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Moment Map, Futaki Invariant and Stability of

Projective Manifolds

Xiaowei Wang

In this paper, by applying the theory of moment map we provide
an unified picture of stability of projective manifolds. In particular,
a new integral formula of evaluating Chow weight is given and a
simple way of constructing unstable manifolds is presented.

1. Introduction.

Let (X,L) be a projective manifold polarized by an ample line bundle L,
the problem of finding necessary and sufficient condition for the existence of
a Kähler metric with constant scalar curvature in the Kähler class [c1 (L)]
has attracted people for decades. In mid 80’s, Futaki introduced the first
integral obstructions ( Futaki invariants) to the existence of constant scalar
curvature metric based on the similar result on the integral obstructions
to the prescribing scalar curvature problem in Riemannian geometry found
earlier by Kazdan and Warner. Since then there have been a lot of study on
this type of obstructions, a good account for this is Futaki’s book [F]. In
particular, Yau have conjectured that the GIT stability of the underlying
manifold must provided further obstruction to the existence of the constant
scalar curvature metric.

In this note, we use the theory of moment map to give a new and natural
interpretation of the obstructions to stability of polarized manifolds. As
applications, first, in section 3, we present a new and differential geometric
way of evaluating the Chow weight (Theorem 26); as a corollary, a new and
algebro-geometric proof of Zhang’s theorem ([Z]) on the equivalence between
the balanced condition and Chow poly-stability of a projective embedding
(Corollary 27) is given. Second, in section 4 we introduce a family of finite
dimensional obstructions which gives an algebraic geometric interpretation
of Futaki character (Theorem 38), and as a byproduct, it explains why Futaki
invariants also arise as the obstruction to the Chow semi-stability of X with
respect to L, in particular, these results provide supporting evidence to Yau’s
conjecture. A similar result was found earlier by Mabuchi and Nakagawa
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[MN]. Third, in section 5 by analyzing the symplectic geometric aspect of
Hilbert and Chow scheme, we are able to give a simple way of constructing
examples of unstable manifolds, in particular they admit no constant scalar
curvature metric by the recent results of Donaldson. These manifolds include
the Mukai-Tian manifolds and examples due to Burns and De Bartolomeis.

Acknowledgement: I am very grateful to Patrick Bronsnan, David
Gieseker, Amalendu Krishna, Conan Leung, Kefeng Liu, Julius Ross and
Richard Thomas for many very helpful discussions and comments, and to
professor S.-T. Yau for his constant encouragement. The author also wants
to thank the referee for his many helpful comments.

2. Symplectic quotient.

In this section we collect elementary facts of the symplectic quotient and GIT
quotient that will be used later. Let us first fix the notation, throughout
this section (Z, L, ω) will be a Kähler manifold(possibly infinite dimensional)
polarized by an ample line bundle π : L → Z with a Hermitian metric h
such that ω = i

2πRic(h).

2.1. Symplectic quotient versus GIT.

We first recall the interplay between symplectic quotient and GIT quotient in
finite dimensional case. Throughout this subsection we assume that (Z, L, ω)
is a finite dimensional projective manifold polarized by ample line bundle
L. Let G be a compact Lie group acting on Z by holomorphic isometry,
then the G action can be naturally extended to a GC action on Z, where
GC is the complexification of G. Let 〈·, ·〉g be a non-degenerate bi-invariant
pairing on g, the Lie algebra of G, it extends complex bi-linearly to gC, the
complexification of g. Let ∗ be the Cartan involution, in particular, ∗2 = 1,
then for ξ, η ∈ gC

(ξ, η)gC := 〈ξ, η∗〉gC

defines a bi-invariant Hermitian inner product on gC. For any z ∈ Z the
infinitesimal action

σz : g →TzZ
is naturally extended to gC. Use the pairing 〈·, ·〉g and the Kähler metric ω
on Z, we define

Qz := σ∗zσz : g → g
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where σ∗ is the adjoint. The action of G on Z is called Hamiltonian if
there is an Ad−equivariant moment map

m : Z → g

satisfying
d 〈m (z) , ξ〉g = iσz(ξ)ω,

and the line bunde L is called the pre-quantum line bundle.

Definition 1.
φ := ‖m‖2 = −〈m,m〉g : Z → R,

The critical points of φ is called extremal points.

For ∀w ∈ TzZ, we have

〈∇φ,w〉TzZ
= 2

〈
−〈m(z),∇m(z)〉g , w

〉
TzZ

= −2 〈m(z),∇wm(z)〉g
= −2ω(σz (m(z)) , w) = −2 〈Iσz(m(z)), w〉TzZ

that is
∇φ(z) = −2Iσz(m(z)). (1)

Definition 2. Let z ∈ Z then

1. z is called poly-stable with respect to L if there is a g ∈ GC such
that φ (f · z) = 0;

2. z is called stable if z is poly-stable and in addition the stabilizer Gz
is finite;

3. z is called semistable if

inf
g∈GC

φ (g · z) = 0.

Let Zss denotes the open set of semi-stable points on Z.

Kempf and Ness, Kirwan, Guillemin and Sternberg have shown that the
above definition agree with the corresponding notion in geometric invariant
theory(GIT). Here we give a criterion of determine the set Zss. Let γ0 be a
lift of z0 ∈ Z. Since GC acts on L, we define H : GC/G→ R by

H (g) := log |g · γ0|
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and for ξ ∈ g we define

Hξ (t) := H
(
exp

(√
−1tξ

))
then we have (see [DK] Section 6.5.2)

Proposition 3. 1. If γ ∈ GC · γ0, then γ is a critical point of H if and
only if m (π (γ)) = 0, where π : L→ X.

2. Let zt := exp
(√
−1tξ

)
· z0. Then

H ′
ξ (t) = −2

〈
m
(
exp

(√
−1tξ

)
· z0
)
, ξ
〉
g

H ′′
ξ (t) = 2 ‖σzt (ξ)‖2

Corollary 4. Let gz be the Lie algebra of the stabilizer Gz then the follow-
ing are equivalent

1. z ∈ Z is poly-stable.

2. For ∀ξ ∈ g− gzthere is a unique minimum of Hξ (t)

3. For ∀ξ ∈ g− gz
lim
t→∞

H ′
ξ (t) > 0

2.2. Structures of gz0.

For ξ ∈ g and η ∈ gC,

〈ξ,Qz(η)〉g = 〈σz(ξ), σz(η)〉TzZ = ω(σz(ξ), Iσz(η)) = 〈ξ, dm ◦ I ◦ σz(η)〉g .

