CONVEXITY PROPERTIES OF THE MOMENT MAP FOR CERTAIN NON-COMPACT MANIFOLDS

ELISA PRATO

ABSTRACT. Let M be a connected symplectic manifold on which a torus T acts in a Hamiltonian fashion and denote by Φ the corresponding moment map. If M is compact, the Atiyah, Guillemin-Sternberg theorem says that the set $\Phi(M)$ is convex; if M is noncompact this may not be the case. We show that if M is suitably convex, then $\Phi(M)$ can be explicitly described as the convex hull of a finite number of affine rays. As an application we obtain a natural symplectic proof of the Paneitz convexity theorem for the positive Kaehler elliptic co-adjoint orbits.

Introduction

Let M be a 2m-dimensional connected symplectic manifold with fundamental 2-form ω . Consider a torus T with Lie algebra \mathfrak{t} . Assume that T acts on M in a Hamiltonian fashion and denote by $\Phi: M \to \mathfrak{t}^*$ the corresponding moment map; the pair (M,T) is a Hamiltonian T-space. The convexity theorem, proven independently by Atiyah [A] and Guillemin-Sternberg [GS], says that, if M is compact, the image set $\Phi(M)$ is the convex hull of the image via Φ of the T-fixed point set. If the manifold M is not compact, $\Phi(M)$ may not be convex.

COUNTEREXAMPLE 0.1. Consider \mathbb{C}^2 with the canonical symplectic form. The two dimensional Cartan, T, of U(2) acts on \mathbb{C}^2 by $(e^{i\theta_1}, e^{i\theta_2}) \cdot (z_1, z_2) = (e^{-i\theta_1}z_1, e^{-i\theta_2}z_2)$; this action is Hamiltonian, the moment map being given

Current Address: DMI, Ecole Normale Supérieure, 45 Rue d'Ulm, 75230 Paris Cedex 05, France

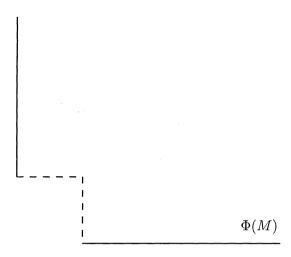


FIGURE 1. $\Phi(\mathbb{C}^2 - (D^1 \times D^1))$ is not convex

by:

$$\Phi: \mathbb{C}^2 \longrightarrow \mathbb{R}^2$$

$$(z_1, z_2) \longrightarrow \frac{1}{2}(|z_1|^2, |z_2|^2).$$

Let now $M=\mathbb{C}^2-(D^1\times D^1),\ D^1$ denoting the closed unit disc in \mathbb{C} . M is a connected symplectic manifold. The action of T on \mathbb{C}^2 restricts to a Hamiltonian action on M. The corresponding moment map is the restriction of Φ to M, which we will still denote by Φ . The set $\Phi(M)=\mathbb{R}^2_+-\{(x,y)\text{ s.t. }x\leq \frac{1}{2}\text{ and }y\leq \frac{1}{2}\}$ is not convex (Figure 1).

However, in many interesting situations (see examples below) the image set is still convex. From now on we will make an additional assumption. For each $X \in \mathfrak{t}$ denote by Φ_X the X-component of the moment map: $\Phi_X(p) = \langle \Phi(p), X \rangle, \ p \in M$.

Assumption 0.2. There exists an integral element $X_0 \in \mathfrak{t}$ such that Φ_{X_0} is a proper function having a minimum as its unique critical value.

REMARK 0.3. Since X_0 is integral, it generates a circle S^1 in T whose induced action on M is Hamiltonian with moment map Φ_{X_0} . Notice that the

requirement that X_0 is integral is not at all restrictive, since this can always be achieved by a small perturbation.

The goal of this article is to show that, under this assumption, the image set $\Phi(M)$ can be explicitly described as the convex hull of a finite number of affine rays in \mathfrak{t}^* stemming from the images of T-fixed points (see Theorem 1.4 below.)

