we introduce in Section 6 as a
way to control the motivic nature of the locus Σ̂�,g � (D̂� ∩ Σ̂�,g).

Finally, in Section 7 we discuss the problem of regularization of divergent
Feynman integrals, and how different possible regularizations can be made
compatible with the approach via determinant hypersurfaces described here.

We recall the basic notation and terminology we use in the following.
The notion of a mixed Tate motives over a field K that we adopt for the
purpose of this paper is objects of the triangulated subcategory DMTK of the
Voevodsky triangulated category MDK of mixed motives [33]. All the graph
hypersurfaces and the other algebraic varieties we consider in this paper are
defined over K = Q. We will not need the detailed technical construction
of the triangulated category of mixed motives, as for our purposes it will
suffice to use some of the formal properties that elements of this category
satisfy. The relevant properties are recalled in Section 4.1.

Moreover, throughout the paper we use the following terminology.

Definition 1.1. Consider a scalar field theory with Lagrangian

L(φ) =
1
2
(∂φ)2 − m2

2
φ2 − Lint(φ), (1.1)

where Lint(φ) is a polynomial in φ of degree at least three. Then a one
particle irreducible (1PI) Feynman graph Γ of the theory is a finite connected
graph with the following properties.

• The valence of each vertex is equal to the degree of one of the mono-
mials in the Lagrangian (1.1).

• The set E(Γ) of edges of the graph is divided into internal and exter-
nal edges, E(Γ) = Eint(Γ) ∪ Eext(Γ). Each internal edge connects two
vertices of the graph, while the external edges have only one vertex.
(One thinks of an internal edges as being a union of two half-edges and
an external one as being a single half-edge.)

• The graph cannot be disconnected by removing a single internal edge.
This is the 1PI condition.
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In the following we denote by n = #Eint(Γ) the number of internal edges,
by N = #Eext(Γ) the number of external edges, and by � = b1(Γ) the number
of loops.

In their parametric form, the Feynman integrals of massless perturbative
scalar quantum field theories (cf. [22, §6-2-3, 7, §18 and 27, §6]) are integrals
of the form

U(Γ, p) =
Γ(n − D�/2)

(4π)�D/2

∫
σn

PΓ(t, p)−n+D�/2 ωn

ΨΓ(t)−n+(�+1)D/2
, (1.2)

where Γ(n − D�/2) is a possibly divergent Γ-factor, σn is the simplex

σn =

{
(t1, . . . , tn) ∈ R

n
+

∣∣∣∣∣
∑

i

ti = 1

}
(1.3)

and the polynomials ΨΓ(t) and PΓ(t, p) are obtained from the combinatorics
of the graph, respectively, as

ΨΓ(t) =
∑
T⊂Γ

∏
e/∈E(T )

te, (1.4)

where the sum is over all the spanning trees T of Γ and

PΓ(p, t) =
∑
C⊂Γ

sC

∏
e∈C

te, (1.5)

where the sum is over the cut-sets C ⊂ Γ, i.e., the collections of b1(Γ) + 1
internal edges that divide the graph Γ in exactly two connected components
Γ1 ∪ Γ2. The coefficient sC is a function of the external momenta attached
to the vertices in either one of the two components

sC =

⎛
⎝ ∑

v∈V (Γ1)

Pv

⎞
⎠

2

=

⎛
⎝ ∑

v∈V (Γ2)

Pv

⎞
⎠

2

. (1.6)

Here the Pv are defined as

Pv =
∑

e∈Eext(Γ),t(e)=v

pe, (1.7)
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where the pe are incoming external momenta attached to the external edges
of Γ and satisfying the conservation law

∑
e∈Eext(Γ)

pe = 0. (1.8)

In order to work with algebraic differential forms defined over Q, we assume
that the external momenta are also taking rational values pe ∈ Q

D.

Ignoring the Γ-function factor in (1.2), one is interested in understanding
what kind of period is the integral

∫
σn

PΓ(t, p)−n+D�/2 ωn

ΨΓ(t)−n+(�+1)D/2
. (1.9)

In quantum field theory one can consider the same physical theory (with
specified Lagrangian) in different spacetime dimensions D ∈ N. In fact, one
should think of the dimension D as one of the variable parameters in the
problem. For the purposes of this paper, we work in the range where D is
sufficiently large, so that n ≤ D�/2. The case n = D�/2 is the log divergent
case, where the integral (1.9) simplifies to the form

∫
σn

ωn

ΨΓ(t)D/2
. (1.10)

Another case where the Feynman integral has the simpler form (1.10),
even for graphs that do not necessarily satisfy the log divergent condition,
i.e., for n �= D�/2, is where one considers the case with non-zero mass m �= 0,
but with external momenta set equal to zero. In such cases, the parametric
Feynman integral becomes of the form

∫
σn

VΓ(t, p)−n+D�/2ωn

ΨΓ(t)D/2
|p=0 = m−2n+D�

∫
σn

ωn

ΨΓ(t)D/2
, (1.11)

where VΓ(t, p) is of the form

VΓ(t, p) = p†RΓ(t)p + m2,

with

VΓ(t, p)|m=0 =
PΓ(t, p)
ΨΓ(t)

.
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In the following we assume that we are either in the massless case (1.9)
and in the range of dimensions D satisfying n ≤ D�/2, or in the massive
case with zero external momenta (1.11) and arbitrary dimension.

A first issue one needs to clarify in addressing the question of Feynman
integrals and periods is the fact that the integral (1.9) is often divergent.
Divergences are contributed by the intersection σn ∩ X̂Γ, with X̂Γ = {t ∈
A

n |ΨΓ(t) = 0}, which is often non-empty. Although there are cases where
a non-empty intersection σn ∩ X̂Γ may still give rise to an absolutely con-
vergent integral, hence a period, these are relatively rare cases and usually
some regularization and renormalization procedure is needed to eliminate
the divergences over the locus where the domain of integration meets the
graph hypersurface. Notice that these intersections only occur on the bound-
ary ∂σn, since in the interior of σn the polynomial ΨΓ(t) is strictly positive
(see (1.4)).

Our results will apply directly to all cases where the integral is convergent,
while we discuss in Section 7 the case where a regularization procedure is
required to treat divergences in the Feynman integrals. The main question
is then, more precisely formulated, whether it is true that the numbers
obtained by computing such integrals (after removing a possibly divergent
Gamma factor, and after regularization and renormalization when needed)
are always periods of mixed Tate motives.

The main contribution of this paper is the reformulation of the problem,
where instead of working with the graph hypersurfaces XΓ defined by the
vanishing of the graph polynomial ΨΓ, one works with the complement of a
fixed determinant hypersurface in an affine space of matrices. This allows
us to reduce the problem to one that only depends on the number of loops
of the graph, at least for the class of graphs satisfying the combinatorial
condition discussed in Section 2 (for example, 3-vertex connected planar
graphs with � loops). We propose specific questions in terms of � alone,
in Section 5.3; these questions may be appreciated independently of our
motivation, as they do not refer directly to Feynman graphs. We hope that
these reformulations might help to connect the problem to other interest-
ing questions, such as the geometry of intersections of Schubert cells and
Kazhdan–Lusztig theory.

2 Feynman parameters and determinants

With the notation as above, for a given Feynman graph Γ, the graph hyper-
surface XΓ is defined as the locus of zeros

XΓ = {t = (t1 : . . . : tn) ∈ P
n−1 |ΨΓ(t) = 0}. (2.1)
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Indeed, ΨΓ is homogeneous of degree �, hence it defines a hypersurface of
degree � in the projective space P

n−1. We will also consider the affine cone
on XΓ, namely the affine hypersurface

X̂Γ = {t ∈ A
n |ΨΓ(t) = 0}. (2.2)

The question of whether the Feynman integral is a period of a mixed Tate
motive can be approached (modulo the divergence problem) as a question
on whether the relative cohomology

Hn−1(Pn−1
� XΓ, Σn � (Σn ∩ XΓ)) (2.3)

is a realization of a mixed Tate motive, where Σn is the algebraic simplex

Σn =

{
t ∈ P

n−1

∣∣∣∣∣
∏

i

ti = 0

}
, (2.4)

i.e., the union of the coordinate hyperplanes containing the boundary of the
domain of integration ∂σn ⊂ Σn. See for instance [9, 10].

Although working in the projective setting is very natural (see [10]), there
are several reasons why it may be preferable to consider affine hypersurfaces:

• Only in the limit cases of a massless theory or of zero external momenta
in the massive case does the parameteric Feynman integral involve the
quotient of two homogeneous polynomial ( [7, §18]).

• The deformation of the φ4 quantum field theory to non-commutative
spacetime, which has been the focus of much recent research (see,
e.g., [20]), shows that, even in the massless case, the graph polynomials
ΨΓ and PΓ are no longer homogeneous in the non-commutative setting
and only in the limit commutative case they recover this property
(see [21,23]).

• As shown in [2], in the affine setting the graph hypersurface comple-
ment satisfies a multiplicative property over disjoint unions of graphs
that makes it possible to define algebro-geometric and motivic Feyn-
man rules.

For these various reasons, in this paper we primarily work in the affine rather
than in the projective setting.

In the present paper, we approach the problem in a different way, where
instead of working with the hypersurface X̂Γ, we map the Feynman integral
computation and the graph hypersurface in a larger hypersurface D̂� inside
a larger affine space, so that we will be dealing with a relative cohomology
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replacing (2.3) where the ambient space (the hypersurface complement) only
depends on the number of loops in the graph.

2.1 Determinant hypersurfaces and graph polynomials

We now show that all the affine varieties X̂Γ, for fixed number of loops �,
map naturally to a larger hypersurface in a larger affine space, by realizing
the polynomial ΨΓ for the given graph as a pullback of a fixed polynomial
Ψ� in �2-variables.

Recall that the determinant hypersurface D� is defined in the following
way. Let k[xkr, k, r = 1, . . . , �] be the polynomial ring in �2 variables and set

D� = {x = (xkr) | det(x) = 0}. (2.5)

Since the determinant is a homogeneous polynomial Ψ�, this in particular
also defines a projective hypersurface in P

�2−1. We will however mostly
concentrate on the affine hypersurface D̂� ⊂ A

�2 defined by the vanishing of
the determinant, i.e., the cone in A

�2 of the projective hypersurface D�.

Suppose given any Feynman graph Γ with b1(Γ) = �, and with #Eint(Γ) =
n. It is well known (see, e.g., [7, §18]) that the graph polynomial ΨΓ(t) can
be equivalently written in the form of a determinant

ΨΓ(t) = det MΓ(t) (2.6)

of an � × �-matrix

(MΓ)kr(t) =
n∑

i=1

tiηikηir, (2.7)

where the n × �-matrix ηik is defined in terms of the edges ei ∈ E(Γ) and
a choice of a basis for the first homology group, lk ∈ H1(Γ, Z), with k =
1, . . . , � = b1(Γ), by setting

ηik =

⎧⎪⎨
⎪⎩

+1 edge ei ∈ loop lk, same orientation
−1 edge ei ∈ loop lk, reverse orientation
0 otherwise.

(2.8)

The determinant det MΓ(t) is independent both of the choice of orientation
on the edges of the graph and of the choice of generators for H1(Γ, Z).
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The expression of the matrix MΓ(t) defines a linear map τ : A
n → A

�2 of
the form

τ = τΓ : A
n → A

�2 , τ(t1, . . . , tn) =
∑

i

tiηkiηir. (2.9)

We can write this equivalently in the shorter form

τ = η†Λη, (2.10)

where Λ is the diagonal n × n-matrix with t1, . . . , tn as diagonal entries, and
η = ηΓ is the matrix (2.8).

Then by construction we have that X̂Γ = τ−1(D̂�), from (2.6). We for-
malize this as follows:

Lemma 2.1. Let Γ be a Feynman graph with n internal edges and � loops.
Let X̂Γ ⊂ A

n denote the affine cone on the projective hypersurface XΓ ⊂
P

n−1. Then
X̂Γ = τ−1(D̂�), (2.11)

where τ : A
n → A

�2 is a linear map depending on Γ.

The next lemma, which follows directly from the definitions, details some
of the properties of the map τ introduced above that we will be using in the
following.

Lemma 2.2. The matrix of τ , MΓ(t) = η†Λη, has the following properties.

• For i �= j, the corresponding entry is the sum of ±tk, where the tk
correspond to the edges common to the ith and jth loop, and the sign
is +1 if the orientations of the edges both agree or both disagree with
the loop orientations, and −1 otherwise.

• For i = j, the entry is the sum of the variables tk corresponding to the
edges in the ith loop (all taken with sign +).

Now consider a specific edge e, and let te be the corresponding variable. Then

• The variable te appears in η†Λη if and only if e is part of at least one
loop.

• If e belongs to a single loop �i, then te only appears in the diagonal
entry (i, i), added to the variables corresponding to the other edges
forming the loop �i.

• If there are two loops �i, �j containing e, and not having any other
edge in common, then the ±te appears by itself at the entries (i, j) and
(j, i) in the matrix η†Λη.
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When the map τ constructed above is injective, it is possible to rephrase
the computation of the parametric Feynman integral (1.9) as a period of the
complement of the determinant hypersurface D̂� ⊂ A

�2 .