This together with the Ad−invariance of m imply the following:

Lemma 5. For ξ, η ∈ g,

〈m(z), [ξ, η]〉gC = 〈[m(z), ξ] , η〉gC

=
〈
σz
(√
−1ξ

)
, σz(η)

〉
TzZ =

〈
Qz
(√
−1ξ

)
, η
〉
gC (2)

Proposition 6. Suppose ξ ∈ ker (σz) = gC
z , the Lie algebra of GC

z . Then
f (g) := 〈m (g · z) , Adgξ〉gC is constant along GC−orbit. In particular,

GC · z ∩m−1 (0) �= ∅ implies 〈m (z) , ξ〉gC = 0.
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Proof. Suppose ξ ∈ gC, then for ∀η ∈ g, by Ad-equivariance of moment map
we have〈

m
(
etη · z

)
, Adetηξ

〉
gC = 〈m (z) , Ade−tηAdetηξ〉gC = 〈m (z) , ξ〉gC .

This shows that f is constant along G−orbit. So we only need to deal with√
−1tη ∈ gC direction.

2
d

dt

∣∣∣∣
t=0

〈
m
(
e
√
−1tη · z

)
, Ade

√−1tηξ
〉

gC

= 2 〈dm ◦ I ◦ σz (η) , ξ〉gC + 2
〈
m (z) ,

[√
−1η, ξ

]〉
gC

= 〈dm ◦ I ◦ σz (η) , ξ + ξ∗ + ξ − ξ∗〉gC −
√
−1 〈[η,m (z)] , ξ + ξ∗ + ξ − ξ∗〉gC

= 〈σ∗zσz (η) , ξ − ξ∗〉gC −
√
−1
〈
σ∗zσz (η) ,

√
−1ξ +

√
−1ξ∗

〉
gC

−
√
−1 〈[η,m (z)] , ξ − ξ∗〉gC −

〈
[η,m (z)] ,

√
−1ξ +

√
−1ξ∗

〉
gC

= −〈σz (η) , σz (ξ∗)〉TzZ
−
√
−1
〈
σz (η) , σz

(√
−1ξ∗

)〉
TzZ

+
√
−1
〈
σ∗zσz

(√
−1η

)
, ξ − ξ∗

〉
gC +

〈
σ∗zσz

(√
−1η

)
,
√
−1ξ +

√
−1ξ∗

〉
gC

= −〈σz (η) , σz (ξ∗)〉TzZ
−
√
−1
〈
σz (η) , σz

(√
−1ξ∗

)〉
TzZ

−
√
−1
〈
σz
(√
−1η

)
, σz (ξ∗)

〉
TzZ

+
〈
σz
(√
−1η

)
, σz

(√
−1ξ∗

)〉
TzZ

= −〈σz (η) , σz (ξ∗)〉TzZ
−
√
−1
〈
σz (η) , σz

(√
−1ξ∗

)〉
TzZ

+
√
−1
〈
σz (η) , σz

(√
−1ξ∗

)〉
TzZ

+ 〈σz (η) , σz (ξ∗)〉TzZ

= 0

�

Remark 7. Note that if ξ lies in the reductive part of gz then 〈m (z) , ξ〉gC

is actually the weight of the C×−action corresponding to ξ on the fiber Lz.
Clearly, it is constant along GC−orbit.

Corollary 8. Let ξ, η ∈ gC
z then 〈m (z) , [η, ξ]〉gC = 0. In particular, the map

〈m (z) , ·〉gC : gC
z → C is a Lie algebra homomorphism.

Proof. Since 〈
m
(
etη · z

)
, Adetηξ

〉
gC = 〈m (z) , ξ〉gC

and this implies

0 =
d

dt

∣∣∣∣
t=0

〈
m
(
etη · z

)
, Adetηξ

〉
gC = 〈dm ◦ σz (η) , ξ〉gC + 〈m (z) , [η, ξ]〉gC .
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The statement then follows from the assumption η ∈ gC
z . �

Corollary 9. Let z0 ∈ Z and z0 ∈ GC · z. Suppose the stabilizer gC
z0 �= 0 is

simple and gC
z = 0. Then z is unstable.

Proof. By the assumption z0 ∈ GC · z, there is a ξ ∈ gz0 such that

lim
t→∞

e−
√
−1tξz = z0

Suppose z is stable then it follows from Corollary 4

2 〈m (z) , ξ〉g = lim
t→∞

H ′
ξ (t) > 0.

On the other hand, Corollary 8 tells us
〈
m (z) , gC

z0

〉
g

= 0 since gC
z0 is simple,

this is a contradiction. �

Theorem 10. Let G be a compact Lie group acting on (Z, ω) holomorphic
isometrically . Suppose z0 is a extremal point of φ then we have the following
decomposition

gC
z0 = h0 ⊕

⋃
λ>0

hλ

where

hλ := {ξ ∈ gC
z0|

[√
−1m (z0) , ξ

]
= λ · ξ}

and h0 is the reductive part of gC
z0. Moreover

[hλ1 , hλ2 ] ⊂ hλ1+λ2 .

and

m (z0) ∈ Z(h0),

where Z(h0) is the center of h0.

Proof. Since gC
z0 = ker (σz0) ⊂ gC, we have decomposition

gz0 =
(
gC
z0 ∩ g

)
⊕
√
−1
(
gC
z0 ∩ g

)
⊕nz0

where nz is the nilpotent radical.
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First, we claim that the action of
[√
−1m (z0) , ·

]
on gC is self adjoint.

This is because that (ξ, η) := 〈ξ, η∗〉gC forms a Hermitian inner product on
gC, where ∗ is the Cartan involution, and([√

−1m (z0) , ξ
]
, η
)

=
〈[√

−1m (z0) , ξ
]
, η∗
〉
gC

= −
〈
ξ,
[√
−1m (z0) , η∗

]〉
gC

=
〈
ξ,
[(
−
√
−1m (z0)

)∗
, η∗
]〉

gC

=
(
ξ,
[√
−1m (z0) , η

])
.

Secondly, since
√
−1m (z0) =

(√
−1m (z0)

)∗
,for ∀ξ ∈ gz, if[√

−1m (z0) , ξ
]

= λξ then[√
−1m (z0) , ξ∗

]
=
[(√

−1m (z0)
)∗
, ξ∗
]

= −
[√
−1m (z0) , ξ

]∗
= −λξ∗.

