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On the Euler numbers of certain moduli spaces of

curves and points

Wei–Ping Li1and Zhenbo Qin2

We determine the topological Euler number of certain moduli space
of 1-dimensional closed subschemes in a smooth projective variety
which admits a Zariski-locally trivial fibration with 1-dimensional
fibers. The main approach is to use virtual Hodge polynomials
and torus actions. The results might shed some light on the cor-
responding Donaldson–Thomas invariants.

1. Introduction.

Recently, there have been surging interests in studying the moduli spaces
of 1-dimensional closed subschemes in a smooth projective variety. The
motivation comes from Donaldson–Thomas theory and its interplay with
Gromov–Witten theory and Gopakumar–Vafa invariants [13], [14], [11], [17]
(see the references there for other papers). Donaldson–Thomas theory was
introduced in [5], [18] via integrals over the moduli spaces of semistable
sheaves and via the theory of virtual fundamental cycles. It was further
developed by Maulik–Pandharipande [15] and Jun Li. The moduli spaces
of 1-dimensional closed subschemes in a smooth projective variety can be
naturally regarded as the moduli spaces of rank-1 stable sheaves over the
variety.

In [13], [14], several interesting conjectures regarding the interplay among
Donaldson–Thomas theory, Gromov–Witten theory and Gopakumar–Vafa
invariants have been proposed for 3-folds. In particular, it was conjectured
(see the Conjecture 2 in both papers) that the reduced partition function
(with a formal variable q) for the Donaldson–Thomas invariants is a rational
function of q, and is invariant under the transformation q → 1/q when the
3-fold is Calabi–Yau. It is possible that, at least in the case of Calabi–Yau 3-
folds, the Donaldson–Thomas invariants are closely related to the topological
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Euler numbers of the corresponding moduli spaces of 1-dimensional closed
subschemes. Hence, we propose the following analogue to the Conjecture 2
in [13], [14].

Conjecture 1.1. Let X be a smooth projective complex variety. Let
In(X,β) be the moduli space of 1-dimensional closed subschemes Z of X
satisfying (3.1), and let X [n] = In(X, 0) be the Hilbert scheme of length-n
0-dimensional closed subschemes of X. Then the reduced partition function
for the Euler numbers ∑

n χ
(
In(X,β)

)
qn∑

n χ(X [n]) qn

is a rational function of q, and is invariant under q → 1/q when KX = 0.

While Donaldson–Thomas invariants are difficult to calculate in gen-
eral, there exist many effective methods to compute Euler numbers. In this
paper, we verify Conjecture 1.1 under certain assumptions. Specifically,
we assume that X admits a Zariski–locally trivial fibration µ : X → S
where S is smooth, the fibers are smooth irreducible curves of genus-g,
and β ∈ H2(X; Z) is the class of a fiber. An element in the moduli space
I(1−g)+n(X,β) consists of a fiber of µ together with some points (possibly
embedded in the same fiber). For simplicity, let

Mn = I(1−g)+n(X,β). (1.1)

Theorem 1.2. Let r = dim(X) ≥ 2, and Pr(n) (respectively, P̃r(n)) be the
number of r-dimensional (respectively, punctual r-dimensional) partitions of
n. Then,

+∞∑
n=0

χ(Mn) qn =
+∞∑
n=0

χ(X [n]) qn · χ(S) ·
(∑+∞

n=0 P̃r(n) qn∑+∞
n=0 Pr(n) qn

)2−2g

.

We remark that the Euler number of the Hilbert scheme X [n] has been
determined by Göttsche and Cheah [7, 2], and χ(M1) can be computed
from the Lemma 1 in [11] where the structure of M1 has been described.
Also, we refer to Definition 7.1 for the notion of r-dimensional (respectively,
punctual r-dimensional) partitions of n. Furthermore, we conjecture (see
Conjecture 7.4) that ∑+∞

n=0 P̃r(n) qn∑+∞
n=0 Pr(n) qn

=
1

(1 − q)r−2
. (1.2)
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This formula is trivially true when r = 2. The case r = 3 is proved in
Lemma 7.5. Note that KX = 0 forces g = 1 under our assumption about µ.

Corollary 1.3. Conjecture 1.1 is true when 2 ≤ r ≤ 3 or KX = 0.

Our main idea to prove Theorem 1.2 is to use virtual Hodge polynomials,
Cheah’s combinatorial arguments [2], and torus actions. More precisely,
we decompose the moduli space Mn into a disjoint union of locally closed
subsets, and prove that there exist bijective morphisms between these locally
closed subsets and certain spaces constructed from the local model Cr−1×C
of the fibration µ : X → S, where C denotes a fixed fiber of µ. The spaces
constructed from the local model Cr−1 × C consist of Zariski-locally trivial
fibrations involving simpler objects. Our proofs here are parallel to those in
[7]. Similar results hold for the Hilbert scheme X [n]. Since virtual Hodge
polynomials are preserved under decompositions and bijective morphisms,
these preparations enable us to reduce the computation of the virtual Hodge
polynomial e(Mn; s, t) to those of

MCr−1×C
n,C0

, (Cr−1 × C)[n]
C0

(see Definition 3.3 and Remark 3.4 for the notations), where C0 = {O} ×C
and O is the origin of Cr−1. Applying Cheah’s combinatorial arguments, we
show that the virtual Hodge polynomials of MCr−1×C

n,C0
and (Cr−1×C)[n]

C0
can

be further reduced to those of the corresponding punctual spaces:

MCr

n,L,O, Hilbn(Cr, O)

where L denotes a coordinate line in Cr. Using the well-known fact that
e(· ; 1, 1) = χ(·), we obtain a formula for χ(Mn) in terms of the Euler num-
bers of MCr

n,L,O and Hilbn(Cr, O) (see Proposition 6.2). Finally, we take
suitable torus actions on MCr

n,L,O to determine its Euler number in terms of
punctual r-dimensional partitions of n (the torus actions on the punctual
Hilbert scheme Hilbn(Cr, O) were studied in [2]). This allows us to prove
Theorem 1.2.

