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Abstract

Smooth Freund–Rubin backgrounds of eleven-dimensional super-
gravity of the form AdS4 ×X7 and preserving at least half of the
supersymmetry have been recently classified. Requiring that amount of
supersymmetry forces X to be a spherical space form, whence isometric
to the quotient of the round 7-sphere by a freely acting finite subgroup
of SO(8). The classification is given in terms of ADE subgroups of the
quaternions embedded in SO(8) as the graph of an automorphism. In this
paper, we extend this classification by dropping the requirement that the
background be smooth, so that X is now allowed to be an orbifold of
the round 7-sphere. We find that if the background preserves more than
half of the supersymmetry, then it is automatically smooth in accordance
with the homogeneity conjecture, but that there are many half-BPS orb-
ifolds, most of them new. The classification is now given in terms of
pairs of ADE subgroups of quaternions fibred over the same finite group.
We classify such subgroups and then describe the resulting orbifolds in
terms of iterated quotients. In most cases, the resulting orbifold can be
described as a sequence of cyclic quotients.
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1 Introduction

Recent advances in our detailed understanding of the AdS4 /CFT3 corre-
spondence for (at least) half-BPS M2-brane configurations have been made
possible by the explicit construction of superconformal field theories in
three dimensions that are invariant under an orthosymplectic Lie super-
algebra osp(N |4) for 4 ≤ N ≤ 8 [1–9]. Such theories preserve at least
half the maximal amount of superconformal symmetry in three dimensions
and the unitary theories have now been classified (see [10] and references
therein for a comprehensive review). In several cases, the moduli spaces of
gauge-inequivalent superconformal vacua for these theories have been anal-
ysed [3,11–19] and found to contain a branch which, in the strong coupling
limit, is identified with the expected dual geometry for the eight-dimensional
space transverse to the worldvolume of a single M2-brane configuration pre-
serving the same amount of supersymmetry. In each case, this geometry
is found to describe an orbifold of the form R

8/Γ, where Γ is some finite
subgroup of SO(4) < SO(8) which commutes with the R-symmetry in the
N ≥ 4 conformal superalgebra. The orbifold R

8/Γ is precisely the cone
over the quotient S7/Γ which appears in the dual Freund–Rubin solution
AdS4 ×S7/Γ of eleven-dimensional supergravity in the near-horizon limit.
Although the quotient R

8/Γ is necessarily singular (since the origin is always
fixed by Γ), the quotient S7/Γ need not be. In fact, for all the known moduli
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spaces associated with M2-brane N ≥ 4 superconformal field theories, the
quotient S7/Γ is always smooth for N > 4, whereas it is never smooth for
N = 4.

Arguably the most pressing open problem in this subject is to under-
stand the precise nature of the dictionary between the superconformal field
theories and their dual geometries. As with natural languages, dictionar-
ies contain two lists of words and a correspondence between them. The
two lists of words in the case of the AdS4 /CFT3 correspondence are the
superconformal field theories on the one hand, and the geometries on the
other. As mentioned above, the unitary superconformal Chern–Simons the-
ories with N ≥ 4 matter have been classified, and the purpose of this paper
is to classify the possible dual geometries.

The mathematical problem we address in this paper is thus the classifica-
tion of quotients S7/Γ, which are spin and for which the vector space of real
Killing spinors has dimension N ≥ 4. This boils down to the classification
of certain subgroups of Spin(8) (up to conjugation). In [20], we discussed
the case of smooth quotients and in this paper we would like to extend these
results to include also singular quotients; that is, orbifolds. We will see that
those orbifolds for which N > 4 are actually smooth, when the list in [20]
is already complete. The novelty in this paper is the determination of the
N = 4 orbifolds.

This paper is organized as follows. In Section 2, we discuss the geometry
of spherical orbifolds in the context of supergravity backgrounds. In Sec-
tion 2.1, we review the fact that the orthonormal frame bundle of an orbifold
is a smooth manifold, when one can talk about spin structures just as for
smooth manifolds, and we relate the Killing spinors on a spherical orbifold
to the Γ-invariant parallel spinors on its cone orbifold. In Section 2.2, we
rephrase the classification of N ≥ 4 supersymmetric Freund–Rubin back-
grounds of the form AdS4 ×S7/Γ as the classification of certain finite sub-
groups of Spin(8) up to conjugation. For N ≥ 4 supersymmetry, they are
subgroups of Spin(4) ∼= Sp(1) × Sp(1). The classification of finite subgroups
of Spin(4) will take the first half of this paper.

The classification is an application of Goursat’s theory of subgroups of a
direct product of groups, which we review in Section 4 after introducing in
Section 3 the main ingredients of the classification: namely, the ADE sub-
groups of the quaternions. In contemporary language, the main consequence
of Goursat’s theory is that finite subgroups of Sp(1) × Sp(1) are given as
products of ADE subgroups A and B fibred over an abstract finite group
F . This means that F is a common factor group of A and B by respective
normal subgroups. As explained in Section 4.2, this requires classifying the
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normal subgroups of the ADE groups, their possible factor groups and their
groups of outer automorphisms. The determination of the normal subgroups
and their corresponding factor groups is presented in Section 5. This is both
well-known and well-hidden (or at least widely scattered) in the mathemat-
ical literature and we have had to recover these results ourselves. We think
it is probably useful to collect them here under one roof.

Section 6 puts everything together: we list the compatible pairs of ADE
subgroups with isomorphic factor groups, work out the outer automor-
phisms, and assemble the fibred products. The finite subgroups of Spin(4)
are listed in three tables: table 8 contains the product groups (those fibred
over the trivial group), table 9 contains the smooth quotients (those which
are graphs of automorphisms), and table 10 lists the remaining groups. The
product groups require no effort and the smooth quotients were classified
in [20], hence the main new result in this paper consists of table 10 and
the subsequent analysis. In Appendix A, we show that in almost all cases
the isomorphism type of the subgroup only depends on the choice of ADE
subgroups and their common factor group F and not on the outer automor-
phism of F used to twist the product. This result is perhaps not directly
relevant to the subsequent analysis, but we found it useful to keep in mind,
hence it is relegated to an appendix. In Appendix B, we recover the classi-
fication in [21] of finite subgroups of SO(4) as an independent check on the
results of the paper.

In Section 7, we make the classification more concrete by discussing the
actual orbifolds. We discuss how an orbifold by a group Γ can be decom-
posed into orbifolds by smaller groups, starting from a normal subgroup of
Γ or, more generally, a subnormal series associated to Γ. The theory behind
this process is explained in Section 7.1. We observe that with very few excep-
tions, orbifolds by finite subgroups of Spin(4) can be decomposed into a small
number of iterated cyclic quotients. The exceptions are the orbifolds, which
involve the binary icosahedral group, which we discuss briefly in Section 7.2.
The rest, which are the solvable groups, are treated in detail in Section 7.3.
We treat first the orbifolds by product groups, then the smooth quotients
and finally the orbifolds by solvable groups in table 10. A few of the N = 4
orbifolds have already appeared in the literature and in Section 8, we iden-
tify them and show where in our classification they occur. The paper ends
with a brief summary of the similar classification for the case of M5-branes.

1.1 How to use this paper

The authors are the first to concede that the paper is somewhat technical,
but we also believe that the results are potentially useful and hence we would
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like to offer the busy reader a brief user guide to the main results contained
in the paper.

First a word about notation. We distinguish between ⊂, < and �. Sup-
pose G is a group. Then S ⊂ G simply means that S is a subset of G,
whereas S < G means that S is a subgroup and S � G means it is a normal
subgroup. Normal subgroups play an important role in this paper; so let us
say a few words about them. Normal subgroups are the kernels of homo-
morphisms. If N � G is a normal subgroup then G/N becomes a group in
such a way that the map π : G → G/N sending an element to its N -coset
(left and right cosets agree for normal subgroups) is a group homomorphism
with kernel N . The relation between G, N and G/N can be succinctly
summarized in terms of an exact sequence:

1 −−−−→ N −−−−→ G
π−−−−→ G/N −−−−→ 1. (1.1)

It is important to stress that G/N is an abstract group and not a subgroup of
G. If G does have a subgroup H to which π restricts to give an isomorphism
π : H

∼=→ G/N , then we say that the sequence splits, which implies that G is
the semidirect product H � N . Of course, semidirect products include the
direct products as a special case. Exact sequences like the one above are
also called group extensions and G is said to be an extension of G/N by N .
If the sequence splits, the extension is said to be trivial.

As explained in the body of the paper, N ≥ 4 supersymmetry means that
the relevant orbifolds are S7/Γ, where Γ is a subgroup of Sp(1) × Sp(1). We
work quaternionically, because we believe this makes the results much easier
to describe, and the formulae much more natural. This means that for us
Sp(1) is indeed the group of unit quaternions and although it is isomorphic
to SU(2) we eschew this isomorphism; although for the sake of comparison
with the existing literature, we provide a brief dictionary in Section 8. The
action of Sp(1) × Sp(1) on S7 is defined by letting S7 be the unit sphere
in H

2 and having Sp(1) × Sp(1) act on H
2 = H ⊕ H by left multiplication:

namely, (u, v) ∈ Sp(1) × Sp(1) sends (x, y) ∈ H
2 to (ux, vy). This defines an

embedding of Sp(1) × Sp(1) into SO(4) × SO(4) and hence into SO(8).

Two Freund–Rubin backgrounds AdS4 ×S7/Γ and AdS4 ×S7/Γ′ are
equivalent if and only if Γ and Γ′ are conjugate in Spin(8). This freedom
allows us to make a number of choices along the way. The upshot of the
analysis is that each subgroup Γ is equivalent to one which is uniquely char-
acterized by a 4-tuple (A, B, F, τ), which we now explain.

First of all, A, B are ADE subgroups of Sp(1). These are very con-
crete finite subgroups of Sp(1) described in table 1 along with their explicit
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quaternion generators. We use the Dynkin labels An−1, Dn+2, E6,7,8 (for
n ≥ 2) to refer to those precise subgroups and not to their isomorphism
classes: Zn, 2D2n, 2T , 2O and 2I, respectively.

The group F is an abstract finite group (i.e., not a subgroup of anything),
admitting surjections from both A and B. Since the kernel of the surjections
A → F and B → F are normal subgroups of A and B, respectively, it is
enough to classify the possible normal subgroups of the ADE subgroups of
Sp(1). They are summarized, along with the corresponding F s, in table 5.

Finally, τ ∈ Out(F ) is a representative of a certain equivalence class of
outer automorphisms of F . This requires determining the group Aut(F ) of
automorphisms of F , the group of inner automorphisms and hence the group
Out(F ) of outer automorphisms. The results are summarized in table 7. In
some cases, different outer automorphisms give rise to equivalent orbifolds.
The equivalence relation agrees with that defined by the action on Out(F )
by a certain group. The set of orbits we call the set of possible twists and
denote it Twist(F ); although it does not just depend on F but also on how
F is obtained as a factor of A and B.

Out of the data (A, B, F, τ) one defines a subgroup A ×(F,τ) B of A × B
called a (twisted) fibred product. There are many such subgroups and are
given in tables 8, 9 and 10, along with their orders. It turns out that in most
cases the isomorphism type of A ×(F,τ) B is independent of τ , a fact we prove
in Appendix A. We do not work out the isomorphism type in all cases, since
this takes some effort and it is not clear how useful this information actually
is. The three tables just mentioned contain the list of finite subgroups of
Sp(1) × Sp(1), up to the action of the automorphism group Aut(Sp(1) ×
Sp(1)), which is an extension of the adjoint group SO(3) × SO(3) of inner
automorphisms by the Z2-group generated by interchanging the two Sp(1)
factors.

Although the meaning of A ×(F,τ) B is explained formally in Section 4.1,
perhaps it is convenient to describe it here more informally. This is how, in
practice, we work with such fibred products. The fact that A and B have F
as a common factor group, means that there exist normal subgroups A0 � A
and B0 � B such that there is a group isomorphism A/A0

∼= B/B0. Once
such an isomorphism has been chosen, the fibred product A ×(F,τ) B is given
by the preimage of the graph of τ in F × F under the map π in the exact
sequence

1 −−−−→ A0 × B0 −−−−→ A × B
π−−−−→ F × F −−−−→ 1. (1.2)

It consists of pairs (a, b) ∈ A × B such that bB0 = τ(aA0), where we write
aA0 and bB0 for the A0-coset of a and the B0-coset of b, respectively. This
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description of A ×(F,τ) B allows us to deconstruct the corresponding orbifold
as a sequence of quotients: first we quotient by A0 × B0 and the we quotient
the resulting orbifold by F . The quotients by A0 × B0 and F can themselves
be decomposed into simpler quotients, et cetera. In the end, all but a handful
of orbifolds can be described as a small number of iterated cyclic quotients.
The results can be read off of several tables: table 13 for the product groups,
table 14 for the smooth “orbifolds” and table 15 for the remaining groups.
The notation in those tables is explained in the bulk of the paper, but we
summarize it here for the impatient: ωn = e2πi/n (but we use ξ = ω8) and
ζ = eiπ/4 ejπ/4. We give the generators of the cyclic groups we quotient by
not as abstract generators, but as explicit elements of Sp(1) × Sp(1).

For example, let us consider the orbifold S7/Γ, where Γ = E6 ×T E6 has
order 48. We can perform this quotient in steps. We first consider the
quotient X of S7 by the Z2 × Z2 subgroup of Sp(1) × Sp(1) generated by
(−1, 1) and (1,−1). The element (i, i) acts on X with order 2, since (i, i)2 =
(−1,−1) and this is an element of the Z2 × Z2 group we quotiented S7 by
in order to obtain X. Let Y be the quotient of X by (i, i). On Y we
have an action of (j, j), which again has order 2. Let the corresponding
quotient be Z. Finally, on Z we have the action of (ζ, ζ) which has order 3,
since (ζ, ζ)3 = (−1,−1). That Z3-quotient of Z is S7/Γ. What this cyclic
decomposition of the group Γ is doing is basically allowing us to write the
elements of Γ uniquely as a word in some cyclic generators with a chosen
order of those generators, and this suggests performing the quotient by each
such generator in turn.

2 Spherical orbifolds

Let S7 denote the unit sphere in R
8. The Lie group of orientation-preserving

isometries of S7 is the special orthogonal group SO(8). Let Γ < SO(8) be
a finite group. The quotient S7/Γ, obtained by identifying points on the
sphere that are on the same orbit of Γ, will be smooth if and only if Γ acts
freely; that is, with trivial stabilizers. Recall that the stabilizer Γx of a point
x ∈ S7 is the subgroup of Γ consisting of all the elements of Γ, which fix x.
The action of Γ is free if Γx = {1} for all x ∈ S7. The determination of the
smooth quotients of S7 (or, more generally, any round sphere) is the so-
called spherical space-form problem, which has a long history culminating
in Wolf’s classification [22]. In this paper, we shall be concerned with quo-
tients that are not necessarily smooth; equivalently, with finite subgroups
of SO(8), which do not act freely. We shall call them orbifolds; although
in the mathematical literature they are more precisely known as global
orbifolds.
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2.1 Spin orbifolds

An often under-appreciated fact is that the bundle of oriented orthonormal
frames of an orbifold is actually a smooth manifold. For the case of S7/Γ
(or indeed any orbifold of a round sphere) we can see this explicitly. First
of all, we observe that the bundle of oriented orthonormal frames PSO(S7)
of S7 is diffeomorphic to the Lie group SO(8). To see this let x ∈ S7: it is
a unit-norm vector in R

8. The tangent space to S7 at x is the hyperplane
in R

8 perpendicular to x. An orthonormal frame for TxS7 is a set of seven
unit-norm vectors in R

8 which are perpendicular to x and to each other.
Together with x they make up an orthonormal frame for R

8, when the 8 × 8
matrix with these vectors as columns and x in the first column, say, is
orthogonal. An orientation on S7 is a choice of sign for the determinant of
this orthogonal matrix; equivalently, it is a choice of connected component in
the orthogonal group O(8). Either choice results in a manifold diffeomorphic
to SO(8). Let us, for definiteness, choose the orientation corresponding to
unit determinant, so that PSO(S7) ∼= SO(8). The projection SO(8) → S7 is
the map which selects the first column of the matrix.

A finite subgroup Γ < SO(8) acts linearly on R
8 and the action on S7

is the restriction of this action. Its lift to the tangent bundle is also a
linear action. In other words, under the identification PSO(S7) = SO(8), the
action of γ on PSO(S7) is just left matrix multiplication in SO(8), which
is a free action. Furthermore, this action is compatible with the bundle
projection PSO(S7) → S7. The space of right Γ-cosets in SO(8), which is a
smooth manifold, can be identified with the bundle of orthonormal frames
PSO(S7/Γ) of the orbifold. Note that it is not a principal SO(7) bundle: if
it were, the right action of SO(7) would be free and the quotient a manifold
instead of an orbifold.