Since ξ ∈ gC
z0 and −

(√
−1ξ

)∗ +
√
−1ξ ∈ g, this implies

2λ ‖ξ‖2 = 2λ 〈ξ, ξ∗〉gC

= λ 〈ξ + ξ∗, ξ∗ + ξ〉gC

=
〈[√

−1m (z0) , ξ − ξ∗
]
, ξ∗ + ξ

〉
gC

=
〈
[m (z0) , ξ − ξ∗] ,

√
−1ξ∗ +

√
−1ξ

〉
gC

=
〈
[m (z0) , ξ − ξ∗] ,−

(√
−1ξ

)∗
+
√
−1ξ

〉
gC

Now apply Lemma 5 with η = −
(√
−1ξ

)∗ +
√
−1ξ we deduce

2λ ‖ξ‖2 =
〈
[m(z0), ξ − ξ∗] ,−

(√
−1ξ

)∗
+
√
−1ξ

〉
gC

=
〈
σz0

(√
−1ξ −

√
−1ξ∗

)
, σz0(−

(√
−1ξ

)∗
+
√
−1ξ)

〉
Tz0Z

= ‖σz0(ξ∗)‖2

This implies that λ ≥ 0. Moreover if λ = 0 then we have σz0(ξ
∗) = 0, and

by our assumption σz0(ξ) = 0, so σz0(ξ− ξ∗) = 0. This implies that ξ− ξ∗ ∈
g so we have ξ ∈

(
gC
z0 ∩ g

)C = h0 and m (z0) ∈ Z(h0). Clearly h0 is the
reductive part of gz0.

Finally, the relation
[hλ1 , hλ2 ] ⊂ hλ1+λ2.

easily follows from the Jacobi identity. �
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Remark 11. If Z and G both are of finite dimensional Proposition above
is well known (see for instance [K]). Since the argument above is purely
local, our approach also works for infinite dimensional G as long as gC

z0 is
contained in a finite dimensional reductive Lie algebra.

Corollary 12. 1. If m (z0) = 0 then gC
z0 is reductive.

2. If z0 is a extremal point and for ∀ξ ∈ h0, 〈m (z0) , ξ〉gC = 0 then
m (z0) = 0.

3. If z0 is a extremal point, and m (z0) �= 0 then gC
z0 ⊃ u (1) .

4. Assume G is finite dimensional, let ξ ∈ gz with 〈m (z) , ξ〉gC �= 0 and

z0 ∈ GC · z be the extremal point of φ. Then ξ − ξ∗ ∈ gz0 .

3. Symplectic geometry of Chow and Hilbert scheme.

3.1. Stability of polarized manifold.

In this subsection, let us recall some basic geometric invariant theory that
is used in the construction of moduli space of polarized variety. Given a
sufficiently large number k, Lk induces a kth-embedding X ⊂ PNk , where
Nk = dimH0

(
X,Lk

)
− 1.

Definition 13. The degree d := kn
∫
X c

n
1 (L) divisor

Chow
(
X,Lk

)
:= {Λ ∈ G (Nk − n,Nk + 1) | Λ ∩X �= ∅}

⊂ PH0 (G (Nk − n,Nk + 1) ,OG (d))

is called the kth−Chow point of X, here G (Nk − n,Nk + 1) is the Grass-
manian of Nk − n dimensional linear subspace in CNk+1. We define

CHOW
P

Nk (n, d) :=
{
Xn ⊂ PNk | kn

∫
X
cn1 (L) = d

}
.

Clearly we have

CHOW
P

Nk (n, d) ⊂ PH0 (G (Nk − n,Nk + 1) ,OG (d)) .

Definition 14. We define the kth−Hilbert point of X to be

Hilb
(
X,Lk

)
:= IX ∈ HILBP

Nk (χ)
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where

HILB
P

Nk (χ)

=
{
IX ⊂ OPNk | H0

(
PNk ,IX ⊗O

P
Nk
O

PNk (m)
)

= χ (m) for m >> 1
}
(3)

is the Hilbert scheme of PNk with Hilbert polynomial χ.

It follows from the exact sequence

0 −→ IX (m) −→ O
PNk (m) −→ OX (m) −→ 0

that
HILB

P
Nk (χ) ⊂ G (χ (m) , dk,m) Plücker−→ PK−1

for m >> 1, where

K =
(

dk,m
χ (m)

)
and dk,m = dimCH

0
(
X,Lkm

)
.

Definition 15. 1. We call (X,L) Chow poly-stable for the

kth−embedding X ⊂ PNk if Chow
(
X,Lk

)
∈ CHOWPN (n, d)

is poly-stable with respect to the natural SL (Nk + 1) action

on
(
CHOW

PNk (n, d) ,OCHOW
P
Nk

(n,d) (1)
)
. And we call (X,L) is

asymptotic Chow poly-stable if (X,L) is Chow poly-stable for
k >> 1.

2. We call (X,L) Hilbert poly-stable for the kth−embedding if
Hilb

(
X,Lk

)
∈ HILB

PNk (χ) is poly-stable with respect to the nat-

ural SL (Nk + 1) action on
(
HILB

P
Nk (χ) ,OHILB

P
Nk

(χ) (1)
)
.

In particular we have the following relations between these two notions
of stability (c.f.[G] and [Mum])

Chow stable=⇒Hilbert stable=⇒Hilbert semi-stable=⇒Chow semi-stable.

For the subsequent two sections we will apply the general theory of sym-
plectic quotient established in Section 2 to both Chow and Hilbert scheme.
Notice that in general Chow and Hilbert scheme both are NOT smooth, but
for our purpose what we really care about is only a single SL (N + 1)−orbit
which is smooth, so the Section 2 is applicable to our situation.
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3.2. Chow scheme.

Since
CHOWPN (n, d) ⊂ PH0 (G (Nk − n,Nk + 1) ,OG (d)) ,

it inherits a natural symplectic form from the Fubini-Study Kähler form
on PH0 (G (Nk − n,Nk + 1) ,OG (d)) . Following [W], we may take another
natural symplectic form on CHOW

PNk (n, d) by considering the following
diagram

π∗2OP
Nk (1) −−−−→ O

P
Nk (1)⏐⏐� ⏐⏐�

CHOW
PNk (n, d)× PNk

π2−−−−→ PNk⏐⏐�π1

CHOW
P

Nk (n, d)

and let
CHOW

PNk (n, d)× PNk ⊃ Σ := {(f, f (x)) | x ∈ X}

be the universal family then we define the symplectic form Ω on
CHOW

P
Nk (n, d) by

Ω := π1∗

(
(π∗2ωFS)n+1

(n+ 1)!
∩ [Σ]

)

Remark 16. In [Z], S.W. Zhang identified the pre-quantum line bundle for
Ω with the Deligne-Pairing.