EXAMPLE 0.4. Consider again \mathbb{C}^2 with the canonical symplectic form and the action of the Cartan, T, of U(2). Take now the vector $X_0 = (1,1) \in \mathfrak{t}$ generating the diagonal circle in T; the corresponding component of the moment map is

It is immediately seen that Φ_{X_0} is a proper function whose unique critical value is the minimum 0. Here $\Phi(M) = \mathbb{R}^2_+$.

EXAMPLE 0.5. Consider the upper sheet of the hyperboloid of two sheets:

$$\mathcal{H} = \left\{ \left. (x, y, z) \in \mathbb{R}^3 \right| z = \sqrt{1 + x^2 + y^2} \, \right\}.$$

 \mathcal{H} is a connected symplectic manifold; in hyperbolic coordinates

$$\begin{cases} x = \sinh t \cos s \\ y = \sinh t \sin s \\ z = \cosh t \end{cases}$$

and the symplectic form is given by $\omega = \sinh t \, ds \wedge dt$. Here $T = S^1$ acts on $\mathcal H$ by rotation around the z-axis. It is easy to check that this action is Hamiltonian with moment map given by the projection onto the z-axis; this function is indeed proper and the minimum 1 is its unique critical value. Here $\Phi(\mathcal H) = [1, \infty)$. This last assertion is just a fancy way of saying that the antisymmetric part, $\begin{pmatrix} 0 & z \\ -z & 0 \end{pmatrix}$, of all traceless 2×2 matrices with determinant 1 satisfies $|z| \geq 1$. In fact $\mathcal H$ is a positive Kaehler elliptic co-adjoint orbit of $Sl(2,\mathbb R)$ and Φ is the projection onto the dual of the compact Cartan subalgebra. We will discuss the projections of positive Kaehler elliptic orbits of more general non-compact Lie groups in Section 2.

Acknowledgement. Our initial motivation came from [P], where Stephen Paneitz proves a convexity theorem for the positive Kaehler elliptic co-adjoint orbits. I am grateful to Victor Guillemin for his invaluable guidance. Finally, I wish to thank Regina Souza and Siye Wu for many helpful comments.

1. Convexity

1.1. Preliminaries. We recall that the moment mapping, Φ , is a T-equivariant mapping satisfying the equations:

(1)
$$d\Phi_X = i(\widehat{X})\omega \qquad X \in \mathfrak{t},$$

where \widehat{X} is the vector field on M with infinitesimal generator X. Let $p \in M$; denote by T_p the stabilizer group of p in T and by \mathfrak{t}_p the stabilizer algebra. One of the basic consequences of (1) is

Lemma 1.1. [GS] The image of $d\Phi_p$ is the annihilator space, \mathfrak{t}_p^{\perp} , of \mathfrak{t}_p in \mathfrak{t}^* .

If we apply Lemma 1.1 to the induced action of S^1 we get that, if p is regular for Φ_{X_0} X_0 is not in \mathfrak{t}_p , and dim $\mathfrak{t}_p^{\perp} \geq 1$. Consider now

$$M^1 = \{ p \in M : \Phi_{X_0}(p) \text{ regular}, \dim \mathfrak{t}_n^{\perp} = 1 \}.$$

 M^1 is a highly disconnected submanifold of M ([GS], Theorem 3.5.). Consider, for each $p \in M^1$, the vector v_p in \mathfrak{t}_p^{\perp} satisfying

$$\langle v_p, X_0 \rangle = 1.$$

It will be crucial for us to notice that for points in the same connected component of M^1 , \mathfrak{t}_p , and therefore v_p , remain constant. Choose now a T-invariant metric on M, denote by X_0 the gradient of Φ_{X_0} and by f_t its flow; it is not restrictive to assume that away from the critical value we have $d\Phi_{X_0}(X_0) = 1$. Therefore, again by Lemma 1.1, we may assume

(3)
$$d\Phi_p(X_0) = v_p, \qquad p \in M^1.$$

Since the metric is T-invariant, f_t commutes with the action of T and therefore preserves each connected component of M^1 .