Lemma 2.3. Assume that the map τ : A
n → A

�2 of (2.10) is injective.
Then the integral (1.9) can be rewritten in the form

∫
τ(σn)

PΓ(p, x)−n+D�/2 ωΓ(x)
det(x)−n+(�+1)D/2

, (2.12)

where PΓ(p, x) is a homogeneous polynomial on A
�2 whose restriction to the

image of A
n under the map τ agrees with PΓ(p, t), and ωΓ is the induced

volume form.

Proof. It is possible to regard the polynomial PΓ(p, t) as the restriction to
A

n of a homogeneous polynomial PΓ(p, x) defined on all of A
�2 . Clearly,

such PΓ(p, x) will not be unique, but different choices of PΓ(p, x) will not
affect the integral calculation, which all happens inside the linear subspace
A

n. The simplex σn is also linearly embedded inside A
�2 , and we denote its

image by τ(σn). The volume form ωn can also be identified, under such a
choice of coordinates in A

�2 with a form ωΓ(x) such that

ωΓ(x) ∧ 〈ξΓ, dx〉 = ω�2 ,

with ξΓ the (�2 − n)-frame associated to the linear subspace τ(An) ⊂ A
�2

and
〈ξΓ, dx〉 = 〈ξ1, dx〉 ∧ · · · ∧ 〈ξ�2−n, dx〉.

�

Notice in particular that if the map τ is injective then one has a well
defined map P

n−1 → P
�2−1, which is otherwise not everywhere defined.

We are interested in the following, heuristically formulated, consequence
of Lemma 2.3.

Claim 2.1. Assume that the map τ : A
n → A

�2 of (2.10) is injective. Then
the complexity of Feynman integrals corresponding to the graph Γ is con-
trolled by the motive m(A�2

� D̂�, Σ̂Γ � (D̂� ∩ Σ̂Γ)), where Σ̂Γ is a normal
crossings divisor in A

�2 such that τ(∂σn) ⊂ Σ̂Γ.

The explicit construction of the normal crossings divisor Σ̂Γ is given in
Lemma 5.1 below. We will further improve on this observation by reformu-
lating it in a way that will only depend on the number of loops � of Γ and
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on its genus, and not on the specific graph Γ. To this purpose, we will deter-
mine subsets of A

�2 which will contain the components of the image τ(∂σn)
of the boundary of the simplex in A

n, independently of Γ (see Section 3.4).

In any case, this type of results motivates us to determine conditions on
the Feynman graph Γ which ensure that the corresponding map τ : A

n →
A

�2 is injective.

3 Graph theoretic conditions for embeddings

3.1 Injectivity of τ

In the following, we denote by τi the composition of the map τ of (2.10)
with the projection to the ith row of the matrix η†Λη, viewed as a map of
the variables corresponding only to the edges that belong to the ith loop in
the chosen bases of the first homology of the graph Γ.

We first make the following simple observation.

Lemma 3.1. If τi is injective for i ranging over a set of loops such that
every edge of Γ is part of a loop in that set, then τ is itself injective.

Proof. Let (t1, . . . , tn) = (c1, . . . , cn) be in the kernel of τ . Since each (i, j)
entry in the target matrix is a combination of edges in the ith loop, the map
τi must send to zero the tuple of cj ’s corresponding to the edges in the ith
loop. Since we are assuming τi to be injective, that tuple is the zero-tuple.
Since every edge is in some loop for which τi is injective, it follows that every
cj is zero, as needed. �

The properties detailed in Lemma 2.2 immediately provide a sufficient
condition for the maps τi to be injective.

Lemma 3.2. The map τi is injective if the following conditions are satisfied:

• For every edge e of the ith loop, there is another loop having only e in
common with the ith loop, and

• The ith loop has at most one edge not in common with any other loop.

Proof. In this situation, all but at most one edge variable appear by them-
selves as an entry of the ith row, and the possible last remaining vari-
able appears summed together with the other variables. More explicitly,
if ti1 , . . . , tiv are the variables corresponding to the edges of a loop �i, up
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to rearranging the entries in the corresponding row of η†Λη and neglecting
other entries, the map τi is given by

(ti1 , . . . , tiv) 
→ (ti1 + · · · + tiv ,±ti1 , . . . ,±tiv)

if �i has no edge not in common with any other loop, and

(ti1 , . . . , tiv) 
→ (ti1 + · · · + tiv ,±ti1 , . . . ,±tiv−1)

if �i has a single edge tv not in common with any other loop. In either case
the map τi is injective, as claimed. �

Now we need a sufficiently natural combinatorial condition on the graph
Γ that ensures that the conditions of Lemma 3.2 and Lemma 3.1 are fulfilled.
We first recall some useful facts about graphs and embeddings of graphs on
surfaces which we need in the following.

Every (finite) graph Γ may be embedded in a compact orientable surface
of finite genus. The minimum genus of an orientable surface in which Γ may
be embedded is the genus of Γ. Thus, Γ is planar if and only if it may be
embedded in a sphere, if and only if its genus is 0.

Definition 3.1. An embedding of a graph Γ in an orientable surface S is
a 2-cell embedding if the complement of Γ in S is homeomorphic to a union
of open 2-cells (the faces, or regions determined by the embedding). An
embedding of Γ in S is a closed 2-cell embedding if the closure of every face
is a disk.

It is known that an embedding of a connected graph is minimal genus if
and only if it is a 2-cell embedding [26, Proposition 3.4.1 and Theorem 3.2.4].
We discuss below conditions on the existence of closed 2-cell embeddings,
cf. [26, §5.5].

For our purposes, the advantage of having a closed 2-cell embedding for a
graph Γ is that the faces of such an embedding determine a choice of loops
of Γ, by taking the boundaries of the 2-cells of the embedding together with
a basis of generators for the homology of the Riemann surface in which the
graph is embedded.

Lemma 3.3. A closed 2-cell embedding ι : Γ → S of a connected graph Γ
on a surface of (minimal) genus g, together with the choice of a face of
the embedding and a basis for the homology H1(S, Z) determine a basis of
H1(Γ, Z) given by 2g + f − 1 loops, where f is the number of faces of the
embedding.
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Proof. Orient (arbitrarily) the edges of Γ and the faces, and then add the
edges on the boundary of each face with sign determined by the orientations.
The fact that the closure of each face is a 2-disk guarantees that the bound-
ary is null-homotopic. This produces a number of loops equal to the number
f of faces. It is clear that these f loops are not independent: the sum of
any f − 1 of them must equal the remaining one, up to sign. Any f − 1
loops, however, will be independent of H1(Γ). Indeed, these f − 1 loops,
together with 2g generators of the homology of S, generate H1(Γ). The
homology group H1(Γ) has rank 2g + f − 1, as one can see from the Euler
characteristic formula

b0(S) − b1(S) + b2(S) = 2 − 2g = χ(S) = v − e + f

= b0(Γ) − b1(Γ) + f = 1 − � + f,

so there will be no other relations. �

One refers to the chosen one among the f faces as the “external face” and
the remaining f − 1 faces as the “internal faces”.

Thus, given a closed 2-cell embedding ι : Γ → S, we can use a basis of
H1(Γ, Z) costructed as in Lemma 3.3 to compute the map τ of (2.10) and
the maps τi of (2.2). We then have the following result.

Lemma 3.4. Assume that Γ is closed-2-cell embedded in a surface. With
notation as above, assume that

• any two of the f faces have at most one edge in common.

Then the f − 1 maps τi, defined with respect to a choice of basis for H1(Γ)
as in Lemma 3.3, are all injective. If further

• every edge of Γ is in the boundary of two of the f faces,

then τ is injective.

Proof. The injectivity of the f − 1 maps τi follows from Lemma 3.2. If �
is a loop determined by an internal face, the variables corresponding to
edges in common between � and any other internal loop will appear as (±)
individual entries on the row corresponding to �. Since � has at most one
edge in common with the external region, this accounts for all but at most
one of the edges in �. By Lemma 3.2, the injectivity of τi follows.

Finally, as shown in Lemma 3.1, the map τ is injective if every edge is
in one of the f − 1 loops and the f − 1 maps τi are injective. The stated
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Figure 1: An example satisfying Lemma 3.4.

condition guarantees that the edge appears in the loops corresponding to
the faces separated by that edge. At least one of them is internal, so that
every edge is accounted for. �
Example 3.1. Consider the example of the planar graph in figure 1. The
conditions stated in Lemma 3.4 are evidently satisfied. Edges are marked
by circled numbers. The loop corresponding to region 1 consists of edges 1,
2, 3, 4. The corresponding row of ηtTη is

(t1 + t2 + t3 + t4,±t4,±t3,±t2,±t1).

Region 2 consists of edges 4, 5, 6, 7. Edge 7 is not in any other internal
region. The corresponding row of η†Λη is

(t4 + t5 + t6 + t7,±t4,±t5,±t6).

These maps are injective, as claimed. Given the symmetry of the situation,
it is clear that all maps τi (and hence τ as well) are injective for this graph,
as guaranteed by Lemma 3.4.

The considerations that follow will allow us to improve on Lemma 3.4, by
showing that in natural situations the second condition listed in Lemma 3.4
is automatically satisfied.

3.2 Connectivity of graphs

In this section we review some notions on connectivity for graphs, both for
contextual reasons, since these notions relate well with conditions that are
natural from the physical point of view, and in order to improve the results
obtained above.

Given a graph Γ and a vertex v ∈ V (Γ), the graph Γ � v is the graph with
vertex set V (Γ) � {v} and edge set E(Γ) � {e : v ∈ ∂(e)}, i.e., the graph
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obtained by removing from Γ the star of the vertex v. It is customary to
refer to Γ � v simply as “the graph obtained by removing the vertex v”,
even though one in fact removes also all the edges adjacent to v.

There are two different notions of connectivity for graphs. To avoid confu-
sion, we refer to them here as k-edge-connectivity and k-vertex-connectivity.
For the notion of k-vertex-connectivity we follow [26, p. 11], though in our
notation graphs include the case of multigraphs.

Definition 3.2. The notions of k-edge-connectivity and k-vertex-connecti-
vity are defined as follows:

• A graph is k-edge-connected if it cannot be disconnected by removal
of any set of k − 1 (or fewer) edges.

• A graph is 2-vertex-connected if it has no looping edges, it has at least
3 vertices, and it cannot be disconnected by removal of a single vertex,
where vertex removal is defined as above.

• For k ≥ 3, a graph is k-vertex-connected if it has no looping edges
and no multiple edges, it has at least k + 1 vertices, and it cannot be
disconnected by removal of any set of k − 1 vertices.

Thus, 1-vertex-connected and 1-edge-connected simply mean connected,
while 2-edge-connected is the one-particle-irreducible (1PI) condition re-
called in Definition 1.1. To see how the condition of 2-vertex-connectivity
relates to the physical 1PI condition, we first recall the notion of splitting of
a vertex in a graph Γ (cf. [26, §4.2]).

Definition 3.3. A graph Γ′ is a splitting of Γ at a vertex v ∈ V (Γ) if it
is obtained by partitioning the set E ⊂ E(Γ) of edges adjacent to v into
two disjoint non-empty subsets, E = E1 ∪ E2 and inserting a new edge e
to whose end vertices v1 and v2 the edges in the two sets E1 and E2 are
respectively attached (see figure 2).

We have the following relation between 2-vertex-connectivity and two-
edge-connectivity (1PI). The first observation will be needed in the proof of
Proposition 3.1; the second is offered mostly for contextual reasons.

Figure 2: A splitting of a graph Γ at a vertex v.
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Lemma 3.5. Let Γ be a graph with at least 3 vertices and no looping edges.

(1) If Γ is 2-vertex-connected then it is also 2-edge-connected (1PI).
(2) Γ is 2-vertex-connected if and only if all the graphs Γ′ obtained as

splittings of Γ at any v ∈ V (Γ) are 2-edge-connected (1PI).

Proof. (1) We have to show that, for a graph Γ with at least 3 vertices and
no looping edges, 2-vertex-connectivity implies 2-edge-connectivity. Assume
that Γ is not 1PI. Then there exists an edge e such that Γ � e has two
connected components Γ1 and Γ2. Since Γ has no looping edges, e has two
distinct endpoints v1 and v2, which belong to the two different components
after the edge removal. Since Γ has at least 3 vertices, at least one of the
two components contains at least two vertices. Assume then that there
exists v �= v1 ∈ V (Γ1). Then, after the removal of the vertex v1 from Γ, the
vertices v and v2 belong to different connected components, so that Γ is not
2-vertex-connected.

(2) We need to show that 2-vertex-connectivity is equivalent to all split-
tings Γ′ being 1PI. Suppose first that Γ is not 2-vertex-connected. Since
Γ has at least 3 vertices and no looping edges, the failure of 2-vertex-
connectivity means that there exists a vertex v whose removal disconnects
the graph. Let V ⊂ V (Γ) be the set of vertices other than v that are end-
points of the edges adjacent to v. This set is a union V = V1 ∪V2 where the
vertices in the two subsets Vi are contained in at least two different con-
nected components of Γ � v. Then the splitting Γ′ of Γ at v obtained by
inserting an edge e such that the endpoints v1 and v2 are connected by edges,
respectively, to the vertices in V1 and V2 is not 1PI.

Conversely, assume that there exists a splitting Γ′ of Γ at a vertex v that
is not 1PI. There exists an edge e of Γ′ whose removal disconnects the graph.
If e already belonged to Γ, then Γ would not be 1PI (and hence not 2-vertex
connected, by (1)), as removal of e would disconnect it. So e must be the
edge added in the splitting of Γ at the vertex v.