Now SU (Nk + 1) acts naturally on (CHOW
P

Nk (n, d) ,Ω) and the mo-
ment map is given by the following

Proposition 17.

µΩ

(
Chow

(
X,Lk

))
=
∫
X
µFS

ωnFS
n!

=
1

2πi

∫
X

(
zz∗

|z|2
− 1
Nk + 1

)
ωnFS
n!

∈ su (Nk + 1) ,

where µFS is the moment map of
(
PNk , ωFS

)
with respect to SU (Nk + 1)

action.
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Proof. Let ξ ∈ su (Nk + 1) and Xξ ∈ H0
(
PNk , TPNk

)
be the induced

holomorphic vector field on PNk . If we identify TCHOWChow(X) with
H0

(
X, TPNk

∣∣
X

)
then for ∀Y ∈ Γ

(
X, TPNk

∣∣
X

)
Ω
(
Xξ|Chow(X,Lk), Y

)
=
∫
X

iY

(
iXξ |Chow(X,Lk)

ωn+1
FS

)
(n+ 1)!

=
∫
X

iY

(
iXξ |Chow(X,Lk)

ωFS ∧ ωnFS
)

n!

=
∫
X
ωFS

(
Xξ|Chow(X,Lk), Y

) ωnFS
n!

−

(
iXξ |Chow(X,Lk)

ωFS ∧ iY ωFS ∧ ωn−1
FS

)
(n− 1)!

=
∫
X

Tr (dµFS (Y ) · ξ) ω
n
FS

n!
−
∫
X
∂̄µFS (ξ) ∧ ∂µFS (Y )

ωn−1
FS

(n− 1)!
.

On the other hand

〈dµΩ (f) (Y ) , ξ〉

=
d

dt

∣∣∣∣
t=0

〈∫
X

(
zz∗

|z|2
− 1
Nk + 1

)
f∗ωnFS
n!

, ξ

〉
=
∫
X

Tr (dµFS (Y ) · ξ) ω
n
FS

n!
+
∫
X

Tr (µFS · ξ) ∂̄∂µFS (Y )
ωn−1
FS

(n− 1)!

=
∫
X

Tr (dµFS (Y ) · ξ) ω
n
FS

n!
−
∫
X
∂̄µFS (ξ) ∧ ∂µFS (Y )

ωn−1
FS

(n− 1)!
.

And clearly µΩ is Ad−equivariant because it is the integral of
Ad−equivariant µFS. �

Definition 18. The kth−embedding of X ⊂ PNk induced by Lk is called
balanced if there is a g ∈ SL (Nk + 1) , such that

µΩ

(
Chow

(
g ·X,Lk

))
=
∫
g·X

µFS
ωnFS
n!

= 0

Let aut (X,L) ⊂ sl (N + 1) be the stabilizer of Chow (X,L) ∈
CHOW

PNk (n, d) Take
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Definition 19. Let Chow (X) ∈ CHOW
P

Nk (n, d) be the Chow point cor-
responding to the projective embedding X ⊂ PNk , then for

∀ξ ∈ aut (X,L) ⊂ sl (N + 1)

we define
fX,k (ξ) := 〈µΩ (Chowk (X)) , ξ〉sl

and we say X ⊂ PNk can be balanced provided there is a g ∈ SL (Nk + 1)
such that µΩ (Chowk (g ·X)) = 0.

It follows from Corollary 4, Propostion 6 and Theorem 10.

Proposition 20. 1. fX,k : aut (X,L) → C is a Lie algebra homomor-
phism and is independent on the choice of basis of the projective em-
bedding;

2. Chow
(
X,Lk

)
is stable if and only if for any ξ ∈ su (Nk + 1) we have

lim
t→∞

〈
µΩ

(
e−

√
−1tξ · Chow

(
X,Lk

))
, ξ
〉

su

= lim
t→∞

〈
µΩ

(
Chow

(
e−

√
−1tξ ·X,Lk

))
, ξ
〉

su
> 0;

3. If Chow
(
X,Lk

)
is semi-stable then fX,k = 0. In particular, fX,k is

the finite dimensional analogue of Futaki invariant.

Remark 21. In fact, it can be shown that fX,k is actually only depend on
the Kähler class.

By applying a trick of Mabuchi [M] we have the following proposition.

Proposition 22. Suppose aut (X,L) 
 ξ is a nilpotent element. Then

fX,k (ξ) = 0.

Proof. Since we learn from Proposition 6 that fX,k is independent of the
projective embedding, we may assume that ξ is already of Jordan block
form, that is

ξ =

⎡⎢⎢⎢⎢⎣
0 e1

. . . . . .
. . . eNk−1

0

⎤⎥⎥⎥⎥⎦ ,
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where ei = ±1. Now let

SL (Nk + 1) 
 g = ε−
Nk(Nk+1)

2 diag
[
εNk , εNk−1, · · · , ε, 1

]
then we have

fX,k (ξ) = 〈µΩ (Chowk (X)) , ξ〉sl
= 〈µΩ (Chowk (g ·X)) , Adgξ〉sl

=
1

2πi

∫
X

Tr
[(

g · zz∗ · g∗

|g · z|2
− 1
Nk + 1

)(
g · ξ · g−1

)] (g∗ωFS)n

n!

=
1

2πi

∫
X

Tr [z∗g∗gξz]
|g · z|2

(g∗ωFS)
n

n!
;

Notice ∣∣∣∣Tr [z∗g∗gξz]
|g · z|2

∣∣∣∣ ≤ ε

∣∣∣∑Nk−1
i=0 εNk−iz̄iεNk−i−1ei+1zi+1

∣∣∣∑Nk
i=0 |zi|

2 ε2(Nk−i)

≤ ε

the last step follows from Cauchy-Schwartz inequality. Now we let ε → 0,
this implies fX,k (ξ) = 0. �

Remark 23. Note Theorem 10 implies that fX,k enjoys all the properties
possessed by Futaki invariant.

In order to find a geometric way to evaluate Chow weight we need the
following two basic Lemmas.