Lemma 1.2.

$$\Phi(f_t(p)) = \Phi(p) + t v_p, \qquad p \in M^1.$$

Proof. From (3)

$$\frac{d}{dt}\Phi(f_t(p)) = [d\Phi]_{f_t(p)}(X_0) = v_{f_t(p)} = v_p. \quad \Box$$

1.2. Statement and proof of the main result. Assume that Y is a compact symplectic manifold and that a torus H acts on it in a Hamiltonian fashion; denote by Ψ the corresponding moment map. The image set $\Psi(Y)$ is beautifully characterized in the Atiyah, Guillemin-Sternberg convexity theorem, which we recall. Denote by Y^H the set of points that are fixed by H.

Theorem 1.3. [A, GS] Y^H is non-empty, $\Psi(Y^H)$ is finite, and $\Psi(Y) = \mathcal{C}H \ \Psi(Y^H)$.

Here and in the following $\mathcal{C}H$ stands for convex hull. Consider now our original manifold M and denote by a the minimum value of Φ_{X_0} ; since Φ_{X_0} is proper, for each $s \geq a$ the T-invariant space $M_s = \Phi_{X_0}^{-1}(s)$ is compact. Assume for a moment that S^1 acts freely on M_s , s > a. Then the Mardsen-Weinstein reduced space, $Y_s = M_s/S^1$, is a compact symplectic manifold, and the induced action of $H = T/S^1$ is Hamiltonian. The corresponding moment map, Ψ , is characterized by $\Psi \circ \pi = q \circ \Phi$, where $\pi : M_s \to Y_s$ and $q : \mathfrak{t}^* \to \mathfrak{h}^*$ denote the projections. By Theorem 1.3 we then have that the H-fixed point set Y_s^H is non-empty, $\Psi(Y_s^H)$ is finite, and

$$q(\Phi(M_s)) = \Psi(Y_s) = \mathcal{C}H \ \Psi(Y_s^H).$$

But if we consider the set $M_s^1 = M_s \cap M^1$ we have $\pi(M_s^1) = Y_s^H$ and in conclusion

$$\Phi(M_s) = \mathcal{C}H \; \Phi(M_s^1).$$

Notice, incidentally, that we have also shown that the set M^1 is non-empty. If S^1 does not act freely on M_s , Y_s is a V-manifold or orbifold. Such manifolds, though not necessarily smooth, do carry enough differentiable structures and a well defined symplectic form (see [W]); in addition, all of the properties that

were needed above still hold. Fix now $u \in (a, \infty)$. Consider, for $p \in M_u^1$, the affine rays in \mathfrak{t}^*

$$\alpha_p = \{ \Phi(p) + t \, v_p : t \in [a - u, \infty) \}.$$

The choice of a regular u here is completely arbitrary since v_p does not depend on the choice of p on the same gradient trajectory. Notice that there are only finitely many distinct α_p 's, each of which stems from the image of a fixed point for the action of T; in particular the T-fixed point set in M is non-empty. We are now ready to prove:

Theorem 1.4.

$$\Phi(M) = \mathcal{C}H \ \{ \ \alpha_p \ : \ p \in M_u^1 \ \}.$$

Proof. Begin by noticing that

$$\Phi(M) = \bigcup_{t=a-u}^{\infty} \Phi(M_{u+t}).$$

For a moment let us restrict our attention to u + t > a (regular). By our previous remarks, $\Phi(M_{u+t}) = \mathcal{C}H$ $\Phi(M_{u+t}^1)$. However, if we consider the gradient flow f_t , we have

$$M_{u+t} = f_t(M_u)$$
 and $M_{u+t}^1 = f_t(M_u^1)$.