Let v1 and v2 be the endpoints of e. None of the other edges adjacent
to v1 or v2 is a looping edge, by hypothesis; therefore, there exist at least
another vertex v′1 �= v2 adjacent to v1, and a vertex v′2 �= v1 adjacent to v2.
Since Γ′

� e is disconnected, v′1 and v′2 are in distinct connected components
of Γ′

� e. Since v′1 and v′2 are in Γ � v, and Γ � v is contained in Γ′
� e, it

follows that removing v from Γ would also disconnect the graph. Thus Γ is
not 2-vertex-connected. �

The first statement in Lemma 3.5 admits the following analog for
3-connectivity.
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Lemma 3.6. Let Γ be a graph with at least 4 vertices, with no looping
edges and no multiple edges. Then 3-vertex-connectivity implies 3-edge-
connectivity.

Proof. We argue by contradiction. Assume that Γ is 3-vertex-connected but
not 2PI. We know it is 1PI because of the previous lemma. Thus, there
exist two edges e1 and e2 such that the removal of both edges is needed
to disconnect the graph. Since we are assuming that Γ has no multiple or
looping edges, the two edges have at most one end in common.

Suppose first that they have a common endpoint v. Let v1 and v2 denote
the remaining two endpoints, vi ∈ ∂ei, v1 �= v2. If the vertices v1 and v2

belong to different connected components after removing e1 and e2, then
the removal of the vertex v disconnects the graph, so that Γ is not 3-vertex-
connected (in fact not even 2-vertex-connected). If v1 and v2 belong to the
same connected component, then v must be in a different component. Since
the graph has at least 4 vertices and no multiple or looping edges, there
exists at least another edge attached to either v1, v2, or v, with the other
endpoint w /∈ {v, v1, v2}. If w is adjacent to v, then removing v and v1 leaves
v2 and w in different connected components. Similarly, if w is adjacent to
(say) v1, then the removal of the two vertices v1 and v2 leave v and w in two
different connected components. Hence Γ is not 3-vertex-connected.

Next, suppose that e1 and e2 have no endpoint in common. Let v1 and
w1 be the endpoints of e1 and v2 and w2 be the endpoints of e2. At least
one pair {vi, wi} belongs to two separate components after the removal of
the two edges, though not all four points can belong to different connected
components, else the graph would not be 1PI. Suppose then that v1 and w1

are in different components. It also cannot happen that v2 and w2 belong
to the same component, else the removal of e1 alone would disconnect the
graph. We can assume then that, say, v2 belongs to the same component as
v1 while w2 belongs to a different component (which may or may not be the
same as that of w1). Then the removal of v1 and w2 leaves v2 and w1 in two
different components so that the graph is not 3-vertex-connected. �

Remark 3.1. While the 2-edge-connected hypothesis on Feynman graphs is
very natural from the physical point of view, since it is just the 1PI condition
that arises when one considers the perturbative expansion of the effective
action of the quantum field theory (cf. [22]), conditions of 3-connectivity
(3-vertex-connected or 3-edge-connected) arise in a more subtle manner in
the theory of Feynman integrals, in the analysis of Laundau singularities (see
for instance [29]). In particular, the 2PI effective action is often considered
in quantum field theory in relation to non-equilibrium phenomena, see, e.g.,
[28, §10.5.1].
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3.3 Connectivity and embeddings

We now recall another property of graphs on surfaces, namely the face width
of an embedding ι : Γ ↪→ S. The face width fw(Γ, ι) is the largest number
k ∈ N such that every non-contractible simple closed curve in S intersects Γ
at least k times. When S is a sphere, hence ι : Γ ↪→ S is a planar embedding,
one sets fw(Γ, ι) = ∞.

Remark 3.2. For a graph Γ with at least 3 vertices and with no looping
edges, the condition that an embedding ι : Γ ↪→ S is a closed 2-cell embed-
ding is equivalent to the properties that Γ is 2-vertex-connected and that
the embedding has face width fw(Γ, ι) ≥ 2, see [26, Proposition 5.5.11].

In particular, this implies that a planar graph with at least three vertices
and no looping edges admits a closed 2-cell embedding in the sphere if and
only if it is 2-vertex-connected. Notice that the condition that Γ has at
least 3 vertices and no looping edges is necessary for this statement to be
true. For example, the graph with two vertices, one edge between them,
and one looping edge attached to each vertex cannot be disconnected by
removal of a single vertex, but does not have a closed 2-cell embedding in
the sphere. Similarly, the graph consisting of two vertices, one edge bet-
ween them and one looping edge attached to one of the vertices admits a
closed 2-cell embedding in the sphere, but is not 2-vertex-connected. (see
figure 3).

It is not known whether every 2-vertex-connected graph Γ admits a closed
2-cell embedding. The “strong orientable embedding conjecture” states that
this is the case, namely, that every 2-vertex-connected graph Γ admits a
closed 2-cell embedding in some orientable surface S, of face width at least
two (see [26, Conjecture 5.5.16]).

We are now ready for the promised improvement of Lemma 3.4.

Proposition 3.1. Let Γ be a graph with at least 3 vertices and with no
looping edges, which is closed-2-cell embedded in an orientable surface S.
Then, if any two of the faces have at most one edge in common, the map τ
is injective.

Figure 3: Vertex conditions and 2-cell embeddings.



FEYNMAN INTEGRALS AND DETERMINANTS 929

Figure 4: An edge not in the boundary of two faces.

Proof. It suffices to show that, under these conditions on the graph Γ, the
second condition of Lemma 3.4 is automatically satisfied, so that only the
first condition remains to be checked. That is, we show that every edge of
Γ is in the boundary of two faces.

Assume an edge is not in the boundary of two faces. Then that edge must
bound the same face on both of its sides, as in figure 4. The closure of the
face is a cell, by assumption. Let γ be a path from one side of the edge to
the other. Since γ splits the cell into two connected components, it follows
that removing the edge splits Γ into two connected components, hence Γ
is not 2-edge-connected. However, as recalled in Remark 3.2, the fact that
Γ has at least 3 vertices and no looping edges and it admits a closed 2-cell
embedding implies that Γ is 2-vertex-connected, hence in particular it is 1PI
by the first part of Lemma 3.5, and this gives a contradiction. �

The condition that Γ has at least 3 vertices and no looping edges is nec-
essary for Proposition 3.1. For example, the second graph shown in figure 3
does not satisfy the property that each edge is in the boundary of two faces;
in the case of this graph, clearly the map τ is not injective.

Here is another direct consequence of the previous embedding results.

Proposition 3.2. Let Γ be a 3-edge-connected graph, with at least 3 vertices
and no looping edges, admitting a closed-2-cell embedding ι : Γ ↪→ S with face
width fw(Γ, ι) ≥ 3. Then the maps τi, τ are all injective.

Proof. The result of Proposition 3.1 shows that the second condition stated
in Lemma 3.4 is automatically satisfied, so the only thing left to check is
that the first condition stated in Lemma 3.4 holds. Assume that two faces
F1, F2 have more than one edge in common, see figure 5. Since F1, F2 are
(path-)connected, there are paths γi in Fi connecting corresponding sides
of the edges. With suitable care, it can be arranged that γ1 ∪ γ2 is a closed
path γ meeting Γ in two points, see figure 5. Since the embedding has face
width ≥ 3, γ must be null-homotopic in the surface, and in particular it
splits it into two connected components. This implies that Γ is split into
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Figure 5: Two faces with more than one edge in common.

two connected components by removing the two edges, hence Γ cannot be
3-edge-connected. �

The 3-edge-connectivity hypothesis in Proposition 3.2 can be viewed as
the next step strengthening of the 1PI condition, cf. Remark 3.1. Similarly,
the condition of the face width of the embedding fw(Γ, ι) ≥ 3 is the next
step strengthening of the condition fw(Γ, ι) ≥ 2 conjecturally implied by
2-vertex-connectivity.

In fact, if we enhance in Proposition 3.2 the 3-edge-connected hypoth-
esis with 3-vertex-connectivity (see Lemma 3.6), we can refer to a result
of graph theory ([26, Proposition 5.5.12]) which shows that for a 3-vertex-
connected graph it is equivalent to admit an embedding with fw(Γ, ι) ≥ 3
and to have the wheel neighborhood property, that is, every vertex of Γ
has a wheel neighborhood. Another equivalent condition to fw(Γ, ι) ≥ 3 for
a 3-vertex-connected graph is that the loops determined by the faces of the
embedding as in Lemma 3.3 are either disjoint or their intersection is just
a vertex or a single edge ([26, Proposition 5.5.12]). For example, we can
formulate an analog of Proposition 3.2 in the following way.

Corollary 3.1. Let Γ be a 3-vertex-connected graph such that each vertex
has a wheel neighborhood. Then the maps τi and τ of (2.10), (2.2) are all
injective.

The results derived in this section thus identify classes of graphs that
satisfy simple geometric properties for which the injectivity of the map τ
holds.

3.4 Dependence on Γ

The preceding results refer to the injectivity of the maps τi, τ determined by
a given graph Γ, where τ maps an affine space A

n (where n is the number of
internal edges of Γ) to A

�2 (where � is the number of loops of Γ), by means of
the matrix MΓ(t). The whole matrix MΓ(t) depends on course on the graph
Γ. However, the injectivity of τ may be detected by a suitable submatrix.
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In the following statement, choose a basis for H1(Γ, Z) as prescribed in
Lemma 3.3; thus, f − 1 = � − 2g rows of MΓ(t) correspond to the “internal”
faces in an embedding of Γ.

Lemma 3.7. For a graph Γ with at least 3 vertices and no looping edges that
is closed-2-cell embedded by ι : Γ ↪→ S in an orientable surface S of genus g,
the map defined by the (� − 2g) × (� − 2g) minor in the matrix MΓ(t), which
corresponds to the loops that are boundaries of faces on S is injective if and
only if the map τ is injective.

Proof. Indeed, under the given assumptions, every edge appears in the
loop corresponding to some internal face of the embedding. The argument
proving Lemma 3.4 shows that the given minor determines the injectivity of τ .

�

A further refinement of the foregoing considerations will allow us to obtain
statements that will be to some extent independent of Γ, and only hinge on
� = b1(Γ) and the genus g of Γ.

We have pointed out earlier (Section 2.1) that det MΓ(t) does not depend
on the choice of orientation for the loops of Γ. It is however advantageous to
make a coherent choice for these orientations. We are now assuming that we
have chosen a closed 2-cell embedding of Γ into an orientable surface of genus
g; such an embedding has f faces, where � = 2g + f − 1; we can arrange
MΓ(t) so that the first f − 1 rows correspond to the f − 1 loops determined
by the “internal” faces of the embedding.

On each face, choose the positive orientation (counterclockwise with res-
pect to an outgoing normal vector). Then each edge-variable in common
between two faces i, j will appear with a minus sign in the entries (i, j) and
(j, i) of MΓ(t). These entries are both in the (� − 2g) × (� − 2g) upper-left
minor, which is the minor singled out in Lemma 3.7.

The upshot is that in the cases covered by the above results (such as
Proposition 3.1), the edge variables te can all be obtained by either pulling-
back entries −xij with 1 ≤ i < j ≤ � − 2g, or a sum

xi1 + xi2 + · · · + xi,�−2g

with 1 ≤ i ≤ � − 2g. Note that these expressions only depend on � and g;
it follows that all components of the image τ(∂σn) in A

�2 of the bound-
ary of the simplex σn can be realized as pull-backs of subspaces of A

�2

from a list which only depends on the number � − 2g (= f − 1, where f
is the number of faces in a closed 2-cell embedding of Γ). This observation
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essentially emancipates the domain of integration in the integral appearing
in the statement of Lemma 2.3 from the specific graph Γ.

We will return to this point in Section 5, cf. Proposition 5.1.

3.5 More general graphs

The previous combinatorial statements were obtained under the assumption
that the graphs have no looping edges. However, the statements can then
be generalized easily to the case with looping edges using the following
observation.

Lemma 3.8. Let Γ be a graph obtained by attaching a looping edge at a
vertex of a given graph Γ′. Then the map τΓ of (2.10) is injective if and
only if τΓ′ is.

Proof. Let t be the variable assigned to the looping edge and te the variables
assigned to the edges of Γ′. The matrix MΓ(t, te) is of the block diagonal
form

MΓ(t, te) =
(

t 0
0 MΓ′(te)

)
.

This proves the statement. �

This allows us to extend the results of Proposition 3.2 and Corollary 3.1
to all graphs obtained by attaching an arbitrary number of looping edges
at the vertices of a graph satisfying the hypothesis of Proposition 3.2 or
Corollary 3.1.

Corollary 3.2. Let Γ be a graph such that, after removing all the looping
edges, the remaining graph is 3-vertex-connected with a wheel neighborhood
at each vertex. Then the maps τi, τ are all injective.

We can further extend the class of graphs to which the results of this
section apply by including those graphs that are obtained from graphs sat-
isfying the hypotheses of Proposition 3.1, Proposition 3.2, Corollary 3.1, or
Corollary 3.2 by subdividing edges.