Lemma 24. (Proposition I.7.4 in [HA]) Let M be a finitely generated
graded module over S := C [z0, · · · , zN ] . Then there exists a filtration
0 = M0 ⊂ M1 ⊂ · · · ⊂ M r = M by graded submodules, such that for each
i,M i/M i−1 � (S/pi) (li) , the twisted module (i.e. (S/pi) (li)d := (S/pi)d+li),
where pi is a homogenous prime ideal of S, and li ∈ Z. Moreover, we have:

1. if p is a homogenous prime ideal of S, then

p ⊇Ann (M) := {s ∈ S|s ·M = 0} ⇔ p ⊇ pi

for some i. In particular, the minimal elements of the set {p1, · · · , pr}
are just the minimal primes of M.
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2. for each minimal prime of M, the number of times which p occurs in
the set {p1, · · · , pr} is equal to µp (M) , the length of Mp over the local
ring Sp.And µp (M) is called the multiplicity of M at p.

To state the second one, let ξ =diag[µ0, · · · , µN ] ∈ sl (N + 1) and X ⊂
PN be a eξt−invariant n−dimensional closed subscheme. ξ induces a natural
action ∧topH0

(
PN ,OPN (k) /IX ⊗OPN (k)

)
, where IX is the ideal sheaf of

X and the weight polynomial is given by

wX (ξ) = wX,0 (ξ)
kn+1

(n+ 1)!
+ wX,1 (ξ)

kn

n!
+ · · ·+ wX,n+1 (ξ) .

We call wX (ξ) the ξ−weight of X.

Lemma 25. Suppose X ⊂ PN be a ξ−invariant n−dimensional closed sub-
scheme with irreducible components X1, · · · ,Xs, each component Xi has
multiplicity ai in X. Then

wX,0 (ξ) =
s∑
i=1

aiwXi,0 (ξ)

Proof. Let M := ⊕∞
k=0H

0
(
PN ,OPN (k) /IX (k)

)
. Then M is a graded

S−module, in particular X =Proj(M) . From Lemma 24, we know that
M has a filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ M q = M, whose quotients
M i/M i−1 are of the form (S/qi) (li) ,where qi is a homogenous prime ideal.
If zero locus Z (qi) is a projective variety of dimension ri then

wZ(qi) (ξ) = wZ(qi),0 (ξ)
kri+1

(ri + 1)!
+ wZ(qi),1 (ξ)

kri

ri!
+ · · · .

Note that the shift li does not affect the leading coefficient in above. Since we
are interested only in the leading coefficient, we can ignore those wZ(qi) (ξ) of
degree < n+1. We are left with those wZ(qi) (ξ) where qi is a minimal prime
of M, namely one of the primes p1, · · · , pq corresponds to Xi, and each one
of these occurs µpi (M) times. Since the weight polynomial is an additive
function, this implies

wM =
q∑
i=1

wM i/M i−1 .

In particular, we get wX,0 (ξ) =
s∑
i=1

aiwXi,0 (ξ) . �
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For ∀ξ ∈ su (N + 1)− aut (X,L) , we if let X∞ denote flat limit

lim
t→∞

e
√
−1tξ ·X.

then X∞ is ξ−invariant and we have the following:

Theorem 26.

wX∞,0 (ξ)
n+ 1

= lim
t→∞

〈
µΩ

(
e
√
−1tξChow (X,L)

)
, ξ
〉

su

Proof. Suppose Y1, · · · , Ys are the irreducible components of X∞ and ai is
the multiplicity of Yi in X∞. Then as a algebraic cycle, we have

[X∞] =
s∑
i=1

ai [Yi] .

By the continuity of integral we have

lim
t→∞

〈
µΩ

(
e
√
−1tξ · Chow (X,L)

)
, ξ
〉

su

= lim
t→∞

〈
µΩ

(
Chow

(
e
√
−1tξ ·X,L

))
, ξ
〉

su

= lim
t→∞

∫
e
√−1tξ·X

µFS (ξ)ωnFS

=
s∑
i=1

ai

∫
Yi

µFS (ξ)ωnFS

Step 1. Suppose Y ⊂ PN is a linear subspace invariant under the action
of e

√
−1tξ. Without loss of generality we may assume

ξ := diag [iξ0, · · · , iξN ] ∈ su (N + 1)

and
Y := {zn+1 = · · · = zN = 0} ,

then we have ∫
Y
µFS (ξ)ωnFS =

∫
Pn

µFS (ξ)ωnFS

=
∫

Pn

∑n
i=0 ξi |zi|

2∑n
i=0 |zi|

2 ωnFS

=
∑n

i=0 ξi
n+ 1

.
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Also wY,0 (ξ) =
∑n

i=0 ξi, since [Y ] = [e0 ∧ · · · ∧ en] ∈ G (N − n,N + 1) . We
thus obtain

wY,0 (ξ)
n+ 1

=
∫
Y
µFS (ξ)ωnFS = 〈µΩ (Chow (Y,L)) , ξ〉

Step 2. Suppose Y ⊂ PN is an irreducible closed sub-scheme which
is etξ−invariant. We may take a 1-parameter subgroup λ (t) : C× −→
SL (N + 1) such that λ (t) commute with etξ and

Y∞ := lim
t→∞

λ (t) · Y =
l∑

j=1

bjLi.

with L′
is being λ−invariant linear subspaces. Since λ (t)·Y form a flat family

over C, this implies wY,0 (ξ) = wY∞,0 (ξ) . Now it follows from Lemma 25 that

wY∞,0 (ξ)
n+ 1

=
1

n+ 1

l∑
j=1

bi · wLi,0 (ξ) =
l∑

j=1

bi · 〈µΩ (Chow (Li, L)) , ξ〉 .

On the other hand, since ξ lies in the stabilizer of Chow (Y,L) and λ (t) ∈
SL (N + 1) , we can deduce from Proposition 6 that

〈µΩ (Chow (Y,L)) , ξ〉 = 〈µΩ (Chow (λ (t) · Y,L)) , ξ〉

=
l∑

j=1

bi · 〈µΩ (Chow (Lj, L)) , ξ〉

=
wY∞,0 (ξ)
n+ 1

=
wY,0 (ξ)
n+ 1

Step 3. By Lemma 25

wX∞,0 (ξ) =
s∑
j=1

ajwYj ,0 (ξ) .

Now we put everything together

wX∞,0 (ξ)
n+ 1

=
1

n+ 1

s∑
j=1

ai · wYj ,0 (ξ)

=
s∑
j=1

αj 〈µΩ (Chow (Yj, L)) , ξ〉

= lim
t→∞

〈
µΩ

(
e
√
−1tξChow (X,L)

)
, ξ
〉

su
.

