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This is a sequel to our paper [11], where we proposed a definition

of the Morse homotopy of the moment polytope of toric manifolds.

Using this as the substitute of the Fukaya category, we proved a

version of homological mirror symmetry for the projective spaces

and their products via Strominger-Yau-Zaslow construction of the

mirror dual Landau-Ginzburg model.

In this paper we go this way further and extend our previous

result to the case of the Hirzebruch surface F1.

1. Introduction

In [18], Strominger-Yau-Zaslow proposed a construction of mirror dual

Calabi-Yau manifolds via dual torus fibrations on a closed manifold.

Kontsevich-Soibelman [14] proposed a framework to systematically prove

homological mirror symmetry by interpolating a variant of the Morse ho-

motopy. Morse homotopy was first introduced for closed manifolds as a

Morse theoretic (dimensionally reduced) model of the Fukaya category by

Fukaya [7]. He and Oh showed that Morse homotopy fully faithfully embeds

into the Fukaya category of the cotangent bundles [9]. It is hard to extend

Kontsevich-Soibelman’s program to general Calabi-Yau’s because of the ex-

istence of singular fibers of the SYZ fibration. See for example Fukaya [8]

for an outline of the whole program on this line.

SYZ picture is also applicable to the case of toric Fano’s and their

Landau-Ginzburg mirrors, in which the ends of the total space of the
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2612 M. Futaki and H. Kajiura

Landau-Ginzburg model corresponds to the toric divisors. It was first

discussed in mathematical-symplectic geometric context by Auroux [2].

Abouzaid [1] formulated and proved a version of the homological mirror

symmetry for toric Fano’s by employing the tropical geometric setting on

the Fukaya-Morse side, and proved an A∞ embedding by using an abstract

framework of Čech category on the complex side.

Based on the differential geometric formulation by Leung-Yau-Zaslow

[17] and Leung [16], Fang [6] studied homological mirror symmetry for CPn

using the mirror transform associated with the SYZ fibration. Chan [4] stud-

ied the case of more general projective torics to determine which Lagrangians

in the Landau-Ginzburg mirror correspond to holomorphic line bundles.

We further investigate this kind of formulation to more directly realize

the SYZ picture in the toric Fano cases in our previous paper [11]. We pro-

posed a definition of the Morse homotopy Mo(P ) for the moment polytope

P and proved a version of the homological mirror symmetry for projective

spaces and their products. This enables us to give a concrete description of

the functorial mirror transform.

We go this way further in this paper and compute the case of the Hirze-

bruch surface F1. Namely, we prove a version of the homological mirror

symmetry:

Theorem 1.1 (Corollary 3.3). We have an equivalence of triangulated

categories

Tr(MoE(P )) ≃ Db(coh(F1)),

where P is the moment polytope of F1 and E is the collection of Lagrangian

sections mirror to the chosen full strongly exceptional collection of holomor-

phic line bundles on F1.

This paper is organized as follows. In Section 2, we recall some basic set-

tings and definitions from our previous paper [11] without going into details.

In Section 3.1, we recall Hirzebruch surfaces in homogeneous coordinates.

In Section 3.2, we realize holomorphic line bundles on F1 in a geometric way

and construct the DG category DG(F1). The corresponding Lagrangian sec-

tions are obtained explicitly in subsection 3.4. In subsection 3.6, we compute

the Morse homotopy and prove the main theorem.



✐

✐

“5-Kajiura” — 2024/1/2 — 18:30 — page 2613 — #3
✐

✐

✐

✐

✐

✐

Homological mirror symmetry of F1 via Morse homotopy 2613

While we do some calculations for Fk with general k ≥ 1, we restrict

ourselves in this paper to the case k = 1 since Fk is Fano if and only if

k = 0 or 1, where F0 = CP 1 × CP 1 is already discussed in [11]. In fact, in

our setting, we mainly keep in mind that the toric manifold is Fano, where

any line bundle is guaranteed to be an exceptional object by the Kodaira

vanishing theorem. However, we should note that a similar equivalence may

exist for Fk with k ≥ 2 since it is known that Db(coh(Fk)) has full strongly

exceptional collections of line bundles [12]. Another reason for us to restrict

the case k = 1 in this paper is that we can construct the category Mo(P )

and enjoy the equivalence above explicitly in this case. See subsection 3.4

for more details.

Acknowledgements We would like to thank Fumihiko Sanda for telling us

some known facts about the full strongly exceptional collections on Hirze-

bruch surfaces.

2. Preliminaries on the SYZ fibrations and homological

mirror symmetry

In this section, we review some notions and settings from our previous paper

[11].

2.1. Hessian manifold and dual torus fibrations

Let B be a tropical affine manifold: it is equipped with an affine open cover

{Uλ}λ∈Λ whose transition functions are affine with integral linear part. We

assume for simplicity that all nonempty intersections of Uλ’s are contractible.

Namely, the coordinate transformation is of the form

x(µ) = ϕλµx(λ) + ψλµ

with ϕλµ ∈ GL(n;Z) and ψλµ ∈ Rn, where x(λ) = (x1(λ), . . . , x
n
(λ))

t and x(µ) =

(x1(µ), . . . , x
n
(µ)

t denote the local coordinates on Uλ and Uµ respectively. We

omit the suffix (λ) when no confusion may occur.

We call B Hessian when it is equipped with a metric g locally expressed

as

gij =
∂2φ

∂xi∂xj

for some smooth local function φ. Hereafter we assume that B is Hessian.
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Using the metric g we first define the dual affine coordinates on the base

space as follows: since
∑n

j=1 gijdx
j is closed if (B, g) is Hessian, there exists

a function xi := φi of x for each i such that

(1) dxi =

n∑

j=1

gijdx
j .

We thus obtain the dual coordinates x̌(λ) := (x
(λ)
1 , ..., x

(λ)
n )t.