Let en be the edge of Γ that is subdivided in two edges e′n and e′′n to form
the graph Γ′. The effect on the graph polynomial is

ΨΓ′(t1, . . . , tn−1, t
′
n, t′′n) = ΨΓ(t1, . . . , tn−1, t

′
n + t′′n),

since the spanning trees of Γ′ are obtained by adding either e′n or e′′n to those
spanning trees of Γ that do not contain en and by replacing en with e′n ∪ e′′n
in the spanning trees of Γ that contain en. Thus, notice that in this case
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the injectivity of the map τ is not preserved by the operation of splitting
edges. However, one can check directly that this operation does not affect
the nature of the period computed by the Feynman integral, as the following
result shows, so that any result that will show that the Feynman integral is
a period of a mixed Tate motive for a class of graphs with no valence two
vertices will automatically extend to graphs obtained by splitting edges.

Proposition 3.3. Let Γ′ be a graph obtained from a given graph Γ by sub-
dividing one of the edges by inserting a valence two vertex. Then the para-
metric Feynman integral for Γ′ will be of the form

∫
σn

PΓ(t, p)−(n+1)+D�/2tnωn

ΨΓ(t)−(n+1)+(�+1)D/2
, (3.1)

with n = #Eint(Γ).

Proof. When one subdivides an edge as above, the Feynman rules imply
that one finds as corresponding Feynman integral an expression of the form

∫
δ(

∑
i εv,iki +

∑
j εv,jpj)

q1 · · · qn−1q2
n

dDk1

(2π)D
· · · dDkn

(2π)D
,

where the qi(ki) = k2
i + m2 are the quadratic forms that give the propagators

associated to the internal edges of the graph. We have used the constraint
δ(kn − kn+1) for the two momentum variables associated to the two parts
of the split edge, so that we find q2

n in the denominator. One then uses the
usual formula

1
qa1
1 · · · qan

n
=

Γ(a1 + · · · + an)
Γ(a1) · · ·Γ(an)

∫
R

n
+

ta1−1
1 · · · tan−1

n δ(1 −
∑

i ti)
(t1q1 + · · · tnqn)a1+···+an

to obtain the parametric form of the Feynman integral. In our case this
gives

1
q1 · · · qn−1q2

n

= n!
∫

σn

tn dt1 · · · dtn
(t1q1 + · · · tnqn)n+1

.

Thus, one obtains the parametric form of the Feynman integral as
∫

dDx1 · · · dDx�

(
∑

i tiqi)n+1
= C�,n+1 det(MΓ(t))−D/2VΓ(t, p)−(n+1)+D�/2,

where VΓ(t, p) = PΓ(t, p)/ΨΓ(t) and with

C�,n+1 =
∫

dDx1 · · · dDx�

(1 +
∑

k x2
k)

n+1
.

This gives (3.1). �
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In particular, Proposition 3.3 shows that the parametric Feynman integral
for the graph Γ′ is still a period of the same type as that of the graph Γ, since
it is still a period associated to the complement of the graph hypersurface X̂Γ

and evaluated over the same simplex σn. Only the algebraic differential form
changes from Ψ−D/2

Γ VΓ(t, p)−n+D�/2ωn to Ψ−D/2
Γ VΓ(t, p)−(n+1)+D�/2tnωn,

but this does not affect the nature of the period, at least in the “stable
range” where D is sufficiently large (D�/2 > n).

4 The motive of the determinant hypersurface complement

Our work in Sections 2 and 3 relates the complexity of a Feynman integral
over a graph satisfying suitable combinatorial conditions to the complexity
of the motive

m(A�2
� D̂�, Σ̂Γ � (Σ̂Γ ∩ D̂�))

whose realizations give the relative cohomology of the pair of the comple-
ment of the determinant hypersurface and a normal crossing divisor Σ̂Γ

containing the image of the boundary τΓ(∂σn), as in Lemma 5.1 below (see
Corollary 2.1, Proposition 3.1 and ff.).

In this section we exhibit an explicit filtration of the complement of the
determinant hypersurface, from which we can directly prove that the motive
of A

�2
� D̂Γ is mixed Tate. We use this filtration to compute explicitly the

class of A
�2

� D̂Γ in the Grothendieck group of varieties, as well as the class
of the projective version P

�2−1
� D�.

Notice that the mixed Tate nature of the motive of the determinant hyper-
surface also follows directly from the results of Belkale–Brosnan [3], or from
those of Biglari [5, 6], but we prefer to give here a very explicit computa-
tion, which will be useful as a preliminary for the similar but more involved
analysis of the loci that contain the boundary of the domain of integration
that we discuss in the following sections.

4.1 The motive

As we already argued, it is more natural to consider the graph hypersurfaces
X̂Γ in the affine space A

n, instead of the projective XΓ in P
n−1. Thus, here

also we work with the affine space A
�2 parametrizing � × � matrices. The

cone D̂� over the determinant hypersurface consists of matrices of rank < �.
Realizing the complement of D̂� in A

�2 amounts then to ‘parametrizing’
matrices M of rank exactly �.
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It is clear how this should be done:

— The first row of M must be a non-zero vector v1.
— The second row of M must be a vector v2 that is non-zero modulo v1.
— The third row of M must be a vector v3 that is non-zero modulo v1

and v2.
— And so on.

To formalize this construction, let E be a fixed �-dimensional vector space,
and work inductively. The first steps of the construction are as follows.

— Denote by W1 the variety E � {0}.
— Note that W1 is equipped with a trivial vector bundle E1 = E ×W1,

and with a line bundle S1 := L1 ⊆ E1 whose fiber over v1 ∈ W1 consists
of the line spanned by v1.

— Let W2 ⊆ E1 be the complement E1 � L1.
— Note that W2 is equipped with a trivial vector bundle E2 = E ×W2,

and two line subbundles of E2: the pull-back of L1 (still denoted L1)
and the line-bundle L2 whose fiber over v2 ∈ W2 consists of the line
spanned by v2.

— By construction, L1 and L2 span a rank-2 subbundle S2 of E2.
— Let W3 ⊆ E2 be the complement E2 � S2.
— And so on.

Inductively: at the kth step, this procedure produces a variety Wk,
endowed with k line bundles L1, . . . , Lk spanning a rank-k subbundle Sk of
the trivial vector bundle Ek :=E ×Wk. If Sk � Ek, define Wk+1 := Ek � Sk.
Let Ek+1 = E ×Wk+1, and define line subbundles L1, . . . , Lk to be the pull-
backs of the like-named line bundles on Wk; and let Lk+1 be the line bun-
dle whose fiber over vk+1 is the line spanned by vk+1. The line bundles
L1, . . . , Lk+1 span a rank-k + 1 subbundle Sk+1 of Ek+1, and the construc-
tion can continue. The sequence stops at the �th step, where S� has rank �,
equal to the rank of E�, so that E� � S� = ∅.

Lemma 4.1. The variety W� constructed as above is isomorphic to A
�2 \ D̂�.

Proof. Each variety Wk maps to A
�2 as follows: a point of Wk determines

k vectors v1, . . . , vk, and can be mapped to the matrix whose first k rows
are v1, . . . , vk resp. (and the remaining rows are 0). By construction, this
matrix has rank exactly k. Conversely, any such rank k matrix is the image
of a point of Wk, by construction. �

In particular, we have the following result on the bundles Sk involved in
the construction described above.
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Lemma 4.2. The bundle Sk over the variety Wk is trivial for all 1 ≤ k ≤ �.

Proof. Points of Wk are parameterized by k-tuples of vectors v1, . . . , vk span-
ning Sk ⊆ K

� ×Wk = Ek. This means precisely that the map

K
k ×Wk

α→ Sk

defined by

α : ((c1, . . . , cr), (v1, . . . , vr)) 
→ c1v1 + · · · + crvr

is an isomorphism. �

Recall that, given a triangulated category D, a full subcategory D′ is a
triangulated subcategory if and only if it is invariant under the shift T of D
and for any distinguished triangle

A → B → C → A[1]

for D where A and B are in D′ there is an isomorphism C � C ′ with C ′ also
in D′. A full triangulated subcategory D′ ⊂ D is thick if it is closed under
direct sums.

Let MDK be the Voevodsky triangulated category of mixed motives over
a field K, [33]. The triangulated category DMTK of mixed Tate motives
is the full triangulated thick subcategory of MDK generated by the Tate
objects Q(n). It is known that, over a number field K, there is a canonical
t-structure on DMTK and one can therefore construct an abelian category
MTK of mixed Tate motives (see [24]).

We then have the following result on the nature of the motive of the
determinant hypersurface complement.

Theorem 4.1. The determinant hypersurface complement A
�2

� D̂� defines
an object in the category DMTK of mixed Tate motives.

Proof. First recall that by Proposition 4.1.4 of [33], over a field K of charac-
teristic zero a closed embedding Y ⊂ X determines a distinguished triangle

m(Y ) → m(X) → m(X � Y ) → m(Y )[1]

in MDK. Here we use the notation m(X) for the motivic complex with
compact support denoted by Cc∗(X) in [33]. In particular, if m(Y ) and
m(X) are in DMTK then m(X � Y ) is isomorphic to an object in DMTK,
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by the property of full triangulated subcategories recalled above. Similarly,
using the invariance of DMTK under the shift, if m(Y ) and m(X � Y ) are
in DMTK then m(X) is isomorphic to an object in DMTK.

We also know (see [8, §1.2.3]) that in the Voevodsky category MDK one
inverts the morphism X × A

1 → X induced by the projection, so that taking
the product with an affine space A

k is an isomorphism at the level of the
corresponding motives and for the motivic complexes with compact support
this gives m(X × A

1) = m(X)(−1)[2], see [33, Corollary 4.1.8]. Thus, for
any given m(X) in DMTK, the motive m(X × A

k) is obtained from m(X)
by Tate twists and shifts, hence it is also in DMTK.

These two properties of the derived category DMTK of mixed Tate moti-
ves suffice to show that the motive of the affine hypersurface complement
A

�2
� D̂� is mixed Tate,

m(A�2
� D̂�) ∈ Obj(DMTQ). (4.1)

In fact, one sees from the inductive construction of A
�2

� D̂� described above
that at each step we are dealing with varieties defines over K = Q and we
now show that, at each step, the corresponding motives are mixed Tate.

Single points obviously belong to the category of mixed Tate motives.
At the first step, one takes the complement W1 of a point in an affine
space, which gives a mixed Tate motive by the first observation above on
distinguished triangles associated to closed embeddings. At the next step
one considers the complement of the line bundle S1 inside the trivial vector
bundle E1 over W1. Again, both m(S1) and m(E1) are mixed Tate motives,
since both are products by affine spaces by Lemma 4.2 above, hence m(E1 �

S1) is also mixed Tate. The same argument shows that, for all 1 ≤ k ≤ �,
the motive m(Ek � Sk) is mixed Tate, by repeatedly using Lemma 4.2 and
the two properties of DMTQ recalled above. �

4.2 The class in the Grothendieck ring

Lemma 4.1 suffices to obtain an explicit formula for the class in the Grothen-
dieck ring of varieties of the complement of the determinant hypersurface.
This is of course well-known: see for example [3, §3.3].

Proposition 4.1. In the affine case the class in the Grothendieck ring of
varieties is

[A�2
� D̂�] = L

(�
2)

�∏
i=1

(Li − 1) (4.2)
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where L is the class of A
1. In the projective case, the class is

[P�2−1
� D�] = L

(�
2)

�∏
i=2

(Li − 1). (4.3)

Proof. Using Lemma 4.1 one sees inductively that the class of Wk is given
by

[Wk] = (L� − 1)(L� − L)(L� − L
2) · · · (L� − L

k−1)

= L
(k
2)(L� − 1)(L�−1 − 1) · · · (L�−k+1 − 1). (4.4)

This completes the proof. �

The class (4.3) can be written equivalently in the form

[P�2−1
� D�] = (L[P1]T) · (L2[P2]T) · (L3[P3]T) · · · (L�−1[P�−1]T), (4.5)

where L = [A1] and T = [Gm] is the class of the multiplicative group. Here
the motive L

�[P1] · · · [P�−1] can be thought of as the motive of the “variety
of frames”.

Example 4.1. In the cases � = 2 and � = 3, the class of P
�2−1

� D� is given,
respectively, by

L
3 − L and L

8 − L
5 − L

6 + L
3.

(Note however that, for � ≥ 5, coefficients other than 0, ±1 appear in the
class.) Thus, the class [D�] is given, for � = 2 and � = 3 by the expressions

[D2] = L
2 + 2L + 1 = (L + 1)2

[D3] = L
7 + 2L

6 + 2L
5 + L

4 + L
2 + L + 1 = (L3 − L + 1)(L2 + L + 1)2.

The � = 2 case is otherwise evident: D2 is the set of rank-1, 2 × 2–matrices,
and as such it may be realized as P

1 × P
1, with the indicated class. The

� = 3 case can also be easily verified independently.

5 Relative cohomology and mixed Tate motives

We now assume that Γ is a graph satisfying the condition studied in Sec-
tions 2 and 3: the map τ is injective. By Proposition 3.1, this is the case if Γ
has at least three vertices, no looping edges, and is closed-2-cell embedded
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in an orientable surface in such a way that any two of the faces deter-
mined by the embedding have at most one edge in common. Proposition 3.2
and Corollary 3.1 provide us with specific combinatorial conditions ensuring
that this is the case. For instance, all 3-edge-connected planar graphs are
included in this class.