The sphere S7 has a unique spin structure. Indeed, the total space of the
spin bundle is diffeomorphic to the Lie group Spin(8) and the covering homo-
morphism Spin(8) → SO(8) is the bundle morphism from the spin bundle
PSpin(S7) to PSO(S7). Now the orbifold S7/Γ admits a spin structure if and
only if the action of Γ on PSO(S7) lifts to PSpin(S7) in a way that is compat-
ible with the bundle map PSpin(S7) → PSO(S7). This is equivalent to the
existence of a lift of Γ to an isomorphic subgroup (also denoted Γ) of Spin(8)
(as opposed to a double cover), which acts by left multiplication on Spin(8).
This action is again free and we define the spin bundle of the orbifold S7/Γ
to be the smooth manifold of right Γ-cosets in Spin(8). If we think of Spin(8)
as sitting inside the Clifford algebra C�(8), then the condition that Γ map
isomorphically onto its image in SO(8) is that −1 
∈ Γ. There are topologi-
cal obstructions to the existence of such lifts and even when the obstruction
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is overcome there may be more than one lift, each one corresponding to a
different spin structure on the orbifold. These are classified, as in the case
of manifolds, by Hom(Γ, Z2), which boils down to introducing signs for each
generator of Γ in a way consistent with the relations.

Bär’s cone construction [23] relates Killing spinors on S7 to parallel spinors
on R

8. More precisely the vector space of Killing spinors (with Killing con-
stant 1

2 , say) on S7 is isomorphic to the space of parallel positive-chirality
spinors on R

8. Furthermore, this correspondence is equivariant with respect
to the action of Spin(8), as shown more generally in [24] in a similar con-
text to that of the present paper. Relative to flat coordinates for R

8, a
parallel spinor is a constant spinor, and hence the space of Killing spinors
is isomorphic, as a representation of Spin(8), to Δ+, the positive-chirality
spinor irreducible representation of Spin(8). The subgroup Γ < Spin(8) acts
naturally on this representation and the Killing spinors on S7/Γ can be
identified with the Γ-invariant spinors in Δ+. They form a vector space ΔΓ

+

of dimension 0 ≤ N ≤ 8.

2.2 Statement of the problem

We are interested in classifying orbifolds S7/Γ, up to isometry, admitting
real Killing spinors (and hence a spin structure) and such that the (real)
dimension N of the vector space of real Killing spinors be ≥ 4. This is
equivalent to classifying subgroups −1 
∈ Γ < Spin(8), up to conjugation,
such that dim ΔΓ

+ ≥ 4. We shall call such subgroups Γ admissible in this
paper. It is important to stress that it is conjugation in Spin(8) that we have
to consider as our basic equivalence relation and not the weaker conjugation
of Γ in SO(8). Certainly quotients by conjugate subgroups of SO(8) are
isometric, but this is not enough to guarantee that their spin bundles are also
isomorphic, and hence that the dimension of the space of real Killing spinors
be equal. This is consistent with the fact that supergravity backgrounds are
not merely orbifolds admitting a spin structure, but orbifolds with a choice
of spin structure on them. It is easy to see that if Γ and Γ′ = gΓg−1, for some
g ∈ Spin(8), are admissible subgroups, then S7/Γ and S7/Γ′ are isomorphic
as spin orbifolds and hence the corresponding Freund–Rubin backgrounds
are equivalent.

Let Γ < Spin(8) be an admissible subgroup. Let δ+ : Spin(8) → SO(Δ+)
denote the chiral spinor representation of Spin(8). Then since dim ΔΓ

+ = N ,
the image of Γ under δ+ is contained in an SO(8 − N ) subgroup of SO(Δ+)
corresponding to the perpendicular complement (ΔΓ

+)⊥ of the subspace of
Γ-invariant spinors. This means that Γ is contained in a Spin(8 − N )
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subgroup of Spin(8). Now Spin(8) acts transitively on the Grassmannian
of N -planes in Δ+, so we can use the freedom to conjugate Γ in Spin(8) to
ensure that Γ belongs to a particular Spin(8 − N ) subgroup. (This does not
mean that all Spin(8 − N ) subgroups of Spin(8) are conjugate, just those
which leave pointwise invariant an N -dimensional subspace of Δ+.)

Let us consider, for definiteness, the case N = 4, since N > 4 will just be
a specialisation of this case. We will fix some of the freedom to conjugate in
Spin(8) by the requirement that Γ belongs to a particular Spin(4) subgroup
of Spin(8). We choose this subgroup to be such that its action on S7 is as
follows. First note that Spin(4) ∼= Sp(1) × Sp(1), with Sp(1) the Lie group
of unit-norm quaternions. This group acts naturally on H

2 ∼= H ⊕ H via left
quaternion multiplication:

(u1, u2) · (x1, x2) = (u1x1, u2x2), (2.1)

where ui ∈ Sp(1) and xi ∈ H, in such a way that it preserves the unit sphere
S7 ∈ H

2. One can check that this Spin(4) leaves invariant pointwise a four-
plane in Δ+. Once we conjugate Γ to lie inside this Spin(4) subgroup, we still
have the freedom to conjugate by the normalizer in Spin(8) of this Spin(4)
subgroup. Of course, the normalizer contains the Spin(4) subgroup itself,
but it also contains other elements of Spin(8) inducing non-inner automor-
phisms of the Spin(4) subgroup. As shown, e.g., in [25, Section 3], there
is a unique non-trivial outer automorphism of Spin(4) ∼= Sp(1) × Sp(1), and
it is represented by the automorphism which interchanges the two Sp(1)
subgroups: (u1, u2) �→ (u2, u1). Indeed, since the Lie algebras of the Sp(1)
subgroups correspond to the self-dual and anti-self-dual 2-forms in Λ2(ΔΓ

+)⊥,
all we need to do to interchange them is to change the orientation of (ΔΓ

+)⊥.
This can be done by a rotation of π degrees in a 2-plane spanned by a spinor
in (ΔΓ

+)⊥ and a spinor in ΔΓ
+ and such a rotation is induced by conjugating

by an element in Spin(Δ+), which becomes an element in Spin(8) after a
triality transformation.

In summary, we want to classify finite subgroups Γ of Sp(1) × Sp(1) up
to conjugation in Sp(1) × Sp(1) and the outer automorphism that swaps the
two Sp(1) subgroups; in other words, we want to solve the following

Problem. Classify the finite subgroups of Sp(1) × Sp(1) up to automor-
phisms of Sp(1) × Sp(1).

This will result from an application of Goursat’s theory of subgroups of a
direct product of groups, but before doing so, we review the finite subgroups
of Sp(1), which will be the main ingredients in terms of which our results
will be phrased.
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3 Finite subgroups of the quaternions

In this section, we review very briefly, mostly to settle the notation and to
make this paper reasonably self-contained, the classification of finite sub-
groups of the quaternions in terms of simply laced (extended) Dynkin dia-
grams.

Let H denote the skew field of quaternions. Multiplication in H being
associative, we can talk about multiplicative subgroups. Let G < H be a
finite such subgroup. Since G is a finite group, every x ∈ G obeys xn = 1 for
some finite n and since H is a normed algebra, it follows that |x|n = |xn| = 1,
when |x| = 1. In other words, G is actually a subgroup of Sp(1), the Lie
group of unit-norm quaternions. The adjoint representation of Sp(1) defines
a covering homomorphism Sp(1) → SO(3), once we choose an orthonormal
basis for the Lie algebra of Sp(1), which is the three-dimensional real vector
space of imaginary quaternions. Therefore every finite subgroup G < Sp(1)
projects to a finite subgroup G < SO(3).

The classification of finite subgroups of SO(3) is classical and a nice treat-
ment can be found in Elmer Rees’s Notes on geometry [26]. A result due to
Euler states that any non-trivial rotation in R

3 is the rotation about some
axis. That axis intersects the unit sphere in R

3 at two points: the poles
of the rotation. Let P denote the set of all the poles of the non-identity
elements in G. The finite group G acts on the finite set P and a careful
application of the orbit-stabilizer theorem shows that it does so with either
two or three orbits. The case with two orbits corresponds to a cyclic group,
where the two orbits correspond to the two poles common to all the rota-
tions. The case with three orbits corresponds either to a dihedral group
or to the group of symmetries of a Platonic solid: namely, the tetrahedral,
octahedral or icosahedral groups.

One then determines the possible lifts of these finite rotation subgroups to
Sp(1), thus determining the finite subgroups of quaternions. They turn out
to be classified by the ADE Dynkin diagrams and tabulated in table 1. They
are given by cyclic groups, binary dihedral groups and binary polyhedral
groups. In the rows labelled An−1 and Dn+2, we take n ≥ 2. In the last row,
φ = 1

2(1 +
√

5) is the Golden Ratio. It should be stressed that the labels
A,D and E refer to the explicit subgroups in this table, with the generators
shown and not just to the isomorphism class of such subgroups.

The Dynkin label is due to the McKay correspondence [27] and goes as
follows. We associate a graph to a finite subgroup G < Sp(1) as follows.
Since G is finite, there are a finite number of irreducible representations:
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Table 1: Finite subgroups of Sp(1)

Dynkin Name Order Quaternion generators
An−1 Zn n e

i2π
n

Dn+2 2D2n 4n j, e
iπ
n

E6 2T 24 (1+i)(1+j)
2 , (1+j)(1+i)

2

E7 2O 48 (1+i)(1+j)
2 , 1+i√

2

E8 2I 120 (1+i)(1+j)
2 , φ+φ−1i+j

2

V0, V1, . . . , Vr. In addition, there is a “fundamental” representation R (not
necessarily irreducible) obtained by restricting the two-dimensional complex
representation of Sp(1) given by the isomorphism Sp(1) ∼= SU(2). The ver-
tices of the graph are labelled by the irreducible representations of G and
we draw an edge between vertices Vi and Vj if and only if Vj appears in the
decomposition into irreducibles of the tensor product representation Vi ⊗ R.
It turns out that this incidence relation is symmetric, since Vi appears in
Vj ⊗ R if and only if Vj appears in Vi ⊗ R. The resulting graph is therefore
not directed. It can be shown to be an extended Dynkin diagram in the
ADE series. Deleting the vertex corresponding to the trivial representa-
tion, as well as any edge incident on it, we obtain the corresponding Dynkin
diagram.

4 Goursat’s Lemma

The determination of the finite subgroups of Sp(1) × Sp(1) follows from
work of Goursat [28]. In fact, Goursat’s original work was motivated by
the determination of finite subgroups of SO(4) and he seems to have solved
this problem (modulo a few missing cases) by noticing that SO(4) is covered
by a direct product group, namely Sp(1) × Sp(1), and determining the sub-
groups of such a direct product. This ought to make it possible to read the
results from Goursat’s paper, but this is a serious undertaking comparable
in magnitude to (but significantly less fun than) recovering his results inde-
pendently departing from his basic idea: the (algebraic) Goursat Lemma,
which we discuss presently. In fact, there is a further complication in that,
according to [21], Goursat’s classification is incomplete, as is Du Val’s [29].
This is remedied in [21]. In Appendix B, we recover the classification of finite
subgroups of SO(4) (up to the action of the automorphisms of SO(4)). Since
our result agrees with the classification in [21], this provides an independent
check of both results.
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4.1 Goursat’s theory of subgroups

The question is to determine (at least in principle) the subgroups of a direct
product of groups. The short answer is that subgroups are in bijective
correspondence with graphs of isomorphisms between factor groups of the
groups in question. Let us elaborate.

Let A, B be groups and let C < A × B be a subgroup. We have canonical
group homomorphisms λ : C → A and ρ : C → B obtained by restricting the
cartesian projections π1 : A × B → A and π2 : A × B → B to C. In fact, it
may be convenient to think of C not as a subgroup of A × B but as an injec-
tive homomorphism ι : C → A × B and the maps λ, ρ as its compositions
with π1, π2, respectively. In summary, we have the following commutative
diagram of groups:

C

λ

��

ρ

��

ι

��
A × B

π1
����

��
��

��
�

π2
����

��
��

��
�

A B

(4.1)

Clearly if C is a subgroup of A × B, it is actually a subgroup of λ(C) × ρ(C),
when without any loss of generality we can and will assume that λ : C →
A and ρ : C → B are surjective. The kernels of λ and ρ define normal
subgroups of C and since the image of a normal subgroup under a surjective
homomorphism is again normal, we get normal subgroups A0 := λ(ker ρ) of
A and B0 := ρ(ker λ) of B. In terms of elements,

A0 = {a ∈ A|(a, 1) ∈ C} and B0 = {b ∈ B|(1, b) ∈ C} , (4.2)

where 1 denotes the identity element — after all we are eventually inter-
ested in subgroups of the quaternions, where the identity element is indeed
the number 1 — and where we have identified C with its image under ι
in A × B.

Goursat’s Lemma states that the factor groups A/A0 and B/B0 are
isomorphic, the isomorphism being given essentially by C. Let us define
a map ϕ : A → B/B0 using the elements of C: if (a, b) ∈ C, we define
ϕ(a) = bB0. This map is well-defined, because if (a, b1) also belongs to C,
then so do (a, b1)−1 = (a−1, b−1

1 ) and the product (a, b1)−1(a, b) = (1, b−1
1 b),

when b−1
1 b ∈ B0 and hence b1B0 = b1b

−1
1 bB0 = bB0. The map ϕ is surjective,
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since by definition for every b ∈ B, there is some a ∈ A so that (a, b) ∈ C.
The kernel of ϕ consists of those a ∈ A with (a, b0) ∈ C for some b0 ∈ B0.
This means that (1, b0) ∈ C, and hence (a, b0)(1, b0)−1 = (a, 1) ∈ C, when
a ∈ A0. Conversely if a ∈ A0, then (a, 1) ∈ C and hence a ∈ kerϕ. There-
fore ker ϕ = A0 and hence ϕ induces an isomorphism ϕ : A/A0

∼=−→ B/B0,
sending aA0 �→ bB0 for (a, b) ∈ C.

Let F be an abstract group isomorphic to both A/A0 and B/B0 and let us
choose, once and for all, isomorphisms A/A0

∼=−→ F and B/B0
∼=−→ F . Then

the isomorphism ϕ : A/A0 → B/B0 defined by C induces an automorphism
of F .

In summary, C determines (and is determined by) the following
data:

(1) groups A and B,
(2) normal subgroups A0 � A and B0 � B with A/A0

∼= B/B0
∼= F ,

and
(3) an automorphism of F .

To reconstruct C from the above data, consider the following exact
sequence:

1 −−−−→ A0 × B0 −−−−→ A × B −−−−→ F × F −−−−→ 1, (4.3)

obtained canonically from the data above, including the isomorphisms A/
A0

∼= F and B/B0
∼= F . Now consider the subgroup Fτ of F × F given by

the graph of an automorphism τ : F → F . Explicitly, Fτ is the subgroup of
F × F consisting of elements {(x, τ(x))|x ∈ F} and isomorphic to F . (The
isomorphism is projecting onto the first factor, for example.) The subgroup
C of A × B is then the subgroup which maps to Fτ under the map A × B →
F × F . Since A0 × B0 is the kernel of this map, we see that A0 × B0 is
contained in C as a normal subgroup. In other words, C is an extension of
Fτ by A0 × B0:

1 −−−−→ A0 × B0 −−−−→ C −−−−→ Fτ −−−−→ 1. (4.4)

Equivalently, C can be interpreted as a fibred product, also known as a
categorical pullback. To see this let us fix isomorphisms iA : A/A0 → F and
iB : B/B0 → F once and for all. Let τ ∈ Aut(F ) be an automorphism. Let
β : B → F denote the composition

B �� B/B0
iB �� F (4.5)
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and α : A → F denote the composition

A �� A/A0
iA �� F

τ �� F, (4.6)

where the maps A → A/A0 and B → B/B0 are the canonical ones. It is
clear that both α, β are surjective. Then the subgroup C < A × B is the
pullback

C
ρ ��

λ
��

B

β

��
A

α �� F

(4.7)

or in terms of elements

C = {(a, b) ∈ A × B|α(a) = β(b)} , (4.8)

which one recognizes as the fibred product A ×F B. It must be stressed
that although the notation may not reflect it, the data defining the fibred
product A ×F B are not just the groups A, B, F , but indeed the surjections
α : A → F and β : B → F . In particular, α incorporates the automorphism
τ of F . We therefore reluctantly introduce the notation A ×(F,τ) B to reflect
this. We will say that the fibred product in this case is twisted by τ . In
Appendix A, we will prove that for almost all of the fibred products in this
paper, twisting results in abstractly isomorphic groups.