We then denote the fiber coordinates on T ∗Uλ = T ∗B|Uλ
dual to x(λ)

by (y
(λ)
1 , ..., y

(λ)
n ). Denote by (y1(λ), ..., y

n
(λ)) the fiber coordinates on TB|Uλ

which corresponds to (y
(λ)
1 , ..., y

(λ)
n ) via the isomorphism TB

∼=
→ T ∗B induced

by g. The cotangent bundle T ∗B is equipped with the standard symplectic

form ωT ∗B :=
∑n

i=1 dx
i ∧ dyi. The tangent bundle TB is a complex manifold,

where zi = xi + iyi’s form the complex coordinates. We can further equipped

TB with the symplectic form ωTB :=
∑n

i,j=1 gijdx
i ∧ dyj and T ∗B with the

complex structure given by the complex coordinates zi = xi + iyi’s. These

structures in turn give the Kähler structures on both TB and T ∗B.

Next we consider Zn-actions on TB and T ∗B. The action of

(0, , , 0.
i
1, 0, ..., 0) ∈ Zn is defined by yi 7→ yi + 2π and yi 7→ yi + 2π respec-

tively. This is well-defined because B is affine and the linear part ϕλµ of

the transition functions are integral. Therefore we can divide TB and T ∗B

by this action of Zn to get a pair of Kähler manifolds M = TB/Zn and

M̌ = T ∗B/Zn, and dual torus fibrations:

M

π
  
❅❅

❅❅
❅❅

❅❅
M̌

π̌
~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

B .

2.2. The categories DG and V

Now let X be a smooth compact toric manifold. Consider the complement

of toric divisors M̌ := X \ µ−1(∂P ) for the moment map µ : X → P ⊂ Rn.

By fixing an appropriate structure of the Hessian manifold on B := IntP ,

we get an affine torus fibration on M̌ → B whose Kähler structure coincides

with that coming from the given one on X. Applying the construction in

the previous subsection, we get the dual torus fibration M → B with a
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Kähler structure on the total space. We thus get the structure of affine

torus fibration M̌ → B and its dual torus fibration M → B with Kähler

structures. We describe such affine structure of Fk concretely in Section 3.1.

We consider the correspondence between Lagrangian submanifolds inM

and holomorphic vector bundles with U(1)-connection on M̌ . The following

calculation is based on a version of the Fourier-Mukai transform and came

from Leung-Yau-Zaslow [17] and Leung [16] (but with different conventions).

Let L be a Lagrangian section y : B →M . Then y can locally expressed as

df for some smooth function f . We associate to it a line bundle V on M̌

with the U(1)-connection

(2) D := d−
i

2π

n∑

i=1

yi(x)dyi,

where y = (y1, . . . , yn) is a lift to the covering space TB of M . This is holo-

morphic since y is a Lagrangian section.

We first define the category V associated with M̌ . It is the DG category

consisting of pairs of holomorphic line bundles and U(1)-connections of the

form (2). More precisely, for objects ya = (Va, Da) and yb = (Vb, Db) it has

the hom space

V(ya, yb) := Γ(Va, Vb) ⊗
C∞(M̌)

Ω0,∗(M̌)

where Γ(Va, Vb) denotes the space of homomorphisms from Va to Vb. This

space is Z-graded with the degree of the anti holomorphic differential forms

and we denote the degree r part by Vr(ya, yb). Decompose Da = D
(1,0)
a +

D
(0,1)
a and set da := 2D

(0,1)
a . The differential d on V(ya, yb) is then defined

as

dab(ψ) := dbψ − (−1)rψda

for ψ ∈ Vr(ya, yb). The product structure is given by combining the compo-

sition of bundle homomorphisms and the wedge product:

m(ψab, ψbc) := (−1)rab,rbcψbc ∧ ψab.

We then define the DG category DG(X) of holomorphic line bundles

on the toric manifold X. For a line bundle V on X, we take a holomorphic

connection D whose restriction to M̌ is isomorphic to a line bundle on M̌
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with a connection of the form

d−
i

2π

n∑

i=1

yi(x)dyi.

We set the objects of DG(X) as such pairs (V,D). The space DG(X)(ya, yb)

of morphisms is defined as the graded vector space each graded piece of

which is given by

DGr(X)(ya, yb) := Γ(Va, Vb)⊗ Ω0,r(X)

with Γ(Va, Vb) being the space of smooth bundle morphism from Va to Vb.

The composition of morphisms is defined in a similar way as that in V(M̌)

above. The differential

dab : DGr(X)(ya, yb) → DGr+1(X)(ya, yb)

is defined by

dab(ψ̃) := 2
(
D0,1

b ψ̃ − (−1)rψ̃D0,1
a

)
.

We then have a faithful embedding I : DG(X) → V by restricting line

bundles on X to M̌ . We define V ′ to be the image I(DG(X)) of DG(X)

under I.

For a full exceptional collection E of DG(X), we denote the correspond-

ing full subcategories consisting of E by DGE(X) ⊂ DG(X) and V ′
E ⊂ V ′

respectively.

2.3. The Morse homotopy Mo(P )

In the case of the moment polytopes, the objects of Mo(P ) are Lagrangian

sections y : B →M which corresponds to objects of DG(X) described in the

previous subsection. We shall see explicitly later in Section 3.4 in the case of

F1. Note that (i) they intersect cleanly, i.e. there exists an open set B̃ such

that B̄ ⊂ B̃ and L,L′ over B can be extended to graphs of smooth sections

over B̃ so that they intersect cleanly, and (ii) for each L, we can locally take

a Morse function fL on B̃ so that L is the graph of dfL.

For a given pair (L,L′), we assign a grading |V | for each connected

component V of the intersection π(L ∩ L′) in P = B̄ as the dimension of the
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stable manifold Sv ⊂ B̃ of the gradient vector field −grad(fL − fL′) with a

point v ∈ V . This does not depend on the choice of the point v ∈ V . The

space Mo(P )(L,L′) of morphisms is then set to be the Z-graded vector space

spanned by the connected components V of π(L ∩ L′) ∈ P such that there

exists a point v ∈ V which is an interior point of Sv ∩ P .
1 Note that, by

this definition, the space Mo(P )(L,L) is generated by P , which is of degree

zero and forms the identity morphism for any object L.