Also note that by the considerations in Section 3.5 (especially Lemma 3.8
and Proposition 3.3), any estimate for the complexity of Feynman integrals
for graphs satisfying these conditions generalizes automatically to the larger
class of graphs obtained from those considered here by adding arbitrarily
many looping edges, and by arbitrarily subdividing edges.

5.1 Algebraic simplexes and normal crossing divisors

In our setting and under the injectivity assumption, the property that the
Feynman integral (1.9) is a period of a mixed Tate motive (modulo diver-
gences) would follow from showing that a certain relative cohomology is a
realization of a mixed Tate motive. Instead of the relative cohomology

Hn−1(Pn−1
� XΓ, Σn � (Σn ∩ XΓ))

considered in [9,10], we consider here a different relative cohomology, where
the hypersurface complement P

n−1
� XΓ is replaced by the complement

P
�2−1

� D� of the determinant hypersurface, or better its affine counter-
part A

�2
� D̂�, and instead of the algebraic simplex Σn = {t : t1 · · · tn = 0},

we consider a locus Σ̂Γ in A
�2 that pulls back to the algebraic simplex Σn

under the map τ of (2.10) and that consists of a union of n linear subspaces
of codimension one in A

�2 that meet the image of A
n under τ along divisors

with normal crossings. The following observation is a direct consequence of
the construction of the matrix MΓ(t) (cf. Section 2.1).

Lemma 5.1. Suppose given a graph Γ such that the corresponding maps
τ and τi are injective. Then the n coordinates ti associated to the internal
edges of Γ can be written as preimages via the (injective) map τ : A

n → A
�2

of n linear subspaces Xi of codimension 1 in A
�2. These n subspaces form

a divisor Σ̂Γ with normal crossings in A
�2.

Proof. Consider the various possible cases for a specific edge listed in Lemma
2.2. In the third case listed there, where there are two loops �i, �j containing
e, and not having any other edge in common, the variable te is immediately
expressed as the pullback to A

n of a coordinate in A
�2 . Consider then

the second case listed in Lemma 2.2, where an edge e belongs to a single
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loop �i. Under the assumption that the map τi is injective, then any linear
combination of the variables corresponding to the edges in the ith loop may
be written as a linear combination of coordinates of the ith row. �

The considerations in Section 3.4 allow us to improve this observation,
by passing to a larger normal crossing divisor, so that one can generate all
the Σ̂Γ from the components of a single normal crossings divisor Σ̂�,g that
only depends on the number of loops of the graph and on the minimal genus
of the embedding of the graph on a Riemann surface. We formalize this
remark as follows.

Proposition 5.1. There exists a normal crossings divisor Σ̂�,g ⊂ A
�2, which

is a union of N =
(
f
2

)
linear spaces

Σ̂�,g := X1 ∪ · · · ∪ XN , (5.1)

such that, for all graphs Γ with � loops and genus g closed 2-cell embedding,
the preimage under τ = τΓ of the union Σ̂Γ of a subset of components of Σ̂�,g

is the algebraic simplex Σn in A
n. More explicitly, the components of the

divisor Σ̂�,g can be described by the N =
(
f
2

)
equations

{
xij = 0, 1 ≤ i < j ≤ f − 1,

xi1 + · · · + xi,f−1 = 0, 1 ≤ i ≤ f − 1,
(5.2)

where f = � − 2g + 1 is the number of faces of the embedding.

Proof. Using Lemma 3.7, we know that the injectivity of an (� − 2g) × (� −
2g) minor of the matrix MΓ suffices to control the injectivity of the map τ .
We can in fact arrange so that the minor is the upper-left part of the � × �
ambient matrix. Then, as in Lemma 5.1, the hyperplanes in A

n associated
to the coordinates ti can be obtained by pulling back linear spaces along this
minor. On the diagonal of the (f − 1) × (f − 1) submatrix we find all edges
making up each face, with a positive sign. It follows that the pull-backs
of the equations (5.2) produce a list of all the edge variables, possibly with
redundancies. The components of Σ̂�,g that form the divisor Σ̂Γ are selected
by eliminating those components of Σ̂�,g that contain the image of the graph
hypersurface (i.e., coming from the zero entries of the matrix MΓ(t)). �

Thus, for every Γ satisfying the conditions recalled at the beginning of the
section (for example, every 3-edge-connected planar graph, or every graph
obtained from one of these by adding looping edges or subdividing edges),
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the nature of period appearing as a Feynman integral over Γ in the sense
explained in Section 2 is controlled by the motive

m(A�2
� D̂�, Σ̂Γ � (D̂� ∩ Σ̂Γ)), (5.3)

for a normal crossing divisor Σ̂Γ ⊂ A
�2 consisting of a subset of components

of the fixed (for given � and g) normal crossing divisor Σ̂�,g ⊂ A
�2 introduced

above.

More explicitly, the boundary of the topological simplex σn, that is, the
domain of integration of the Feynman integral in Lemma 2.3, satisfies

τ(∂σn) ⊂ Σ̂Γ ⊂ Σ̂�,g. (5.4)

Thus, the main goal here will be to understand the motivic nature of the
complement

Σ̂Γ � (D̂� ∩ Σ̂Γ). (5.5)

Since Σ̂Γ consists of components from the fixed normal crossing divisor
Σ̂�,g, this question will be recast in terms that only depend on � and g: we
show in Corollary 5.1 below that, using the inclusion–exclusion principle
applied to the components of Σ̂�,g, it is possible to answer these questions
simultaneously for all the divisors Σ̂Γ, for all graphs with � loops and genus
g, by investigating the nature of a motive constructed out of the intersections
of the components of the divisor Σ̂�,g.

Notice in fact that one can derive the case of Σ̂�,g from the case of g =
0, since Σ̂�,g ⊆ Σ̂�,0, corresponding to an (� − 2g) × (� − 2g) minor of the
matrix MΓ(t).

There are general and explicit conditions (see [18, Proposition 3.6]) imply-
ing that the relative cohomology of a pair (X, Y ) comes from a mixed Tate
motive m(X, Y ) (see also [19] for a concrete application to the geometric case
of moduli spaces of curves). In general, these rely on assumptions on the
divisors involved and their associated stratification, which may not directly
apply to the cases considered here. We discuss here a direct approach to
constructing stratifications of our loci Σ̂�,g � (D̂� ∩ Σ̂�,g) that can be used to
investigate the nature of the motive (5.3).

5.2 Inclusion–exclusion

The procedure we follow will be the one outlined above, based on the divisors
Σ̂�,g and the inclusion–exclusion principle. Since we already know by the
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results of Section 4 that the complement X = A
�2

� D̂� is a mixed Tate
motive, we aim at providing a direct argument showing that Y = Σ̂Γ � (Σ̂Γ ∩
D̂�) also is a mixed Tate motive. The same argument used in Section 4
based on the distinguished triangles in the Voevodsky triangulated category
of mixed Tate motives [33] would then show that the relative cohomology
of the pair (X, Y ) comes from an object m(X, Y ) ∈ Obj(DMTQ).

As a first step we transform the problem of a complement in a union
of linear spaces into an equivalent formulation in terms of intersections of
linear spaces, using inclusion–exclusion. For a collection {Zi}i∈I of varieties
Zi we set

Z◦
I := (∩i∈IZi) � (∪j �∈IZj). (5.6)

Notice that, for all I,

∩i∈IZi = �J⊇IZ
◦
J .

This is a disjoint union. We then have the following result.

Lemma 5.2. Let Z1, . . . , Zm be varieties; assume that the intersections
∩i∈IZi are mixed Tate, for all non-empty I ⊆ {1, . . . , m}. Then Z1 ∪ · · · ∪
Zm is mixed Tate.

Proof. We want to show that Z◦
I is mixed Tate for all non-empty I ⊆

{1, . . . , m}. To see this, notice that it is true by hypothesis for I = {1, . . . , m},
since in this case Z◦

I = ∩i∈IZi. Thus, it suffices to prove that if it is true
for all I with |I| > k, then it is true for all I with |I| = k (provided k ≥ 1).
Recall that, as we already used in Section 4 above, the distinguished trian-
gles in the Voevodsky category of mixed Tate motives imply that, if X ↪→ Y
is a closed embedding, and U = Y � X the complement, then if any two of
X, Y, U are mixed Tate so is the third as well. The result then follows from
the combined use of this property, the hypothesis, and the identity

Z◦
I = (∩i∈IZi) � (�J�IZ

◦
J).

Since we have

Z1 ∪ · · · ∪ Zm = �I �=∅Z◦
I ,

we conclude that the union Z1 ∪ · · · ∪ Zm is mixed Tate, again by the prop-
erty of mixed Tate motives mentioned above. �

Now, we have observed that for every graph Γ with � loops and genus g
(and satisfying the condition specified at the beginning of the section) the
divisor Σ̂Γ consists of components of the divisor Σ̂�,g. Therefore, the strata
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of Σ̂Γ are unions of strata from Σ̂�,g. We can then reformulate our main
problem as follows.

Corollary 5.1. Let, as above, Σ̂�,g = X1 ∪ · · · ∪ XN and let Σ̂Γ be the divi-
sors constructed out of subsets of components of Σ̂�,g, associated to the
individual graphs. Then, for all graphs Γ with � loops and genus g, the
complement Σ̂Γ � (D̂� ∩ Σ̂Γ) is mixed Tate if the locus

(∩i∈IXi) � D̂� (5.7)

is mixed Tate for all I ⊆ {1, . . . , N}, I �= ∅.

Proof. This is a direct consequence of Lemma 5.2. �

Corollary 5.1 encapsulates the main reformulation of our problem, men-
tioned at the end of Section 1: the target becomes that of proving that
the loci (∩i∈IXi) � D̂� determined by the normal crossing divisor Σ̂�,g are
mixed Tate. This result shows that, although in principle one is working
with a different divisor Σ̂Γ for each graph Γ, in fact it suffices to consider
the divisor Σ̂�,g, for fixed number of loops � and genus g. It is conceivable
that the loci associated to a specific graph (that is, to a specific choice of
components of Σ̂�,g) may be mixed Tate while the loci corresponding to the
whole divisor Σ̂�,g is not. As we are seeking an explanation that would imply
that all periods arising from Feynman integrals are periods of mixed Tate
motives, we will optimistically venture that all loci (∩i∈IXi) � D̂� may in
fact turn out to be mixed Tate, for all � and for g = 0: by Corollary 5.1, it
would follow that all complements Σ̂Γ � (D̂� ∩ Σ̂Γ) are mixed Tate, for all
graphs Γ (satisfying our running combinatorial hypothesis).

Our task is now to formulate this working hypothesis as a more concrete
problem. The intersection ∩i∈IXi is a linear subspace of codimension |I| in
A

�2 ; in general, the intersection of a linear subspace with the determinant
is not mixed Tate (for example, the intersection of a general A

3 with D̂3 is
a cone over a genus-1 curve). Thus, we have to understand in what sense
the intersections ∩i∈IXi appearing in Corollary 5.1 are special; the following
lemma determines some key features of these subspaces.

Lemma 5.3. Let E be a fixed �-dimensional vector space, as in Section 4.1
above. Every I ⊆ {1, . . . , N} as above determines a choice of linear sub-
spaces V1, . . . , V� of E, such that

∩k∈IXk = {(v1, . . . , v�) ∈ A
�2 | ∀i, vi ∈ Vi}. (5.8)

(Here, we denote an � × � matrix in A
�2 by its � row-vectors vi ∈ E.)
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Further, dim Vi ≥ i − 1. Further still, there exists a basis (e1, . . . , e�) of
E such that each space Vi is the span of a subset (of cardinality ≥ i − 1) of
the vectors ej.

Proof. Recall (Proposition 5.1) that the components Xk of Σ̂�,g consist of
matrices for which either the (i, j) entry xij equals 0, for 1 ≤ i < j ≤ � −
2g, or

xi1 + · · · + xi,�−2g = 0
for 1 ≤ i ≤ � − 2g. Thus, each Xk consists of �-tuples (v1, . . . , v�) for which
exactly one row vi belongs to a fixed hyperplane of E, and more precisely
to one of the hyperplanes

x1 + · · · + x�−2g = 0, x2 = 0, · · ·, x�−2g = 0 (5.9)

(with evident notation). The statement follows by choosing Vi to be the
intersection of the hyperplanes corresponding to the Xk in row i, among
those listed in (5.9). Since there are at most � − 2g − i + 1 hyperplanes Xk

in the ith row,

dim Vi ≥ � − (� − 2g − i + 1) = 2g + i − 1 ≥ i − 1.

Finally, to obtain the basis (e1, . . . , e�) mentioned in the statement, simply
choose the basis dual to the basis (x1 + · · · + x�−2g, x2, . . . , x�) of the dual
space to E. �

5.3 The main questions

In view of Lemma 5.3, for any choice V1, . . . , V� of subspaces of an �-dimen-
sional space E, let

F(V1, . . . , V�) := {(v1, . . . , v�) ∈ A
�2 | ∀k, vk ∈ Vk} � D̂� (5.10)

denote the complement of the determinant hypersurface in the set of matri-
ces determined by V1, . . . , V�. An optimistic version of the question we are
led to is:

Question I�. Let V1, . . . , V� be subspaces of an �-dimensional vector space.
Is the locus F(V1, . . . , V�) mixed Tate?