�
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Now ξ lies in the stabilizer of Chow (X∞, L) , the ξ−weight of
Chow (X,L) is defined to be the weight of the C×−action induced by ξ on
OCHOW

PN (n,d) (1) |Chow(X∞,L). Then we have the following easy consequence
originally due to Zhang, an alternative proof was gaven by Paul.

Corollary 27. ([Z] [Luo] [P])Let (X,L) be a projective variety polarized by
a very ample line bundle L . Then Chow (X,L) is poly-stable if and only if

the projective embedding X
L−→ PN induced by L can be balanced.

Proof. It follows from Proposition 2.11 of [Mum]

ξ − weight of Chow (X,L) = wX∞,0 (ξ) .

By Hilbert-Mumford criterion [MFK], being Chow poly-stable means ξ−
weight of Chow (X,L) < 0 for ∀ξ ∈ su (N + 1)− aut (X,L) . From the The-
orem above, this is equivalent to

lim
t→∞

−
〈
µΩ

(
e
√
−1tξChow (X,L)

)
, ξ
〉

su
> 0 for ∀ξ ∈ su (N + 1)−aut (X,L) .

The statement then follows from Corollary 4 and Proposition 17. �

Remark 28. Notice that the above Theorem tells us that the open set of
poly-stable points on Chow scheme are the same with respect two different
polarisation. For vector bundle case, this is corresponding to Simpson’s
construction versus Gieseker’s construction(see [HL]).

3.3. Hilbert scheme.

For Hilbert scheme, if we let m >> 1 then from the construction of Hilbert
scheme it is clear that the pre-quantum line bundle is given by

detH0
(
X,Lkm

)
� OPK−1 (1) ,

where K and dk,m are as in Section 4.1.And the action of SU (Nk + 1) on
PN naturally induces a Hamiltonian action on HILB

P
Nk (χ) . Now suppose

SL (Nk + 1) ⊃ aut (X,L) �= {0} then the Hilbert point version of Proposi-
tion 20 is

Proposition 29. Suppose the kth−Hilbert point

Hilb
(
X,Lk

)
∈ HILB

P
Nk (χ)
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is semi-stable. Then for any ξ ∈ aut (X,L)〈
µFS

(
Hilb

(
X,Lk

))
, ξ
〉

su
= 0

for m >> 1, where µFS is the restriction of the standard moment map on
PK−1 to HILB

P
Nk (χ) .

Let us consider an S1− action on (X,L), so we can fix a S1−invariant
Hermitian metric h on L and let ω = i

2πRic (h) be the Kähler form on X.
Suppose that the action is Hamiltonian so it lifts to an action on L → X
thus acts on H0

(
X,Lk

)
for ∀k. So for each k we can get a homomorphism

ρk : S1 → Aut0 (X) ⊂ SL (Nk + 1) .

If we let wk,m denote the weight of the S1−action on ∧topH0
(
X,Lkm

)
for

∀m induced by ρk then we have

Corollary 30. Suppose that (X,L, ω) has a Hamiltonian S1−action and

the kth−Hilbert point Hilb
(
X,Lk

)
is semi-stable. Then wk,m = 0, for

m >> 1.

Now
wk,m = Akm

n+1 +Bkm
n +O

(
mn−1

)
and equivariant Riemann-Roch theorem tells us that

Ak =
∫
X
〈µωF S,k, ξ〉su

ωnFS
n!

Bk =
∫
X
〈µωF S,k, ξ〉su

c1 (X) ∧ ωn−1
FS

2 (n− 1)!

The dependence of Ak on k will be made more explicit in next section. In
particular, we have

Corollary 31. Suppose that the kth−Hilbert point Hilb
(
X,Lk

)
is semi-

stable then Bk ≡ 0.

Remark 32. Notice that A = fX,k, and if A = 0, then B = FX is the
classical Futaki character(see the definition in the next section).

4. Futaki invariant.

In this section we compare the infinite and finite dimensional description of
the classical Futaki invariant FX : aut (X) −→ C.
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4.1. Infinite dimensional picture.

In this subsection we recall Fujiki’s[FU] and Donaldson[D0] infinite dimen-
sional symplectic quotient picture. Let Z : = J int, the space of integrable
almost complex structure on X. The tangent space of Jint at J is given as
the following:

TJJint := {A ∈ End (TM) | AJ + JA = 0 and ω (A·, ·) = ω (·, A·)} .

We define the almost complex structure on Jint as the following:

JJ : TJJint → TJJint
JJ (A) := A · J for A ∈ TJJint;

and the JJ−invariant Riemanian metric by

〈A,B〉J :=
∫
X

Tr (AB)
ωn

n!
.for A,B ∈ TJJint

this makes Jint a ∞−dimensional Kähler manifold.
Now let G be the identity component of the group of exact symplecto-

morphisms of (X,ω) then its Lie algebra is given by

g = C∞
0 (X) :=

{
f ∈ C∞ (X) |

∫
X
f
ωn

n!
= 0

}
.

Any function f on X defines a Hamiltonian vector field ξf on X via

iξfω = df.

And the symplectic structure ω defines a Poisson bracket {·, ·} on g via the
identity

{f, g} ω
n

n!
= df ∧ dg ωn−1

(n− 1)!

and a bi-invariant pairing

〈f, g〉gC := −
∫
X
f · gω

n

n!
.

Clearly, we have
〈{f, h} , g〉gC = 〈f, {h, g}〉gC ,

and the natural action of G on Jint is a holomorphic isometry. Then we
have the following theorem due to Donaldson and Fujiki
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Theorem 33. ([D0][FU])The moment map for the action G on Jint is the
scalar curvature. That is

S − s : Jint → g = C∞
0 (X,R)

given by S (J) = S (g) , where g is the Kähler metric on X with g (·, ·) =
ω (·, J ·) and s :=

∫
X S

ωn

n! .

Now if we want to extend the GIT picture to this infinite dimensional
setting then we need to complexify G. In order to do so, we complexify g as
the following:

gC := g⊕
√
−1g = C∞

0 (X,C) and define∗ : f → −f̄ .

and extend the g action on Jint to a gC action on Jint via the following

∀f ∈ C∞
0 (X,R) , we define σJ (if) := LJξfJ,

where LJξf is the Lie derivative. Then the following lemma enables us to
complexify the G action on Jint on the infinitesimal level (see for instance
[T])

Lemma 34.
[LξJ,LJξJ ] = L[ξ,Jξ]J

and

J ◦ (LξJ) := (LξJ)J = (LJξJ) .