Rather than going into full details, we only explain m2 because of the fol-

lowing reasons: firstly, the Morse homotopy for F1 is minimal, i.e. with zero

differential. Secondly, the set of objects E we compute later forms strongly

exceptional collection in Tr(MoE(P )) and therefore we do not need to com-

pute mk with k ≥ 3 to compute Tr(MoE(P )). (For more comments, see [11],

Section 4.5.)

Take a triple (L1, L2, L3), connected components of the intersections

V12 ⊆ L1 ∩ L2, V23 ⊆ L2 ∩ L3, V13 ⊆ L1 ∩ L3 and define GT (v12, v23; v13) to

be the set of the trivalent gradient trees starting at v12 ∈ V12, v23 ∈ V23 and

ending at v13 ∈ V13. Define

GT (V12, V23;V13) := ∪v12∈V12,v23∈V23,v13∈V13
GT (v12, v23; v13)

and

HGT (V12, V23;V13) := GT (V12, V23;V13)/smooth homotopy.

This set becomes a finite set when |V13| = |V12|+ |V23| and therefore we

define m2 = composition of morphisms by

m2 : Mo(P )(L1, L2)⊗Mo(P )(L2, L3) → Mo(P )(L1, L3)

(V12, V13) 7→
∑

|V13|=|V12|+|V23|

∑

[γ]∈HGT (V12,V23;V13)

e−A(γ)V13

where A(γ) is the symplectic area of disk obtained by lifting the gradient

tree γ to M .

1We consider the Morse cohomology degree instead of the Morse homology de-

gree.
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3. Homological mirror symmetry of F1

Following Hille-Perling[12], Elagin-Lunts[5], Kuznesov[15], etc, the triangu-

lated category Db(coh(F1)) ≃ Tr(DG(F1)) has a series of full strongly ex-

ceptional collections

E := (O,O(1, 0),O(c, 1),O(1 + c, 1)),

where O(a, b) is a line bundle on F1 we shall define later in subsection 3.2.

We denote the corresponding full subcategories by DGE(F1) ⊂ DG(F1),

V ′
E ⊂ V ′ = V ′(F1) and MoE(P ) ⊂ Mo(P ), where P is the moment polytope

of F1.

Then our main theorem is stated as follows.

Theorem 3.1. For any fixed c = 0, 1, . . . , there exists a linear A∞-

equivalence

ι : MoE(P ) → V ′
E

such that for any generator V ∈ MoE(P )(L,L
′) with any L,L′ ∈ MoE(P )

• ι(V ) ∈ (V ′)0(ι(L), ι(L′)) ⊂ C∞(B) extends to a continuous function on

P = B̄ and

• we have

max
x∈P

|ι(V )(x)| = 1, {x ∈ P | |ι(V )(x)| = 1} = V.

As in the cases forX = CPn andX = CPm × CPn, this theorem implies

a version of homological mirror symmetry of F1.

Corollary 3.2. We have a linear A∞-equivalence

MoE(P ) ≃ DGE(F1).

Corollary 3.3. We have an equivalence of triangulated categories

Tr(MoE(P )) ≃ Db(coh(F1))

where Tr denotes the twisted complexes construction by Bondal-Kapranov

[3] and Kontsevich [13].
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As a biproduct of the proof of Theorem 3.1, we also show the following.

Proposition 3.4. If L ̸= L′, any generator V ∈ MoE(P )(L,L
′) belongs to

the boundary ∂(P ).

For given bases V ∈ MoE(L,L
′) and V ′ ∈ MoE(L

′, L′′), the image γ(T )

by any gradient tree γ ∈ GT (V, V ′;V ′′) with V ′′ ∈ MoE(P )(L,L
′′) belongs to

the boundary ∂(P ) unless L = L′ = L′′.

In subsection 3.1, we explain how to treat Hirzebruch surfaces in our set-

up. In subsection 3.2, we discuss line bundles on Fk constructed from the

toric divisors and construct the DG category DG(Fk) consisting of these line

bundles. In subsection 3.3, we calculate the cohomology of the DG-category

DG(F1) of line bundles and in particular full subcategories DGE(F1) con-

sisting of full strongly exceptional collections E of the triangulated category

Tr(DG(F1)) ≃ Db(coh(F1)) following the known technique in toric geome-

try. In subsection 3.4, we construct the Lagrangin sections which are SYZ

mirror dual to the line bundles in DG(F1) based on a geometric realiza-

tion of the line bundles in subsection 3.2. The obtained Lagrangian sections

will be the objects of Mo(P ). In subsection 3.5, we translate the cohomol-

ogy H(DGE(F1)) to the cohomology H(V ′
E). In subsection 3.6, we construct

MoE(P ) and show our main theorem by comparing the result with H(V ′
E).

At the end, we discuss a morphism of degree one in V ′ and see that we have

the corresponding morphism in Mo(P ) in subsection 3.7.

3.1. Hirzebruch surfaces

Though we need F1 only, in this subsection we treat Fk with general k ≥ 1

since the SYZ mirror of Fk is obtained for any k in a similar way.

The Hirzebruch surface Fk is defined by

Fk := {[s0 : s1], [t0 : t1 : t2] | (s0)
kt0 = (s1)

kt1} ⊂ CP 1 × CP 2.

If a ̸= 0, then t0 = (s1/s0)
kt1. Thus, for a ̸= 0 and x ̸= 0, we have a chart

U1 := {[1 : u], [uk : 1 : v]}
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where u = s1/s0 and v = t2/t1. Similarly, for s0 ̸= 0 and t2 ̸= 0, we have a

chart

U3 := {[1 : u], [ukv : v : 1]}

where u = s1/s0 and v = t1/t2. Similarly, we have a chart

U2 := {[u : 1], [1 : uk : v]}, u = s0/s1, v = t2/t0

for s1 ̸= 0 and t0 ̸= 0, and a chart

U4 := {[u : 1], [v : ukv : 1]}, u = s0/s1, v = t0/t2

for s1 ̸= 0 and t2 ̸= 0. Thus, one sees that Fk ≃ P (O(−k)⊕O), where

O(−k) and O are the line bundles over CP 1 = {[s0 : s1]}.