It would be interesting to see whether (1.2) is true for r > 3. In addition,
many results and techniques in this paper can be generalized to handle other
situations, e.g., when the class β is replaced by a higher multiple of the class
of a fiber of µ. We plan to discuss these generalizations in a forthcoming
paper.

The paper is organized as follows. In Section 2, the basic properties of
virtual Hodge polynomials are reviewed. In Section 3, we identify Mn with
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certain Grothendieck Quot-scheme and introduce a natural decomposition of
Mn. In Section 4, various bijective morphisms are constructed. In Section. 5,
we reduce the computation to the local model Cr−1 × C. In Section 6,
we further reduce the computation from the local model Cr−1 × C to the
punctual spaces MCr

n,L,O and Hilbn(Cr, O). In Section. 7, we use torus actions
to verify Theorem 1.2 and (1.2) when r = 3.

2. Virtual Hodge polynomials and Euler numbers.

Danilov and Khovanskii [3] introduced virtual Hodge polynomials for re-
duced complex schemes. These polynomials can be viewed as a convenient
tool for computing the Hodge numbers of smooth projective varieties by
reducing to computing those of simpler varieties. They can also be used to
compute Euler numbers. In this section, we recall the basic properties of
virtual Hodge polynomials.

First of all, let Y be a reduced complex scheme (not necessarily pro-
jective, irreducible or smooth). Mixed Hodge structures are defined on the
cohomology Hk

c (Y,Q) with compact support (see [4, 3]). The mixed Hodge
structures coincide with the classical one if Y is projective and smooth. For
each pair of integers (m,n), define the virtual Hodge number

em,n(Y ) =
∑

k

(−1)khm,n(Hk
c (Y,Q)).

Then the virtual Hodge polynomial of Y is defined to be

e(Y ; s, t) =
∑
m,n

em,n(Y )smtn. (2.1)

Next, for an arbitrary complex scheme Y , we put

e(Y ; s, t) = e(Yred; s, t) (2.2)

following [2]. By (2.2) and the results in [3, 6, 2] for reduced complex
schemes, we see that virtual Hodge polynomials satisfy the following prop-
erties:

(i) When Y is projective and smooth, e(Y ; s, t) is the usual Hodge poly-
nomial of Y . For a general complex scheme Y , we have

e(Y ; 1, 1) = χ(Y ) (2.3)

where χ(Y ) denotes the topological Euler number of Y .
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(ii) If Y =
n∐

i=1

Yi is a finite disjoint union of locally closed subsets, then

e(Y ; s, t) =
n∑

i=1

e(Yi; s, t). (2.4)

(iii) If f : Y → Y ′ is a Zariski-locally trivial bundle with fiber F , then

e(Y ; s, t) = e(Y ′; s, t) · e(F ; s, t). (2.5)

(iv) If f : Y → Y ′ is a bijective morphism, then

e(Y ; s, t) = e(Y ′; s, t). (2.6)

By the Lemma 5.6 in [2] and the Theorem 4.1 in [12], if Y is a reduced
complex scheme with a C∗-action and if Y C∗

denotes the set of fixed points,
then

χ(Y ) = χ
(
Y C∗)

. (2.7)

3. The moduli spaces In(X, β) and Mn.

Let X be a smooth projective complex variety of dimension r. For a fixed
class β ∈ H2(X; Z) and a fixed integer n, following the definitions and nota-
tions in [13, 14], we define In(X,β) to be the moduli space of 1-dimensional
closed subschemes Z of X satisfying the two conditions:

χ(OZ) = n, [Z] = β (3.1)

where [Z] is the class associated to the dimension-1 component (weighted
by their intrinsic multiplicities) of Z. The degree-0 moduli space In(X, 0) is
isomorphic to the Hilbert scheme X [n] parametrizing length-n 0-dimensional
closed subschemes of X. In general, when β �= 0, the space In(X,β) is
only part of the Hilbert scheme defined in terms of certain degree-1 Hilbert
polynomial (see [9]). By the Lemma 1 in [14], when dim(X) = 3, the virtual
dimension of In(X,β) is

−(β ·KX). (3.2)

In the rest of the paper, we adopt the following basic assumptions.
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Assumption 3.1. We assume that X admits a Zariski-locally trivial fibra-
tion

µ : X → S (3.3)

where S is smooth, the fibers are smooth irreducible curves of genus-g, and
β ∈ H2(X; Z) is the class of a fiber. Then, I(1−g)(X,β) ∼= S. For n ≥ 0, let

Mn := I(1−g)+n(X,β). (3.4)

Our goal is to determine, under Assumption 3.1, the partition function
for the Euler numbers of the moduli spaces Mn = I(1−g)+n(X,β), n ≥ 0:

+∞∑
n=0

χ
(
Mn

)
qn. (3.5)

Lemma 3.2. Let ∆ be the diagonal of S×S, and Quotn(IdS×µ)∗I∆/S×X/S be
the Grothendieck Quot-scheme with the constant polynomial n. Then, there
exists an isomorphism between Mn and Quotn(IdS×µ)∗I∆/S×X/S .

Proof. Note that every element in Mn = I(1−g)+n(X,β) is of the form:

Z = Ξ + Θ (3.6)

where Ξ ∈ X [n−n0] for some n0 satisfying 0 ≤ n0 ≤ n, Supp(Ξ)∩Supp(Θ) =
∅, and the dimension-1 component Θ is equal to some curve C ∈ M0 together
with embedded points of length-n0 (i.e., IΘ ⊂ IC and the quotient IC/IΘ
is supported at finitely many points in C with h0(X, IC/IΘ) = n0). So we
have a surjection

IC → IC/IZ → 0

where the quotient IC/IZ is supported at finitely many points, and has
length n.

It follows that the universal quotient over Quotn(IdS×µ)∗I∆/S×X/S × X
induces a bijective morphism φ1 : Quotn(IdS×µ)∗I∆/S×X/S → Mn.