By Corollary 5.1 and Lemma 5.3, an affirmative answer to Question I�
implies that the complement Σ̂Γ � (D̂� ∩ Σ̂Γ) is mixed Tate for all graphs
Γ with � loops and satisfying the combinatorial condition given at the
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beginning of this section. Modulo divergence issues, this would imply that
all Feynman integrals corresponding to these graphs are periods of mixed
Tate motives. We will give an affirmative answer to Question I� for � ≤ 3,
in Section 6.

As Lemma 5.3 is in fact more precise, the same conclusion would be
reached by answering affirmatively the following weak version of Question I�:

Question II�. Let (e1, . . . , e�) be a basis of an �-dimensional vector space.
For i = 1, . . . , �, let Vi be a subspace spanned by a choice of ≥ i − 1 basis
vectors. Is F(V1, . . . , V�) mixed Tate?

Notice that, when Vk = E for all k, both questions reproduce the state-
ment about the hypersurface complement A

�2
� D̂� proved in Section 4.1.

One might expect that a similar inductive procedure would provide a simple
approach to these questions. It is natural to consider the following apparent
refinement of Question I� for 1 ≤ r ≤ � (and we could similarly consider an
analogous refinement Question II′�,r of Question II�):

Question I′�,r. In a vector space E of dimension �, and for any choice of
subspaces V1, . . . , Vr of E, let

F�(V1, . . . , Vr) = {(v1, . . . , vr) | vi ∈ Vi and dim〈v1, . . . vr〉 = r}.

Is the locus F�(V1, . . . , Vr) mixed Tate?

Question I� is then the same as Question I′�,�; and Question I′�,r is obtained
by taking Vr+1 = · · · = V� = E in Question I�: thus, answering Question I�
is equivalent to answering Question I′�,r for all r ≤ �.

Now, for all �, the case r = 1 is immediate: F�(V1) consists of all non-zero
vectors in V1, which is trivially mixed Tate. One could then hope that an
inductive procedure may yield a method for increasing r. This is carried out
in Section 6 for r = 2 and r = 3 (in particular, we give an affirmative answer
to Question I� for � ≤ 3); but this approach quickly leads to the analysis of
several different cases, with an increase in complexity that makes further
progress along these lines seem unlikely. The main problem is that once
all tuples (v1, . . . , vk) of linearly independent vectors such that vi ∈ Vi have
been constructed, controlling

dim(Vk+1 ∩ 〈v1, . . . , vk〉)

requires consideration of a range of possibilities that depend on the position
of the vectors vi and their spans vis-a-vis the position of the next space Vk+1.
The number of these possibilities increases rapidly. A similar approach to
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the simpler (but sufficient for our purposes) Question II does not appear to
circumvent this problem.

There are special cases where an inductive argument works nicely. We
mention two here.

• Suppose that all the Vk in (5.10) are hyperplanes in E. Then F(V1, . . . ,
V�) is mixed Tate.

In this case, following the inductive argument mentioned above, the only
possibilities for Vk+1 ∩ 〈v1, . . . , vk〉 are 〈v1, . . . , vk〉, and a hyperplane in
〈v1, . . . , vk〉. The first occurs when

〈v1, . . . , vk〉 ⊆ Vk.

This locus is under control, since it amounts to doing the whole construction
in Vk rather than E, i.e., one can argue by induction on the dimension of
E. Thus, this locus is mixed Tate. The other case gives a locus that is the
complement of this mixed Tate variety in another mixed Tate variety, hence,
by the same argument about closed embeddings and distinguished triangles
used in Section 4, it is also mixed Tate.

• Suppose V1 ⊆ V2 ⊆ · · · ⊆ Vr; then F�(V1, . . . , Vr) is mixed Tate.

Indeed, in this case 〈v1, . . . , vk〉 ⊆ Vk+1 for all k. The condition on vk+1

is simply vk+1 ∈ Vk+1 � 〈v1, . . . , vk〉, and these conditions clearly produce a
mixed Tate locus. Arguing as in Section 4.1, the class of F�(V1, . . . , Vr) is
immediately seen to equal

(Ld1 − 1)(Ld2 − L)(Ld3 − L
2) · · · (Ldr − L

r−1)

in this case, where dk = dim Vk.

5.4 A reformulation

For given subspaces Vi ⊂ E, the inductive approach suggested by Ques-
tion I′�,r aims at constructing the set of �-uples (v1, . . . , v�) with the two
properties

(1) vi ∈ Vi;
(2) dim〈v1, . . . , vr〉 = r, for all r,
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and proving inductively that these loci are mixed Tate, in order to show
that the loci (5.10) are mixed Tate. By (2), the sets

0 ⊂ 〈v1〉 ⊂ 〈v1, v2〉 ⊂ · · · ⊂ 〈v1, . . . , v�〉 = E

form a complete flag in E; let Er = 〈v1, . . . , vr〉. Our main question can then
be phrased in terms of these moving complete flags:

Question III�. Let V1, . . . , V� be subspaces of an �-dimensional vector space
E, and let di, ei be integers. Is the locus Flag�,{di,ei}({Vi}) of complete flags

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ E� = E

such that

• dim Ei ∩ Vi = di

• dim Ei ∩ Vi+1 = ei

mixed Tate?

An affirmative answer to this question (for all choices of di, ei) would
give an affirmative answer to our main Question I�. Indeed, the locus
F(V1, . . . , V�) is a fibration on the locus Flag�,{di,ei}({Vi}) determined in
Question III�. Concretely, the procedure constructing the tuples (v1, . . . , v�)
in F(V1, . . . , V�) over a flag E• in this locus is

• choose v1 ∈ (E1 ∩ V1) � {0};
• choose v2 ∈ (E2 ∩ V2) � (E1 ∩ V2);
• choose v3 ∈ (E3 ∩ V3) � (E2 ∩ V3);
• etc.

The class of F(V1, . . . , V�) in the Grothendieck group would then be com-
puted as a sum of terms

[Flag�,{di,ei}({Vi})] · (Ld1 − 1)(Ld2 − L
e1)(Ld3 − L

e2) · · · (Ldr − L
er−1).

The set of flags E• satisfying conditions analogous to those specified in Ques-
tion III� with respect to all terms of a fixed flat E′• (that is: with prescribed
dim(Ei ∩ E′

j) for all i and j) is a cell of the corresponding Schubert variety
in the flag manifold.

It follows that Flag�,{di,ei}({Vi}) is a disjoint union of cells, and thus
certainly mixed Tate, if the Vi’s form a complete flag. This gives a high-
brow alternative viewpoint for the last case mentioned in Section 5.3.
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By the same token, the set of flags E• for which dim Ei ∩ F is a fixed
constant is a union of Schubert cells in the flag manifold, for all subspaces F .
It follows that the locus Flag�,{di,ei}({Vi}) of Question III� is an intersection
of unions of Schubert cells in the flag manifold. Such loci were studied, e.g.,
in [16, 17,30,31].

6 Motives and manifolds of frames

The manifolds of r-frames in a given vector space are defined as follows.

Definition 6.1. Let F(V1, . . . , Vr) ⊂ V1 × · · · × Vr denote the locus of r-
tuples of linearly independent vectors in a vector space, where each vi is
constrained to belong to the given subspace Vi.

These are the loci appearing in Question I′�,r; we now omit the explicit
mention of the dimension � of the ambient space. The question we con-
sider here is the one formulated in Section 5.3, namely to establish when
the motive of the manifold of frames F(V1, . . . , Vr) is mixed Tate. A pos-
sible strategy to answering this question is based on the following simple
observations.

Lemma 6.1. Let V1, . . . , Vr be subspaces of a given vector space V . Let vr ∈
Vr, and let π : V → V ′ := V/〈vr〉 be the natural projection. Let v1, . . . , vr−1

be vectors such that vi ∈ Vi, and π(v1), . . . , π(vr−1) are linearly independent.
Then v1, . . . , vr are linearly independent.

Proof. The dimension of π(〈v1, . . . , vr−1〉) = 〈π(v1), . . . , π(vr−1)〉 is r − 1 by
hypothesis, therefore dim π−1(π(〈v1, . . . , vr−1〉)) = r. Since π−1(π(〈v1, . . . ,
vr−1〉)) ⊆ 〈v1, . . . , vr〉, it follows that dim〈v1, . . . , vr〉 = r, as needed. �

A second equally elementary remark is that for a given v′ �= 0 in the
quotient V/〈vr〉, and letting as above π denote the projection V → V/〈vr〉,
π−1(v′) ∩ Vi consists of either a single vector, if vr �∈ Vi, or a copy of the field
k, if vr ∈ Vi.

This implies the following.

Lemma 6.2. Suppose given a stratification {Sα} of Vr with the properties
that

• {Sα} is finer than the stratification induced on Vr by the subspace
arrangement V1 ∩ Vr, . . . , Vr−1 ∩ Vr, hence the number sα of spaces
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Vi (1 ≤ i < r) containing a vector vr ∈ Sα is independent of the vector
and only depends on α.

• For vr ∈ Sα, the class Fα := [F(π(V1), . . . , π(Vr−1))] also depends only
on α, and not on the chosen vector vr ∈ Sα.

Then the class in the Grothendieck group satisfies

[F(V1, . . . , Vr)] =
∑
α

L
sα · [Fα] · [Sα]. (6.1)

Proof. Indeed, by Lemma 6.1 every frame in the quotient will determine
frames in V , and by the observation following the Lemma, there is a whole
ksα of frames over a given one in the quotient. �

In an inductive argument, the loci [Fα] could be assumed to be mixed
Tate, and (6.1) would provide a strong indication that [F(V1, . . . , Vr)] is then
mixed Tate as well. We focus here on giving statements at the level of classes
in the Grothendieck ring, for simplicity, though these same arguments, based
on constructing explicit stratifications, can be also used to derive conclusion
on the motives at the level of the derived category of mixed motives in a way
similar to what we did in the case of the complement of the determinant
hypersurface in Section 4 above.

The main question is then reduced to finding conditions under which a
stratification of the type described here exists. We see explicitly how the
argument goes in the simplest cases of two and three subspaces. As we dis-
cuss below, the case of three subspaces is already more involved and exhibits
some of the features one is bound to encounter, with a more complicated
combinatorics, in the more general cases.

6.1 The case of two subspaces

Let V1, V2 be subspaces of a vector space V . We want to parametrize all
pairs of vectors

(v1, v2)

such that v1 ∈ V1, v2 ∈ V2, and dim〈v1, v2〉 = 2. This locus can be decom-
posed into two pieces (which may be empty), defined by the following pre-
scriptions:

(1) choose v1 ∈ V1 � (V1 ∩ V2), and v2 ∈ V2 � {0};
(2) choose v1 ∈ (V1 ∩ V2) � {0}, and v2 ∈ V2 � 〈v1〉.
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It is clear that each of these two recipes produces linearly independent
vectors, and that (1) and (2) exhaust the ways in which this can be done.
So F(V1, V2) is the union of the corresponding loci. Pairs (v1, v2) as in (1)
range over the locus (V1 � (V1 ∩ V2)) × (V2 � {0}), which is clearly mixed
Tate. As for (2), realize it as follows:

• Consider the projective space P(V1 ∩ V2), and the trivial bundles V12 ⊆
V2 with fiber V1 ∩ V2 ⊆ V2.

• V12 contains the tautological line bundle O12(−1) over P(V1 ∩ V2),
hence this line bundle is naturally contained in V2 as well.

• Then the pairs (v1, v2) as in (2) are obtained by choosing a point
p ∈ P(V1 ∩ V2), a vector v1 �= 0 in the fiber of O12(−1) over p, and a
vector v2 in the fiber of V2 � O12(−1) over p.

It is clear that this description also produces a mixed Tate motive.

Note that the prescriptions given as (1) and (2) suffice to compute the
class in the Grothendieck group.

Lemma 6.3. The class in the Grothendieck group of the manifold of frames
F(V1, V2) is of the form

[F(V1, V2)] = L
d1+d2 − L

d1 − L
d2 − L

d12+1 + L
d12 + L, (6.2)

where di = dim Vi and d12 = dim(V1 ∩ V2).

Proof. The two loci (1) and (2), respectively, have classes

(1) (Ld1 − L
d12)(Ld2 − 1);

(2) (Ld12 − 1)(Ld2 − L).

The class of F(V1, V2) is then given by the sum

[F(V1, V2)] = (Ld1+d2 −L
d1 −L

d2+d12 + L
d12) + (Ld2+d12 −L

d12+1 −L
d2 + L)

= L
d1+d2 − L

d1 − L
d2 − L

d12+1 + L
d12 + L.

This gives (6.2). �

Notice that the expression for [F(V1, V2)] is symmetric in V1 and V2,
though the two individual contributions (1) and (2) are not. Of course,
a more symmetric description of the locus can be obtained by subdividing
it into four cases according to whether v1, v2 are or are not in V1 ∩ V2.
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6.2 The case of three subspaces

We are given three subspaces V1, V2, V3 of a vector space, and we want to
parametrize all triples of linearly independent vectors (v1, v2, v3) with vi ∈
Vi. As above, di will stand for the dimension of Vi, and dij for dim(Vi ∩ Vj).
Further, let d123 = dim(V1 ∩ V2 ∩ V3), and D = dim(V1 + V2 + V3).

