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On the equivariant Gromov–Witten theory of
P

2-bundles over curves
Amin Gholampour

We study equivariant Gromov–Witten invariants of P
2-bundles

over a curve C. Our bundles are of the form P(L0 ⊕ L1 ⊕ L2)
for arbitrary line bundles L0, L1 and L2 over C. We compute the
partition functions of these invariants for all classes of the form
s + nf , where s is a section, f is a fiber and n is an integer. In
the case where the class is Calabi–Yau, i.e., K · (s + nf) = 0, the
partition function is given by

3g
(
2 sin

u

2

)2g−2
.

As an application, one can obtain a series of full predictions for
the equivariant Donaldson–Thomas invariants for this family of
non-toric three-folds.

1. Introduction

Let X be a P
2-bundle over a smooth complex projective curve C of genus

g, and let KX be its canonical class. We denote the cohomology class of the
fiber by F .

Definition 1.1. A class β ∈ H4(X, Z) is called section class if F · β = 1.
We say β is a Calabi–Yau class if KX · β = 0. β is called Calabi–Yau section
class if both conditions hold.

Remark 1.2. A section class is not necessarily represented by a geometric
section of the bundle X. It could be, for example, a section with a number
of fiber curves attached to it.

Now let X be a P
2-bundle of the form

P(L0 ⊕ L1 ⊕ L2) −→ C,

where C is a curve of genus g, and Li → C is a line bundle of degrees ki.
Without loss of generality, we will assume that L0 is the trivial bundle. As
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in [2], we use the word level to refer to (k1, k2). It can be shown that the
canonical class of X is given by

KX = −3H + (2g − 2 − k1 − k2)F,

where H is the first Chern class of O(1) → X.

Definition 1.3. There is a distinguished section in X, which is by definition
the locus of (1 : 0 : 0) in X. We denote by β0 the cohomology class in
H4(X, Z), which is represented by this locus. We also define

f := H · F ∈ H4(X, Z).

Note that {β0, f} is a set of generators for H4(X, Z) and also the relations
H · β0 = 0 and F · β0 = 1 hold in the cohomology ring. The latter implies
that β0 is a section class.

Remark 1.4. One can see that for the P
2-bundles of this form,

β ∈ H4(X, Z)

is a section class (see Definition 1.1) if and only if it is of the form

β = β0 + nf

for an integer n (see also Remark 1.2).

The complex torus T = (C∗)3 acts on X by

(z0, z1, z2)(x0 : x1 : x2) �−→ (z0x0 : z1x1 : z2x2).

Let βs ∈ H4(X, Z) be a section class. The partition function of the degree
βs Gromov–Witten invariants is given by

Zβs
(g | k1, k2) =

∞∑
h=0

u2h−2−KX ·βs

∫

[Mh(X,βs)]vir

1,

where Mh(X, βs) is the moduli space of degree βs, genus h stable maps1

to X, and [Mh(X, βs)]vir ∈ AT

D(Mh(X, βs)) is in the Dth equivariant Chow

1We assume that all domain curves are connected (see Remark 2.4).
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group for

D = −KX · βs = virdim Mh(X, βs).

Since we are working equivariantly (the invariants are defined by equi-
variantly pushing forward to a point), our definition makes sense even for
negative values of D (c.f. Section 2.1 of [2]).

Remark 1.5. The equivariant Gromov–Witten partition functions are
invariant under equivariant deformations. The space X that we work with
is determined up to equivariant deformation by g, the genus of C, and the
level (k1, k2), and so in this paper we can refer to X by specifying only these
parameters.

Let t0, t1, t2 be the generators for the equivariant Chow group of a point:

AT

∗ (pt) ∼= Q[t0, t1, t2].

Zβs
(g | k1, k2) is a homogeneous polynomial in t0, t1, t2 of degree −D with

coefficients in Q((u)). In particular, it is zero if D is positive, and it is a
Laurent series in u, independent of t0, t1, t2, when D = 0 (this happens when
βs is a Calabi–Yau section class). In the later case, Zβs

(g | k1, k2) is equal
to the usual Gromov–Witten partition function. (c.f. Section 2.1 of [2]).

The partition function of the section class Gromov–Witten invariants is
given by:

Z(g | k1, k2) =
∑

βs is a section class

Zβs
(g | k1, k2).

We will define the relative version of Z(g | k1, k2) and prove a gluing
theorem for it. The gluing formula allows us to compute the partition func-
tion in the general case in terms of the basic partition functions for the
case of g = 0, relative to one, two or three fibers. We will compute these
basic partition functions via localization techniques combined with relations
arising from the gluing formula. These give rise to explicit 3 × 3 matrices
G, U1 and U2 with entries in Q((u))(t0, t1, t2). We will then prove the main
result of this paper, which gives a formula for Z(g | k1, k2) for any given
genus g and level (k1, k2).