Therefore, by Lemma 1.2,

$$\Phi(M_{u+t}) = \mathcal{C}H \{ \Phi(f_t(p)) : p \in M_u^1 \}
= \mathcal{C}H \{ \Phi(p) + t v_n : p \in M_u^1 \}.$$

Continuity then forces

$$\Phi(M_a) = \mathcal{C}H \ \{ \ \Phi(p) + (a - u) \ v_p \ : \ p \in M_u^1 \ \},$$

and in conclusion:

$$\Phi(M) = \bigcup_{t=q-u}^{\infty} CH \{ \Phi(p) + t \, v_p : p \in M_u^1 \} = CH \{ \alpha_p : p \in M_u^1 \}. \quad \Box$$

2. The Kaehler elliptic co-adjoint orbits

Let (G, K) be an irreducible Hermitian symmetric pair. G is a non-compact, simple, connected Lie group with Lie algebra \mathfrak{g} and K a maximal compact subgroup with Lie algebra \mathfrak{k} ; K is connected and its center, S^1 , is a circle. Let T be a Cartan subgroup of K and let W denote the Weyl group for the pair $(\mathfrak{k}^{\mathbb{C}}, \mathfrak{t}^{\mathbb{C}})$. It is always possible to choose a set of positive roots, Δ^+ , for the pair $(\mathfrak{g}^{\mathbb{C}}, \mathfrak{t}^{\mathbb{C}})$ such that the positive non-compact roots, Δ^+_n , are larger than the compact ones, Δ^+_c . With this choice, the elements of Δ^+_n agree on vectors of the one-dimensional center of \mathfrak{k} ; as a consequence we have that Δ^+_n is W-invariant and that $\langle \alpha, \beta \rangle \geq 0$ for each $\alpha, \beta \in \Delta^+_n$. Consider now the convex, proper, W-symmetric cone in \mathfrak{t} :

$$C = \{ \nu \in \mathfrak{t} : \alpha(\sqrt{-1}\nu) > 0 \text{ for } \alpha \in \Delta_n^+ \}.$$

It will be convenient for us to denote (-1) times the Killing form by \langle , \rangle . We will use \langle , \rangle to identify \mathfrak{g} with its dual, \mathfrak{g}^* ; then \mathfrak{k} and \mathfrak{t} will be identified with \mathfrak{k}^* and \mathfrak{t}^* , respectively, and adjoint orbits with the corresponding coadjoint orbits. An elliptic orbit is, by definition, an orbit that intersects \mathfrak{t} . Let λ be an element of \mathfrak{t} that lies in the cone \mathcal{C} and let \mathcal{O}_{λ} be the elliptic orbit $G \cdot \lambda$. The Kostant-Kirillov symplectic form gives \mathcal{O}_{λ} the structure of a positive definite Kaehler manifold (see [Pr].)

The natural action of T on \mathcal{O}_{λ} is Hamiltonian with moment map, $\Phi: \mathcal{O}_{\lambda} \to \mathfrak{t}$, given by the restriction to \mathcal{O}_{λ} of the T-invariant projection of \mathfrak{g} onto \mathfrak{t} . Let X_0 be the unique vector in the center of \mathfrak{k} that satisfies $\alpha(\sqrt{-1}X_0)=1$ for $\alpha\in\Delta_n^+$ (recall that the $\alpha's$ agree on the center); X_0 generates the center S^1 . Our goal is to show that S^1 is the special circle of Assumption 0.2, and therefore that the projection $\Phi(\mathcal{O}_{\lambda})$ is convex. An explicit description of this set, matching the one first given by Paneitz [P], is given in Theorem 2.4. First we need to recall certain basic facts from the structure theory of Hermitian symmetric spaces; we refer to [H, K1, K2] for a more extensive treatment.

2.1. A review of Hermitian symmetric spaces. Let \mathfrak{p} be the orthogonal complement of \mathfrak{k} in \mathfrak{g} with respect to \langle , \rangle ; $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ is the Cartan decomposition of \mathfrak{g} . The diffeomorphism of $K \times \mathfrak{p}$ onto G, given by $(k, X) \to e^X k$ induces a

K-equivariant diffeomorphism

$$\mathcal{O}_{\lambda} \simeq K \cdot \lambda \times \mathfrak{p}.$$

For each $\alpha \in \Delta_n^+$ define $X_\alpha \in \mathfrak{t}$ by

$$\langle X_{\alpha}, \nu \rangle = \frac{\alpha(\sqrt{-1}\nu)}{\langle \alpha, \alpha \rangle}, \quad \nu \in \mathfrak{t}.$$