On the other hand, let In be the universal ideal sheaf over Mn ×X. Let
I ′

n be the saturation of In ⊂ OMn×X (see Definition 1.1.5 in [10]). Then,
I ′

n is a flat family of ideal sheaves in M0
∼= S, and fits in an exact sequence

0 → In → I ′
n → Q → 0
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over Mn ×X. Now the flat family I ′
n and the quotient I ′

n → Q → 0 induces
a morphism φ2 : Mn → Quotn(IdS×µ)∗I∆/S×X/S which is inverse to φ1. �

In view of Lemma 3.2, we will make no difference between Mn and
the Quot-scheme Quotn

(IdS×µ)∗I∆/S×X/S . In particular, we have a natural
morphism:

Mn → S. (3.7)

Moreover, over Mn ×X, there exists a universal quotient

p∗I∆ → Q → 0 (3.8)

where p is the composition of the morphism Mn×X → S×X induced from
(3.7) and the morphism IdS × µ : S ×X → S × S.

Definition 3.3. Let β and g be from Assumption 3.1. Let 0 ≤ n0 ≤ n.

(i) We define Mn,n0 to be the locally closed subset of Mn consisting of all
the elements Z = Ξ + Θ from (3.6) such that h0(X, IC/IΘ) = n0.

(ii) Fix a fiber C of µ and a point x ∈ C. We define Mn,C (respectively,
Mn,C,x) to be the closed subset of Mn,n consisting of all the elements
Z = Ξ+Θ from (3.6) such that Ξ = ∅, IΘ ⊂ IC , and IC/IΘ is supported
at finitely many points (respectively, supported at the point x).

(iii) Fix a fiber C of µ, and a point x ∈ X. Define X [n],n0

C to be the locally
closed subset of X [n] consisting of all the elements Ξ = Ξ1 +Ξ2 ∈ X [n]

such that Supp(Ξ1) ∩ C = ∅, Supp(Ξ2) ⊂ C, and �(Ξ2) = n0. Define
X

[n]
C = X

[n],n
C , and defineX [n]

x to be the closed subset of X [n] consisting
of all Ξ ∈ X [n] such that Supp(Ξ) = {x} (i.e., X [n]

x is the punctual
Hilbert scheme at x).

Remark 3.4. To emphasize the dependence on X, we will also denote the
notations Mn, Mn,n0 , Mn,C , . . . by MX

n , MX
n,n0

, MX
n,C , . . . respectively.

4. Various bijective morphisms.

We begin with an outline of this section. Consider the variety X as in
Assumption 3.1. By Definition 3.3 (i), Mn has a decomposition of locally
closed subsets:

Mn =
n∐

n0=0

Mn,n0. (4.1)
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In order to use the method of virtual Hodge polynomials, we need that there
is a Zariski-locally trivial fibration space mapping to Mn,n0 bijectively. For
instance, we see from (3.7) that Mn,n admits a morphism to S. The fiber of
this map over s ∈ S is isomorphic to Mn,C where C = µ−1(s) is a fiber of µ:
X → S. If we consider another fiber C ′ = µ−1(s′), then Mn,C is isomorphic
to Mn,C′ . In view of (2.5) and (2.6), it suffices to prove that Mn,C × S
admits a bijective morphism to Mn,n locally over S. To achieve this, we
first consider the local model where we take X = Cm × C in Lemma 4.1.
For the general case µ : X → S, we choose an open subset U of S such that
there exists an étale morphism U → Cm. Then we prove in Lemma 4.2 the
existence of a bijective morphism MCm×C

n,C ×CmU → MU×C
n,n . For other strata

Mn,n0 , Lemma 4.6 provides a kind of locally trivial fibration description.
Now we fix some notations. Let C denote a fixed fiber of the fibration

µ : X → S. Let m = dim(X) − 1 = r − 1, O be the origin of Cm, and
C0 = {O} × C.

Lemma 4.1. There exists a bijective morphism over Cm:

Ψ : MCm×C
n,C0

× Cm → MCm×C
n,n .

Proof. Let X0 = Cm×C. Over MX0
n,C0

×X0, there exists an universal quotient

p∗2IC0 → Q0 → 0 (4.2)

where p2 : MX0
n,C0

×X0 → X0 is the second projection. Let

σ : Cm × Cm → Cm

be the subtraction: σ(u, v) = u− v. Let Σ = Id
M

X0
n,C0

× σ × IdC :

MX0
n,C0

×Cm×X0 = MX0
n,C0

×Cm×Cm×C → MX0
n,C0

×Cm×C = MX0
n,C0

×X0.

Then we obtain a commutation diagram of morphisms:

MX0
n,C0

× Cm ×X0
Σ→ MX0

n,C0
×X0

↓ π ↓
Cm × Cm σ→ Cm

where the two vertical morphisms are the natural projections. We have

Σ∗(p∗2IC0

)→ Σ∗Q0 → 0
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over MX0
n,C0

× Cm ×X0. Let ∆0 be the diagonal of Cm × Cm. Then, we see
that Σ∗(p∗2IC0

)
= Iπ−1∆0

. Therefore, over MX0
n,C0

× Cm ×X0, we have

Iπ−1∆0
→ Σ∗Q0 → 0. (4.3)

Let u ∈ Cm. The restriction of (4.3) to MX0
n,C0

× {u} ×X0
∼= MX0

n,C0
×X0 is

p∗2I{u}×C = Σ∗
u(p∗2IC0) → Σ∗

uQ0 → 0

where Σu is the automorphism of MX0
n,C0

×X0 = MX0
n,C0

× Cm × C induced
by

σu : Cm → Cm

with σu(v) = u− v. By the universal property, (4.3) induces a morphism:

Ψ : MX0
n,C0

× Cm → MX0
n,n.

The morphism Ψ is bijective since every Σu is an automorphism. �

Lemma 4.2. Let f : U → Cm be an étale morphism. Then there exists a
bijective morphism Ψ̃f : MCm×C

n,n ×Cm U → MU×C
n,n over U .

Proof. Let X = U × C and X0 = Cm × C. Then there exists a universal
quotient

(π0)∗I∆0 → Q → 0 (4.4)

over MX0
n,n ×X0, where ∆0 is the diagonal of Cm × Cm and π0 is the com-

position:

MX0
n,n ×X0 → Cm ×X0 = Cm × (Cm × C) → Cm × Cm.