4.2 The case of interest

Let us now consider the case at hand: classifying finite subgroups Γ <
Sp(1) × Sp(1) up to automorphisms of Sp(1) × Sp(1). Such subgroups will
be determined by a pair of finite subgroups A < Sp(1) and B < Sp(1) hav-
ing isomorphic factor groups and the explicit isomorphism between the two
factor groups. Equivalently, Γ is determined by the following data:

(1) finite subgroups A < Sp(1) and B < Sp(1),
(2) normal subgroups A0 � A and B0 � B such that A/A0

∼= B/B0
∼= F ,

where F is some abstract finite group, and
(3) an automorphism of F .

As discussed in Section 2.2, we are interested in the subgroup Γ up to
conjugation in the normalizer of the Sp(1) × Sp(1) in Spin(8). We can use
the freedom to conjugate in Sp(1) × Sp(1) to choose A and B to be fixed
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ADE subgroups of Sp(1), thus given by the groups in table 1. Furthermore,
we can use the freedom to swap the two Sp(1) subgroups, which is induced
by conjugation in Spin(8), in order to order the two ADE subgroups, say,
alphabetically. This still leaves the freedom to conjugate by their normaliz-
ers N(A) and N(B) in Sp(1).

Next we have to choose normal subgroups A0 � A and B0 � B with iso-
morphic factor groups A/A0

∼= B/B0. Any pair A, B possesses such normal
subgroups, since we can always take A0 = A and B0 = B, but some pairs
will also have more interesting normal subgroups as we will see in the next
section. Conjugation by the normalizer N(A) permutes the normal sub-
groups of A (and similarly for B) and two normal subgroups so related are
deemed to be equivalent for our purposes. This means that once we choose
A0 and B0 in their equivalence classes, the only ingredient left to choose
is the automorphism τ of F and the only freedom left is conjugation by
N0(A) × N0(B), where N0(A) and N0(B) are the stabilizers of A0 in N(A)
and of B0 in N(B).

As we now show, the group N0(A) × N0(B) acts on Aut(F ). Let us
denote by a �→ [a] the composition A → A/A0 → F (where the second map
is iA) and similarly by b �→ [b] the composition B → B/B0 → F , where the
second map is iB. Let μ ∈ Aut(F ) be the automorphism of F induced
by conjugation with x ∈ N0(A). In other words, μ[a] = [xax−1]. One can
check that this is well-defined and defines an automorphism of F . Sim-
ilarly, let ν be the automorphism of F induced by conjugation with y ∈
N0(B). Then it is easy to verify that (a, b) ∈ A ×(F,τ) B if and only if
(xax−1, yby−1) ∈ A ×(F,ν◦τ◦μ−1) B. In other words, (x, y) ∈ N0(A) × N0(B)
acts on τ ∈ Aut(F ) by τ �→ ν ◦ τ ◦ μ−1 and two automorphisms of F which
are so related give rise to equivalent orbifolds. This suggests that we intro-
duce the set of twists

Twist(F ) := Aut(F )/ (N0(A) × N0(B)) , (4.9)

which is in general not a group, but merely the quotient of Aut(F ) by
the above action of N0(A) × N0(B). In practice, we will make a choice of
representative automorphism for each equivalence class in Twist(F ). The
notation is also not particularly good, since Twist(F ) does not just depend
on the abstract group F but on F as a common quotient of A and B.

Note that because A0 and B0 are normal subgroups, N0(A) and N0(B)
contain the inner automorphisms of A and B and these surject onto the inner
automorphisms of F , when in order to compute the set of twists we can in
the first instance restrict to the group Out(F ) of outer automorphisms of
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F and then investigate which outer automorphisms of F are related by the
action of N0(A) × N0(B).

In summary, Γ is determined up to isomorphisms, by the following data:

(1) an unordered pair {A, B} of subgroups of Sp(1) taken from table 1;
(2) normal subgroups A0 � A and B0 � B, each representing its equiva-

lence class under conjugation by the normalizers in Sp(1) of A and
B, respectively, and such that A/A0

∼= B/B0
∼= F , where F is some

abstract finite group, and
(3) a representative automorphism τ ∈ Twist(F ).

Finally, we make some comments about the smooth case. As shown in
[20], those subgroups of Sp(1) × Sp(1) that act freely on S7 are such that
A0 = B0 = {1}, when A ∼= B. They are given by the graph in A × A of an
automorphism τ : A → A of a fixed ADE subgroup A < Sp(1).

We end with the observation that quotients with N > 4 are automatically
smooth: indeed, if S7/Γ has N ≥ 5, then Γ < Spin(3), where the Spin(3)
subgroup is the diagonal Sp(1) subgroup of Sp(1) × Sp(1). So the elements
of Γ are of the form (a, a) for a ∈ A some ADE subgroup of Sp(1). Therefore
we see from (4.2) that A0 = B0 = {1}. These subgroups are already consid-
ered in [20], whence the novelty in this paper consists of extending the clas-
sification of N = 4 quotients by the inclusion of singular quotients. Since
homogeneity implies smoothness, the fact that N > 4 orbifolds are actu-
ally smooth is of course consistent with the homogeneity conjecture [30–32]
which says, in this context, that backgrounds preserving mode than half the
supersymmetry are homogeneous.

5 Quotients of ADE subgroups

In this section, we record the normal subgroups of the ADE subgroups and
the corresponding factor groups. These are the abstract finite groups F
appearing in Goursat’s Lemma. The results are summarized in table 5.

5.1 Cyclic groups

Every subgroup of an abelian group is normal and every subgroup of a
cyclic subgroup is cyclic. Indeed, let G = 〈t〉 with tn = 1 be a cyclic group
of order n and let N � G be a normal subgroup. Let 0 < k < n be the
smallest integer such that tk ∈ N . Then, we claim that N = 〈tk〉. Indeed,
let t� ∈ N and write � = qk + r, where the remainder 0 ≤ r < k. Since t�
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and (tk)q belong to N , so does tr and this would violate the minimality of
k unless r = 0.

The ADE group An−1 is cyclic of order n. Its normal groups are Am−1

for any m, which is a divisor of n and the factor groups are thus also cyclic
groups isomorphic to Zk with km = n.

5.2 Binary dihedral groups

The normal subgroups of the binary dihedral groups can be determined
in a similar way to how those of the dihedral groups are obtained (see,
e.g., [33, Lemma 1.1] for D4k+2 and [34, Lemma 2.1] for D4k).

Let Dn+2 be the subgroup of Sp(1) generated by the quaternions s = j

and t = eiπ/n. Abstractly, it has the presentation

Dn+2 = 〈s, t | s2 = tn = (st)2〉. (5.1)

Note that s2 = tn = (st)2 = −1.

We first observe that any subgroup of the cyclic subgroup generated by t
is normal. To see this simply note that from stst = −1 one finds

sts−1 = −sts = −ststt−1 = t−1 =⇒ stks−1 = t−k, (5.2)

but if tk belongs to a subgroup, then so does its inverse t−k. Since t has order
2n, any subgroup is generated by tk for some k|2n. We must distinguish
between two cases: when k|n and k 
 |n, this latter case forcing k to be
even.

If k|n, then let n = kl. Then the normal subgroup 〈tk〉 ∼= Z2l is the ADE
subgroup A2l−1. Let F denote the factor group Dn+2/A2l−1 and let x �→ [x]
denote the canonical surjection Dn+2 → F . Then since −1 ∈ A2l−1, [s]2 = 1,
([s][t])2 = 1 and [t]k = 1, when F ∼= D2k, with the understanding that D2

∼=
Z2 and D4

∼= Z2 × Z2. In other words, Dn+2 for any n, has a normal cyclic
subgroup of index 2. We will see below that for n even, there are in addition
two non-abelian normal subgroups of index 2.

If k 
 |n, then since k|2n, we see that k must be even: say, k = 2p with p|n.
Moreover, n/p must be odd, otherwise k|n. In summary, n = p(2l + 1). The
normal subgroup 〈tk〉 ∼= Z2l+1 is the ADE subgroup A2l and let F now denote
the factor group Dn+2/A2l. Since −1 
∈ A2l, [s]2 = [−1] and ([s][t])2 = [−1].
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Moreover, one has that

[−1] = [t]n = [t]p(2l+1) = [t]kl[t]p = [t]p, (5.3)

when F ∼= 2D2p = 2Dk, with the understanding that 2D2
∼= Z4.

Any other normal subgroup N that is not a subgroup of 〈t〉 must have an
element of the form stk for some k. Since

(stk)2 = stkstk = −stks−1tk = −t−ktk = −1, (5.4)

we see that −1 ∈ N . Since s2 = stst, we see that tst = s, when conjugating
stk by t, we find

tstkt−1 = tsttk−2 = stk−2. (5.5)

Therefore if s ∈ N , N contains all steven, whereas if st ∈ N , N contains all
stodd. Similarly,

stkstl = −t−ktl = −tl−k, (5.6)

when N contains all the teven. If n = 2p + 1 is odd, so that t2p+1 = −1,
t = −t−2p also belongs to N and hence N = Dn+2 is not a proper subgroup.
If n = 2p is even, then we have two index-2 normal subgroups: the normal
subgroup generated by s and the normal subgroup generated by st. Both of
these normal subgroups are related by an outer automorphism that sends
(s, t) to (st, t). In terms of quaternions, it is conjugation by eiπ/2n. In
summary, we have that D2p+2 has (up to equivalence) two proper normal
subgroups of index 2: Dp+2 = 〈s, t2〉 and A4p−1 = 〈t〉.

5.3 Binary tetrahedral group

It is easy to determine the normal subgroups of E6 from the knowledge of
the conjugacy classes. These are tabulated in table 2, which is borrowed
from [20]. In the table, s = (1+i)(1+j)

2 and t = (1+j)(1+i)
2 .

Table 2: Conjugacy classes of E6

Class 1 −1 s t t2 s2 st

Size 1 1 4 4 4 4 6
Order 1 2 6 6 3 3 4
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A normal subgroup is made out of conjugacy classes and its order must
divide the order of the group, in this case 24. There are eight divisors of
24: 1, 2, 3, 4, 6, 8, 12, 24, the first and last correspond to the improper normal
subgroups. Every subgroup contains the identity element, so the class {1}
has to be present. There is precisely one union of conjugacy classes of order
2, namely the centre A1 = {±1} which is clearly normal. There is no way
to get a normal subgroup of orders 3 or 4. This means that all proper
normal subgroups must have even order and hence, in particular, they all
contain −1. Now, s and −s are in different conjugacy classes, since −s is
conjugate to t2 and similarly, t and −t are in different conjugacy classes,
since −t is conjugate to s2. So if a normal subgroup contains any of the
classes of size 4, by taking products, one sees it must contain at least three
such classes and hence, by order, it can only be the full group. Therefore the
only other proper normal subgroup could be the one consisting of the centre
and the conjugacy class of size 6. One can check that this is indeed a normal
subgroup of index 3. It consists of the quaternion units {±1,±i,±j,±k},
which is the ADE subgroup D4. In summary, there are two proper normal
subgroups of E6: A1 and D4, when their factor groups are isomorphic to T
and Z3, respectively.

5.4 Binary octahedral group

Urged on by our success with the binary tetrahedral group, we subject the
binary octahedral group to a similar analysis. The conjugacy classes are
now tabulated in table 3. In the table, s = (1+i)(1+j)

2 and t = 1+i√
2
.

Let N � E7 be a proper normal subgroup. Then it must have order equal
to a proper divisor of 48 (the order of E7), which is one of 2, 3, 4, 6, 8, 12, 16,
24. Since it is composed of conjugacy classes and the class of the identity
must be included, this leaves the following possibilities: 2, 8, 16, 24. The
subgroup of order 2 is again the centre A1, whereas the normal subgroups
of order 8 must have class equation (in E7) 1 + 1 + 6. The conjugacy classes
of size 6 are those of t, t2 and t3. Clearly, if t ∈ N , then all three classes
must arise. This already means that N must be the whole group. Similarly
if t3 ∈ N arises, then also t = −t3 ∈ N , and again N is not proper. So this

Table 3: Conjugacy classes of E7

Class 1 −1 s t s2 t2 t3 st

Size 1 1 8 6 8 6 6 12
Order 1 2 6 8 3 4 8 4
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leaves only the class of t2. This does form a normal subgroup of index 6:
namely, D4 consisting of the quaternion units {±1,±i,±j,±k}. No normal
subgroup of order 16 exists, since its class equation is 1 + 1 + 6 + 8, but it
is easy to show that if one of the size-8 conjugacy classes belongs to N , then
so must be other. This is because one is the class of s and the other is the
class of −s = s2. This then leaves the possibility of a normal subgroup of
index 2, whose class equation is 1 + 1 + 6 + 8 + 8. One can check that this
is the ADE subgroup E6. In summary, the proper normal subgroups of E7

are A1, D4 and E6. The corresponding factor groups are isomorphic to O,
D6 and Z2, respectively.

5.5 Binary icosahedral group

The binary icosahedral case is simpler. We recall that it has the abstract
presentation

E8 = 〈s, t | s3 = t5 = (st)2〉, (5.7)

where s3 = t5 = (st)2 = −1 and s = (1+i)(1+j)
2 and t = φ+φ−1i+j

2 , with φ =
1
2(1 +

√
5) is the Golden Ratio. First, we can argue as follows. The factor

group of E8 by the centre is the icosahedral group, which is a simple group
isomorphic to A5. Therefore it has no proper normal subgroups. Hence,
if N � E8 is a proper normal subgroup, its projection to I must either be
the whole group or else the identity. The latter corresponds to N being the
centre A1, whereas the former situation cannot arise. Indeed, if there were
a subgroup of E8 isomorphic to I under the projection, it could not contain
−1, but then it must either contain st or −st both of which square to −1.

Alternatively, one can examine the possible conjugacy classes, tabulated
in table 4, and check that the only proper divisor of 120 = |E8| which can
be obtained by adding sizes of conjugacy classes including the class of the
identity, is 2.

In summary, the only proper normal subgroup of E8 is A1, with factor
group isomorphic to I.

Table 4: Conjugacy classes of E8

Class 1 −1 t t2 t3 t4 s s4 st

Size 1 1 12 12 12 12 20 20 30
Order 1 2 10 5 10 5 6 3 4
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Table 5: Normal (proper) subgroups of ADE subgroups

N � G G/N

Ak−1 � Akl−1 Zl

A2k−1 � Dkl+2 D2l

A2k � Dl(2k+1)+2 2D2l

Dk+2 � D2k+2 Z2

A1 � E6 T

N � G G/N

D4 � E6 Z3

A1 � E7 O

D4 � E7 D6

E6 � E7 Z2

A1 � E8 I

5.6 Summary

Table 5 summarizes the proper normal subgroups of the ADE subgroups
of Sp(1) up to conjugation in Sp(1) and including the isomorphism type of
the corresponding factor group. Of course, to this table one should add the
improper normal subgroups: namely, {1} and the whole group itself. It is
important to stress the fact that whereas N and G are subgroups of Sp(1),
F is an abstract group obtained as a factor group. It is for this reason that
even if F happens to be abstractly isomorphic to one of the ADE subgroups
of Sp(1) we do not use the notation A, D, E, which we reserve for the finite
subgroups of Sp(1) in table 1. We remark that in either of the two cases
A2k−1 � Dkl+2 and A2k � Dl(2k+1)+2, the integer l can take the value 1, in
which cases D2

∼= Z2 and 2D2
∼= Z4.

6 Subgroups of Spin(4)

In this section we list the finite subgroups of Spin(4) (up to automorphisms
of Spin(4)) obtained via Goursat’s theory. Recall that the data determining
such a subgroup is a pair A, B of ADE subgroups of Sp(1), normal subgroups
A0 � A and B0 � B with isomorphic factor groups A/A0

∼= B/B0
∼= F and

an automorphism τ representing a class in Twist(F ). Therefore we need to
determine which pairs of ADE subgroups have isomorphic factor groups and
the group of outer automorphisms of all possible factor groups.

6.1 Compatible ADE subgroups

Let us say that two ADE subgroups A and B are compatible if they admit
isomorphic factor groups. Compatibility is clearly an equivalence relation,
and we can read off the equivalence classes, indexed by the factor group F ,
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Table 6: Compatible ADE subgroups

F G

{1} all
Z2 A2k−1, D

′
2k+2, Dk+2, E7

Z3 A3k−1, E6

Z4 A4k−1, D(2k+1)+2

Zl≥5 Akl−1

D6 D3k+2, E7

D2l �=2,6 Dkl+2

F G

2D2l Dl(2k+1)+2

T E6

O E7

I E8

2T E6

2O E7

2I E8

from table 5. This is displayed in table 6. In the line corresponding to the
factor group Z2, the notation is such that Dk+2 has normal subgroup A2k−1,
whereas D

′
2k+2 is D2k+2 but with normal subgroup Dk+2. Except for this

ambiguity, the factor group determines (the equivalence class of) the normal
subgroup uniquely.