Notice that now the information on the dimension D is also needed and
does not follow from the other data. This can be seen easily by thinking of
the cases of three distinct lines spanning a three-dimensional vector space
or of three distinct coplanar lines. These configurations only differ in the
number D, yet the set of linearly independent triples is nonempty in the
first case, empty in the second.

We proceed as follows. Given a choice of v3 ∈ V3, consider the projection
π : V → V ′ := V/〈v3〉; in V ′ we have the images π(V1), π(V2), to which we
can apply the case r = 2 analyzed above. As we have seen, F(V ′

1 , V
′
2) is

determined by the dimensions of V ′
1 , V ′

2 , and V ′
1 ∩ V ′

2 . Thus, we need a
stratification of V3 such that, for v3 ∈ V3 and denoting as above by π the
projection V → V/〈v3〉, the dimensions of the spaces

π(V1), π(V2), π(V1) ∩ π(V2)

are constant along strata.

Lemma 6.4. The following five loci give a stratification of V3 � {0} with
the properties of Lemma 6.2.

(1) S123 := (V1 ∩ V2 ∩ V3) � {0};
(2) S13 := (V1 ∩ V3) � (V1 ∩ V2 ∩ V3);
(3) S23 := (V2 ∩ V3) � (V1 ∩ V2 ∩ V3);
(4) S(12)3 := ((V1 + V2) ∩ V3) � ((V1 ∪ V2) ∩ V3);
(5) S3 := V3 � ((V1 + V2) ∩ V3).

Proof. First observe that

dim π(Vi) =

{
di, if v3 �∈ Vi,

di − 1, if v3 ∈ Vi.

As for dim(π(V1) ∩ π(V2)), note that

dim(π(V1) ∩ π(V2)) = dim(π(V1)) + dim(π(V2)) − dim(π(V1) + π(V2))
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and

dim(π(V1) + π(V2)) = dim(π(V1 + V2))

=

{
dim(V1 + V2), if v3 �∈ V1 + V2,

dim(V1 + V2) − 1, if v3 ∈ V1 + V2.

It follows easily that the three numbers dim π(V1), dim π(V2), dim(π(V1 ∩
V2)) are constant along the strata. More explicitly one has the following
data:

dim π(V1) dim π(V2) dim(π(V1) ∩ π(V2))

S123 d1 − 1 d2 − 1 d12 − 1
S13 d1 − 1 d2 d12

S23 d1 d2 − 1 d12

S(12)3 d1 d2 d12 + 1
S3 d1 d2 d12

For example, in the fourth (and most interesting) case, dim π(V1) = d1

and dim π(V2) = d2 since v3 �∈ Vi if v3 ∈ S(12)3; dim π(V1 + V2) = dim(V1 +
V2) − 1 since v3 ∈ V1 + V2; and hence

dim π(V1) ∩ π(V2) = dim V1 + dim V2 − dim(V1 + V2) + 1

= dim(V1 ∩ V2) + 1 = d12 + 1.

Lemma 6.3 converts this information into the list of the classes [Fα] and
one obtains the following list of cases:

[Fα]

S123 L
d1+d2−2 − L

d1−1 − L
d2−1 − L

d12 + L
d12−1 + L

S13 L
d1+d2−1 − L

d1−1 − L
d2 − L

d12+1 + L
d12 + L

S23 L
d1+d2−1 − L

d1 − L
d2−1 − L

d12+1 + L
d12 + L

S(12)3 L
d1+d2 − L

d1 − L
d2 − L

d12+2 + L
d12+1 + L

S3 L
d1+d2 − L

d1 − L
d2 − L

d12+1 + L
d12 + L

The number sα is immediately read off the geometry. The last ingredient
consists of the class [Sα], which is also essentially immediate. The only item
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that deserves attention is the dimension of (V1 + V2) ∩ V3. This is

dim(V1 + V2) + dim V3 − dim(V1 + V2 + V3) = dim(V1 + V2) + d3 − D

and as

dim(V1 + V2) = dim V1 + dim V2 − dim(V1 ∩ V2) = d1 + d2 − d12,

we have
dim((V1 + V2) ∩ V3) = d1 + d2 + d3 − D − d12.

With this understanding one obtains the following list of cases:

[Sα] sα

S123 L
d123 − 1 2

S13 L
d13 − L

d123 1
S23 L

d23 − L
d123 1

S(12)3 L
d1+d2+d3−D−d12 − L

d13 − L
d23 + L

d123 0
S3 L

d3 − L
d1+d2+d3−D−d12 0

This completes the proof. �

We can now apply equation (6.1), and this gives the following result.

Lemma 6.5. The class of F(V1, V2, V3) in the Grothendieck group is of the
form

[F(V1, V2, V3)] = (Ld1 − 1)(Ld2 − 1)(Ld3 − 1) − (L − 1)((Ld1 − L)(Ld23 − 1)

+ (Ld2 − L)(Ld13 − 1) + (Ld3 − L)(Ld12 − 1))

+ (L − 1)2(Ld1+d2+d3−D − L
d123+1) + (L − 1)3. (6.3)

Notice once again that the expression (6.3) is symmetric in V1, V2, V3,
unlike the contributions of the individual strata. Slightly more refined
considerations, in the style of those sketched in Section 6.1, prove that
[F(V1, V2, V3)] is in fact mixed Tate.

In principle, the procedure applied here should work for a larger number
of subspaces: the main task amounts to the determination of a stratification
of the last subspace satisfying the properties given in Lemma 6.2. This is
bound to be rather challenging for r ≥ 4: already for r = 4 one can produce
examples for which the closures of the strata are not linear subspaces. This
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is in fact the case already for V1, . . . , V3 planes in general position in a
four-dimensional ambient space E: the unique quadric cone containing V1,
V2, V3 is the closure of a stratum in a stratification of V4 = E satisfying the
properties listed in Lemma 6.2.

6.3 Graphs with three loops

One can apply the formula of Lemma 6.5 to compute explicitly the motive
(as a class in the Grothendieck group) for the locus

Σ̂3,0 � (Σ̂3,0 ∩ D̂3) (6.4)

of intersection of the divisor with normal crossings Σ̂�,g of (5.1) with the
complement of the determinant hypersurface, in the case of (planar) graphs
with three loops.

As pointed out in the discussion following Corollary 5.1, studying Σ̂3,0

suffices in order to get analogous information for Σ̂Γ for every graph with
three loops and satisfying the condition specified at the beginning of Sec-
tion 5 (guaranteeing that the corresponding map τ is injective). The divisor
Σ̂3,0 is the divisor corresponding to the “wheel with three spokes” graph
(the skeleton of the tetrahedron).

This graph has matrix MΓ(t) given by
⎛
⎝t1 + t2 + t5 −t1 −t2

−t1 t1 + t3 + t4 −t3
−t2 −t3 t2 + t3 + t6

⎞
⎠ .

Here, t1, . . . , t6 are variables associated with the six edges of the graph,
labeled as in figure 6.

Choose the internal faces with counterclockwise orientation as the basis
of loops. Then any orientation for the edges leads to the matrix displayed

Figure 6: The wheel with three spokes graph.
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above. Labeling entries of the matrix as xij , we can obtain t1, . . . , t6 as pull-
backs of the following:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t1 = −x12,
t2 = −x13,
t3 = −x23,
t4 = x21 + x22 + x23,
t5 = x11 + x12 + x13,
t6 = x31 + x32 + x33.

Thus, we are considering the divisor Σ̂3,0 with normal crossings given by
the equation

x12x13x23(x11 + x12 + x13)(x21 + x22 + x23)(x31 + x32 + x33) = 0.

We want to obtain an explicit description, as a class in the Grothendieck
group, of the intersection of this locus with the complement of determinant
hypersurface D̂3 in A

9. By inclusion–exclusion (cf. Section 5.2) this can
be done by carrying out the computation for all intersections of subsets of
the components of this divisor. Since there are six components, there are
26 = 64 such intersections.

Each of these possibilities determines a triple of subspaces V1, V2, V3 inside
the ambient A

9 (cf. Lemma 5.3), corresponding to linearly independent vec-
tors v1, v2, v3, i.e., the rows of the matrix xij , parameterizing points in the
complement of the determinant.

Thus, to begin with, one computes for each of these cases the correspond-
ing class [F(V1, V2, V3)] using Lemma 6.5.

Note that each of these classes is necessarily a multiple of (L − 1)3: indeed,
once the directions of v1, v2, v3 are specified, the set of vectors with those
directions forms a (C∗)3. We list the classes here, divided by this constant
factor (L − 1)3. Each class is marked according to the components of Σ̂3,0

containing the corresponding locus: for example, • • ◦ ◦ ◦ • corresponds to
the complement of D̂3 in the intersection of X1 ∩ X2 ∩ X6, where Xi pulls
back to ti via τ as above (thus, X1 ∩ X2 ∩ X6 has equations x12 = x13 =
x31 + x32 + x33 = 0). See the first of the following tables.

Next, one applies inclusion–exclusion to go from the class [F(V1, V2, V3)] as
above, which corresponds to the complement of the determinant in subspaces
obtained as intersections of the six divisors, to classes corresponding to the
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• • • • • • 0 • • ◦ ◦ • • 0 • ◦ ◦ ◦ • • L
3 ◦ • ◦ ◦ ◦ • L

3(L + 2)
◦ • • • • • 0 • • ◦ • ◦ • L(L + 1) • ◦ ◦ • ◦ • L

2(L + 1) ◦ • ◦ ◦ • ◦ L
3(L + 1)

• ◦ • • • • 0 • • ◦ • • ◦ 0 • ◦ ◦ • • ◦ L
3 ◦ • ◦ • ◦ ◦ L

3(L + 2)
• • ◦ • • • 0 • • • ◦ ◦ • L

2 • ◦ • ◦ ◦ • L(L2 + 2L − 1) ◦ • • ◦ ◦ ◦ L
3(L + 1)

• • • ◦ • • 0 • • • ◦ • ◦ 0 • ◦ • ◦ • ◦ L
2(L + 1) • ◦ ◦ ◦ ◦ • L

3(L + 2)
• • • • ◦ • L • • • • ◦ ◦ L

2 • ◦ • • ◦ ◦ L
2(L + 1) • ◦ ◦ ◦ • ◦ L

3(L + 1)
• • • • • ◦ 0 ◦ ◦ ◦ • • • 0 • • ◦ ◦ ◦ • L

2(L + 1) • ◦ ◦ • ◦ ◦ L
3(L + 2)

◦ ◦ • • • • 0 ◦ ◦ • ◦ • • L
2(L + 1) • • ◦ ◦ • ◦ 0 • ◦ • ◦ ◦ ◦ L

3(L + 2)
◦ • ◦ • • • 0 ◦ ◦ • • ◦ • L

3 • • ◦ • ◦ ◦ L
2(L + 1) • • ◦ ◦ ◦ ◦ L

3(L + 1)
◦ • • ◦ • • L

2 ◦ ◦ • • • ◦ L
3 • • • ◦ ◦ ◦ L

3 ◦ ◦ ◦ ◦ ◦ • L
3(L + 1)2

◦ • • • ◦ • L
2 ◦ • ◦ ◦ • • L

3 ◦ ◦ ◦ ◦ • • L
3(L + 1) ◦ ◦ ◦ ◦ • ◦ L

3(L + 1)2

◦ • • • • ◦ 0 ◦ • ◦ • ◦ • L
2(L + 1) ◦ ◦ ◦ • ◦ • L

3(L + 1) ◦ ◦ ◦ • ◦ ◦ L
3(L + 1)2

• ◦ ◦ • • • 0 ◦ • ◦ • • ◦ L
3 ◦ ◦ ◦ • • ◦ L

3(L + 1) ◦ ◦ • ◦ ◦ ◦ L
3(L + 1)2

• ◦ • ◦ • • L
2 ◦ • • ◦ ◦ • L

2(L + 1) ◦ ◦ • ◦ ◦ • L
3(L + 2) ◦ • ◦ ◦ ◦ ◦ L

3(L + 1)2

• ◦ • • ◦ • L
2 ◦ • • ◦ • ◦ L

3 ◦ ◦ • ◦ • ◦ L
3(L + 2) • ◦ ◦ ◦ ◦ ◦ L

3(L + 1)2

• ◦ • • • ◦ L
2 ◦ • • • ◦ ◦ L

3 ◦ ◦ • • ◦ ◦ L
3(L + 1) ◦ ◦ ◦ ◦ ◦ ◦ L

3(L + 1)(L2 + L + 1)