Notice that $\langle X_{\alpha}, X_{\beta} \rangle \geq 0$, $\alpha, \beta \in \Delta_n^+$, and that the convex hull of all rays $\{tX_{\alpha}: t \geq 0\}$, $\alpha \in \Delta_n^+$, is the closed proper cone, \mathcal{C}^* , dual to \mathcal{C} . Moreover, it is always possible to choose basis vectors E_{α}, F_{α} for \mathfrak{p} with the following properties

(5)
$$[E_{\alpha}, X_{\alpha}] = 2F_{\alpha}, \quad [F_{\alpha}, X_{\alpha}] = -2E_{\alpha}, \quad [E_{\alpha}, F_{\alpha}] = 2X_{\alpha},$$

(6)
$$[E_{\alpha}, X_0] = F_{\alpha}, \quad [F_{\alpha}, X_0] = -E_{\alpha}.$$

Note that from (6) follows easily that S^1 acts freely on $\mathfrak{p}-0$. Also, there exists a maximal subset, Ψ , of strongly orthogonal positive non-compact roots with the property that $\mathfrak{a} = \sum_{\alpha \in \Psi} \mathbb{R} E_{\alpha}$ is a maximal abelian subalgebra of \mathfrak{p} . If we consider the subgroup $A = \exp(\mathfrak{a})$, then there is another very useful decomposition: G = KAK.

Denote now by π the orthogonal projection $\mathfrak{g} \to \mathfrak{k}$. Then we have the following crucial lemma:

Lemma 2.1.

$$\pi(a \cdot X_0) = X_0 + \frac{1}{2} \sum_{\alpha \in \Psi} (\cosh 2e_{\alpha} - 1) X_{\alpha},$$

where $a = e^H$, $H = \sum_{\alpha \in \Psi} e_{\alpha} E_{\alpha}$.

Proof.

$$\pi(a \cdot X_0) = \pi \left(e^{adH} \cdot X_0\right)$$

$$= \pi \left(\sum_{k=0}^{\infty} \frac{ad^k(H)X_0}{k!}\right)$$

$$= X_0 + \sum_{k=1}^{\infty} \frac{ad^{2k}(H)X_0}{(2k)!}$$

$$= X_0 + \frac{1}{2} \sum_{\alpha \in \Psi} (\cosh 2e_\alpha - 1) X_\alpha,$$

where the last equality follows from an easy computation using (5), (6). \square

2.2. Projecting the orbits. At this point we have all the information we need to show that \mathcal{O}_{λ} satisfies Assumption 0.2. We start by proving

Proposition 2.2. The component Φ_{X_0} is a proper function.

Proof. Since X_0 is in the center of \mathfrak{k} we have, using the KAK decomposition of G:

$$\Phi_{X_0}(\mathcal{O}_{\lambda}) = \Phi_{X_0}(KAK \cdot \lambda) = \langle KAK \cdot \lambda, X_0 \rangle = \langle K \cdot \lambda, A \cdot X_0 \rangle = \langle K \cdot \lambda, \pi(A \cdot X_0) \rangle.$$

By Lemma 2.1 $\pi(A \cdot X_0) \subseteq \mathcal{C}^*$. Since \mathcal{C} lies entirely in \mathfrak{t} , one may replace $K \cdot \lambda$ with its projection onto \mathfrak{t} , $\Phi(K \cdot \lambda)$. It will now be enough to show that this last set is also contained in \mathcal{C} . By the Kostant convexity theorem, [Ko], $\Phi(K \cdot \lambda)$ is given by the convex hull of the set $W \cdot \lambda$; but \mathcal{C} is convex and W-symmetric, and since λ is in \mathcal{C} so is all of $\Phi(K \cdot \lambda)$. \square

Proposition 2.3. $\Phi_{X_0}(\lambda)$ is the unique critical value of Φ_{X_0} and a minimum.