6.2 Outer automorphisms of some finite groups

It remains to determine the group of outer automorphisms of the factor
groups.

6.2.1 Outer automorphisms of Zn

Since Zn is abelian, every automorphism is outer. Let x be a generator of
Zn, so that x has order n. Then under an automorphism, x �→ xr, where
xr too has order n, when r is coprime to n. In other words, r defines an
element in the multiplicative group Z

×
n of units in Zn. This group has order

φ(n), the value of Euler’s totient function.

6.2.2 Outer automorphisms of D2n

Let D2n denote the group with presentation and enumeration

D2n = 〈x, y | x2 = yn = (xy)2 = 1〉 = {yp|0 ≤ p < n} ∪ {xyp|0 ≤ p < n} .
(6.1)

For n > 2, the automorphism group Aut(D2n) of D2n is the affine group on
the rotational subgroup Zn: namely, Z

×
n � Zn. Its action on the group

elements is the following. Let (a, b) ∈ Z
×
n � Zn and let τa,b denote the



“ATMP-16-5-A1-DEMED” — 2013/5/11 — 12:41 — page 1373 — #25
�

�

�

�

�

�

�

�

HALF-BPS M2-BRANE ORBIFOLDS 1373

corresponding automorphism. Then

τa,b(yp) = yap and τa,b(xyp) = xyap+b. (6.2)

On the other hand, the group of inner automorphisms is the subgroup of
Aut(D2n) generated by conjugation by the generators: x and y:

xypx−1 = y−p,

x2ypx−1 = xy−p,

yypy−1 = yp,

yxypy−1 = xyp−2.
(6.3)

In other words, the subgroup of inner automorphisms is generated by τ−1,0

and τ1,2. We must distinguish between n even or odd. If n is odd, then all the
translations in Aut(D2n) are inner, whereas if n is even only the even trans-
lations are inner. Thus, if n is odd, the subgroup of inner automorphisms
is isomorphic to Z2 � Zn and hence the group Out(D2n) of outer automor-
phisms is isomorphic to the factor group Z

×
n /〈−1〉 of Z

×
n by the order-2

subgroup generated by −1. On the other hand, if n is even then the sub-
group of inner automorphisms is isomorphic to Z2 � Zn/2, when Out(D2n)
is isomorphic to the direct product of the factor group Z

×
n /〈−1〉 and the

order-2 group of translations modulo even translations.

If n = 2, then D4
∼= Z2 × Z2 is the Klein Viergruppe, whose automorphism

group permutes all the elements of order 2, when Aut(D4) ∼= S3
∼= D6, and

since D4 is abelian, Out(D4) ∼= D6, as well.

6.2.3 Outer automorphisms of 2D2n

This is very similar to the previous case. The group 2D2n now admits the
presentation and enumeration

2D2n = 〈s, t | s2 = tn = (st)2〉 = {tp|0 ≤ p < 2n} ∪ {stp|0 ≤ p < 2n} .
(6.4)

For n > 2, the group Aut(2D2n) of automorphisms is again an affine group
Z
×
2n � Z2n with (a, b) ∈ Z

×
2n � Z2n acting via τa,b defined by

τa,b(tp) = tap and τa,b(stp) = stap+b. (6.5)

The subgroup of inner automorphisms is generated by τ−1,0 and τ1,2, and is
thus isomorphic to Z2 � Zn. The group Out(2D2n) of outer automorphisms
is the direct product Z

×
2n/〈−1〉 × Z2 where the Z2 factor is the order-2 group

of translations modulo even translations.

Again, we need to distinguish the case n = 2. In this case, the automor-
phism group of 2D4 is isomorphic to the octahedral group O and the group
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of outer automorphisms is isomorphic to D6. We can see how to describe
the automorphisms in a very concrete way by using the ADE subgroups of
Sp(1). Indeed, 2D4 is isomorphic to the ADE subgroup D4 and this sits as
a normal subgroup of E7. The action of E7 on D4 is via automorphisms.
The centre acts trivially, so the image of E7 in Aut(2D4) is isomorphic to
E7/A1

∼= O. The group of outer automorphisms is isomorphic to the quo-
tient E7/D4

∼= D6.

Finally, we consider the case n = 1. Now 2D2
∼= Z4 and the automorphism

group is isomorphic to Z
×
4
∼= Z2.

6.2.4 Outer automorphisms of T

The tetrahedral group T is isomorphic to the alternating group A4. The
automorphism group is S4 and since A4 has no centre, the group of inner
automorphisms is isomorphic to A4, when the outer automorphism group is
isomorphic to Z2. In terms of the presentation

T = 〈x, y | x3 = y3 = (xy)2 = 1〉, (6.6)

a representative for the generator of the group of outer automorphisms is
the automorphism, which swaps x and y.

6.2.5 Outer automorphisms of O

The octahedral group is isomorphic to the symmetric group S4, when its
automorphism group is S4. Since the centre is trivial, the group of inner
automorphisms is also isomorphic to S4, when the group of outer automor-
phisms is trivial.

6.2.6 Outer automorphisms of I

The icosahedral group is isomorphic to the alternating group A5, which is
a simple group. The automorphism group is S5 and the subgroup of inner
automorphisms is isomorphic to A5, when the group of outer automorphisms
is isomorphic to Z2. In terms of permutations, A5 is generated by s = (142)
and t = (12345) and the outer automorphisms are generated by conjugation
by an odd permutation, e.g., (35), which leaves s invariant and sends t to
(12543).

6.2.7 Outer automorphisms of 2T

This case was treated, for example, in [20, Section 7.3]. The group of outer
automorphisms isomorphic to Z2, and it is generated by the automorphism,
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which exchanges the generators (1+i)(1+j)
2 and (1+j)(1+i)

2 in table 1. How-
ever, this automorphism is obtained by conjugation with i+j√

2
in Sp(1). As

shown in [20], this means that the quotient involving the non-trivial outer
automorphism is equivalent to the one involving the identity automorphism.

6.2.8 Outer automorphisms of 2O

This case was treated, for example, in [20, Section 7.4]. The automorphism
group Aut(2O) ∼= O × Z2, where O corresponds to the inner automorphisms,
when Out(2O) ∼= Z2, whose generator is represented by the automorphism,
which fixes the first generator (1+i)(1+j)

2 in table 1, and changes the sign of
the second generator 1+i√

2
.

6.2.9 Outer automorphisms of 2I

Finally, this was treated in [20, Section 7.5]. The group of outer automor-
phisms is again Z2, whose generator is represented by the automorphism,
which leaves the first generator (1+i)(1+j)

2 in table 1 alone and sends the
second generator φ+φ−1i+j

2 to −φ−1−φi+k
2 .

Table 7 summarizes the above considerations.

6.3 The finite subgroups of Spin(4)

Let A and B be ADE subgroups of Sp(1). Then as described above, all finite
subgroups of Spin(4) are fibred products A ×(F,τ) B, where A, B admit factor
groups isomorphic to F and τ ∈ Out(F ) is an outer automorphism of F .

As a special case of this construction we have those subgroups where
F = {1} (when τ = 1), which correspond to the direct product A × B and

Table 7: Outer automorphisms of factor groups

F Out(F )
Zl Z

×
l

D4l>4 Z
×
2l/〈−1〉 × Z2

D4l+2 Z
×
2l+1/〈−1〉

D4 D6

2D2l>4 Z
×
2l/〈−1〉 × Z2

2D4 D6

F Out(F )
T Z2

O {1}
I Z2

2T Z2

2O Z2

2I Z2
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Table 8: Product subgroups of Spin(4)

Γ Order
An−1 × Am−1 nm
An−1 × Dm+2 4nm
An−1 × E6 24n

An−1 × E7 48n

An−1 × E8 120n

Dn+2 × Dm+2 16nm
Dn+2 × E6 96n

Dn+2 × E7 192n

Γ Order
Dn+2 × E8 480n

E6 × E6 576
E6 × E7 1152
E6 × E8 2880
E7 × E7 2304
E7 × E8 5760
E8 × E8 14400

Table 9: Smooth quotients with N ≥ 4

A = B = F τ ∈ Twist(A) |A ×(A,τ) A| N

A1 1 2 8
An−1≥2 1 n 6
Dn+2≥4 1 4n 5
E6 1 24 5
E7 1 48 5
E8 1 120 5
An−1≥4 1 
= r ∈ Z

×
n /〈−1〉 n 4

Dn+2≥6 1 
= r ∈ Z
×
2n/〈−1〉 4n 4

E7 μ 48 4
E8 ν 120 4

tabulated in table 8, where we allow An to include the trivial group A0 as a
special case. All these give rise to orbifolds with N = 4.

Another special case of this construction is where A = B = F . Such
groups are abstractly isomorphic to A, but the embedding in Spin(4) is as
the graph of an (outer) automorphism. These are precisely the subgroups
leading to the smooth quotients classified in [20] and tabulated in table 9,
which is borrowed from [20]. The cases A≤3, A5, D4, D5 and E6 have no
N = 4 quotients because they either have no non-trivial outer automor-
phisms or else the non-trivial outer automorphisms give rise to equivalent
quotients to the case of trivial outer automorphisms. The automorphisms μ
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Table 10: Remaining finite subgroups of Spin(4)

A B F Twist(F ) |A ×(F,τ) B|
Akl−1 Aml−1 Zl Z

×
l /〈−1〉 klm

A2k−1 D
′
2m+2 Z2 {1} 8 km

A2k−1 Dm+2 Z2 {1} 4 km
A4k−1 D2m+3 Z4 {1} 4k(2m + 1)
A3k−1 E6 Z3 {1} 24k

A2k−1 E7 Z2 {1} 48k

D
′
2k+2 D

′
2m+2 Z2 {1} 32 km

Dk+2 Dm+2 Z2 {1} 8 km
D2k+2 D2m+2 D4 D6/∼ 16 km
Dlk+2 Dlm+2 D2l Z

×
l /〈−1〉 8klm, (l > 2)

D(2k+1)+2 D(2m+1)+2 Z4 {1} 4(2k + 1)(2m + 1)
D2(2k+1)+2 D2(2m+1)+2 2D4 D6/∼ 8(2k + 1)(2m + 1)
Dl(2k+1)+2 Dl(2m+1)+2 2D2l Z

×
2l/〈−1〉 4l(2k + 1)(2m + 1), (l > 2)

Dk+2 D
′
2m+2 Z2 {1} 16 km

D
′
2k+2 E7 Z2 {1} 192k

Dk+2 E7 Z2 {1} 96k

D3k+2 E7 D6 {1} 96k

E6 E6 Z3 {1} 192
E6 E6 T {1} 48
E7 E7 Z2 {1} 1152
E7 E7 D6 {1} 384
E7 E7 O {1} 96
E8 E8 I Z2 240

and ν in the E7 and E8 cases represent the unique non-trivial outer automor-
phisms of those groups. If no automorphism is shown we take the diagonal
subgroup consisting of the graph of the identity.

Finally, we have the rest of the subgroups A ×(F,τ) B, all of which give
rise to N = 4 orbifolds. We list them in table 10, which contains the pair
A, B of ADE subgroups of Sp(1), their common factor group F , the set
Twist(F ) of inequivalent twists, and the order of A ×(F,τ) B, which is given
by |A||B|/|F | in all cases. We recall that the set Twist(F ) of inequivalent
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twists is defined by equation (4.9) and is determined in the next section.
The notation {1} simply means that there is a unique equivalence class of
possible twists and we may and will choose the identity automorphism as its
representative. Let us simply advance that in both appearances of D6/∼,
this set is such that there are only two inequivalent twists.

7 Explicit description of the orbifolds

In an effort to allow comparison with the literature and as a necessary first
step in the application of this classification to the problem of identifying
the superconformal field theories dual to the corresponding Freund–Rubin
backgrounds, we now describe the above orbifolds more explicitly and, when-
ever possible, in terms of iterated quotients by cyclic groups.

7.1 Orbifolds as iterated quotients

Let us start by describing iterated quotients. Let G be a finite group acting
effectively and smoothly on a manifold X and let H < G be a subgroup.
Let Y = X/H denote the quotient of X by the action of H. We do not
assume that Y is smooth, so it could well be an orbifold. We can ask
whether any elements of G still act on Y via their action on X. Points in Y
are equivalence classes [x] of points in X, where x, x′ ∈ X are equivalent if
x′ = h · x, for some h ∈ H, hence an element g ∈ G still acts on Y provided
that the induced action g · [x] = [g · x] is well defined. This requires that if
[x] = [x′] then [g · x] = [g · x′], which means that if x′ = h · x for some h ∈ H,
then g · x′ = h′ · g · x for some h′ ∈ H, or equivalently, (gh) · x = (h′g) · x for
all x ∈ X. Since G acts effectively, this implies the identity gh = h′g for all
h and some h′; that is, g normalizes H. In other words, the subgroup of G,
which acts on Y is the normalizer of H in G:

N(H) =
{
g ∈ G

∣
∣ghg−1 ∈ H ∀h ∈ H

}
, (7.1)

which is the largest subgroup of G containing H as a normal subgroup. Of
course, since H acts trivially on Y , N(H) does not act effectively: it is the
factor group N(H)/H which does. Note that N(H)/H is not a subgroup
of G.

Now let K < N(H)/H be a subgroup and let us consider the quotient
Y/K. We can write this as a quotient of X by a subgroup of G: namely
the subgroup L < N(H), which maps to K under the natural projection
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π : N(H) → N(H)/H. In other words, L is an extension of K by H:

1 −−−−→ H −−−−→ L
π−−−−→ K −−−−→ 1 (7.2)

where the map L → K is the restriction to L of π and given the same
name.

Conversely, suppose that H � L is a proper normal subgroup of L < G.
Then there is an exact sequence like equation (7.2), where K = L/H, and
we have an equivalence between the quotient X/L and the iterated quotient
(X/H)/K. This can be continued, of course. Suppose that H, which is a
subgroup of L and hence of G, contains a normal subgroup N . Then we
have an exact sequence

1 −−−−→ N −−−−→ H −−−−→ M −−−−→ 1 (7.3)

with M ∼= H/N . Then we have that again

X/H ∼= (X/N)/M =⇒ X/L = (X/N)/(H/N)/(L/H), (7.4)

et cetera.

A sequence of subgroups such as N � H � L, where N is normal in
H (though not necessarily in L) and H is normal in L, is said to be a
subnormal series for L. Subnormal series can have any length and more
generally, a subnormal series (of length �) for a group G is a sequence of
subgroups

1 = N0 � N1 � · · · � N� = G, (7.5)

where each Ni is normal in Ni+1, but not necessarily in G. The quotient
X/G is then equivalent to the iterated quotient

(X/N1)/(N2/N1)/(N3/N2)/ · · · /(N�/N�−1). (7.6)

The groups Ni/Ni−1 are called the factors of the subnormal series.

A group G is solvable if it has a subnormal series with abelian factors. If
G is a solvable group, then so is any subgroup and any factor group. More
generally, solvable groups are closed under extension and also under taking
products. All these results are easy to prove and can be found in any book
on finite groups, e.g., [35].

Now it follows from table 5 that all the ADE subgroups are solvable, with
the exception of E8. The relevant subnormal series are easy to determine
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Table 11: Subnormal series for solvable ADE groups

Subnormal series Factors Generators
1 � An−1 Zn ωn

1 � A2n−1 � Dn+2 Z2n, Z2 ω2n, j

1 � A3 � D4 � E6 � E7 Z4, Z2, Z3, Z2 i, j, ζ, ξ

from that table and are themselves summarized in table 11. Note that the
subnormal series for E6 can be read off from the one for E7 since E6 � E7.
This table also lists a choice of generators in Sp(1) for the cyclic factors
arising from the subnormal series. We find it convenient to introduce the
following notation for some commonly occurring quaternions: ωn = e2πi/n,
when ω1 = 1, ω2 = −1, ω4 = i and we use ξ = ω8, and ζ = eiπ/4 ejπ/4. In
terms of the quaternion generators in table 1, ξ corresponds to the element
in E7, which is not in the normal subgroup E6, while ζ is the element in
E6,7,8 which is not in the normal subgroup D4 of E6.