Remark 35. Note that the complex linear homomorphism

σ : gC −→ TJint.

is NOT a Lie algbra homomorphism, otherwise, we would be able to conclude
from

0 = σJ {f, if} = [LξJ,LJξJ ] = −L[ξf ,Jξf ]J

that ξf is a J−holomorphic vector field. This implies a reasonable complex-
ification of G does not exist.

Now the Futaki invariant FX : aut (X,L) −→ C is defined as following:
at any point J ∈ Jint, we use the Kähler metric ω (·, J ·) to identify aut (X,L)
with

gJ :=
{
f ∈ gC| ∂̄Jξf = 0, where iξfω = df

}
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which is a finite dimensional Lie subalgebra of gC,then

FX (ξf ) :=
1
2

∫
X

(S (J)− s) f ω
n

n!
=

1
2

∫
X
f
c1 (X) ∧ ωn−1

(n− 1)!
− s

2

∫
X
f
ωn

n!

where

s :=
n
∫
X c1 (X) ∧ ωn−1∫

X ω
n

.

The lemma above together with Proposition 6 and Corollary 8 give a new
proof of the following result of Futaki:

Proposition 36. FX only depends on the Kähler class and FX is a charac-
ter of η (X) .

As Donaldson [D0] pointed out the following result originally due to
Calabi and Matsushima is a direct consequence of Theorem 10.

Theorem 37. Suppose J0 is an extremal point, that is ω (·, J0·) is an ex-
tremal metric in the sense of Calabi. Let gJ0 denote the Lie algebra of
vector field on X which are holomorphic with respect to J0. Then we have
the following decomposition

gJ0 = h0 +
⋃
λ̇>0

hλ

where

hλ := {ξ ∈ gJ0| {iS (J0) , ξ} = λ · ξ}

and h0 is the reductive part of gJ0. Moreover, we have relations

{hλ1 , hλ2} ⊂ hλ1+λ2 .

and

S (J0) ∈ Z(h0),

where Z(h0) is the center of h0.
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4.2. Finite dimensional picture.

In this subsection we establish the relation between fX,k and FX . Suppose
we fix an S1−action on (L, h) → X, that is, where h is a S1−invariant
Hermitian metrics and ω =

√
−1
2π Ric (h) , Then by applying equivariant

Riemann-Roch formula the weight wk of the S1−action on ∧topH0
(
X,Lk

)
can be calculated as following

wk =
d

dt

∣∣∣∣
t=0

ind
(
etξ
)

=
d

dt

∣∣∣∣
t=0

∫
X
ek(ω+tµ)T̃ d

=
∫
X
kµekωTd+

∫
X
ekω

d

dt

∣∣∣∣
t=0

T̃ d,

where µ are the moment map associated to ω with respect to the fixed
S1−action on L and T̃ d is the equivariant Todd class. Now if we consider
another S1−action on Lk, which is induced from the kth−embedding X →
PNk , or equivalently we fix an embedding

S1 → SL (Nk + 1) .

In this case it is clear that weight w̃ = 0, in particular we have

0 =
d

dt

∣∣∣∣
t=0

∫
X
e(ωF S,k+tµF S,k)T̃ d

=
∫
X
µFS,ke

ωF S,kTd+
∫
X
eωF S,k

d

dt

∣∣∣∣
t=0

T̃ d.

Now suppose we have fixed the background Kähler form to be ω0 with cor-
responding moment map µ0, let ω1 := ωF S

k , then the moment map µ1 with
respect to the original S1−action on L is given by µF S,k

k +C for some constant
C. To find C, we plug this into the above formula and we deduce

0 =
d

dt

∣∣∣∣
t=0

∫
X
ek(ω1+tµ1)T̃ d

= k

∫
X

(µFS,k
k

+ C
)
ek·

ωF S,k
k Td+

∫
X
eωF S,k

d

dt

∣∣∣∣
t=0

T̃ d−Ck
∫
X
eωF S,kTd

= wk − Ckdk,

where
dk = dimH0

(
X,Lk

)
.
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This implies
C =

wk
kdk

.

On the other hand, if we normalize µ0 such that
∫
X µ0

ωn
0
n! = 0 then we have∫

X
µ1
ωn1
n!

=
∫
X
µ0
ωn0
n!

= 0,

since (ωi, µi) for i = 1, 2 are with respects to the same S1−action on L. So∫
X
µFS,k

ωnFS,k
n!

= kn+1

∫
X

(µ1 − C)
ωn1
n!

= − wk
kdk

kn+1

∫
X

ωn1
n!

= −kn
∫
X
µ1 ·

c1 (X) ∧ ωn−1
1

2 (n− 1)!
+O

(
kn−1

)
In conclusion, we have proved the following theorem.

Theorem 38.

lim
k→∞

1
kn

∫
X
µFS,k

ωnFS,k
n!

= −FX

Corollary 39. Suppose for k sufficient large we have∫
X
µFS,k

ωnFS,k
n!

= 0

then FX = 0. In particular, if Chow
(
X,Lk

)
is semi-stable for k >> 1 then

FX = 0

Remark 40. Mabuchi and Nakagawa, J. Ross have obtained similar results
in [MN] and [R].

5. Examples.

In this section we apply the set up in the previous section to give a simple
way of constructing unstable manifold. In particular, by the recent work
of Donaldson [D1] these manifolds do not admit constant scalar curvature
in the given Kähler class. Our construction is based on the Corollary 9.
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5.1. Mukai-Tian’s example.

Consider the following exact sequence of vector bundle over the Grassmanian
G (4, 7)

0 −→ S4 −→ C7 −→ Q3 −→ 0

where S4 and Q3 are universal sub-bundle and universal quotient bundle
respectively. Now choose a 3-dimensional subspace P ⊂ ∧2C7, say P :=
span {u1, u2, u3} . From the isomorphism

C7 � H0 (G (4, 7) , Q)

we deduce that each ui can be identified as an element inH0
(
G (4, 7) ,∧2Q

)
.

So P := (u1, u2, u3) can be viewed as a section of the vector bundle

∧2Q⊕ ∧2Q⊕ ∧2Q −→ G (4, 7) .

Let XP :=
{
P−1 (0)

}
⊂ G (4, 7) . It is not hard to see that for a generic

choice of P ∈ G (3, 21) =
{
P 3 ⊂ ∧2C7

}
, XP is smooth. Our goal is to find

the z0 in Corollary 9, to do so we construct a special P0 ∈ G (3, 21). Let

ρn : SL (2,C) → SL (n,C)

be the irreducible representation of dimension n, that is, ρn = ρ
⊗(n−1)
2 . Then

the representation ρ on ∧2C7 induced by ρ7 has decomposition

ρ := ρ3 ⊕ ρ7 ⊕ ρ11.