The projection MX0
n,n ×Cm U → MX0

n,n and the morphism f × IdC : X → X0

induces

F :
(
MX0

n,n ×Cm U
)×X → MX0

n,n ×X0

which can also be regarded as the base change of f × f : U ×U → Cm ×Cm

by π0: (
MX0

n,n ×Cm U
)×X −→ U × U

↓ F ↓ f × f

MX0
n,n ×X0

π0−→ Cm × Cm.

(4.5)
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Pulling-back the surjection (4.4) via F , we obtain the surjection

F ∗(π0)∗I∆0 → F ∗Q → 0 (4.6)

over
(
MX0

n,n ×Cm U
)×X. Regard U × U as a scheme over Cm by using

U × U
p1→ U

f→ Cm

where p1 is the first projection of U × U . Then,(
MX0

n,n ×Cm U
)×X = MX0

n,n ×Cm (U × U) × C. (4.7)

Let ∆ be the diagonal of U × U , and π be the composition:(
MX0

n,n ×Cm U
)×X = MX0

n,n ×Cm (U × U) × C → U × U.

Restricting (4.6) to π−1(∆) ⊂ (MX0
n,n ×Cm U

)×X, we obtain

F ∗(π0)∗I∆0 |π−1(∆) → F ∗Q|π−1(∆) → 0. (4.8)

Note that π−1(∆) ⊂ (π0◦F )−1(∆0). In fact, since f is étale, (π0◦F )−1(∆0) is
the disjoint union of π−1(∆) and some other irreducible components. Hence

F ∗(π0)∗I∆0 |π−1(∆) = I(π0◦F )−1(∆0)|π−1(∆) = Iπ−1(∆)|π−1(∆) = π∗I∆|π−1(∆).

Using (4.8) and the surjection π∗I∆ → π∗I∆|π−1(∆), we obtain

π∗I∆ → F ∗Q|π−1(∆) → 0 (4.9)

over
(
MX0

n,n×CmU
)×X. One checks that F ∗Q|π−1(∆) is flat over MX0

n,n×CmU
and that the quotient (4.9) induces a morphism:

Ψ̃f : MX0
n,n ×Cm U → MX

n,n

over U . Using the completions of the points in U , we see that Ψ̃f is
bijective. �

Proposition 4.3. Let O be the origin of Cm and C0 = {O} × C. Let
f : U → Cm be an étale morphism. Then there exists a bijective morphism
over U :

Ψf : MCm×C
n,C0

× U → MU×C
n,n .
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Proof. Follows from Lemmas 4.1 and 4.2 by putting Ψf = Ψ̃f ◦ (Ψ ×Cm

IdU ). �

Remark 4.4. The bijective morphism Ψf in Proposition 4.3 is in fact an
isomorphism. To see this, we use an analytic open covering of U to show
that Ψf is an isomorphism locally in analytic category. This coupled with
the bijectivity implies that the morphism Ψf is indeed an isomorphism.

Definition 4.5. For 0 ≤ n0 ≤ n, define Zn,i to be the locally closed subset
of X [n] × S consisting of all the pairs (Ξ, s) such that Ξ = Ξ1 + Ξ2 with
Supp(Ξ1) ∩ µ−1(s) = ∅, Supp(Ξ2) ⊂ µ−1(s), and �(Ξ1) = i. Put

Wn = Zn,n, Tn = Zn,0.

Note that we have natural morphisms Zn,i → X [n] and Zn,i → S.

Lemma 4.6. Let 0 ≤ n0 ≤ n. Then there exists a bijective morphism:

Wn−n0 ×S Mn0,n0 → Mn,n0.

Proof. Let π1 and π2 be the two natural projections of Wn−n0 ×S Mn0,n0.
We see from (3.8) that over Mn0,n0 ×X, there exists an universal quotient

p∗I∆ → Q1 → 0.

So over
(
Wn−n0 ×S Mn0,n0

)×X, we have a surjection:

(π2 × IdX)∗p∗I∆ → (π2 × IdX)∗Q1 → 0. (4.10)

In addition, over X [n−n0] ×X, we have a universal quotient

OX[n−n0]×X → Q2 → 0.

Hence over
(
Wn−n0 ×S Mn0,n0

)×X, we have another surjection:

O(Wn−n0×SMn0,n0 )×X → π∗Q2 → 0 (4.11)

where π is the composition of π1×IdX :
(
Wn−n0 ×S Mn0,n0

)×X →Wn−n0×
X and the natural morphism Wn−n0 ×X → X [n−n0] ×X. Note that

Supp
(
(π2 × IdX)∗Q1

) ⊂ (π2 × IdX)−1p−1(∆),
(π2 × IdX)−1p−1(∆) ∩ Supp

(
π∗Q2

)
= ∅.
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Hence (π2 × IdX)∗Q1 ⊕ π∗Q2 is flat over Wn−n0 ×S Mn0,n0. Moreover, com-
bining the two surjections (4.10) and (4.11), we obtain a surjection:

(π2 × IdX)∗p∗I∆ → (π2 × IdX)∗Q1 ⊕ π∗Q2 → 0. (4.12)

This surjection induces a morphism ψ : Wn−n0×SMn0,n0 → Mn. One checks
that im(ψ) = Mn,n0 and that ψ : Wn−n0 ×S Mn0,n0 → Mn,n0 is injective. �

Remark 4.7. A similar argument shows that there exists a bijective mor-
phism:

Wn−n0 ×S Tn0 → Zn,n0 .

5. Reduction to the local model Cr−1 × C.

In this section, using the results proved in the previous section, we reduce
the computation of the virtual Hodge polynomial of Mn to those of X [n],
MCr−1×C

n,C0
, and (Cr−1 × C)[n]

C0
where C0 = {O} × C and O is the origin of

Cr−1.