We have the natural projections

Fk

π1

}}④④
④④
④④
④④ π2

##
❋❋

❋❋
❋❋

❋❋

CP 1 CP 2 ,

where π1 gives the fibration structure of P (O(−k)⊕O) over CP 1.

A Kähler form ω is then obtained by

ω = C1π
∗
1(ωCP 1) + C2π

∗
2(ωCP 2),

where C1 > 0 and C2 > 0 are real constants and ωCPn is the Fubini-Study

form (which we treat explicitly in [11, section 2.2]). Correspondingly, we

have the moment map µ : Fk → R2 defined by

µ([s0 : s1], [t0 : t1 : t2])

:= 2

(
C1

|s0|
2

|s0|2 + |s1|2
+ C2k

|t1|
2

|t0|2 + |t1|2 + |t2|2
, C2

|t2|
2

|t0|2 + |t1|2 + |t2|2
,

)
.

The image µ(Fk) is the trapezoid surrounded by the x1-axis, x2-axis, x2 =

2C2 and x1 + kx2 = 2(C2k + C1). Namely, the moment polytope is

P := {(x1, x2) ∈ R
2 | 0 ≤ x1 ≤ 2(C2k + C1)− kx2, 0 ≤ x2 ≤ 2C2}.
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Now, we treat

M̌ := U1 ∩ U2 ∩ U3 ∩ U4 → IntP =: B

as a torus fibration. We express this with the coordinates of U2 =: U ,

where µ((u = 0, v = 0)) = (0, 0). When we further denote u = ex1+iy1 and

v = ex2+iy2 , then (y1, y2) is the coordinates of a fiber of M̌ . We see that

the restriction of µ to M̌ ⊂ Fk gives the fibration structure π̌ := µ|M̌ : M̌ →

B = IntP .

We further see that the dual coordinates of (x1, x2) is (x1, x2) above.

Actually, the Kähler form ω is expressed as

ω = −2id

(
C1

ūdu

1 + uū
+ C2

ūkduk + v̄dv

1 + (uū)k + vv̄

)
,

so one has

g−1 = 4

(
C1

s
(1+s)2 + C2

k2·sk(1+t)
(1+sk+t)2 C2

−k·skt
(1+sk+t)2

C2
−k·skt

(1+sk+t)2 C2
t(1+sk)

(1+sk+t)2

)
,

where s := uū (= e2x1), t := vv̄ (= e2x2). By (1), the dual coordinates are

defined by

(
dx1

dx2

)
= g−1

(
dx1
dx2

)
= 4

(
C1

s
(1+s)2 + C2

k2·sk(1+t)
(1+sk+t)2 C2

−k·skt
(1+sk+t)2

C2
−k·skt

(1+sk+t)2 C2
t(1+sk)

(1+sk+t)2

)(
dx1
dx2

)
,

which is satisfied by

(x1, x2) =

(
C1

2e2x1

1 + e2x1
+ C2k

2e2kx1

1 + e2kx1 + e2x2
, C2

2e2x2

1 + e2kx1 + e2x2

)

= µ([ex1+iy1 : 1], [1 : ek(x1+iy1) : ex2+iy2 ]).

(3)

Hereafter we fix C1 = C2 = 1 since the structure of the category Mo(P ) we

shall construct is independent of these constants.
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3.2. Line bundles on Fk

Any line bundle over Fk is constructed from a toric divisor, which is a linear

combination of the following four divisors

D12 = (t2 = 0)

D24 = (s0 = t1 = 0)

D13 = (s1 = t0 = 0)

D34 = (t0 = t1 = 0).

Note that D24 is the fiber of π1 at [s0 : s1] = [0 : 1], D13 is the fiber of π1 at

[1 : 0], and the remaining two are sections of π1. The corresponding Cartier

divisors are as follows.

D12 :{(U1, v1), (U2, v2), (U3, 1), (U4, 1)}

D24 :{(U1, 1), (U2, u2), (U3, 1), (U4, u4)}

D13 :{(U1, u1), (U2, 1), (U3, u3), (U4, 1)}

D34 :{(U1, 1), (U2, 1), (U3, v3), (U4, v4)}.

Now, the coordinate transformations are

(u1, v1) = (1/u2, v2/u
k
2),

(u3, v3) = (1/u2, u
k
2/v2),

(u4, v4) = (u2, 1/v2).

The transition functions are then

D12 : φ21 = v1/v2 = u−k
2 , φ23 = 1/v2, φ24 = 1/v2,

D24 : φ21 = 1/u2, φ23 = 1/u2, φ24 = u4/u2 = 1,

D13 : φ21 = u1 = 1/u2, φ23 = u3 = 1/u2, φ24 = 1,

D34 : φ21 = 1, φ23 = v3 = uk2/v2, φ24 = v4 = 1/v2.

Thus, we see that D13 and D24 define the same line bundle; O(D13) =

O(D24), and O(D12) = O(D34 + kD24). In this sense, any line bundle over

Fk is generated either by (D24, D34) or by (D24, D12).
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On the other hand, we have line bundles π∗1(OCP 1(1)) and π∗2(OCP 2(1))

over Fk via the pair of projections

Fk

π1

||③③
③③
③③
③

π2

##
●●

●●
●●

●●

CP 1 CP 2 .

The transition functions for them are obtained by the pullbacks of

OCP 1(1) → CP 1 and OCP 2(1) → CP 2 by π∗1 and π∗2, respectively. Then we

can identify π∗1(OCP 1(1)) = O(D24) and π
∗
2(OCP 2(1)) = O(D12).

The connection one-forms for π∗1(OCP 1(1)) and π∗2(OCP 2(1)) are also

obtained by the pullbacks. On U2, they are expressed as

π∗1 (ACP 1) = −
ūdu

1 + uū
,

π∗2 (ACP 2) = −
ūkd(uk) + v̄dv

1 + (uū)k + vv̄
,

where ACPn is the connection one-form for the line bundle OCPn(1) on CPn

as is presented explicitly for instance in [11, section 3.3]. We again denote

s := uū, t := vv̄, and then

π∗1 (ACP 1) = −
s(dx1 + idy1)

1 + s
,

π∗2 (ACP 2) = −
ksk(dx1 + idy1) + t(dx2 + idy2)

1 + sk + t
.