The cyclic groups An−1 are abelian, hence clearly solvable. The binary
dihedral groups Dn+2 have a cyclic normal subgroup A2n−1 with factor group
Z2. Unlike the dihedral group, Dn+2 (for n > 2) is not a trivial extension:
the only order-2 subgroup of Dn+2 (for n > 2) is the centre. The subnormal
series 1 � A2n−1 � Dn+2 has cyclic factors {Z2n, Z2}, showing that Dn+2 is
solvable. The binary tetrahedral group E6 has a normal subgroup D4 with
factor group Z3. Therefore 1 � A3 � D4 � E6 is a subnormal series with
cyclic factors {Z4, Z2, Z3}. The binary octahedral group E7 has a normal
subgroup E6 with factor group Z2, when a subnormal series is obtained from
the one of E6 by extending it to the right: 1 � A3 � D4 � E6 � E7, with
cyclic factors {Z4, Z2, Z3, Z2}. Finally, the only proper normal subgroup
of the binary icosahedral group is its centre, when the subnormal series is
1 � A1 � E8 with factors {Z2, I}. Since I is non-abelian, we conclude that
E8 is not solvable.

The finite subgroups of Spin(4) are fibred products of ADE subgroups of
Sp(1), when they are subgroups of products of ADE subgroups. Since prod-
ucts and subgroups of solvable groups are solvable, it follows that with the
exception of those subgroups involving E8, all other subgroups are solvable.
We will see that this means that they have a subnormal series with cyclic
factor groups, and hence that the corresponding orbifolds can de described
as iterated cyclic quotients. This will simplify their description significantly.
This technique has been used in the context of the AdS5 /CFT4 correspon-
dence in [36].
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Recall that the fibred product A ×(F,τ) B is an extension

1 −−−−→ A0 × B0 −−−−→ A ×(F,τ) B −−−−→ Fτ −−−−→ 1, (7.7)

with Fτ = {(x, τ(x))|x ∈ F} < F × F the graph of the automorphism τ .
This means that orbifolding by A ×(F,τ) B can be done in steps: first orb-
ifolding by A0 × B0 and then by Fτ . These quotients can be decomposed
further by using subnormal series for A0, B0 and Fτ

∼= F . In the cases of
interest, A0 and B0 are ADE subgroups, whose subnormal series have been
determined above. (See table 11.) It remains to determine subnormal series
for the factor groups F in table 5.

The factor groups F consist of cyclic groups, which need not be decom-
posed further, dihedral and binary dihedral groups and the tetrahedral,
octahedral and icosahedral groups. This latter group is simple, when it
has no proper normal subgroups. The dihedral group D2n is a semidi-
rect product Zn � Z2, where Zn is the normal subgroup generated by y
in the presentation in equation (6.1) and Z2 is the subgroup generated by
x. This gives rise to a subnormal series 1 � Zn � D2n with cyclic factors
{Zn, Z2}. The binary dihedral group has been discussed previously, being
isomorphic to Dn+2. The subnormal series for the tetrahedral and octahedral
groups can be read off from those of their binary cousins, by noticing that
T and O are the factor groups obtained by quotienting E6 and E7, respec-
tively, by their centre, which is contained in any normal subgroup. There-
fore we get an exact sequence 1 → D4 → T → Z3 → 1 from the similar one
involving E6, with D4

∼= Z2 × Z2, whereas 1 → E6 → E7 → Z2 → 1 implies
1 → T → O → Z2 → 1. Hence, we get subnormal series 1 � D4 � T � O
with abelian factors {Z2 × Z2, Z3, Z2}. This series can be extended by insert-
ing a Z2 in 1 � D4 to obtain 1 � Z2 � D4. Finally, we truncate at T to get
a subnormal series for T . These observations are summarized in table 12,
where we also list a choice of generator for each cyclic factors in F , in terms of
the generators of F given by the following presentations: Zn = 〈z | zn = 1〉,
D2n = 〈x, y | x2 = yn = (xy)2 = 1〉, 2D2n = 〈s, t | s2 = tn = (st)2〉 and O =
〈a, b | a3 = b4 = (ab)2 = 1〉.

Table 12: Subnormal series for factor groups F

Subnormal series Factors Generators
1 � Zn Zn z

1 � Zn � D2n Zn, Z2 y, x

1 � Z2n � 2D2n Z2n, Z2 t, s

1 � Z2 � D4 � T � O Z2, Z2, Z3, Z2 b2, ab2a−1, a, b
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7.2 Orbifolds involving E8

We do not have much to say about these orbifolds at this time. Here we
simply point out that the orbifolds with group E8 ×(I,τ) E8 are in fact Z2-
orbifolds of the two smooth quotients given by the graphs of the identity
automorphism of E8, which has N = 5, and the non-trivial outer automor-
phism of E8, which has N = 4. The reason is the following. As shown in
Appendix A, the group Γ = E8 ×(I,τ) E8 is abstractly isomorphic to 2I × Z2,
where the 2I subgroup is the graph of any automorphism τ̂ ∈ Aut(2I), which
induces τ ∈ Out(I). Hence the orbifold S7/Γ is equivalent to the iterated
orbifold S7/2I/Z2, where the first quotient S7/2I is smooth and where the
additional Z2 is generated by (1,−1) ∈ Sp(1) × Sp(1), say.

7.3 Solvable orbifolds as iterated cyclic quotients

We will now explicitly discuss the solvable orbifolds in terms of iterated
cyclic quotients. Hence, it will be sufficient to indicate the generators of the
corresponding cyclic groups. We recall the notation we use: ωn = e2πi/n,
ξ = ω8 and ζ = eiπ/4 ejπ/4.

7.3.1 Orbifolds by product groups

Let us call a group chiral if it is contained in one of the two Sp(1) factors of
Spin(4). There are four classes of chiral solvable subgroups of Sp(1): An−1,
Dn+2, E6 and E7, and up to conjugation in Spin(8), they can be taken to
belong to the second Sp(1) factor, say. The corresponding orbifolds are
written as a sequence of iterated cyclic orbifolds as follows:

• S7/An−1 is the quotient S7/Zn by the cyclic group generated by (1, ωn).
• S7/Dn+2 is the iterated quotient S7/Z2n/Z2, where the generator of

the Z2n action is (1, ω2n) and the generator of the Z2 is (1, j). Note
that (1, j) has order 4 in Sp(1) × Sp(1), but it has order 2 modulo the
subgroup generated by (1, ω2n).

• S7/E6 is equivalent to S7/D4/Z3, which by the previous case is S7/Z4/
Z2/Z3, with generators (1, i), (1, j) and (1, ζ) in that order. in the
above generators as a word ζajbic for a = 0, 1, 2, b = 0, 1 and c =
0, 1, 2, 3.

• S7/E7 is equivalent to S7/E6/Z2, which by the previous case is S7/Z4/
Z2/Z3/Z2, with generators (1, i), (1, j), (1, ζ) and (1, ξ).

Chiral groups are special cases of product groups, those which are the
product of two chiral groups (of opposite chirality). The product groups
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Table 13: Orbifolds by solvable product groups as iterated cyclic quotients

Γ S7/Γ Cyclic generators
An−1 × Am−1 S7/Zn/Zm (ωn, 1), (1, ωm)
An−1 × Dm+2 S7/(An−1 × A2m−1)/Z2 (1, j)
An−1 × E6 S7/(An−1 × D4)/Z3 (1, ζ)
An−1 × E7 S7/(An−1 × E6)/Z2 (1, ξ)
Dn+2 × Dm+2 S7/(A2n−1 × Dm+2)/Z2 (j, 1)
Dn+2 × E6 S7/(Dn+2 × D4)/Z3 (1, ζ)
Dn+2 × E7 S7/(Dn+2 × E6)/Z2 (1, ξ)
E6 × E6 S7/(D4 × E6)/Z3 (1, ζ)
E6 × E7 S7/(E6 × E6)/Z2 (1, ξ)
E7 × E7 S7/(E6 × E7)/Z2 (ξ, 1)

are listed in table 8. The results from the chiral groups can be used to
rewrite orbifolds by product groups as iterated quotients. As an illustration,
let us consider the orbifold S7/(Dn+2 × E6). This is the iterated quotient
S7/Z2n/Z2/Z4/Z2/Z3, where the cyclic generators are, in the order written,
given by (ω2n, 1), (j, 1), (1, i), (1, j) and (1, ζ). Of course, there is some
freedom in the order in which we have written the generators. We would
obtain an equivalent orbifold if were to shuffle the generators in such a way
that generators belonging to the same chiral Sp(1) are kept in the same
order. Table 13 lists the orbifolds associated to product solvable subgroups
of Spin(4) and expresses them as iterated cyclic orbifolds. They all have
N = 4 supersymmetry.

7.3.2 Smooth quotients

We now turn our attention to the smooth quotients by solvable groups in
table 9. These include all but the two quotients associated to E8 and men-
tioned already in Section 7.2.

The smooth quotients S7/An−1 ×(Zn,τ) An−1 by cyclic groups are gen-
erated by the element (ωn, ωq

n) in Sp(1) × Sp(1), where q is coprime to
n. Because the subgroups corresponding to q and −q are conjugate in
Sp(1) × Sp(1) — they are related by conjugation by (1, j) — the corre-
sponding orbifolds are equivalent. For q = ±1, the quotient has N = 8 for
n = 2, N = 6 for n > 2, whereas for any other value of q, it has N = 4.
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The smooth quotients S7/Dn+2 ×(2D2n,τ) Dn+2 by binary dihedral groups
can be described as an iterated quotient by cyclic groups: S7/Z2n/Z2,
where the action of Z2n is generated by the element (ω2n, ωr

2n), where r
is coprime to 2n, and the action of Z2 is generated by (j, j). Again we
identify r with −r, since they are conjugate by (1, j) in Sp(1) × Sp(1).
If r = ±1 the quotient has N = 5 and it is a further Z2 quotient of the
smooth N = 6 lens space S7/Z2n, otherwise the quotient has N = 4 and
it is a further Z2 quotient of the smooth N = 4 quotient by Z2n. When
n = 2, the outer automorphism group of 2D4 is D6, but as discussed in
Section 6.2.3, all automorphisms are induced by conjugation inside an E7

subgroup of Sp(1) and hence the associated quotients are equivalent to
the N = 5 quotient corresponding to the identity automorphism. In other
words, Twist(2D4) ∼= {1} in this case. We remind the reader that the nota-
tion Twist(F ) hides the fact that it is not just a function of the abstract
group F , but depends on the way that F can be obtained as a factor group
of A and B.

The smooth N = 5 quotient S7/E6 ×2T E6 is equivalent to S7/Z4/Z2/Z3,
where the action of Z4 is generated by the element (i, i), that of Z2 by (j, j),
and the one of Z3 by (ζ, ζ). Hence, S7/2T can be understood as the Z3

quotient of the N = 5 quotient S7/D4 or as a D6 quotient of the N = 6
lens space S7/Z4. This latter quotient can be done in two steps: the first a
quotient by Z2 and the second by Z3, as indicated.

Finally, the quotient S7/E7 ×(2O,τ) E7 is equivalent to S7/Z4/Z2/Z3/Z2,
where the action of Z4 is generated by the element (i, i), the first Z2 action
by (j, j), the Z3 action by (ζ, ζ) and the final Z2 action by (ξ,±ξ), where
the signs ± correspond to the two quotients: the + sign for the diagonal
N = 5 quotient and the − sign for the twisted N = 4 quotient.

Table 14 summarizes the smooth quotients by solvable groups, expressed
as iterated cyclic quotients. In that table, q ∈ Z

×
n /〈−1〉 and

r ∈ Z
×
2n/〈−1〉.

Table 14: Smooth quotients by solvable groups as iterated cyclic quotients

Γ S7/Γ Cyclic generators
An−1 ×(Zn,τ) An−1 S7/Zn (ωn, ωq

n)
Dn+2 ×(2D2n,τ) Dn+2 S7/Z2n/Z2 (ω2n, ωr

2n), (j, j)
E6 ×2T E6 S7/Z4/Z2/Z3 (i, i), (j, j), (ζ, ζ)
E7 ×(2O,τ) E7 S7/Z4/Z2/Z3/Z2 (ζξ, ζξ), (i, i), (ζ, ζ), (ξ,±ξ)
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7.3.3 Remaining solvable orbifolds

It remains to discuss those orbifolds in table 10 where the group A ×(F,τ) B
is solvable; that is, all cases but the order-240 groups E8 ×(I,τ) E8. As
discussed above, the group A ×(F,τ) B can be written as an extension (7.7),
in which case the corresponding orbifold is S7/(A0 × B0)/Fτ , where Fτ may
decompose further into cyclic groups as summarized in table 12.

Let us first treat those cases where Fτ is already a cyclic group. Then a
possible generator for the action of Fτ is (x, τ(x)) ∈ Γ, where x is read off
from the cyclic generator of F in table 11.

• Γ = Akl−1 ×(Zl,τ) Aml−1

Here τ is the automorphism corresponding to multiplication by r ∈ Z
×
l .

The extension takes the form

1 −−−−→ Ak−1 × Am−1 −−−−→ Γ −−−−→ (Zl)τ −−−−→ 1, (7.8)

where (Zl)τ is the subgroup of Zl × Zl consisting of pairs (a, b) with
b = ra (mod l) and where the maps Ak−1 → Akl−1 and Am−1 → Aml−1

consist of taking the lth power of the generator. We may describe this
orbifold as an iterated quotient in the following way: S7/Zk/Zm/Zl,
with cyclic generators (ωk, 1), (1, ωm) and (ωkl, ω

r
ml). The special case

of r = 1 corresponds to the orbifolds discussed in [16, Section 3.4]
and [17, Section 2] and to be discussed in Section 8. Note that the
automorphisms labelled by r and −r are actually related by conjuga-
tion by the element (1, j) in Sp(1) × Sp(1), when the two orbifolds are
actually equivalent.

• Γ = A2k−1 ×Z2 D
′
2m+2

This group is the extension

1 −−−−→ Ak−1 × Dm+2 −−−−→ Γ −−−−→ Z2 −−−−→ 1. (7.9)

Therefore, the orbifold S7/Γ can be described by S7/(Ak−1 × Dm+2)/
Z2, where the first quotient is by a product group and hence already
discussed in Section 7.3.1, and the Z2 action is generated by the ele-
ment (ω2k, ω4m) which has order 2 mod Ak−1 × Dm+2.

• Γ = A2k−1 ×Z2 Dm+2

This group is the extension

1 −−−−→ Ak−1 × A2m−1 −−−−→ Γ −−−−→ Z2 −−−−→ 1. (7.10)

Therefore, the orbifold S7/Γ can be described by S7/(Ak−1 × A2m−1)/
Z2, where the first quotient is by a product group and hence already
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discussed in Section 7.3.1, and the Z2 action is generated by the ele-
ment (ω2k, j) which has order 2 mod Ak−1 × A2m−1.

• Γ = A4k−1 ×(Z4,τ) D2m+3

This group is the extension

1 −−−−→ Ak−1 × A2m −−−−→ Γ −−−−→ (Z4)τ −−−−→ 1, (7.11)

where τ ∈ Z
×
4 . Therefore, the orbifold S7/Γ can be described by

S7/(Ak−1 × A2m)/Z4, where the first quotient is by a product group,
and the Z4 action is generated by the element (ω4k,±j), where the
choice of sign is the choice of τ ∈ Z

×
4 . Both choices are related by

conjugation by (1, i), when they define equivalent twists.
• Γ = A3k−1 ×(Z3,τ) E6

Here τ ∈ Z
×
3 is an automorphism, which will manifest itself in a choice

of sign. This group is an extension

1 −−−−→ Ak−1 × D4 −−−−→ Γ −−−−→ Z3 −−−−→ 1, (7.12)

when the orbifold S7/Γ is equivalent to S7/(Ak−1 × D4)/Z3, where the
first orbifold is by a product group, hence already discussed, and the
action of the Z3 is generated by the element (ω±1

3k , ζ), where the + sign
corresponds to the trivial automorphism and the − sign to the non-
trivial automorphism of Z3. The two signs are related by conjugation
by the element (j, 1) ∈ Sp(1) × Sp(1), which normalizes the subgroup
Ak−1 × D4, when both orbifolds are equivalent.

• Γ = A2k−1 ×Z2 E7

This group is the extension

1 −−−−→ Ak−1 × E6 −−−−→ Γ −−−−→ Z2 −−−−→ 1, (7.13)

when the orbifold S7/Γ can be described as S7/(Ak−1 × E6)/Z2, where
the first orbifold is by a product group and the action of the Z2 is
generated by the element (ω2k, ξ).