Lemma 5.1. Let O be the origin of Cr−1 and C0 = {O} × C. Then,

+∞∑
n=0

e(Mn; s, t) qn =
+∞∑
n=0

e(Wn; s, t) qn ·
+∞∑
n=0

e(MCr−1×C
n,C0

; s, t) qn. (5.1)

Proof. By (4.1), Lemma 4.6, (2.4) and (2.6), we obtain:

e(Mn; s, t) =
n∑

n0=0

e(Mn,n0 ; s, t) =
n∑

n0=0

e(Wn−n0 ×S Mn0,n0 ; s, t). (5.2)

Consider the commutative diagram for the fiber product Wn−n0 ×S Mn0,n0:

Wn−n0 ×S Mn0,n0 −→ Mn0,n0

↓ φ1 ↓ φ2

Wn−n0 −→ S.
(5.3)

By the Proposition I.3.24 in [16], there exists an open affine cover {Ui}i of
S and étale morphisms fi : Ui → Cr−1. By Proposition 4.3, we see that for
each i, there exists a bijective morphism over the open affine subset Ui:

Ψfi
: MCr−1×C

n0,C0
× Ui → (φ2)−1(Ui).
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So there exist a decomposition S =
∐

i

Si of locally closed subsets Si and

bijective morphisms ΨSi : MCr−1×C
n0,C0

× Si → (φ2)−1(Si). By (5.3), there
exists a decomposition

Wn−n0 =
∐

i

Wn−n0,i

of locally closed subsets Wn−n0,i and bijective morphisms

ΨWn−n0,i : MCr−1×C
n0,C0

×Wn−n0,i → (φ1)−1(Wn−n0,i).

Combining this with (2.4) and (2.6), we conclude that

e(Wn−n0 ×S Mn0,n0; s, t) =
∑

i

e
(
(φ1)−1(Wn−n0,i); s, t

)
=

∑
i

e
(
MCr−1×C

n0,C0
×Wn−n0,i; s, t

)
=

∑
i

e(Wn−n0,i; s, t) · e(MCr−1×C
n0,C0

; s, t)

= e(Wn−n0 ; s, t) · e(MCr−1×C
n0,C0

; s, t). (5.4)

Now (5.1) follows immediately from (5.2) and (5.4). �

Lemma 5.2. Let O be the origin of Cr−1 and C0 = {O} × C. Then,

+∞∑
n=0

e(X [n] × S; s, t)qn =
+∞∑
n=0

e(Wn; s, t)qn ·
+∞∑
n=0

e
(
(Cr−1 × C)[n]

C0
; s, t

)
qn. (5.5)

Proof. By Remark 4.7, we have an analogue of (5.2):

e(X [n] × S; s, t) =
n∑

n0=0

e(Wn−n0 ×S Tn0; s, t). (5.6)

Let λ be a partition of n0, denoted by λ 
 n0. Express λ as λ = (λ1, . . . , λ�)
where λ1 ≥ . . . ≥ λ� and λ1 + . . . + λ� = n0. We define Tλ to be the
locally closed subset of Tn0 consisting of all the pairs (Ξ, s) such that Ξ =
Ξ1 + . . .+ Ξ� where

Supp(Ξi) = {xi} ⊂ µ−1(s),
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�(Ξi) = λi, and the points x1, . . . , x� are distinct. Then,

e(X [n] × S; s, t) =
n∑

n0=0

∑
λ�n0

e(Wn−n0 ×S Tλ; s, t). (5.7)

Using the Lemma 2.1.4 in [8], we can prove that the natural morphism
Tλ → S is a Zariski-locally trivial fibration with fibers isomorphic to (Cr−1×
C)λC0

. Here (Cr−1 ×C)λC0
denotes the locally closed subset of (Cr−1 ×C)[n0]

C0

consisting of
Ξ′ = Ξ′

1 + . . . + Ξ′
�

where Supp(Ξ′
i) = {x′i} ⊂ C0, �(Ξ′

i) = λi, and x′1, . . . , x′� are distinct. Hence

e(X [n] × S; s, t) =
n∑

n0=0

∑
λ�n0

e(Wn−n0 ; s, t) · e
(
(Cr−1 × C)λC0

; s, t
)

=
n∑

n0=0

e(Wn−n0 ; s, t) ·
∑
λ�n0

e
(
(Cr−1 × C)λC0

; s, t
)

=
n∑

n0=0

e(Wn−n0 ; s, t) · e
(
(Cr−1 × C)[n0]

C0
; s, t

)
,

where we used the fact that (Cr−1×C)[n0]
C0

is the disjoint union of the locally
closed subsets (Cr−1 × C)λC0

, λ 
 n0. Now (5.5) follows immediately. �

Proposition 5.3. Let O be the origin of Cr−1 and C0 = {O} × C. Then,

+∞∑
n=0

e(Mn; s, t) qn =
+∞∑
n=0

e(X [n]; s, t) qn · e(S; s, t) ·
∑+∞

n=0 e(M
Cr−1×C
n,C0

; s, t) qn∑+∞
n=0 e

(
(Cr−1 × C)[n]

C0
; s, t

) .
Proof. The formula follows from Lemma 5.1 and Lemma 5.2. �

6. Reduction to the punctual cases.

From Proposition 5.3, we see that it suffices to compute the virtual Hodge
polynomials of MCr−1×C

n,C0
and (Cr−1 ×C)[n]

C0
. These spaces are similar to the

Hilbert scheme X [n] in the sense that they are all built up from the punctual
cases. Cheah developed a method of computing virtual Hodge polynomials
to deal with this kind of situation. In order to apply the method to MCr−1×C

n,C0
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and (Cr−1 × C)[n]
C0

, we first recall Cheah’s original approach in [2] for the
case of X [n].