Similarly, the connection one-forms for O(a, b) := O(aD24 + bD12) is given

by

A(a,b) := −a
s(dx1 + idy1)

1 + s
− b

ksk(dx1 + idy1) + t(dx2 + idy2)

1 + sk + t
.

In a similar way as for CPn in [11, section 3.3], the dx1 term and the dx2
term are removed by the isomorphisms as follows.

Ψ−1
(a,b)(d+A(a,b))Ψ(a,b) = d− ai

sdy1
1 + s

− bi
kskdy1 + tdy2
1 + sk + t

,

Ψ(a,b) := (1 + s)
a

2

(
1 + sk + t

) b

2

.

(4)
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Note that the connection in the right hand side above is of the form (2).

Thus, we set DG(Fk) as the DG-category consisting of the line bundles

O(a, b) with any (a, b).

3.3. Cohomologies of the DG category DG(F1)

We first discuss the global sections of line bundles O(a, b) over Fk. The struc-

ture of the global sections is obtained by following [10, p.66]. In particular,

we see that

d(a,b) := dim (Γ(Fk,O(a, b))) = (a+ 1) + (a+ 1 + k) + · · ·+ (a+ 1 + kb)

=
(b+ 1)(2a+ 2 + kb)

2
.

For instance, d(1,0) = 2, d(0,1) = 2 + k, d(a,0) = a+ 1. Using the coordinates

(u, v) for U2, the generators of Γ(O(a, b)) are expressed as

(5)

u0, u1, . . . , . . . , ua+kb,

u0v1, u1v1, . . . , ua+k(b−1)v1,
...,

...

u0vb, . . . uavb .

Namely,

ψ(i1,i2) := ui1vi2

are the generators, where 0 ≤ i2 ≤ b and 0 ≤ i1 ≤ a+ k(b− i2).

Since each O(a, b) is a line bundle, we have

DG0(Fk)(O(a1, b1),O(a2, b2)) ≃ DG0(Fk)(O,O(a2 − a1, b2 − b1)).

Thus, we obtain any zero-th cohomology of the space of morphisms in

DG(Fk) from Γ(O(a, b)), a, b ∈ Z, i.e.,

H0(DG(Fk)(O(a1, b1),O(a2, b2))) ≃ H0(DG(Fk)(O,O(a2 − a1, b2 − b1)))

≃ Γ(Fk,O(a2 − a1, b2 − a1)).

We can also calculate the cohomologies

Hr(DG(Fk)(O(a1, b1),O(a2, b2)) ≃ Hr(DG(Fk)(O,O(a2 − a1, b2 − b1))
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with r > 0 in the way written in [10, p.74]. Now we consider F1. It is known

(Hille-Perling [12]) that

E := (O,O(1, 0),O(c, 1),O(1 + c, 1))

with a fixed c = 0, 1, . . . forms a full strongly exceptional collection

of Tr(DG(F1)) ≃ Db(coh(F1)). Let us consider the full subcategory

DGE(F1) ⊂ DG(F1) consisting of E . We already calculated the zero-th coho-

mologies of the space of morphisms in DGE(F1). We can also check that we

have no nontrivial cohomologies of the space of morphisms of degree r > 0

in DGE(F1). These calculations give a direct confirmation of the fact that

E is actually a strongly exceptional collection in Tr(DGE(F1)), and agree,

for instance, with the Euler bilinear form on K0(D
b(coh(F1))) presented in

Kuznesov [15, Example 3.7].

3.4. Lagrangian sections L(a, b)

We continue to concentrate on the case F1 and let us discuss the Lagrangian

section L(a, b) in the fiber M → B corresponding to the line bundle O(a, b).

Comparing the connection one-form in (4) with (2), we see that L(a, b) is

expressed as the graph of
(
y1

y2

)
= 2π

(
a s
1+s

+ b s
1+s+t

b t
1+s+t

)

where s = e2x1 and t = e2x2 . Now, let us rewrite s, t by x1, x2. Recall that

the dual coordinates are given in (3):

x1 =
2s

1 + s
+

2s

1 + s+ t
,(6)

x2 =
2t

1 + s+ t
.(7)

By (7), t is expressed as

t =
x2(1 + s)

2− x2
.

Substituting this to (6) yields

x1 =
2s

1 + s
+

2s

(1 + s) + x2

2−x2 (1 + s)
=

(4− x2)s

1 + s
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and hence we obtain
s

1 + s
=

x1

4− x2
.

So, s = x1/(4− x1 − x2), 1 + s = (4− x2)/(4− x1 − x2), and we get t =

(1 + s)x2/(2− x2) = (4− x2)x2/(2− x2)(4− x1 − x2). To summarize, we

obtain

s

1 + s
=

x1

4− x2
,

s

1 + s+ t
=
x1(2− x2)

2(4− x2)
,

t

1 + s+ t
=
x2

2
.

In particular, the Lagrangian L(a, b) corresponding to O(a, b) := O(aD24 +

bD12) is given by

(
y1

y2

)
=

(
a x1

4−x2 + bx
1(2−x2)
2(4−x2)

bx
2

2

)
=

(
(2a+(2−x2)b)x1

2(4−x2)
bx2

2

)
.

The corresponding Morse function f is given by

f =
a

2
log(1 + s) +

b

2
log(1 + sk + t)

= +
1

2
log

(
4− x2

4− x1 − x2

)a(
2(4− x2)

(2− x2)(4− x1 − x2)

)b

.

(8)

For Fk with general k > 1, the Lagrangian section L(a, b) should still be

obtained in a similar way. However, we do not seem to obtain a closed

formula for (s, t) in terms of (x1, x2).