• Γ = D
′
2k+2 ×Z2 D

′
2m+2

This group is the extension

1 −−−−→ Dk+2 × Dm+2 −−−−→ Γ −−−−→ Z2 −−−−→ 1, (7.14)

when the orbifold S7/Γ can be described as S7/(Dk+2 × Dm+2)/Z2,
where the first orbifold is by a product group and the action of Z2 is
generated by the element (ω4k, ω4m).
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• Γ = Dk+2 ×Z2 Dm+2

This group is the extension

1 −−−−→ A2k−1 × A2m−1 −−−−→ Γ −−−−→ Z2 −−−−→ 1, (7.15)

when the orbifold S7/Γ can be described as S7/(A2k−1 × A2m−1)/Z2,
where the action of Z2 is generated by the element (j, j).

• Γ = D(2k+1)+2 ×(Z4,τ) D(2m+1)+2

This group is the extension

1 −−−−→ A2k × A2m −−−−→ Γ −−−−→ (Z4)τ −−−−→ 1, (7.16)

when the orbifold S7/Γ can be described as S7/(A2k × A2m)/Z4, where
the action of Z4 is generated by the element (j,±j), where the choice
of sign corresponds to the choice of τ ∈ Z

×
4 . Clearly both choices are

conjugate via (1, i) and hence give rise to equivalent twists.
• Γ = Dk+2 ×Z2 D

′
2m+2

This group is the extension

1 −−−−→ A2k−1 × Dm+2 −−−−→ Γ −−−−→ Z2 −−−−→ 1, (7.17)

when the orbifold S7/Γ can be described as S7/(A2k × Dm+2)/Z2,
where the action of Z2 is generated by the element (j, ω4m).

• Γ = Dk+2 ×Z2 E7

This group is the extension

1 −−−−→ A2k−1 × E6 −−−−→ Γ −−−−→ Z2 −−−−→ 1, (7.18)

when the orbifold S7/Γ can be described as S7/(A2k−1 × E6)/Z2, where
the first orbifold is by a product group and the action of the Z2 is gen-
erated by the element (j, ξ).

• Γ = D
′
2k+2 ×Z2 E7

This group is the extension

1 −−−−→ Dk+2 × E6 −−−−→ Γ −−−−→ Z2 −−−−→ 1, (7.19)

when the orbifold S7/Γ can be described as S7/(Dk+2 × E6)/Z2, where
the first orbifold is by a product group and the action of the Z2 is
generated by the element (ω4k, ξ).
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• Γ = E6 ×(Z3,τ) E6

This group is the extension

1 −−−−→ D4 × D4 −−−−→ Γ −−−−→ Z3 −−−−→ 1, (7.20)

when S7/Γ is given by the iterated orbifold S7/(D4 × D4)/Z3, where
the first quotient is by a product group, and the action of the Z3 is
given by (ζ, ζ) or, if τ is non-trivial, (ζ, τ(ζ)), where τ(ζ) = ejπ/4 eiπ/4.
Both choices are conjugate in Sp(1) × Sp(1) by the element (1, ζξ),
when we are free to take τ = 1.

• Γ = E7 ×Z2 E7

This group is the extension

1 −−−−→ E6 × E6 −−−−→ Γ −−−−→ Z2 −−−−→ 1, (7.21)

when S7/Γ is a Z2 quotient of S7/E6 × E6, where the Z2-action is
generated by (ξ, ξ).

Finally, we consider the more complicated cases where Fτ is not cyclic and
must be decomposed further. Here, we need to find elements in Γ, which
project down to the generators of the cyclic groups into which we decompose
Fτ . In all cases, this can be done using the information in table 12.

• Γ = D2kl+2 ×(D4l,τ) D2ml+2 (l > 1) and Γ = Dk(2l+1)+2 ×(D4l+2,τ)

Dm(2l+1)+2 (l > 0)
These two groups are special cases of Γ = Dkl+2 ×(D2l,τ) Dml+2, which
is the extension

1 −−−−→ A2k−1 × A2m−1 −−−−→ Γ −−−−→ D2l −−−−→ 1, (7.22)

when the orbifold S7/Γ can be described as S7/(A2k−1 × A2m−1)/Zl/
Z2, where the first orbifold is by a product group, the action of Zl is
generated by the element (ω2kl, ω

r
2ml), for r ∈ Z

×
l /〈−1〉, and the action

of Z2 is generated by (j, j).
• Γ = D2k+2 ×(D4,τ) D2m+2

This group is the extension

1 −−−−→ A2k−1 × A2m−1 −−−−→ Γ −−−−→ (D4)τ −−−−→ 1, (7.23)

where τ ∈ Out(D4) ∼= D6. One way to think about τ is an identifica-
tion (consistent with the group multiplication) between the cosets of
A2k−1 in D2k+2 and those of A2m−1 in D2m+2. Since D2k+2 = 〈j, ω4k〉
and A2k−1 = 〈ω2k〉, the elements of D2k+2/A2k−1 are given by the
cosets [1], [ω4k], [j] and [jω4k]. Since −1 ∈ [1], all non-identity elements
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of D2k+2/A2k−1 have order 2. Therefore any bijection between the two
sets {[ω4k], [j], [jω4k]} and {[ω4m], [j], [jω4m]} gives a possible τ . Con-
jugation by ω8k in Sp(1) defines an outer automorphism of D2k+2 of
order 2 which exchanges [j] ↔ [jω4k] and similarly for k replaced by m.
The set of inequivalent twists is the set of orbits of Out(F ) ∼= D6 under
this action of Z2 × Z2, and it is not hard to see that this set consists of
two elements: the identity and the automorphism which exchanges [j]
and [ω4k] in D2k+2/A2k−1. In summary, there are two in equivalent orb-
ifolds S7/Γ: one equivalent to S7/(A2k−1 × A2m−1)/Z2/Z2, where the
generators of the Z2-actions are (j, j) and (ω4k, ω4m), respectively; and
the other also equivalent to S7/(A2k−1 × A2m−1)/Z2/Z2, but where the
generators of the Z2-actions are now (j, ω4m) and (ω4k, j).

• Γ = Dl(2k+1)+2 ×(2D2l,τ) Dl(2m+1)+2 (l > 2)
This group is the extension

1 −−−−→ A2k × A2m −−−−→ Γ −−−−→ 2D2l −−−−→ 1, (7.24)

when the orbifold S7/Γ is equivalent to S7/(A2k × A2m)/Z2l/Z2, where
the Z2l-action is generated by (ω2l(2k+1), ω

r
2l(2m+1)), for r ∈ Z

×
2l/〈−1〉,

and the action of Z2 is generated by (j, j).
• Γ = D2(2k+1)+2 ×(2D4,τ) D2(2m+1)+2

This case is very similar to that of D2k+2 ×(D4,τ) D2m+2. The extension
now is

1 −−−−→ A2k × A2m −−−−→ Γ −−−−→ (2D4)τ −−−−→ 1, (7.25)

where τ ∈ Out(2D4) ∼= D6 again. The group 2D4 is the quaternion
group, so abstractly isomorphic to D4. The details of the possible
twists are mutatis mutandis like in the case of D2k+2 ×(D4,τ) D2m+2,
except that since −1 
∈ [1] we need to take signs into account. The signs
take care of themselves, however, and the upshot is that there are again
two inequivalent twists and hence two inequivalent quotients S7/Γ,
equivalent to S7/(A2k × A2m)/Z4/Z2, where in one case the generators
of Z4 and Z2 are given, respectively, by (j, j) and (ω4(2k+1), ω4(2m+1)),
and in the other case by (j, ω4(2m+1)) and (ω4(2m+1), j).

• Γ = D3k+2 ×(D6,τ) E7

This group is the extension

1 −−−−→ A2k−1 × D4 −−−−→ Γ −−−−→ D6 −−−−→ 1, (7.26)

when the orbifold S7/Γ can be described as S7/(A2k−1 × D4)/Z3/Z2,
where the first orbifold is by a product group and the actions of Z3

and Z2 are generated, respectively, by the elements (ω6k, ζ) and (j, ξ).
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• Γ = E6 ×(T,τ) E6

The automorphism τ can be taken to be the identity without loss of
generality, since the non-trivial outer automorphism of T is induced
by conjugation in Sp(1) (see, e.g., [20]). As discussed in Appendix A,
this is a Z2 orbifold of the N = 5 smooth quotient by E6, described in
Section 7.3.2, where the action of Z2 group is generated by the element
(1,−1). Alternatively, Γ is the extension

1 −−−−→ A1 × A1 −−−−→ Γ −−−−→ T −−−−→ 1, (7.27)

when S7/Γ is equivalent to S7/(A1 × A1)/Z2/Z2/Z3, where the actions
of the last three cyclic groups are generated by the elements (i, i), (j, j)
and (ζ, ζ).

• Γ = E7 ×O E7

As discussed in Appendix A, this is again a Z2 orbifold of the N = 5
smooth quotient by E7, described in Section 7.3.2, where the action
of Z2 group is generated by the element (1,−1). Alternatively, it is a
further Z2 quotient of the previous case. Indeed, Γ is the extension

1 −−−−→ A1 × A1 −−−−→ Γ −−−−→ O −−−−→ 1, (7.28)

when we could as well describe the orbifold as S7/(A1 × A1)/Z2/Z2/
Z3/Z2, where the actions of the last four cyclic groups are generated
by the elements (i, i), (j, j), (ζ, ζ) and (ξ, ξ).

• Γ = E7 ×D6 E7

This is simply a further Z2 orbifold of the previous case. Indeed, the
group is an extension

1 −−−−→ D4 × D4 −−−−→ Γ −−−−→ D6 −−−−→ 1, (7.29)

when S7/Γ is a Z2 quotient of S7/(E6 ×Z3 E6), where the Z2 action is
generated by (ξ, ξ).

Table 15 summarizes these results. For lack of space, we only list cyclic
generators corresponding to the quotient by F , since the ones corresponding
to the quotient by the product group can be read off from table 13. We recall
the definitions ωn = e2πi/n, ξ = ω8 and ζ = eiπ/4 ejπ/4. In the first and tenth
lines, q ∈ Z

×
l /〈−1〉, i.e., an integer modulo l and coprime to l and where q

and −q are identified, whereas in the thirteenth line r ∈ Z
×
2l/〈−1〉.
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Table 15: Remaining orbifolds by solvable groups as iterated cyclic quotients

Cyclic generators
Γ = A ×(F,τ) B S7/Γ = S7/(A0 × B0)/F for F

Akl−1 ×(Zl,τ)

Aml−1

S7/(Ak−1 × Am−1)/Zl (ωkl, ω
q
ml)

A2k−1 ×Z2 D
′
2l+2 S7/(Ak−1 × Dl+2)/Z2 (ω2k, ω4l)

A2k−1 ×Z2 Dm+2 S7/(Ak−1 × A2m−1)/Z2 (ω2k, j)
A4k−1 ×Z4 D2m+3 S7/(Ak−1 × A2m)/Z4 (ω4k, j)
A3k−1 ×Z3 E6 S7/(Ak−1 × D4)/Z3 (ω3k, ζ)
A2k−1 ×Z2 E7 S7/(Ak−1 × E6)/Z2 (ω2k, ξ)
D
′
2k+2 ×Z2 D

′
2l+2 S7/(Dk+2 × Dl+2)/Z2 (ω4k, ω4l)

Dk+2 ×Z2 Dm+2 S7/(A2k−1 ×
A2m−1)/Z2

(j, j)

D2k+2 ×(D4,τ)

D2m+2

S7/(A2k−1 × A2m−1)/
Z2/Z2

⎧
⎨

⎩
(j, j), (ω4k, ω4m)

(j, ω4m), (ω4k, j)

Dkl+2 ×(D2l,τ)

Dml+2

S7/(Dk+2 × Dm+2)/
Zl/Z2

(ω2kl, ω
q
2ml), (j, j)

D(2k+1)+2 ×Z4

D(2m+1)+2

S7/(A2k × A2m)/Z4 (j, j)

D2(2k+1)+2 ×(2D4,τ)

D2(2m+1)+2

S7/(A2k × A2m)/Z4/Z2

⎧
⎨

⎩
(j, j), (ω4(2k+1), ω4(2m+1))

(j, ω4(2m+1)), (ω4(2m+1), j)

Dl(2k+1)+2 ×(2D2l,τ)

Dl(2m+1)+2

S7/(A2k × A2m)/Z2l/Z2 (ω2l(2k+1), ω
r
2l(2m+1)), (j, j)

Dk+2 ×Z2 D
′
2m+2 S7/(A2k−1 × Dm+2)/Z2 (ω2k, ω4m)

D
′
2k+2 ×Z2 E7 S7/(Dk+2 × E6)/Z2 (ω4k, ξ)

Dk+2 ×Z2 E7 S7/(A2k−1 × E6)/Z2 (j, ξ)
D3k+2 ×D6 E7 S7/(A2k−1 × D4)/

Z3/Z2

(ω6k, ζ), (j, ξ)

E6 ×Z3 E6 S7/(D4 × D4)/Z3 (ζ, ζ)
E6 ×T E6 S7/(A1 × A1)/

Z2/Z2/Z3

(i, i), (j, j), (ζ, ζ)

E7 ×Z2 E7 S7/(E6 × E6)/Z2 (ξ, ξ)
E7 ×D6 E7 S7/(D4 × D4)/Z3/Z2 (ζ, ζ), (ξ, ξ)
E7 ×O E7 S7/(A1 × A1)/

Z2/Z2/Z3/Z2

(i, i), (j, j), (ζ, ζ), (ξ, ξ)
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8 Conclusion and outlook

By way of conclusion, we shall use the results from the previous section to
identify a few of the N ≥ 4 orbifolds classified in this paper which have
been encountered already in the recent M2-brane literature — the intention
being to thereby motivate the investigation of M2-brane interpretations for
the many new N = 4 orbifolds we have found. All the known examples
in this context have been obtained from moduli spaces for certain N ≥ 4
superconformal field theories in three dimensions. As established in [10], all
such theories necessarily involve a non-dynamical gauge field described by
a Chern–Simons term coupled to matter fields, which fall into hypermulti-
plet representations of the N = 4 conformal superalgebra in three dimen-
sions. Typically the superconformal moduli spaces of gauge-inequivalent
vacua in theories of this type have a rather complicated structure although
they invariably contain a particular branch involving constant matter fields
which parameterize the transverse space to the M2-branes, on which the
superconformal field theories furnish a low-energy effective description. Fol-
lowing the standard recipe for holographic duality in the AdS4 /CFT3 con-
text, in the strong coupling limit, one identifies this branch in the CFT3

moduli space with the metric cone R
8/Γ over the quotient S7/Γ appearing

in the dual AdS4 ×S7/Γ Freund–Rubin background.

The isometry group of S7 is SO(8), when in particular any subgroup
Γ < SO(8) acts linearly on R

8 and we can consider the orbifold R
8/Γ. Since

linear transformations fix the origin, this is always an orbifold even if S7/Γ
is smooth. One can of course think of R

8 here as either C
4 or H

2. In terms of
matter hypermultiplets, the quaternionic perspective is more natural since
it makes the N = 4 structure manifest and indeed the finite subgroups of
Sp(1) × Sp(1) act naturally on H ⊕ H via left multiplication. In the existing
literature, however, it is often preferred to describe moduli spaces in complex
notation, by thinking of each matter hypermultiplet as consisting of a pair of
chiral supermultiplets. The action of Γ on C

4 is generally not complex-linear
although this notation does make sense for the N ≥ 4 orbifolds discussed
here where the action is in fact H-linear and thus C-linear. The translation
between the quaternionic notation, we use and the complex notation in the
rest of the literature is as follows.

The action of the finite subgroups of Sp(1) × Sp(1) on H ⊕ H via left
multiplication is H-linear provided that scalar multiplication acts on H ⊕ H

on the right. Associativity of quaternion multiplication guarantees that the
action of Sp(1) × Sp(1) commutes with scalar multiplication. We give H ⊕ H

the structure of a complex vector space by restricting scalars from H to C.
This sets an isomorphism H ∼= C

2 and hence H ⊕ H ∼= C
4 as follows. It is
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clearly enough to identify H with C
2. To do this we identify the quaternion

x = z + jw ∈ H, where z, w ∈ C, with the vector (z, w) ∈ C
2. This identifi-

cation is complex linear: for all λ ∈ C, we have that

λx := (z + jw)λ = λz + jλw � (λz, λw) = λ(z, w). (8.1)

Now let u = a + bj ∈ Sp(1), so that a, b ∈ C and |a|2 + |b|2 = 1. Then
ux = (a + bj)(z + jw) = (az − bw) + j(bz + aw), when

a + bj �→
(

a −b

b a

)

. (8.2)

Let us now conclude by illustrating this discussion by recovering all the
known examples of N ≥ 4 quotients in the M2-brane literature. They are
either smooth with N > 4 or cyclic orbifolds with N = 4.