Let Hilbn(Cr, O) be the punctual Hilbert scheme of Cr at the origin.
Then there exist unique rational numbers H�,m,n such that

+∞∑
n=0

e(Hilbn(Cr, O); s, t)qn =
+∞∏
�=1

+∞∏
m,n=0

(
1

1 − q�smtn

)H�,m,n

(6.1)

as elements in Q[s, t][[q]]. Define hr(q, s, t) ∈ Q[s, t][[q]] to be the power
series:

hr(q, s, t) =
+∞∑
�=1

⎛⎝ +∞∑
m,n=0

H�,m,ns
mtn

⎞⎠ q�. (6.2)

Then the main result proved in [2] states that

+∞∑
n=0

e(X [n]; s, t)qn = exp

(
+∞∑
n=1

1
n
e(X; sn, tn)hr(qn, sn, tn)

)
. (6.3)

The key ingredients in Cheah’s proof of (6.3) can be summarized as follows:

(A) Each element Ξ ∈ X [n] can be uniquely decomposed into Ξ(1)+. . .+Ξ(�)

where every Ξ(i) ∈ X [ni] is supported at a single point in X, n1 + . . .+
n� = n, and the supports of Ξ(1), . . . ,Ξ(�) are mutually distinct.

(B) Every X
[n]
x is isomorphic to Hilbn(Cr, O). Let X [n]

(n) be the closed

subscheme of X [n] consisting of all Ξ ∈ X [n] such that Supp(Ξ) is a
single point of X. Then the natural morphism X

[n]
(n) → X sending Ξ ∈

X
[n]
(n) to Supp(Ξ) ∈ X is Zariski-locally trivial with fibers isomorphic

to Hilbn(Cr, O).

(C) Using certain combinatorial arguments independent of X, one re-
duces the computation to the virtual Hodge polynomials of X
and Hilbn(Cr, O) which contribute to the terms e(X; sn, tn) and
hr(qn, sn, tn) in (6.3) respectively.

It follows that we can apply Cheah’s arguments to the computations of

+∞∑
n=0

e
(
(Cr−1 ×C)[n]

C0
; s, t

)
qn,

+∞∑
n=0

e(MCr−1×C
n,C0

; s, t) qn
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in a straightforward fashion. For
+∞∑
n=0

e
(
(Cr−1 × C)[n]

C0
; s, t

)
qn, we have

(A1) Each element Ξ ∈ (Cr−1 × C)[n]
C0

can be uniquely decomposed into

Ξ(1) + . . . + Ξ(�)

where each Ξ(i) ∈ (Cr−1 × C)[ni]
C0

is supported at a single point in C0,

n1 + . . .+ n� = n,

and the supports of Ξ(1), . . . ,Ξ(�) are mutually distinct.

(B1) Every (Cr−1×C)[n]
x , x ∈ C0 is isomorphic to Hilbn(Cr, O). The natural

morphism (Cr−1×C)[n]
C0

→ C0 sending Ξ ∈ (Cr−1×C)[n]
C0

to Supp(Ξ) ∈
C0 is Zariski-locally trivial with fibers isomorphic to Hilbn(Cr, O).

(C1) The same combinatorial arguments from (C) reduces the computation
to the virtual Hodge polynomials of C0 and Hilbn(Cr, O).

Therefore, we conclude as in (6.3) the following formula:

+∞∑
n=0

e
(
(Cr−1 ×C)[n]

C0
; s, t

)
qn = exp

(
+∞∑
n=1

1
n
e(C0; sn, tn)hr(qn, sn, tn)

)
. (6.4)

Next, for the computation of
+∞∑
n=0

e(MCr−1×C
n,C0

; s, t) qn, we have

(A2) Let Θ ∈ MCr−1×C
n,C0

. By the definition of MCr−1×C
n,C0

, the quotient IC0/IΘ
is supported at finitely many points in C0. Put

IC0/IΘ = Q1 ⊕ · · · ⊕Q�

where each Qi is supported at a single point in C0, and the supports
of Q1, . . . , Q� are mutually distinct. Let f : IC0 → IC0/IΘ be the
quotient map. For 1 ≤ i ≤ �, define the subscheme Θ(i) by putting

IΘ(i) = f−1(Qi).

Then Θ ∈ MCr−1×C
n,C0

gives rise to Θ(1), . . . ,Θ(�). It is clear that the

process can be reversed. Hence Θ ∈ MCr−1×C
n,C0

can be formally written
as

Θ = Θ(1) + . . . + Θ(�)



On the Euler numbers of certain moduli spaces 403

in a unique way, where Θ(i) ∈ MCr−1×C
ni,C0

for 1 ≤ i ≤ �, n1+. . .+n� = n,
each quotient IC0/IΘi is supported at a single point in C0, and the
supports of the quotients IC0/IΘ1 , . . . , IC0/IΘ�

are mutually distinct.

(B2) Let x ∈ C0. Since C is a smooth curve in X, we have an isomorphism

MCr−1×C
n,C0,x

∼= MCr

n,L,O (6.5)

between the punctual moduli spaces, where L is a coordinate line in Cr,
O is the origin of Cr, and MCr

n,L,O parametrizes all the 1-dimensional
closed subschemes Θ of Cr such that IΘ ⊂ IL, Supp

(
IL/IΘ

)
= {O},

and
h0(Cr, IL/IΘ) = n.

Let MCr−1×C
(n),C0

be the subset of MCr−1×C
n,C0

consisting of all Θ ∈ MCr−1×C
n,C0

such that Supp(IC0/IΘ) is a single point in C0. By the construction in
[9], there is a natural morphism from MCr−1×C

n to the n-th symmetric
product Symn(Cr−1 × C). Its restriction to MCr−1×C

(n),C0
gives rise to a

morphism
φ : MCr−1×C

(n),C0
→ C0.

An argument similar to the proof of Proposition 4.3 shows that there
exists a decomposition of locally closed subsets

C0 =
∐

i

C0,i,

and bijective morphisms over the locally closed subsets C0,i:

Φi : MCr

n,L,O × C0,i → φ−1(C0,i).

(C2) The same combinatorial arguments from (C) reduce the computation
to the virtual Hodge polynomials of C0 and MCr

n,L,O.