3.5. Cohomologies H(V ′

E
)

We consider DG(F1) and the the faithful embedding I : DG(F1) → V where

V = V(M̌) is the DG category of line bundles on M̌ . The image is denoted

by V ′ := I(DG(F1)). Then, each generator ψ(i1,i2) in (5) is sent to be

Ψ−1
(a,b)ψ(i1,i2) = (4− x1 − x2)

a+b−i1−i2
2 (2− x2)

b−i2
2(9)

× (4− x2)−
a+b−i2

2 (x1)
i1
2 (x2)

i2
2 ei(i1y1+i2y2)
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in V ′. Namely, these form a basis of H0(V ′(O,O(a, b))). A basis of

H0(V ′(O(a1, b1),O(a1 + a),O(b1 + b))) is of the same form. We rescale

each basis Ψ−1
(a,b)ψ(i1,i2) by multiplying a positive number and denote it by

e(a,b);(i1,i2) so that

max
x∈P

|e(a,b);(i1,i2)(x)| = 1.

Note that e(a,b);(i1,i2) is a function on B, but can be extended continuously

to that on P = B̄ since the exponents

a+ b− i1 − i2
2

,
b− i2
2

,
i1
2
,

i2
2

in (9) are non-negative. This shows the former statement about the proper-

ties of ι(V ) in Theorem 3.1.

3.6. MoE(P )

The objects of Mo(P ) are the Lagrangian sections L(a, b) obtained in sub-

section 3.4. Since we have

Mo(P )(L(a1, b1), L(a2, b2)) ≃ Mo(P )(L(0, 0), L(a2 − a1, b2 − b1)),

we concentrate on calculating the space Mo(P )(L(0, 0), L(a, b)). We discuss

that when there exists a nonempty intersection of
(
y1

y2

)
=

(
y1(a,b)(x)

y2(a,b)(x)

)
=

(
(2a+(2−x2)b)x1

2(4−x2)
bx2

2

)

with (
y1

y2

)
=

(
i1
i2

)

in the covering space of M̄ → P .

We first consider L(a, b) with b ≥ 0. Since 0 ≤ x2 ≤ 2, we have

0 ≤
bx2

2
= i2 ≤ b.

If we further assume a+ b− i2 ≥ 0, then we also have

(10) 0 ≤ i1 =
(2a+ (2− x2)b)x1

2(4− x2)
≤

(2a+ (2− x2)b)

2
= a+ b− i2,
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where we used 4− x2 ≥ x1 in the inequality. We will discuss the case a+

b− i2 < 0 later. By solving yj(a,b)(x) = ij , j = 1, 2, we obtain the following.

Lemma 3.5. We assume b ≥ 0 and (a, b) ̸= (0, 0). For any (i1, i2) satisfy-

ing

0 ≤ i2 ≤ b, 0 ≤ i1 ≤ a+ b− i2,

the intersection VI is nonempty and connected.

• If b ̸= 0 and a+ b− i2 ̸= 0, then VI consists of the point vI such that

x1(vI) =
4− 2i2/b

a+ b− i2
i1, x2(vI) =

2i2
b
.

• If b = 0, then i2 = 0 and then the intersection is

V(i1,0) := {(x1, x2) ∈ P | x1 =
4− x2

a
i1}.

• If a+ b− i2 = 0, then i1 = 0 and the intersection is

V(0,a+b) := {(x1, 2 +
2a

b
) ∈ P}.

Note that the condition a+ b− i2 = 0 is satisfied only when a ≤ 0 and

b > 0.

Lemma 3.6. We assume b ≥ 0 and (a, b) ̸= (0, 0). For any I = (i1, i2) sat-

isfying

0 ≤ i2 ≤ b, 0 ≤ i1 ≤ a+ b− i2,

the intersection VI forms a generator of Mo(P )(L(a1, b1), L(a1 + a, b1 + b))

of degree zero.

Proof. The gradient vector field associated to VI is of the form

(11)

(
(a+ b− bx2/2)x1

4− x2
− i1

)
∂

∂x1
+

(
bx2

2
− i2

)
∂

∂x2
.

If b ̸= 0 and a+ b− i2 ̸= 0, then VI consists of the point vI , and the stable

manifold SvI
of the gradient vector field is {vI} itself, so VI is a generator of
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degree zero. If b = 0, the gradient vector field associated to V(i1,0) is of the

form

(12)

(
ax1

4− x2
− i1

)
∂

∂x1
.

For each v ∈ V(i1,0), the stable manifold Sv of the gradient vector field is

again {v} itself, so V(i1,0) gives a generator of degree zero. If a+ b− i2 = 0,

then the gradient vector field associated to V(0,a+b) is of the form

(a+ b− bx2/2)

(
x1

4− x2
∂

∂x1
−

∂

∂x2

)
.

Because of the term −(a+ b− bx2/2)∂/∂x2, for each v ∈ V(0,a+b), the stable

manifold Sv of the gradient vector field is again {v} itself, so V(0,a+b) gives

a generator of degree zero. □

Now, we discuss the case a+ b− i2 < 0. This case occurs only if a is

negative since a < −(b− i2) ≤ 0. We have

a+ b− i2 ≤ i1 ≤ 0

instead of (10). The intersection VI again consists of a point vI given by

x2 =
2i2
b
, x1 =

4− 2i2/b

a+ b− i2
i1

if b ̸= 0, and

V(i1,0) := {(x1, x2) ∈ P | x1 =
4− x2

a
i1}

if b = 0.

Lemma 3.7. We assume b ≥ 0 and (a, b) ̸= (0, 0). For any I = (i1, i2) sat-

isfying

0 ≤ i2 ≤ b, a+ b− i2 ≤ i1 ≤ 0,

we consider the intersection VI which is nonempty and connected.

(i) The intersection does not form a generator of Mo(P )(L(a1, b1), L(a1 +

a, b1 + b)) of degree zero.
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(ii) The intersection does not form a generator of Mo(P )(L(a1, b1), L(a1 +

a, b1 + b)) (o any degree) if a = −1.