8.1 Smooth quotients

Consider first the Zk subgroup of Sp(1) × Sp(1) generated by g = (ωk, ω
r
k),

where ωk = e2πi/k is a primitive kth root of unity and r is some integer
coprime to k. Then if (x, y) ∈ H ⊕ H, we have that g · (x, y) = (e2πi/kx,

e2πir/ky). Writing x = z1 + jz2 and y = z3 + jz4, we find that the action of
g on C

4 is given by

g · (z1, z2, z3, z4) = (ωkz1, ω
−1
k z2, ω

r
kz3, ω

−r
k z4). (8.3)

The orbifold C
4/Zk corresponds to the cone over the smooth cyclic quotient

in the first row of table 14. Generically it has N = 4, with N = 6 only if r =
±1 and N = 8 only if r = ±1 and k = 1 or k = 2. The untwisted case with
r = ±1 arises as the dual geometry for the class of N = 6 superconformal
field theories in [3] with the Chern–Simons level identified with k. The
other twisted smooth N = 4 cyclic quotients with r 
= ±1 have no known
superconformal field theory duals.

Next, begin by considering again the example above but for the Z2k sub-
group of Sp(1) × Sp(1) generated by g = (ω2k, ω

r
2k), with r now coprime to

2k. The subgroup 2D2k of Sp(1) × Sp(1) is generated by g and h = (j, j).
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The action of g and h on C
4 is given by

g · (z1, z2, z3, z4) = (ω2kz1, ω
−1
2k z2, ω

r
2kz3, ω

−r
2k z4),

h · (z1, z2, z3, z4) = (−z2, z1,−z4, z3).
(8.4)

The orbifold C
4/2D2k corresponds to the cone over the smooth binary dihe-

dral quotient in the second row of table 14 obtained by quotienting first by
the action of g ∈ Z2k and then by h ∈ Z2. Generically it has N = 4 with
N = 5 only if r = ±1. The untwisted case with r = ±1 arises as the dual
geometry for the class of N = 5 superconformal field theories in [5,12]. The
extra quotient by Z2 in the dual geometry here has a direct interpretation
from orientifolding an N = 6 theory in [3] with even Chern–Simons level 2k
to obtain this class of N = 5 theories. The twisted smooth N = 4 binary
dihedral quotients with r 
= ±1 have no known superconformal field theory
duals. Neither do any of the smooth binary polyhedral quotients, be they
untwisted with N = 5 nor twisted with N = 4.

8.2 Cyclic orbifolds

Consider first the product subgroup Zp × Zq of Sp(1) × Sp(1), with typical
element g = (ωa

p , ωb
q) for any 0 ≤ a < p and 0 ≤ b < q. Its action on C

4 is
given by

g · (z1, z2, z3, z4) = (ωa
pz1, ω

−a
p z2, ω

b
qz3, ω

−b
q z4). (8.5)

The orbifold C
4/Zp × Zq corresponds to the cone over the product orbifold in

the first row of table 13 (from which the chiral cyclic orbifold in Section 7.3.1
follows as a special case if either p or q equal one). Orbifolds of this type
were considered in [15] for which a dual N = 4 superconformal field theory
was proposed as “orbifold gauge theory II” in the chiral case.

The fibred product subgroup Zpk ×Zk
Zqk of Sp(1) × Sp(1) is generated

by multiplying the elements in Zp × Zq above with g = (ωpk, ω
r
qk), where r

is some integer coprime to k. The action of this extra generator on C
4 is

given by

g · (z1, z2, z3, z4) = (ωpkz1, ω
−1
pk z2, ω

r
qkz3, ω

−r
qk z4). (8.6)

The orbifold C
4/Zpk ×Zk

Zqk corresponds to the cone over the orbifold in
the first row of table 15 (from which the product orbifold above follows as
a special case if k = 1). In the untwisted case with r = ±1, orbifolds of this
type have been obtained in [13–19].
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More precisely, the ones obtained in [14,15] correspond to a special case of
this type of orbifold wherein both p and q equal some fixed positive integer
n which is assumed to be coprime to k (the one in [13] corresponds to the
case where n = 2).1 In this special case, Zn × Zk

∼= Znk and the results in
Appendix A imply that Znk ×Zk

Znk
∼= Znk × Zn which is how the quotient

is referred to in these references. The N = 4 superconformal field theories
proposed to be the holographic duals of such orbifolds are referred to as
the “non-chiral orbifold gauge theory” in [14] and “orbifold gauge theory I”
in [15] and correspond to a special case of the class of N = 4 superconformal
field theories first obtained in [7] such that the gauge group consists of a
product of an even number of unitary groups. The gauge–matter couplings
for these theories are encoded by quiver diagrams consisting of an even
number of 2n nodes connected by 2n matter hypermultiplets to form a chain.
The Chern–Simons level for each node is ±k with the sign alternating from
node to node as one traverses the chain. Matter hypermultiplets must also
alternate between twisted and untwisted type, so that there are n of each
type (see [7,10] for more details). It is worth remarking that S7/Znk ×Zk

Znk

can be written as either (S7/Zn × Zn)/Zk or S7/Znk/Zn. In the latter form,
the extra quotient by Zn in the dual geometry has a direct interpretation
from orbifolding an N = 6 theory in [3] with Chern–Simons level nk, which
is how this class of N = 4 theories was obtained in [14].

The general orbifolds of this type were obtained in [16–19] and the class
of N = 4 superconformal field theories proposed as their holographic duals
are referred to as “elliptic models”. Like the theories in [14, 15], these
elliptic models also have gauge–matter couplings encoded by chain quivers
only now the number of nodes is given by p + q, where p and q correspond
respectively to the numbers of, say, untwisted and twisted hypermultiplets
forming the links in the chain. In particular, p need not equal q here and
so the number of nodes need not be even. The Chern–Simons level for
each node in the quiver is either ±k or zero with a zero occurring at each
node whose pair of connecting links are hypermultiplets without a relative
twist.

In the twisted case with r 
= ±1, none of the cyclic orbifolds have known
N = 4 superconformal field theory duals, nor indeed, to the best of our
knowledge, do any of the remaining non-abelian N = 4 orbifolds in table 15.
It is hoped that progress in this direction may be aided by our description of
these new orbifolds in terms of iterated quotients in order to perhaps obtain
dual N = 4 superconformal field theories for some of them via a projection

1In this reference, a non-generic branch of the moduli space is also found, which takes
the form R

8/D2m in terms of the ordinary dihedral group D2m = Zm � Z2, though this
orbifold preserves only N = 3 supersymmetry.
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of the known theories (e.g. via further orbifolding or orientifolding), perhaps
along the lines discussed in [37].

8.3 M5-brane orbifolds

Let us mention briefly that a similar, but much simpler situation obtains
with M5-branes, as discussed, for example, in [38, Section 5.2].

In this case, we are interested in supersymmetric backgrounds AdS7 ×X4,
with X possibly an orbifold. Bär’s construction, together with the non-
existence of irreducible five-dimensional holonomy representations, imply
that the only (complete) four-dimensional manifold admitting real Killing
spinors is the round sphere S4, hence any other supersymmetric background
must be an orbifold of S4 by a finite subgroup of SO(5), lifting isomet-
rically to a subgroup Γ < Sp(2). The space of Killing spinors is again
identified with the Γ-invariant parallel spinors on R

5 which is the irre-
ducible spinor representation Δ of Sp(2). This representation is quater-
nionic, when the space of Γ-invariant spinors is a quaternionic subspace: if
a spinor is invariant; so is its quaternion line, by the quaternion-linearity
of the action of Sp(2). Since dimH Δ = 2, necessarily 0 ≤ dimH ΔΓ ≤ 2.
Hence, if we demand some supersymmetry, either Γ = {1} and we have
X = S4, or else the orbifold is half-BPS. In this case Γ is contained in
an Sp(1) subgroup of Sp(2), leaving a non-zero vector invariant in the
fundamental representation of Sp(2). Up to automorphisms, we see that
Γ is one of the ADE subgroups in table 1, but this time embedded in
Sp(2) in such a way that if u ∈ Γ < Sp(1) and (x, y) ∈ H

2, then u · (x, y) =
(ux, y).

The action of that Sp(1) subgroup of SO(5) on S4 is given by restricting
the action on R

5. This is given as follows. First of all, there is a vector which
is fixed, call it v. If we identify the four-dimensional subspace perpendicular
to v with H, then the action of Sp(1) is by left quaternion multiplica-
tion. Finally, using the arguments described in Section 7.1 and in particular
table 11, it is a simple exercise to decompose such orbifolds S4/Γ, except
for Γ = E8, into a sequence of cyclic quotients. This should become useful
if and when we understand the six-dimensional superconformal field theory
dual to AdS7 ×S4.
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Appendix A Structure of fibred products

In this appendix, we show that even though the finite subgroups A ×(F,τ) B
of Spin(4) corresponding to different τ ∈ Twist(F ) are generally not con-
jugate in Spin(4), they are (in almost most cases) abstractly isomorphic as
groups. The independence on the automorphism is of course trivially true
in those cases where Twist(F ) is a singleton, but we will now see that this
is the case also in those cases where Twist(F ) 
= {1}, with two possible
exceptions. In all cases where we can show this, the result follows from
Lemma A.1 below after exhibiting lifts of every τ ∈ Twist(F ) to Aut(A) or
Aut(B) and in many cases the lift follows from Lemma A.2 below. This
does not seem to be totally trivial, in that outer automorphisms generally
do not lift and, furthermore, there are examples of fibred products with
inequivalent twisting automorphisms, which are not abstractly isomorphic.
This appendix owes a lot to the collective wisdom of the MathOverflow
community and in particular to the answers provided by the users men-
tioned in the acknowledgments to some of the questions asked by the senior
author.

We start with two preliminary results.

Lemma A.1. If τ ∈ Twist(F ) is induced from an automorphism of either
A or B, then A ×(F,τ) B ∼= A ×(F,id) B.

Proof. Let us assume without loss of generality that τ is induced from τ̂ ∈
Aut(A). (The case where it is induced from an automorphism of B is treated
similarly.) Let α : A → F and β : B → F be the homomorphisms defined in
equations (4.6) and (4.5), respectively. Then this means that α(τ̂ a) = τα(a)
for all a ∈ A. We define an isomorphism ϕ : A ×(F,id) B → A ×(F,τ) B as
follows. Let (a, b) ∈ A ×(F,id) B and let ϕ(a, b) = (τ̂ a, b). Then since α(a) =
β(b), we see that α(τ̂ a) = τα(a) = τβ(b), when indeed (τ̂ a, b) ∈ A ×(F,τ) B.
Since τ̂ is an automorphism, ϕ is a group isomorphism. �

A special case we will have ample opportunity to use is that of cyclic
groups, for which automorphisms always lift.

Lemma A.2. Let Zmn → Zn be a group homomorphism. Then if r ∈ Z
×
n ,

there exist some s ∈ Z
×
mn with s ≡ r mod n.
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Proof. (We learnt this proof from Keith Conrad at MathOverflow [39].) Let
us first consider the special case where m and n are coprime. Then by
the Chinese Remainder Theorem, there is a unique s ∈ Zmn solving the
congruences s ≡ r mod n and s ≡ 1 mod m. The first congruence says
that s is coprime to n since r is, whereas the second congruence says that
s is coprime to m, hence s ∈ Z

×
mn. In the general case, let m and n have

greatest common divisor �, so that m = �m′ and n = �p with m′, � and p
pairwise coprime. Let n′ = �2p, so that m′n′ = mn, but now m′ and n′
are coprime. Since r is coprime to n, it is also coprime to n′ and hence,
by the special case, there exists a unique s ∈ Z

×
mn such that s ≡ r mod n′.

However, then s ≡ r mod n as well. �

We now discuss the different groups in some detail.

• Γ = Akl−1 ×(Zl,τ) Aml−1

Here τ is represented by some r ∈ Z
×
l ; that is, an integer r coprime

to l. Then by Lemma A.2, there exists an integer s congruent to
r modulo l such that s is coprime to kl. In other words, s ∈ Z

×
kl

defines an automorphism τ̂ of Zkl, which lifts τ . By Lemma A.1, the
isomorphism type of Γ does not depend on τ . Let us therefore take
τ = id. Then Γ is the extension

1 −−−−→ Ak−1 × Am−1 −−−−→ Γ −−−−→ Zl −−−−→ 1. (A.1)

Let us consider the element γ = (ωkl, ωml) ∈ Γ, which is sent to the
generator of Zl. The group 〈γ〉 generated by γ has order al, where a is
the least common multiple of k and m. In fact, it is clear that al is an
exponent of Γ, when 〈γ〉 is a summand of Γ. Since Γ is covered by Z

2,
it is isomorphic to the direct product of (at most) two cyclic groups,
when counting order Γ ∼= Zal × Zb, where b is the greatest common
divisor of k and m. (We learnt this proof from Robin Chapman over
at MathOverflow [40].)

• Γ = A3k−1 ×(Z3,τ) E6

A similar argument shows that this subgroup is isomorphic to A3k−1 ×
(Z3,id)E6, since the non-trivial outer automorphism of Z3 lifts to an
automorphism of Z3k, by Lemma A.2.

• Γ = Dk(2l+1)+2 ×(D4l+2,τ) Dm(2l+1)+2

The outer automorphism group of D4l+2 is isomorphic to Z
×
2l+1/〈−1〉.

Let us concentrate on the surjection Dk(2l+1)+2 → D4l+2, sending x
to [x], where [x] is the coset of x relative to the normal subgroup
generated by t2l+1. Then r ∈ Z

×
2l+1 represent an outer automorphism
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τ of D4l+2. Its action on D4l+2 is given by

τ [tp] = [trp] and τ [stp] = [strp]. (A.2)

By Lemma A.2, there exists r′ ∈ Z
×
2k(2l+1) with r′ ≡ r mod 2l + 1 and

this in turn defines an automorphism τ̂ of Dk(2l+1)+2 defined by

τ̂(tp) = tr
′p and τ̂(stp) = str

′p. (A.3)

Note, though, that [tr
′p] = [trp] since r′ ≡ r mod 2l + 1 and [t2l+1] =

1. Therefore [τ̂x] = τ [x] for all x ∈ Dk(2l+1)+2 and hence τ̂ is the lift of
τ . Finally, by Lemma A.1, the isomorphism type of Γ is independent
of τ . In those cases when the factor group is isomorphic to either
D4 or 2D4, not every automorphism of the factor group lifts, and
hence Lemma A.1 is not applicable. Such cases require a more detailed
analysis, which is beyond the scope of this paper.

• Γ = D2kl+2 ×(D4l,τ) D2ml+2 (l 
= 1) and Γ = Dl(2k+1)+2 ×(2D2l,τ)

Dl(2m+1)+2 (l 
= 2)
These two cases are very similar. In both cases, there are two kinds of
non-trivial outer automorphisms. The ones in Z

×
2l lifts just as in the

previous example and we will not discuss this further. Let τ denote
the automorphism of D4l corresponding to the non-trivial element in
the Z2-factor of Out(D4l). It is defined by

τ [tp] = [tp] and τ [stp] = [stp+1]. (A.4)

Let τ̂ be the automorphism of D2kl+2 defined by

τ̂(tp) = tp and τ̂(stp) = (stp+1). (A.5)

Then τ [x] = [τ̂x] and hence τ lifts to an automorphism of D2kl+2. The
same argument, mutatis mutandis, shows that for Dl(2k+1)+2 ×(2D2l,τ)

Dl(2m+1)+2, the outer automorphisms of 2D2l lift to automorphisms of
Dl(2k+1)+2. In both cases, Lemma A.1 implies that the fibred products
are (up to isomorphism) independent of the twisting automorphism.

• Γ = E6 ×(T,τ) E6

Here τ is the unique non-trivial outer automorphism of the tetrahedral
group T , which is induced from the unique non-trivial outer automor-
phism τ̂ of E6. We let x �→ [x] denote the map E6 → T and let Z
denote the kernel of this map, which is the centre of E6. In terms
of quaternions it is the subgroup {±1}. We claim that the automor-
phism τ [x] := [τ̂x] is not inner. Indeed, suppose that τ [x] = [z][x][z]−1
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for some [z] ∈ T . Then [τ̂x] = [zxz−1], when

τ̂x = ε(x)zxz−1, (A.6)

where ε : E6 → Z is a group homomorphism (from the fact that τ̂ is an
automorphism). The kernel of this homomorphism is either all of E6

or else a normal subgroup of index 2. However as seen in Section 5.3,
E6 has no such normal subgroups. This means that ε(x) = 1 for all x
and hence that τ̂ = zxz−1, contradicting the fact that τ̂ is not inner.
This means that τ ∈ Out(T ) lifts and, by Lemma A.1, we conclude
that Γ ∼= E6 ×(T,id) E6. We can determine the structure of this group
as follows. It consists of the following elements of E6 × E6:

Γ = {(a, a)|a ∈ E6} ∪ {(a,−a)|a ∈ E6} . (A.7)

The diagonal subgroup {(a, a)|a ∈ E6} has index 2 and is hence normal.
This means we have an exact sequence

1 −−−−→ E6 −−−−→ Γ −−−−→ Z2 −−−−→ 1, (A.8)

which is easily seen to split, with the homomorphism Z2 → Γ given by
sending the generator −1 to (1,−1). Since (1,−1) is central, we see
that Γ ∼= E6 × Z2.