Hence once again, we conclude as in (6.3) the following:

+∞∑
n=0

e(MCr−1×C
n,C0,x ; s, t)qn = exp

(
+∞∑
n=1

1
n
e(C0; sn, tn)cr(qn, sn, tn)

)
, (6.6)

where the power series cr(q, s, t) ∈ Q[s, t][[q]] is defined by

cr(q, s, t) =
+∞∑
�=1

⎛⎝ +∞∑
m,n=0

C�,m,ns
mtn

⎞⎠ q�, (6.7)
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and the rational numbers C�,m,n are the unique rational numbers such that

+∞∑
n=0

e
(
MCr

n,L,O; s, t
)
qn =

+∞∏
�=1

+∞∏
m,n=0

(
1

1 − q�smtn

)C�,m,n

. (6.8)

Lemma 6.1. Let O be the origin of Cr−1 and C0 = {O}×C. Let hr(q, s, t)

and cr(q, s, t) be from (6.2) and (6.7). Then,
+∞∑
n=0

e(Mn; s, t) qn is equal to

+∞∑
n=0

e(X [n]; s, t) qn · e(S; s, t)

· exp

(
+∞∑
n=1

1
n
e(C0; sn, tn)

[
cr(qn, sn, tn) − hr(qn, sn, tn)

])
.

Proof. Follows immediately from Lemma 5.3, (6.4) and (6.6). �

Proposition 6.2. Under Assumption 3.1, we have

+∞∑
n=0

χ(Mn) qn =
+∞∑
n=0

χ(X [n]) qn · χ(S) ·
( ∑+∞

n=0 χ
(
MCr

n,L,O

)
qn∑+∞

n=0 χ
(
Hilbn(Cr, O)

)
qn

)2−2g

.

Proof. Follows from Lemma 6.1, (2.3) and the observation that

exp

(
+∞∑
n=1

1
n

cr(qn, 1, 1)

)
=

+∞∑
n=0

χ
(
MCr

n,L,O

)
qn. (6.9)

7. Torus actions on Hilbn(Cr, O) and MCr

n,L,O.

The last step in our computation is to determine the Euler number of MCr

n,L,O

(the Euler number of Hilbn(Cr, O) has been calculated in [2]). According to
(2.7), we can make use of a suitable C∗-action on Cr and compute the Euler
number of the fixed locus of the induced C∗-action on MCr

n,L,O.
The fixed points of torus actions on the spaces Hilbn(Cr, O) and MCr

n,L,O

are closely related to multi-dimensional partitions of n.
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Definition 7.1. (i) Let r ≥ 2 and n ≥ 0. An r-dimensional partition
(respectively, a punctual r-dimensional partition) of n is an array

(ni1,...,ir−1)i1,...,ir−1 (7.1)

of non-negative integers ni1,...,ir−1 indexed by the tuples

(i1, . . . , ir−1) ∈ (Z≥0)r−1 (7.2)(
respectively, by the tuples (i1, . . . , ir−1) ∈ (Z≥0)r−1 − {(0, . . . , 0)}) such

that ∑
i1,...,ir−1

ni1,...,ir−1 = n, (7.3)

and ni1,...,ir−1 ≥ nj1,...,jr−1 whenever i1 ≤ j1, . . . , ir−1 ≤ jr−1.
(ii) We define Pr(n) (respectively, P̃r(n)) to be the number of r-

dimensional (respectively, punctual r-dimensional) partitions of n.

We remark that Definition 7.1 (i) is consistent with the one used in [13],
while our r-dimensional partitions are (r − 1)-dimensional partitions in [2].

Torus actions on the punctual Hilbert scheme Hilbn(Cr, O) have been
studied in [2]. Let z1, . . . , zr be the coordinate functions of Cr. Then C∗

acts on Cr by

t(z1, . . . , zr) = (tw1z1, . . . , t
wrzr), t ∈ C∗. (7.4)

This C∗-action on Cr induces a C∗-action on Hilbn(Cr, O). Now choose
w1, . . . , wr ∈ Z properly. Then the C∗-fixed points in Hilbn(Cr, O) are pre-
cisely those corresponding to the colength-n ideals of C[z1, . . . , zr] gener-
ated by monomials. These ideals are in one-to-one correspondence with
r-dimensional partitions of n. Indeed, given an r-dimensional partition
(ni1,...,ir−1)i1,...,ir−1≥0 of n, the ideal of C[z1, . . . , zr] generated by the mono-
mials zi1

1 · · · zir−1

r−1 z
ni1,...,ir−1
r has colength-n. Conversely, given a colength-n

ideal I of C[z1, . . . , zr] generated by monomials, we obtain an r-dimensional
partition (ni1,...,ir−1)i1,...,ir−1≥0 of n by putting

ni1,...,ir−1 = min{ir| zi1
1 · · · zir−1

r−1 z
ir
r ∈ I}. (7.5)

Therefore, by (2.7), we have (see the Proposition 5.1 in [2]):

χ
(
Hilbn(Cr, O)

)
= Pr(n). (7.6)
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When r = dim(X) = 3, torus actions on the moduli space Mn for a toric
variety X have been studied in [13]. For r ≥ 3 and for torus actions on our
punctual moduli space MCr

n,L,O, we choose the line L to be defined by the
equations:

z1 = . . . = zr−1 = 0.

Then the C∗-action (7.4) on Cr induces a C∗-action on MCr

n,L,O. Again,
choose the weights w1, . . . , wr ∈ Z in (7.4) properly. Then the C∗-fixed
points in MCr

n,L,O are precisely those corresponding to the ideals I of
C[z1, . . . , zr] such that I is generated by monomials, I ⊂ (z1, . . . , zr−1),
and

dimC

(z1, . . . , zr−1)
I

= n.

As in the previous paragraph, we see that these ideals are in one-to-one cor-
respondence with punctual r-dimensional partitions of n (note that a linear
basis of the ideal (z1, . . . , zr−1) consists of all the monomials zi1

1 · · · zir−1

r−1 z
ir
r

with
(i1, . . . , ir−1) ∈ (Z≥0)r−1 − {(0, . . . , 0)},

and ir ≥ 0). Therefore, we obtain from (2.7) that

χ
(
MCr

n,L,O

)
= P̃r(n). (7.7)

Theorem 7.2. Under Assumption 3.1, let r ≥ 2. Then,

+∞∑
n=0

χ(Mn) qn =
+∞∑
n=0

χ(X [n]) qn · χ(S) ·
(∑+∞

n=0 P̃r(n) qn∑+∞
n=0 Pr(n) qn

)2−2g

.