Proof. The gradient vector field associated to VI is also of the same form

as in the proof of Lemma 3.6. If b > 0, then the gradient vector field is

(11) but now the sign of the coefficient for x1 is reversed compared to the

case a+ b− i2 > 0. Thus, we have |VI | = 1. Similarly, if b = 0, then the

gradient vector field is (12), but again the sign of the coefficient for x1 is

reversed compared to the case a+ b− i2 > 0 and we have |VI | = 1. Thus,

the statement (i) is proved.

We consider the case a = −1, where b = i2 holds since a+ b− i2 < 0 and

i1 = 0,−1. If b > 0, then VI consists of the point vI = (−2i1, 2). We see that

the stable manifold is

SvI
= {x2 = 2}.

in both cases I = (0, b) and I = (−1, b). Thus, v(0,b) = (0, 2) (resp. v(−1,b) =

(2, 2)) is not an interior point of Sv(0,1)
∩ P ⊂ Sv(0,1)

(resp. Sv(−1,b)
∩ P ⊂

Sv(−1,b)
). If b = 0, then we have V(0,0) = D24 and V(−1,0) = D13. For v ∈ D24,

the stable manifold is

Sv = {x2 = x2(v)},

so v is not an interior point of Sv ∩ P ⊂ Sv. Similarly, any v ∈ D13 is not

an interior point of Sv ∩ P ⊂ Sv. Thus, any VI does not form a generator of

Mo(P )(L(a1, b1), L(a1 + a, b1 + b)) if a = −1. □

By Lemma 3.6 and Lemma 3.7 (i), we see that each generator VI of

degree zero is in one-to-one correspondence with the generator e(a,b);I in

subsection 3.5.

Lemma 3.8. We assume b ≥ 0 and (a, b) ̸= (0, 0). Each generator e(a,b);I ∈

H0(V ′(O(a1, b1),O(a1 + a, b1 + b))) is expressed as the form

e(a,b);I(x) = e−fIeiIy,

where fI is the C∞ function on P satisfying

dfI =

2∑

j=1

∂fI
∂xj

dxj ,
∂fI
∂xj

= yj(a,b) − ij
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in B and minx∈P fI(x) = 0. In particular, we have

{x ∈ P | fI(x) = 0} = VI .

Proof. The statement of the first half is guaranteed by our construction

DG(F1) ≃ V ′ ⊂ V. Of course, we can also check it directly. By (8), the func-

tion fI satisfying ∂fI
∂xj

= yj(a,b) − ij , j = 1, 2, is given by

1

2
log

(
4− x2

4− x1 − x2

)a(
2(4− x2)

(2− x2)(4− x1 − x2)

)b

− i1x1 − i2x2,

where i1, i2 ∈ Z. Since we have

x1 =
1

2
log s =

1

2
log

(
x1

4− x1 − x2

)
,

x2 =
1

2
log t =

1

2
log

(
x2(4− x2)

(2− x2)(4− x1 − x2)

)
,

we obtain

fI = −
(
log
(
(4− x1 − x2)

a+b−i1−i2
2 (2− x2)

b−i2
2 (4− x2)−

a+b−i2
2 (x1)

i1
2 (x2)

i2
2

))

+ const..

The latter half can be shown directly by rewriting

(4− x1 − x2)
a+b−i1−i2

2 (2− x2)
b−i2

2 (4− x2)−
a+b−i2

2 (x1)
i1
2 (x2)

i2
2

=

(
1−

x1

4− x2

) a+b−i1−i2
2

(
x1

4− x2

) i1
2

(2− x2)
b−i2

2 (x2)
i2
2

and regarding the result as a function in variables x1/(4− x2) and x2. □

Now, we fix c ≥ 0 and consider the full subcategory MoE(P ) ⊂ Mo(P )

consisting of E = (L(0, 0), L(1, 0), L(c, 1), L(1 + c, 1)). We call an element

of Mo(P )(L,L′) an ordered (resp. non-ordered) morphism if E =

(..., L, ..., L′, ...) (resp. E = (..., L′, ..., L, ...)). We see that the space

MoE(P )(L(a1, b1), L(a1 + a, b1 + b)) ≃ Mo(P )(L(0, 0), L(a, b))

of ordered morphisms satisfies 0 ≤ b ≤ 1. We call an ordered morphism with

b = 0 (resp. b = 1) a morphism of type b = 0 (resp. b = 1).
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Lemma 3.9. In MoE(P ), we have only morphisms of degree zero, where

each generator VI ̸= P belongs to ∂(P ). Then, the correspondence VI 7→

ι(VI) = eab;I gives a quasi-isomorphism

ι : MoE(P )(L(a1, b1), L(a2, b2)) → V ′
E(O(a1, b1),O(a2, b2))

of complexes.

Proof. By Lemma 3.7 (ii), we see that restricting the correspondence in

Lemma 3.8 to MoE(P ) yields the quasi-isomorphism of this Lemma for each

space of ordered morphisms.

In particular, an ordered morphism of type b = 0 has a = 1, and an

ordered morphism of type b = 1 satisfies a ≥ −1. In both cases, we can

check directly that the generators given in Lemma 3.5 belongs to ∂(P ).

It remains to calculate non-ordered morphisms. Then, we may consider

the opposite case to Lemma 3.5 in the sense that we consider the case b < 0

and

b ≤ i2 ≤ 0, a+ b− i2 ≤ i1 ≤ 0.

We see that the corresponding intersection is the same as the one in

Lemma 3.5. Namely, we have

V(−a,−b);−I = V(a,b);I(=: VI)

for b ≥ 0. The sign of the corresponding gradient vector field is reversed

compared to that in the proof in 3.6. Thus, we have

• |V(−a,−b);−I | = 2 if b > 0 and a+ b− i2 > 0,

• |V(−a,−b);−I | = 1 if b = 0,

• |V(−a,−b);−I | = 1 if a+ b− i2 = 0.