• Γ = E7 ×(O,id) E7

Here there are no non-trivial outer automorphisms and the same argu-
ment, mutatis mutandis, as in the previous case shows that E7 ×O E7

∼=
E7 × Z2.

• Γ = E8 ×(I,τ) E8

The same argument, mutatis mutandis, as in the case E6 ×(T,τ) E6

shows that for τ the non-trivial element of Out(I), E8 ×(I,τ) E8
∼=

E8 ×(I,id) E8
∼= E8 × Z2.

The last three cases imply that the corresponding orbifolds S7/Γ are Z2-
orbifolds of the smooth N = 4 and N = 5 quotients associated to the ADE
subgroups E6,7,8 and classified in [20].

Appendix B Finite subgroups of SO(4)

In this appendix will summarize an independent check of our classification of
finite subgroups of Spin(4) (up to conjugation) by showing that we recover
the classification of finite subgroups of SO(4) in [21, Section 4], particularly
their tables 4.1 and 4.2.
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B.1 Notation

The notation in [21] deserves some comment. First of all, they call sub-
groups of SO(4) chiral, to distinguish them from the achiral subgroups of
the general orthogonal group. (This is not to be confused with the notion of
chiral subgroup introduced in Section 7.3.1.) Chiral subgroups are further
divided into diploid and haploid subgroups, according to whether or not the
subgroup contains the orthogonal transformation − id ∈ SO(4), sending x
to −x, which is chiral in four dimensions.

The notation for the 2-to-1 covering homomorphism Sp(1) × Sp(1) →
SO(4) is such that (l, r) �→ [l, r], for l, r ∈ Sp(1). The kernel of this homomor-
phism is the order-2 subgroup generated by (−1,−1), when [−l,−r] = [l, r].
In this notation, the orthogonal transformation − id is denoted [1,−1] or
equivalently [−1, 1].

Haploid subgroups of SO(4) are denoted + 1
f [L × R], where L, R < SO(3)

and f is the order of the relevant factor group (as in Goursat’s Lemma).
Up to at most a dichotomy, the order determines the factor group, when
the notation is usually not ambiguous. In case of ambiguity, either L or R
are further adorned with a bar. Diploid subgroups of SO(4) are denoted
± 1

f [L × R] with similar meanings to the symbols. The ± is appropriate
because if g belongs to a diploid subgroup, so does −g (with ±g thought
of as 4 × 4 matrices). The order of a haploid subgroup + 1

f [L × R] is given
by |L||R|/f , whereas that of a diploid subgroup ± 1

f [L × R] is twice that:
2|L||R|/f .

The finite subgroups of SO(4) classified in [21] are tabulated in tables
4.1 and 4.2 in that paper. Next we will recover this classification from
our classification of finite subgroups of Spin(4) and will exhibit the precise
correspondence between subgroups. We believe this provides an independent
check, both of our results and, if necessary, of those in [21].

B.2 Recovering the classification

As the notation described above makes clear, the classification of finite sub-
groups of SO(4) is based on the classification of finite subgroups of PSO(4) ∼=
SO(3) × SO(3). The groups Spin(4), SO(4) and PSO(4) are related as
follows. The centre of Spin(4) is isomorphic to Z2 × Z2. Under the iso-
morphism Spin(4) ∼= Sp(1) × Sp(1), the centre is the subgroup Z consist-
ing of the four elements: (1, 1), (1,−1), (−1, 1) and (−1,−1). The kernel
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of the homomorphism Sp(1) × Sp(1) → SO(4) is the subgroup generated
by (−1,−1). The two elements (1,−1) and (−1, 1) map to the same ele-
ment [−1, 1] of SO(4): namely, − id. This element generates the kernel of
the homomorphism SO(4) → SO(3) × SO(3). Let us introduce the notation
π : Sp(1) → SO(3) for the covering homomorphism. The kernel of π is the
order-2 subgroup generated by −1. Restricted to the ADE subgroups of
Sp(1), we have the following correspondence:

G A2n−1 A2n Dk+2 E6 E7 E8

π(G) Cn C2n+1 D2k T O I
(B.1)

where Cn denotes the cyclic group of order n, and where π is a double cover
in all cases but A2n → C2n+1, where it is an isomorphism.

Now let Γ < Sp(1) × Sp(1), when Γ = A ×(F,τ) B, where A, B are finite
subgroups of Sp(1) with common factor F and τ ∈ Aut(F ). Equivalently, Γ
is a categorical pull-back (with all maps epimorphisms)

Γ
ρ ��

λ
��

B

β

��
A

α �� F

(B.2)

where α, β incorporate the automorphism τ ∈ Aut(F ). Let Γ denote the
projection of Γ to SO(3) × SO(3). Let A and B be the images of A and B,
respectively, under π. Since Γ < A × B, it follows that Γ < A × B. This
gives maps λ : Γ → A and ρ : Γ → B making the following diagram com-
mute:

Γ
λ

����
��

��
�

��

ρ

		�
��

��
��

A

π

��

B

π

��

Γ
λ



��
��

��
�

ρ

���
��

��
��

�

A B

(B.3)

It follows categorically that since π, λ, ρ are epimorphisms, so are λ and ρ.
By Goursat’s Lemma, Γ is also then given by a categorical pull-back (with
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all maps epimorphisms)

Γ
ρ ��

λ
��

B

β
��

A
α �� F

(B.4)

for some morphisms α, β to a common factor F . Once given A and B, we
determine α : A → F and β : B → F from the knowledge of Γ as in the proof
of Goursat’s Lemma. One thing we can say in general is that there is an
epimorphism φ : F → F in such a way that the following cube commutes:

Γ ��

��

B

��
Γ

������
��

��

B

�����

��
A �� F

A ��

�����
F

φ

��

(B.5)

where the front and back faces are the pull-back diagrams (B.2) and (B.3)
and the three solid arrows between them are all π. Indeed, let f ∈ F .
Then there is some (l, r) ∈ Γ with α(l) = β(r) = f . We define φ(f) ∈ F
by φ(f) = α(l) = β(r). One readily checks that φ is well-defined and again
an epimorphism because so are π, α, α or π, β, β.

We are actually interested in [Γ], which is the image of Γ under the cover-
ing homomorphism Sp(1) × Sp(1) → SO(4). To understand the relationship
between [Γ] and Γ we need to understand how Γ interacts with the centre
Z of Sp(1) × Sp(1). The lattice of subgroups of Z is given by

Z

〈(1,−1)〉

������������
〈(−1, 1)〉 〈(−1,−1)〉

												

{(1, 1)}













����������

(B.6)

when there are four different possibilities for Γ ∩ Z:

(a) Γ ∩ Z = Z: in this case Γ 
∼= [Γ] 
∼= Γ, when [Γ] is diploid;
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(b) Γ ∩ Z = 〈(−1, 1)〉 or 〈(1,−1)〉: in this case Γ ∼= [Γ] 
∼= Γ, when [Γ] is
again diploid;

(c) Γ ∩ Z = 〈(−1,−1)〉: in this case Γ 
∼= [Γ] ∼= Γ, when [Γ] is haploid; and
(d) Γ ∩ Z = {(1, 1)}: in this case Γ ∼= [Γ] ∼= Γ, when [Γ] is again haploid.

In the first two cases we have that [Γ] = ± 1
f [A × B], where f = |F |; whereas

in the last two cases, [Γ] = + 1
f [A × B].

It is now a simple matter of going in turn through every single finite
subgroup of Sp(1) × Sp(1) in tables 8, 9 and 10, determining which case
(a)–(d) obtains and the nature of the group F . Doing so we recover tables
4.1 and 4.2 in [21] with one small correction: namely, the penultimate entry

Table 16: Subgroups of SO(4) coming from subgroups in table 8

Γ [Γ]
A2n−1 × A2m−1 ±[Cn × Cm]
A2n−1 × A2m ±[Cn × C2m+1]
A2n × A2m +[C2n+1 × C2m+1]
A2n−1 × Dm+2 ±[Cn × D2m]
A2n × Dm+2 ±[C2n+1 × D2m]
A2n−1 × E6 ±[Cn × T ]
A2n × E6 ±[C2n+1 × T ]
A2n−1 × E7 ±[Cn × O]
A2n × E7 ±[C2n+1 × O]
A2n−1 × E8 ±[Cn × I]
A2n × E8 ±[C2n+1 × I]
Dn+2 × Dm+2 ±[D2n × D2m]
Dn+2 × E6 ±[D2n × T ]
Dn+2 × E7 ±[D2n × O]
Dn+2 × E8 ±[D2n × I]
E6 × E6 ±[T × T ]
E6 × E7 ±[T × O]
E6 × E8 ±[T × I]
E7 × E7 ±[O × O]
E7 × E8 ±[O × I]
E8 × E8 ±[I × I]
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Table 17: Subgroups of SO(4) coming from subgroups in table 9

Γ [Γ]
A2n−1 ×(Z2n,τ) A2n−1 + 1

n [Cn × C
(s)
n ], (s, n) = 1

A2n ×(Z2n+1,τ) A2n + 1
2n+1 [C2n+1 × C

(s)
2n+1], (s, 2n + 1) = 1

Dn+2 ×(2D2n,τ) Dn+2 + 1
2n [D2n × D

(s)
2n ], (s, 2n) = 1

E6 ×2T E6 + 1
12 [T × T ]

E7 ×(2O,τ) E7 + 1
24 [O × O] and + 1

24 [O × O]
E8 ×(2I,τ) E8 + 1

60 [I × I] and + 1
60 [I × I]

in table 4.1, corresponding to the haploid subgroup +1
2 [D2m × C2n] is miss-

ing the condition that both m and n be odd, which clearly follows from
their choice of generators. The precise correspondence between the sub-
groups Γ < Sp(1) × Sp(1) and [Γ] < SO(4) is given in tables 16, 17 and 18
below. The fact that the smooth subgroups give rise to haploid subgroups
is easy to explain: a smooth subgroup Γ of Sp(1) × Sp(1) is the graph of an
automorphisms and automorphisms preserve the centre, when (−1,−1) ∈ Γ,
but (±1,∓1) 
∈ Γ.

Table 18: Subgroups of SO(4) coming from subgroups in table 10

Γ [Γ]
A2kl−1 ×(Zl,τ) A2ml−1 ±1

l [Ckl × C
(s)
ml ], (s, l) = 1

A(2k+1)l−1 ×(Zl,τ) A2ml−1 ±1
l [C(2k+1)l × C

(s)
ml ], (s, l) = 1

A(2k+1)l−1 ×(Zl,τ) A(2m+1)l−1 ±1
l [Cl(2k+1) × C

(s)
l(2m+1)], (s, l) = 1,

l ≡ 1(2)
A2l(2k+1)−1 ×(Z2l,τ) A2l(2m+1)−1 ±1

l [Cl(2k+1) × C
(s)
l(2m+1)], (s, 2l) = 1

A4k−1 ×Z2 D
′
2m+2 ±1

2 [C2k × D4m]
A4k+1 ×Z2 D

′
2m+2 ±[C2k+1 × D4m]

A4k−1 ×Z2 Dm+2 ±1
2 [C2k × D2m]

A4k+1 ×Z2 Dm+2 ±[C2k+1 × D2m]
A4k−1 ×Z4 D2m+3 ±1

2 [C2k × D4m+2], k ≡ 0(2)
A4k−1 ×Z4 D2m+3 +1

2 [C2k × D4m+2], k ≡ 1(2)
A6k−1 ×Z3 E6 ±1

3 [C3k × T ]
continued.
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Table 18: continued.

Γ [Γ]
A6k+2 ×Z3 E6 ±1

3 [C3(2k+1) × T ]
A4k−1 ×Z2 E7 ±1

2 [C2k × O]
A4k+1 ×Z2 E7 ±1

2 [C4k+2 × O]
D
′
2k+2 ×Z2 D

′
2m+2 ±1

2 [D4k × D4m]
Dk+2 ×Z2 Dm+2 ±1

2 [D2k × D2m]
D2k+2 ×(D4,τ) D2m+2 ±1

4 [D4k × D4m] and ± 1
4 [D4k × D4m]

Dlk+2 ×(D2l,τ) Dlm+2 ± 1
2l [D2lk × D

(s)
2lm], (s, l) = 1, l > 2

D2k+3 ×Z4 D2m+3 +1
2 [D4k+2 × D4m+2]

D4k+4 ×(2D4,τ) D4m+4 +1
4 [D8k+4 × D8m+4] and

+ 1
4 [D8k+4 × D8m+4]

Dl(2k+1)+2 ×(2D2l,τ)

Dl(2m+1)+2

+ 1
2l [D2l(2k+1) × D

(s)
2l(2m+1)],

(s, 2l) = 1, l > 2
Dk+2 ×Z2 D

′
2m+2 ±1

2 [D2k × D4m]
D
′
2k+2 ×Z2 E7 ±1

2 [D4k × O]
Dk+2 ×Z2 E7 ±1

2 [D2k × O]
D3k+2 ×D6 E7 ±1

6 [D6k × O]
E6 ×Z3 E6 ±1

3 [T × T ]
E6 ×T E6 ± 1

12 [T × T ]
E7 ×Z2 E7 ±1

2 [O × O]
E7 ×D6 E7 ±1

6 [O × O]
E7 ×O E7 ± 1

24 [O × O]
E8 ×(I,τ) E8 ± 1

60 [I × I] and ± 1
60 [I × I]

References

[1] J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of
multiple M2-branes, Phys. Rev. D 77 (2008), 065008, arXiv:0711.0955
[hep-th].

[2] J. Bagger and N. Lambert, Comments on multiple M2-branes, J. High
Energy Phys. 02 (2008) 105, arXiv:0712.3738 [hep-th].

[3] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 super-
conformal Chern–Simons-matter theories, M2-branes and their grav-
ity duals, J. High Energy Phys. 10 (2008) 091, arXiv:0806.1218
[hep-th].



“ATMP-16-5-A1-DEMED” — 2013/5/11 — 12:41 — page 1407 — #59
�

�

�

�

�

�

�

�

HALF-BPS M2-BRANE ORBIFOLDS 1407

[4] M. Schnabl and Y. Tachikawa, Classification of N = 6 superconformal
theories of ABJM type, arXiv:0807.1102 [hep-th].

[5] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 5, 6 Super-
conformal Chern–Simons theories and M2-branes on orbifolds, J. High
Energy Phys. 09 (2008) 002, arXiv:0806.4977 [hep-th].

[6] E.A. Bergshoeff, O. Hohm, D. Roest, H. Samtleben and E. Sezgin, The
superconformal gaugings in three dimensions, J. High Energy Phys. 09
(2008) 101, arXiv:0807.2841 [hep-th].

[7] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 4
Superconformal Chern–Simons theories with hyper and twisted hyper
multiplets, J. High Energy Phys. 07 (2008) 091, arXiv:0805.3662
[hep-th].

[8] D. Gaiotto and E. Witten, Janus configurations, Chern–Simons cou-
plings, and the theta-angle in N = 4 super Yang–Mills theory, J. High
Energy Phys. 06 (2010) 097, arXiv:0804.2907 [hep-th].

[9] Y. Imamura and K. Kimura, N = 4 Chern–Simons theories with
auxiliary vector multiplets, J. High Energy Phys. 10 (2008) 040,
arXiv:0807.2144 [hep-th].

[10] P. de Medeiros, J. Figueroa-O’Farrill and E. Mndez-Escobar, Super-
potentials for superconformal Chern–Simons theories from represen-
tation theory, J. Phys. A 42 (2009), 485204, arXiv:0908.2125
[hep-th].

[11] N. Lambert and D. Tong, Membranes on an orbifold, Phys. Rev. Lett.
101 (2008), 041602, arXiv:0804.1114 [hep-th].

[12] O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes,
J. High Energy Phys. 11 (2008) 043, arXiv:0807.4924 [hep-th].

[13] H. Fuji, S. Terashima and M. Yamazaki, A new N = 4 membrane action
via orbifold, Nucl. Phys. B 810 (2009), 354–368, arXiv:0805.1997
[hep-th].

[14] M. Benna, I. Klebanov, T. Klose and M. Smedbäck, Superconfor-
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