• • • • • • 0 • • ◦ ◦ • • 0 • ◦ ◦ ◦ • • L
2(L − 1)4 ◦ • ◦ ◦ ◦ • L

2(L − 1)5

◦ • • • • • 0 • • ◦ • ◦ • L
2(L − 1)3 • ◦ ◦ • ◦ • L

2(L − 1)4 ◦ • ◦ ◦ • ◦ L
2(L − 1)5

• ◦ • • • • 0 • • ◦ • • ◦ 0 • ◦ ◦ • • ◦ L
2(L − 1)4 ◦ • ◦ • ◦ ◦ L

2(L − 1)5

• • ◦ • • • 0 • • • ◦ ◦ • L(L − 1)4 • ◦ • ◦ ◦ • L
2(L − 1)4 ◦ • • ◦ ◦ ◦ L(L − 1)6

• • • ◦ • • 0 • • • ◦ • ◦ 0 • ◦ • ◦ • ◦ L
2(L − 1)4 • ◦ ◦ ◦ ◦ • L(L

2 − L − 1)(L − 1)4

• • • • ◦ • L(L − 1)3 • • • • ◦ ◦ L(L − 1)4 • ◦ • • ◦ ◦ L(L − 1)5 • ◦ ◦ ◦ • ◦ L
2(L − 1)5

• • • • • ◦ 0 ◦ ◦ ◦ • • • 0 • • ◦ ◦ ◦ • L
2(L − 1)4 • ◦ ◦ • ◦ ◦ L

2(L − 1)5

◦ ◦ • • • • 0 ◦ ◦ • ◦ • • L
2(L − 1)4 • • ◦ ◦ • ◦ 0 • ◦ • ◦ ◦ ◦ L

2(L − 1)5

◦ • ◦ • • • 0 ◦ ◦ • • ◦ • L(L − 1)5 • • ◦ • ◦ ◦ L
2(L − 1)4 • • ◦ ◦ ◦ ◦ L

2(L − 1)5

◦ • • ◦ • • L
2(L − 1)3 ◦ ◦ • • • ◦ L

2(L − 1)4 • • • ◦ ◦ ◦ L(L − 1)5 ◦ ◦ ◦ ◦ ◦ • L(L
2 − L − 1)(L − 1)5

◦ • • • ◦ • L(L − 1)4 ◦ • ◦ ◦ • • L
2(L − 1)4 ◦ ◦ ◦ ◦ • • L

2(L − 1)5 ◦ ◦ ◦ ◦ • ◦ L
2(L − 1)6

◦ • • • • ◦ 0 ◦ • ◦ • ◦ • L
2(L − 1)4 ◦ ◦ ◦ • ◦ • L

2(L − 1)5 ◦ ◦ ◦ • ◦ ◦ L
2(L − 1)6

• ◦ ◦ • • • 0 ◦ • ◦ • • ◦ L
3(L − 1)3 ◦ ◦ ◦ • • ◦ L

2(L − 1)5 ◦ ◦ • ◦ ◦ ◦ L
2(L − 1)6

• ◦ • ◦ • • L
2(L − 1)3 ◦ • • ◦ ◦ • L(L − 1)5 ◦ ◦ • ◦ ◦ • L

2(L − 1)5 ◦ • ◦ ◦ ◦ ◦ L
2(L − 1)6

• ◦ • • ◦ • L(L − 1)4 ◦ • • ◦ • ◦ L
2(L − 1)4 ◦ ◦ • ◦ • ◦ L

2(L − 1)5 • ◦ ◦ ◦ ◦ ◦ L(L
2 − L − 1)(L − 1)5

• ◦ • • • ◦ L
2(L − 1)3 ◦ • • • ◦ ◦ L(L − 1)5 ◦ ◦ • • ◦ ◦ L(L − 1)6 ◦ ◦ ◦ ◦ ◦ ◦ L(L

2 − L − 1)(L − 1)6

complement of the determinant in the complement of smaller subspaces in a
given subspace. This produces the list of classes in the Grothendieck group
in the second table: here the classes do include the common factor (L − 1)3.

These are the classes of the individual strata of the stratification of A
9

�

D̂3 determined by Σ̂3,0 (including several empty strata). The sum of the
classes in this table is the class [A9

� D̂3], that is L
3(L + 1)(L2 + L + 1)(L −

1)3 = (L − 1)(L8 − L
5 − L

6 + L
3) (cf. Example 4.1).

It is interesting to notice that the expressions simplify when one
takes inclusion–exclusion into account. The cancellations due to inclusion–
exclusion mostly lead to classes of the form L

a(L − 1)b.

In terms of Feynman integrals, in the case of the wheel with three spokes,
we are interested in the relative cohomology

H∗(A9
� D̂3, Σ̂3,0 � (D̂3 ∩ Σ̂3,0)).

The hypersurface complement A
9

� D̂3 has class

[A9
� D̂3] = L

3(L + 1)(L2 + L + 1)(L − 1)3, (6.5)
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while the class of Σ̂3,0 � (D̂3 ∩ Σ̂3,0) may be obtained as the sum of all the
classes listed above except ◦ ◦ ◦ ◦ ◦ ◦, which corresponds to the choice of
subspaces where V1 = V2 = V3 is the whole space (these are all the strata of
Σ̂3,0 � (D̂3 ∩ Σ̂3,0)) or, equivalently, the difference of (6.5) and the last item
◦ ◦ ◦ ◦ ◦ ◦. This gives

[Σ̂3,0 � (D̂3 ∩ Σ̂3,0)] = L
3(L + 1)(L2 + L + 1)(L − 1)3

− L(L2 − L − 1)(L − 1)6

= L(6L
4 − 3L

3 + 2L
2 + 2L − 1)(L − 1)3

The main information is carried by the class ◦ ◦ ◦ ◦ ◦ ◦,

L(L2 − L − 1)(L − 1)6. (6.6)

In the case of other three-loop graphs Γ, such as the one illustrated in
figure 7, the divisor Σ̂Γ is a union of components of Σ̂3,0 (cf. Proposition 5.1).
The class of the locus Σ̂Γ � (D̂3 ∩ Σ̂3,0) may be obtained by adding up all
contributions listed above, for the strata contained in Σ̂Γ. For the example
given in figure 7, these are the strata contained in the divisors X1, . . . , X5;
the corresponding classes are those marked by ∗ ∗ ∗ ∗ ∗ ∗, where at least one
of the first five ∗ is •; or, equivalently, the difference of (6.5) and the classes
marked ◦ ◦ ◦ ◦ ◦ • and ◦ ◦ ◦ ◦ ◦ ◦. The sum of these two classes is

L(L2 − L − 1)(L − 1)5 + L(L2 − L − 1)(L − 1)6 = L
2(L2 − L − 1)(L − 1)5

(cf. (6.6)), and hence

[Σ̂Γ � (D̂3 ∩ Σ̂3,0)] = L
3(L + 1)(L2 + L + 1)(L − 1)3

− L
2(L2 − L − 1)(L − 1)5 = L

2(5L
3 + 1)(L − 1)3.

Figure 7: Another graph with three loops and injective τ .
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7 Divergences and renormalization

Our analysis in the previous sections of this paper concentrated on the task
of showing that a certain relative cohomology is a realization of a mixed Tate
motive m(X, Y ), where the loci X and Y are constructed, respectively, as
the complement of the determinant hypersurface and the intersection with
this complement of a normal crossing divisor that contains the image of the
boundary of the domain of integration σn under the map τΓ, for any graph
Γ with fixed number of loops and fixed genus. Knowing that m(X, Y ) is a
mixed Tate motive implies that, when convergent, the parametric Feynman
integral for all such graphs is a period of a mixed Tate motive. This, how-
ever, does not take into account the presence of divergences in the Feynman
integrals.

There are several different approaches to regularize and renormalize the
divergent integrals. We outline here some of the possibilities and comment
on how they can be made compatible with our approach.

7.1 Blowups

One possible approach to dealing with divergences coming from the intersec-
tions of the divisor Σn with the graph hypersurface XΓ is the one proposed
by Bloch–Esnault–Kreimer in [10], namely one can proceed to perform a
series of blowups of strata of this intersection until one has separated the
domain of integration from the hypersurface and in this way regularized the
integral.

In our setting, a similar approach should be reformulated in the ambient
A

�2 and in terms of the intersection of the determinant hypersurface D̂�

with the divisor Σ̂�,g. If the main question posed in Section 5.3 has an
affirmative answer, then this intersection admits a stratification by mixed
Tate non-singular loci. It seems likely that a suitable sequence of blowups
would then have the effect of regularizing the integral, while at the same time
maintaining the motivic nature of the relevant loci unaltered. We intend to
return to a more detailed analysis of this approach in future work.

7.2 Dimensional regularization and L-functions

Belkale and Brosnan showed in [4] that dimensionally regularized Feynman
integrals can be written in the form of a local Igusa L-function, where the
coefficients of the Laurent series expansion are periods, provided the integrals
describing them are convergent. Such periods have an explicit description
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in terms of integrals on simplices σn and cubes [0, 1]r of algebraic differental
forms

f(t)s0ωn ∧ f(t) − 1
(f(t) − 1)t1 + 1

dt1 ∧ · · · ∧ f(t) − 1
(f(t) − 1)tr + 1

dtr,

for f(t) = ΨΓ(t) the graph polynomial. The nature of such integrals as peri-
ods would still be controlled by the same motivic loci that are involved in
the original parametric Feynman integral before dimensional regularization.
The result of [4] is formulated only for the case of log-divergent integrals
where only the graph polynomial ΨΓ(t) is present in the Feynman paramet-
ric form and not the polynomial PΓ(t, p). The result was extended to the
more general non-log-divergent case by Bogner and Weinzierl in [12]. For
the renormalization of Feynman integrals via blow-ups in cases more general
than log-divergent, see also [11].

In this approach, if there are singularities in the integrals that compute
the coefficients of the Laurent series expansion of the local Igusa L-function
giving the dimensionally regularized Feynman integral, these can be treated
by an algorithmic procedure developed by Bogner and Weinzierl in [13] (see
also the short survey [14]). The algorithm is designed to split the divergent
integral into sectors where a change of variable that introduces a blowup at
the origin isolates the divergence as a pole in a parameter 1/ε. One can then
do a subtraction of this polar part in the Laurent series expansion in the
variable ε and eliminate the divergence. The iteration part of the algorithm
is based on Hironaka’s polyhedral game and it is shown in [13] that the
resulting algorithm terminates in finite time.

If one uses this approach in our context one will have to show that the
changes of variables introduced in the process of evaluating the integrals in
sectors do not alter the motivic nature of the loci involved.

7.3 Deformations

An alternative to the use of blowups is the use of deformations. We discuss
here the simplest possible procedure one can think of that uses deformations
of the graph hypersurface (or of the determinant hypersurface). It is not the
most satisfactory deformation method, because it does not lead immediately
to a “minimal subtraction” procedure, but it suffices here to illustrate the
idea.

Consider the original parametric Feynman integral of the form
∫

σn

PΓ(t, p)βωn

ΨΓ(t)α
, (7.1)
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with exponents α and β as in (1.2),

α = −n + (� + 1)D/2, β = −n + D�/2.

Again, for our purposes, we can assume to work in the “stable range” where
D is sufficiently large so that both α and β are positive. The case of small
D, which is of direct physics interest, leads one to the different problem
of considering the hypersurfaces defined by PΓ(t, p), as a function of the
external momenta p and the singularities produced by the intersections of
these with the domain of integration. This type of analysis can be found in
the physics literature, for instance in [32]. See also [7, §18].

In the range where α and β are positive, one can choose to regularize
the integral (7.1) by introducing a deformation parameter ε ∈ C � R+ and
replaing (7.1) with the deformed

∫
σn

PΓ(t, p)βωn

(ΨΓ(t) − ε)α
. (7.2)

This has the effect of replacing, as locus of the singularities of the inte-
grand, the graph hypersurface X̂Γ = {ΨΓ(t) = 0}, with the level set X̂Γ,ε =
{ΨΓ(t) = ε} of the map ΨΓ : A

n → A. For a choice of ε in the cut plane
C � R+, the hypersurface X̂Γ,ε does not intersect the domain of integration
σn. In fact, for ti ≥ 0 one has ΨΓ(t) ≥ 0. This choice has therefore the effect
of desingularizing the integral. The resulting function of ε extends holomor-
phically to a function on C � I, where I ⊂ R+ is the bounded interval of
values of ΨΓ on σn.

When we transform the parametric integral using the map τΓ into an inte-
gral of a form defined on the complement of the determinant hypersurface D̂�

in A
�2 on a domain of integration τΓ(σn) with boundary on the divisor Σ̂�,g,

we can similarly separate the divisor from the hypersurface by the same
deformation, where instead of the locus D̂� = {det(x) = 0} one considers
the level set D̂�,ε = {det(x) = ε}, so that D̂�,ε does not intersect τΓ(σn). The
nature of the period described by the deformed integral is then controlled by
the motive m(Xε, Yε) for Xε = A

�2
� D̂�,ε and Yε = Σ̂�,g � (D̂�,ε ∩ Σ̂�,g). The

question becomes then whether the motivic nature of m(X, Y ) with X = X0

and Y = Y0 and m(Xε, Yε) is the same. This in general is not the case, as
one can easily construct examples of fibrations where the generic fiber is not
a mixed Tate motive while the special one is. However, in this setting one
is dealing with a very special case, where the deformed variety D̂�,ε is given
by matrices of fixed determinant. Up to a rescaling, one can check that the
fiber D̂�,1 = SLn is indeed a mixed Tate motive, from the general results of
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Biglari [5,6] on reductive groups. Thus, over a set of algebraic values of ε one
does not leave the world of mixed Tate motives. This will give a statement
on the nature of the regularized Feynman integrals as a period of a mixed
Tate motive m(Xε, Yε) and reduces then the problem to that of removing the
divergence as ε → 0, in such way that what remains is a convergent integral
whose nature as a period is controlled by the original motive m(X, Y ).

A different approach to the regularization of parametric Feynman inte-
grals using deformations was discussed in [25] in terms of Leray cocycles and
a related regularization procedure.
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