Proof. By Lemma 1.1 a point is critical for Φ_{X_0} if and only if it is fixed by the center of K, S^1 . Therefore, in view of the K-equivariant diffeomorphism (4), and since S^1 acts freely on $\mathfrak{p} - 0$, the critical set of Φ_{X_0} consists of the orbit $K \cdot \lambda$; this set maps to the unique value $\langle \lambda, X_0 \rangle$. To show that this value is a minimum we argue as in Proposition 2.2 and we get, for g = kah $(a \in A, h, k \in K)$

$$\Phi_{X_0}(g \cdot \lambda) = \langle \Phi(h \cdot \lambda), \pi(a^{-1} \cdot X_0) \rangle.$$

Finally, by Lemma 2.1 we have

$$\Phi_{X_0}(g \cdot \lambda) = \langle \lambda, X_0 \rangle + \frac{1}{2} \sum_{\alpha \in \Psi} (\cosh 2e_\alpha - 1) \langle \Phi(h \cdot \lambda), X_\alpha \rangle,$$

where the second term on the left hand-side is non-negative since $\Phi(h \cdot \lambda) \in \mathcal{C}$. \square

We can finally apply Theorem 1.4 to get

Theorem 2.4.

$$\Phi(\mathcal{O}_{\lambda}) = \mathcal{C}H \left\{ \bigcup_{w \in W} \left(w \cdot \lambda + \mathcal{C}^* \right) \right\}.$$

Proof. A direct computation using (5) shows that, for our orbits, the set of regular points with codimension-one stabilizer is

$$M^1 = \{ e^{V_{\alpha}} w \cdot \lambda : 0 \neq V_{\alpha} \in \operatorname{span}(E_{\alpha}, F_{\alpha}), \alpha \in \Delta_n^+, w \in W \}.$$

In addition, for $p = e^{V_{\alpha}} w \cdot \lambda$, $\mathfrak{t}_{p}^{\perp} = \operatorname{span}(X_{\alpha})$; therefore $v_{p} = X_{\alpha}$ and the rays are given by $\alpha_{p} = \{ w \cdot \lambda + t X_{\alpha} : t \geq 0 \}$, $w \in W$, $\alpha \in \Delta_{n}^{+}$. Now apply Theorem 1.4, using the fact that the vectors X_{α} , $\alpha \in \Delta_{n}^{+}$, generate \mathcal{C}^{*} . \square

We conclude with two pictures of the image set, each relative to a generic orbit of a rank-two group. The difference in the image set amounts to a different structure of the corresponding root system.

Example 2.5. Consider

$$G = Sp\left(2, \mathbb{R}\right) = \left\{ g \in Gl\left(4, \mathbb{R}\right) : g^{tr} \left(\begin{array}{cc} 0 & I_2 \\ -I_2 & 0 \end{array} \right) g = \left(\begin{array}{cc} 0 & I_2 \\ -I_2 & 0 \end{array} \right) \right\},$$

then

$$K = \left\{ \left(\begin{array}{cc} A & B \\ -B & A \end{array} \right) \in Gl\left(4; \mathbb{R}\right) \ : \ A + \sqrt{-1}B \in U(2) \ \right\} \simeq U(2),$$

and

$$\mathfrak{t} = \left\{ \begin{array}{cccc} 0 & 0 & x & 0 \\ 0 & 0 & 0 & y \\ -x & 0 & 0 & 0 \\ 0 & -y & 0 & 0 \end{array} \right\} : (x,y) \in \mathbb{R}^2 \right\} \simeq \mathbb{R}^2.$$

With this last identification in mind, the one-dimensional center of \mathfrak{k} is the x=y line, and the compact Weyl group, W, acts by symmetry with respect to this axis. It is not difficult to check that the positive non-compact roots are $\alpha_1(\sqrt{-1}\nu) = 2x$, $\alpha_2(\sqrt{-1}\nu) = 2y$, and $\alpha_3(\sqrt{-1}\nu) = x + y$, and that $X_{\alpha_1} = (1,0)$, $X_{\alpha_2} = (0,1)$, and $X_{\alpha_3} = (1/2,1/2)$. Therefore we have that $\mathcal{C}^* = \overline{\mathcal{C}}$ is the first quadrant. In Figure 2 we have drawn the image set for an orbit through a generic $\lambda \in \mathcal{C}$, according to Theorem 2.4.