In particular, for b = 0 or a+ b− i2 = 0, the stable manifold Sv of a

point v ∈ V(−a,−b);−I intersect transversally with V(−a,−b;−I) at v. Since

V(−a,−b);−I ∈ ∂(P ) in all these three cases, we can conclude that V(−a,−b);−I

cannot be a generator of MoE(L(a1 + a, b1 + b), L(a1, b1)). □

Now we discuss the composition structure in MoE(P ). Let us ex-

amine the gradient flows starting from a point in a generator VI ∈
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Mo(P )(L(0, 0), L(a, b)) with b = 0 and b = 1. If b = 0, then the gradient

vector field is of the form

gradf =

(
ax1

4− x2
− i1

)
∂

∂x1

as we already saw, where we have i2 = 0. Thus, the gradient trajectories

starting from v = (x1(v), x2(v)) ∈ VI are always in the line x2 = x2(v). If

b = 1, then the gradient vector field is of the form

gradf =

(
(a+ 1− x2/2)x1

4− x2
− i1

)
∂

∂x1
+

(
x2

2
− i2

)
∂

∂x2
.

In this case, we see that V(i1,i2=0) belongs toD12 ⊂ ∂(P ), (where V(0,0) = D12

if a = −1 and otherwise V(i1,0) consists of the point v(i1,0) := (4/(a+ 1), 0)),

and V(i1,i2=1) belongs to D34 ⊂ ∂(P ). (Note that V(0,1) = D34 if a = 0, and

otherwise V(i1,1) consists of a point. ) This implies that the gradient trajec-

tories starting from v(i1,0) are always in the line x2 = 0, and the gradient

trajectories starting from a point in V(i1,1) are always in the line x2 = 2.

Suppose that we have a composition in MoE(P )

VI ·WJ

of two generators such that VI ̸= P and WJ ̸= P . We have such a composi-

tion only when

• VI is of type b = 0 and WJ is of type b = 1 or

• VI is of type b = 1 and WJ is of type b = 0.

In both cases, the result VI ·WJ is generated by a generator ZI+J of type

b = 1 with index I + J since indices are preserved by the composition. This

means that ZI+J belongs to D12 (resp. D34) if the generator, VI or WJ , of

type b = 1 belongs toD12 (resp.D34). Since the gradient trajectories starting

from a point in the generator, VI or WJ , of type b = 0 run horizontally, we

see that the image γ(T ) of the gradient tree γ defining the product VI ·WJ

belongs to D12 or D34. This gives the proof of Proposition 3.4.

Let v := VI ∩ γ(T ), w :=WJ ∩ γ(T ), and z := ZI+J ∩ γ(T ). Note that

v and w are the images of the two external vertices of the trivalent tree

T by γ, whereas z is the image of the root vertex of T by γ. Then, z sits



✐

✐

“5-Kajiura” — 2024/1/2 — 18:30 — page 2634 — #24
✐

✐

✐

✐

✐

✐

2634 M. Futaki and H. Kajiura

on the interval vw and the image of the root edge of T by γ is {z}. If we

express ι(VI) = e−fv · eiIy, then fv(v) = 0 and fv(z) is the symplectic area

of the triangle disk whose edges are the interval vz and the corresponding

two Lagrangian sections on vz. Similarly, for ι(WJ) = e−fw · eiJy̌, the value

fw(z) is the symplectic area of the corresponding triangle disk. This shows

the compatibility

ι(VI ·WJ) = ιI(VI) · ι(WJ).

This completes the proof of Theorem 3.1.

3.7. Example of morphisms of degree one: Mo(L(0, 0), L(2,−2))

So far, we do not see any morphism of higher degree. In this subsection,

we calculate the space Mo(L(0, 0), L(2,−2)) and show that it includes a

generator of degree one. The intersections of π(L(O)) with π(L(O(2,−2)))

are obtained by solving

y1 = −2
x1(2− x2)

2(4− x2)
+ 2

x1

4− x2
=

x1x2

4− x2
= i1

y2 = −2
x2

2
= −x2 = i2.

We have the following intersections in π−1(P ) as follows.

• If y2 = i2 = 0, then x2 = 0, where y1 = i1 = 0 for any x1.

• If y2 = i2 = −1, then x2 = 1, where y1 = x1/3 = i1. In this case, we

have two choices (i1 = 0, x1 = 0) and (i1 = 1, x1 = 3).

• If y2 = i2 = −2, then x2 = 2, where y1 = x1 = i1. In this case, we have

three choices i1 = x1 = 0, 1, 2.

To summarize, we have

V(0,0) = {(x1, 0) ∈ P}

V(0,−1) = {(0, 1) ∈ P}, V(1,−1) = {(3, 1) ∈ P}

V(0,−2) = {(0, 2) ∈ P}, V(1,−2) = {(1, 2) ∈ P}, V(2,−2) = {(2, 2) ∈ P}.

We concentrate on the examples V(0,−1), V(1,−1), which turn out to be gener-

ators of morphisms of degree one. For V(0,−1), the associated gradient vector
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field is
x1x2

4− x2
∂

∂x1
− (x2 − 1)

∂

∂x2
,

so the stable manifold turns out to be

S(0,1) = {(0, x2)}.

The point (0, 1) is an interior point of S(0,1) ∩ P ⊂ S(0,1), so V(0,−1) turns out

to be a generator of degree one. Similarly, the gradient vector field associated

to V(1,−1) is

(
x1x2

4− x2
− 1

)
∂

∂x1
− (x2 − 1)

∂

∂x2

=

(
(x1 − 3)(x2 − 1) + (x1 − 3) + 4(x2 − 1)

3− (x2 − 1)

)
∂

∂x1
− (x2 − 1)

∂

∂x2
,

so we see that S(3,1) is of one-dimension around (3, 1). In particular, we can

check that

S(3,1) = {(x1, x2) | 4− x1 − x2 = 0}

since
(
x1x2

4− x2
− 1

)
∂

∂x1
− (x2 − 1)

∂

∂x2
= (x2 − 1)

(
∂

∂x1
−

∂

∂x2

)

on 4− x1 − x2 = 0. Thus, V(1,−1) also forms a generator of degree one.

These results of course agree with the structure of DG(F1) where

H1(DG(F1)(O(0, 0),O(2,−2))) is of two dimension.
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