Let P0 to be the 3 dimensional invariant subspace corresponding to ρ3. If we
fix a basis {ei}7i=1 for C7 then a straightforward calculation shows that

P0 := span {u1, u2, u3}

with

u1 := e1 ∧ e6 − 5e2 ∧ e5 + 10e3 ∧ e4
u2 := −4e2 ∧ e6 + e1 ∧ e7 + 5e3 ∧ e5
u3 := 10e4 ∧ e5 + e2 ∧ e7 − 5e3 ∧ e6.

Notice that ρ7 induces a natural action of SL (2,C) on G (4, 7) and

ρ7

([
1 0
0 −1

])
= diag [6, 4, 2, 0,−2,−4,−6] ∈ SL (7,C) .
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Since all the weights are different the fixed point of SL (2,C) action on XP0

must be

{e1 ∧ e2 ∧ e3 ∧ e4, e1 ∧ e2 ∧ e3 ∧ e5, e3 ∧ e5 ∧ e6 ∧ e7, e4 ∧ e5 ∧ e6 ∧ e7} ,

hence XP0 is a homological P3, In particular, it is Fano with Picard number
1. Next we characterize its automorphism.

Claim 5.1. aut (XP0, L) = sl (2,C)

Proof. Clearly, we have aut (XP0 , L) ⊇ sl (2,C) , we need to show aut (XP0 , L)
⊆ sl (2,C) . Since XP0 is Fano, XP0 is simply connected which implies
aut (XP0 , L) ⊂ sl (7,C) and P0 must be the invariant linear subspace for
the induced action of aut (XP0 , L) on C7. So aut (XP0, L) must have a
3−dimensional irreducible representation which implies that we have ho-
momorphism

sl (2,C) i→ aut (XP0 , L)
j→ sl (2,C)

such that j ◦ i = id, this implies aut (XP0, L) = sl (2,C) ⊕ k. where
k ⊂ sl (7,C) . Since k acts trivially on P0, it is easy to see that k =0. �

A local calculation at the fixed points of XP0 shows that XP0 is actually
smooth. Since XP0 is a homological P3, L := OG(4,7) (1) |XP0

→ XP0 is a
polarization. For any k >> 1, the projective embedding of XP0 ↪→ PNk

induced by L⊗k must factor through

XP0 ⊂ G (4, 7) ⊂ PNk .

Since G (4, 7) is simply connected, the action of SL (2,C) can be lifted to an
action of SL (Nk + 1,C) on PNk+1. Let λ (t) := exp (ξt) be a one parameter
subgroup of SL (2,C) and P be a fixed 3-dimensional linear subspace of ∧2C

then the degeneration λ (t) · XP can be lifted to a degeneration of XP ⊂ PNk

for any k. Now we may apply Corollary 9 to construct examples of unstable
manifold, for instance, if we let ξ :=diag[6, 4, 2, 0,−2,−4,−6] ∈ sl (2,C) and
take Pa :=span{ũ1, ũ2, ũ3} as Tian did in [T] with

ũi := ui +
∑

l+k≥7+i

ailkel ∧ ek for i = 1, 2, 3,

then for generic choice of {ailk} , aut (XPa) = 0. Let Pt := exp (ξt) · Pa then

lim
t→∞

Pt = P0.
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In particular, this implies

lim
t→∞

λ (t) · Chow
(
XPa , L

k
)

= Chow
(
XP0, L

k
)
.

Corollary 9 then implies that XPa cannot be balanced, in particular, XPa is
not Chow stable for k >> 1. And Donaldson’s theorem [D1] implies that
(XPa , L) do not admit constant scalar curvature metric.

Notice that the above construction can be applied to more general sit-
uation, a very simple way of constructing unstable manifolds is taking a
small projective deformation of a projective manifold X0 with aut (X) be-
ing simple, e.g. a deformation of Pr ×Σ, where Σ is a Kähler manifold with
c1 (Σ) < 0. (Note that Burns and De Bartolomeis’ example [BD] is a special
case of this sort) This construction is closely related to the work of LeBrun
and Simanca [LS].

5.2. P2#P2.

Let X be the Steiner surface X ↪→ P4 defined by image of the following
birational map

P2 ��� P4

[x, y, z] −→ [xz, yz, x2, xy, y2],

X is P2 blowing up the point [0 : 0 : 1]. Then

OX(1) := OP4 (1) |X = 2H − E,

where H is the hyperplane class and E is the exceptional divisor. And

H0(X,OX (m)) = {xiyjzk|i+ j + k = 2m and k ≤ m},

dm := dimH0(X,OX (m)) =
1
2
(3m2 + 5m+ 2).

Let ξ =diag[λ1, λ2, λ3] ∈ sl (3), then eξt−action on X gives rise to an action

on the mth−embedding X
OX(m)−→ Pdm−1. If we normalize the action to be

special linear then the weight of xiyjzk ∈H0(X,OX(m)) is λ1i+λ2j+λ3k−λ̄
with

λ̄ =
1
dm

∑
i+j+k=2m

k≤m

λ1i+ λ2j + λ3k

=
−λ3m (m+ 1)

(3m+ 2)
.
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Let L → X to be the pull back of OPdm−1 (1) , then the weight wm,k on
∧topH0

(
X,Lk

)
is given by

wm,k =
∑

i+j+l=2mk
l≤km

(
λ1i+ λ2j + λ3l − kλ̄

)

= λ3m
2

(
1
6

+O
(
m−1

))
k3 +O

(
k2
)

and

wk
kdk

=
−λ3 (k + 1)2

2dk
− λ̄

=
−2λ3

3
− λ3

9
1
k
− λ̄+O

(
1
k2

)
,

where wk is the weight of ξ on ∧topH0 (X,OX (k)) and

dk =
1
2
(3k2 + 5k + 2) =

1
2
(3k + 2) (k + 1) .

Then we find

fX,m = leading coefficient of wm,k =
λ3m

2

6

(
1− 2

3m
+O

(
m−2

))
and by Theorem 38, we see that the Futaki invariant of ξ

FX (ξ) = − lim
m→∞

fX,m
m2

= −λ3

6
= −λ3

9

∫
X

ω2

2!
,

which agrees with Donaldson’s definition of Futaki invariant in [D2].
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