Proof. The formula follows from Proposition 6.2, (7.6) and (7.7). �

Corollary 7.3. If µ : X → S is an elliptic fibration, then

+∞∑
n=0

χ(Mn) qn =
+∞∑
n=0

χ(X [n]) qn · χ(S). (7.8)

Conjecture 7.4. Let r ≥ 2, and let Pr(n) and P̃r(n) be defined above.
Then, ∑+∞

n=0 P̃r(n) qn∑+∞
n=0 Pr(n) qn

=
1

(1 − q)r−2
. (7.9)
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The conjecture is clearly true when r = 2. The next lemma handles
r = 3.

Lemma 7.5. Conjecture 7.4 holds when r = 3.

Proof. We shall use notations and results from Section. 11.2 of [1]. Iden-
tify our 3-dimensional partitions with the plane partitions there, i.e., our
3-dimensional partition (ni1,i2)i1,i2≥0 is identified with the plane partition
whose entry at the lattice point (i1, i2), i1, i2 ≥ 0 in the plane is equal to
ni1,i2. Similarly, our punctual 3-dimensional partitions will correspond to
the punctual plane partitions.

Let π�(n1, . . . , nk; q) be the generating function for plane partitions with
at most � columns, at most k rows, and with ni being the first entry in the
i-th row. Then,

π�+1(n1, . . . , nk; q)

= qn1+...+nk

nk∑
mk=0

nk−1∑
mk−1=mk

· · ·
n1∑

m1=m2

π�(m1, . . . ,mk; q). (7.10)

by the formula (11.2.1) in [1]. Let Sk,�(m,n) (respectively, S̃k,�(m,n)) denote
the set of plane partitions (respectively, punctual plane partitions) of m with
at most � columns, at most k rows, and with each entry ≤ n. Let pk,�(m,n) =
|Sk,�(m,n)| and p̃k,�(m,n) = |S̃k,�(m,n)|. Define two generating functions:

πk,�(n; q) =
+∞∑
m=0

pk,�(m,n) qm

π̃k,�(n; q) =
+∞∑
m=0

p̃k,�(m,n) qm.

So π+∞,+∞(+∞; q) =
+∞∑
m=0

P3(m) qm and π̃+∞,+∞(+∞; q) =
+∞∑
m=0

P̃3(m) qm.

Define

(q)i = (1 − q)(1 − q2) · · · (1 − qi) (7.11)

for positive integers i. By the Theorem 11.2 in [1],

πk,�(n; q) =
(q)1(q)2 · · · (q)k−1

(q)�(q)�+1 · · · (q)�+k−1
· (q)n+�(q)n+�+1 · · · (q)n+�+k−1

(q)n(q)n+1 · · · (q)n+k−1
. (7.12)
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Let λ̃ ∈ S̃k,�(m,n). By placing n at the origin of the plane, we obtain
λ ∈ Sk,�(m+n, n). Conversely, if λ ∈ Sk,�(m+n, n) and if the part of λ at the
origin is n, then by deleting the part at the origin, we obtain λ̃ ∈ S̃k,�(m,n).
Hence

π̃k,�(n; q) = q−n
∑

mk≤...≤m2≤n

π�(n,m2, . . . ,mk; q). (7.13)

Setting n1 = . . . = nk = n in (7.10), we conclude that

π�+1(n, . . . , n︸ ︷︷ ︸
k copies

; q) = qkn
∑

mk≤...≤m2≤m1≤n

π�(m1, . . . ,mk; q)

= qkn
n∑

m1=0

∑
mk≤...≤m2≤m1

π�(m1,m2, . . . ,mk; q).

Combining this with formula (7.13), we see that

π�+1(n, . . . , n︸ ︷︷ ︸
k copies

; q) = qkn
n∑

m1=0

qm1 · π̃k,�(m1; q). (7.14)

On the other hand, by the formula (11.2.8) in [1],

π�+1(n, . . . , n︸ ︷︷ ︸
k copies

; q) = qkn · πk,�(n; q).

Therefore, we see immediately from (7.14) that

πk,�(n; q) =
n∑

m1=0

qm1 · π̃k,�(m1; q).

Thus, πk,�(n; q) − πk,�(n− 1; q) = qn · π̃k,�(n; q), i.e.,

π̃k,�(n; q) = q−n [πk,�(n; q) − πk,�(n− 1; q)] . (7.15)

To take the limits k, �, n → +∞, we assume |q| < 1 in the rest of the
proof. By (7.15), (7.12) and the definition of (q)i from (7.11), we have

π̃k,�(n; q)

= πk,�(n− 1; q) · 1
qn

{
(1 − qn+�)(1 − qn+�+1) · · · (1 − qn+�+k−1)

(1 − qn)(1 − qn+1) · · · (1 − qn+k−1)
− 1
}

= πk,�(n− 1; q) · 1 + q + · · · + qk−1 +O(qn) +O(q�)
(1 − qn)(1 − qn+1) · · · (1 − qn+k−1)

.
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Now taking the limit �, n→ +∞, we conclude that

π̃k,+∞(+∞; q) = πk,+∞(+∞; q) · (1 + q + · · · + qk−1).

Finally, letting k → +∞, we immediately obtain

π̃+∞,+∞(+∞; q) = π+∞,+∞(+∞; q) · 1
1 − q

,

i.e.,
+∞∑
m=0

P̃3(m) qm =
+∞∑
m=0

P3(m) qm · 1
1 − q

. This proves (7.9) for r = 3. �

Corollary 7.6. Under Assumption 3.1, let 2 ≤ r ≤ 3. Then,

+∞∑
n=0

χ(Mn) qn =
+∞∑
n=0

χ(X [n]) qn · χ(S) · 1
(1 − q)(r−2)·(2−2g)

.

Proof. Follows immediately from Theorem 7.2 and Lemma 7.5. �
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