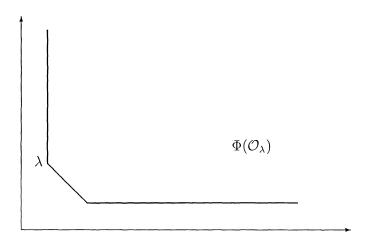


FIGURE 2. The $Sp(2,\mathbb{R})$ case.

EXAMPLE 2.6. We get a slightly different picture in the case that

$$G = SU(2,1) = \left\{ \begin{array}{l} g \in Sl\left(3;\mathbb{C}\right) \ : \ \overline{g^{tr}} \left(\begin{array}{cc} I_2 & 0 \\ 0 & -1 \end{array} \right) g = \left(\begin{array}{cc} I_2 & 0 \\ 0 & -1 \end{array} \right) \right\},$$

$$K = S(U(2) \times U(1)) = \left\{ \left(\begin{array}{cc} A & 0 \\ 0 & z \end{array} \right) \ : \ A \in U(2), \ z \in U(1), \ z \det(A) = 1 \right\},$$
 and

$$\mathfrak{t} = \left\{ \begin{array}{ccc} \nu = \left(\begin{array}{ccc} -\sqrt{-1}x & 0 & 0 \\ 0 & -\sqrt{-1}y & 0 \\ 0 & 0 & \sqrt{-1}(x+y) \end{array} \right) : (x,y) \in \mathbb{R}^2 \right\} \simeq \mathbb{R}^2.$$

As in the previous example, the one-dimensional center of \mathfrak{k} is the x=y line, and W acts by symmetry about this axis. Here there are only two positive non-compact roots, $\alpha_1(\sqrt{-1}\nu) = x + 2y$ and $\alpha_2(\sqrt{-1}\nu) = y + 2x$; with our choice of coordinates, $X_{\alpha_1} = (1,0)$ and $X_{\alpha_2} = (0,1)$. Again \mathcal{C}^* is the first quadrant. The difference here is that $\mathcal{C} \supset \mathcal{C}^*$; this gives us a greater freedom of choice for λ . In Figure 3 we have deliberately chosen λ outside of \mathcal{C}^* .

References

[A] Atiyah, M., Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), 1–15.

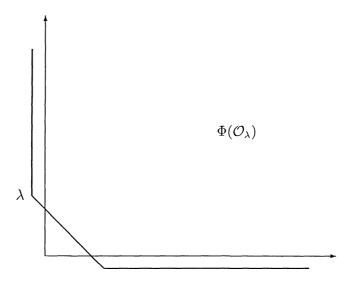


FIGURE 3. The SU(2,1) case.

- [GS] Guillemin, V. and Sternberg, S., Convexity properties of the moment mapping, Invent. Math. 67 (1982), 491–513.
- [H] Helgason, S., Differential geometry, Lie groups and symmetric spaces, Academic Press, New York 1978.
- [K1] Knapp, A., Bounded symmetric domains and holomorphic discrete series, in Symmetric Spaces, Marcel Dekker, Inc. 1972.
- [K2] Knapp, A., Representation theory of semisimple Lie groups, Princeton Univ. Press 1986.
- [Ko] Kostant, B., On convexity, the Weyl group, and the Iwasawa decomposition, Ann. Sci. Éc. Norm. Sup. 6 (1973), 413–455.
- [P] Paneitz, S., Invariant convex cones and causality in semisimple Lie algebras and groups, J. Funct. Anal. 43 (1981), 313–359.
- [Pr] Prato, E., Some symplectic invariants of Hamiltonian K-actions, Ph. D. thesis, M.I.T. 1990.
- [W] Weinstein, A., Symplectic V-manifolds, periodic orbits of Hamiltonian systems, and the volume of certain Riemannian manifolds, Comm. Pure Appl. Math. 30 (1977), 265–271.

PRINCETON UNIVERSITY, U. S. A.

RECEIVED DECEMBER 3, 1993