Theorem 1.6. Let X be a P
2-bundle over a curve C of genus g of the form

P(O ⊕ L1 ⊕ L2), where L1 and L2 are two line bundles of degrees k1 and k2,
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respectively. Then

Z(g | k1, k2) = tr
(
Gg−1Uk1

1 Uk2
2

)
,

where G, U1 and U2 are given by

G =

⎡
⎢⎢⎣

(t0 − t1)(t0 − t2) 0 0

0 (t1 − t0)(t1 − t2) 0

0 0 (t2 − t0)(t2 − t1)

⎤
⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2(2t0 − t1 − t2)
(t0 − t1)(t0 − t2)

t0 + t1 − 2t2
(t0 − t1)(t0 − t2)

t0 + t2 − 2t1
(t0 − t1)(t0 − t2)

t0 + t1 − 2t2
(t1 − t0)(t1 − t2)

2(2t1 − t0 − t2)
(t1 − t0)(t1 − t2)

t1 + t2 − 2t0
(t1 − t0)(t1 − t2)

t0 + t2 − 2t1
(t2 − t0)(t2 − t1)

t1 + t2 − 2t0
(t2 − t0)(t2 − t1)

2(2t2 − t0 − t1)
(t2 − t0)(t2 − t1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

φ3,

U1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ

t0 − t1

(t1 − t2)φ
(t0 − t1)(t0 − t2)

0

φ

t1 − t0

(t1 − t0)2(t1 − t2)2φ−2 + (2t1 − t0 − t2)φ
(t1 − t0)(t1 − t2)

φ

t1 − t2

0
(t1 − t0)φ

(t2 − t0)(t2 − t1)
φ

t2 − t1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

U2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ

t0 − t2
0

(t2 − t1)φ
(t0 − t1)(t0 − t2)

0
φ

t1 − t2

(t2 − t0)φ
(t1 − t0)(t1 − t2)

φ

t2 − t0

φ

t2 − t1

(t2 − t0)2(t2 − t1)2φ−2 + (2t2 − t0 − t1)φ
(t2 − t0)(t2 − t1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where φ = 2 sin u
2 .

As an application of Theorem 1.6, we prove the following result:

Theorem 1.7. Let X be any P
2-bundle over a curve C of genus g, and let

βcs ∈ H4(X, Z) be a Calabi–Yau section class, Then

Zβcs
(g) = 3g

(
2 sin

u

2

)2g−2
,
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where Zβcs
(g) is the usual partition function for the degree βcs Gromov–

Witten invariants of X, given by

Zβcs
(g) =

∞∑
h=0

u2h−2
∫

[Mh(X,βcs)]vir

1.

1.1. Donaldson–Thomas invariant prediction

Another application of Theorem 1.6 is the prediction for equivariant
Donaldson–Thomas partition functions (see Section 9 of [2] and also see
[9, 10]).

As an example, by the assumptions of Theorem 1.7, and taking eiu = −q,
we can write

ZDT
βcs

(g) = 3
[
3(q + q−1 + 2)M(−q)18]g−1

,

where

ZDT
βcs

(g) =
∑
n∈Z

qn

∫

[In(X,βcs)]vir

1,

and

M(q) =
∏
j≥1

(1 − qj)−j .

Moreover, by the same notations as in Theorem 1.6, if we define the partition
function for the class βs equivariant Donalsdson–Thomas invariants as

ZDT
βs

(g | k1, k2) = (−q)−(1/2)KX ·βs

∑
n∈Z

qn

∫

[In(X,βs)]vir

1,

then Theorem 1.6 gives the full prediction for ZDT
βs

(g | k1, k2) for any section
class βs.

The GW/DT correspondence in the case βs = β + f has recently been
worked out to the first order in [3]. See also Appendix B for more explicit
formulas on the Gromov–Witten theory side.

1.2. Plan of the paper

In Section 2, we define the partition function of the relative Gromov–Witten
invariants of the space P(O ⊕ L1 ⊕ L2). Then we express a gluing theorem
for these partition functions.
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In Section 3, we compute some of the basic partition functions we defined
in Section 2 in the case g = 0. There are some basic partition functions in
this case that we can compute via localization, we compute them in 3.1.
We use the gluing theorem of Section 2 to compute those that we cannot
compute via localization. This will be done in Section 3.3.

In Section 4, using the results of Section 3, we construct the matrices
G, U1 and U2, which appeared in Theorem 1.6 and then we prove Theorem
1.6.

In Section 5, we first prove (Lemma 5.1) that any P
2-bundle over a curve

C is deformation equivalent to a P
2-bundle over C of the form P(O ⊕ O ⊕ L).

Having this, we use Theorem 1.6 to prove Theorem 1.7.
In Appendix A, we first prove that it is enough in this paper to only

consider the moduli space of maps with connected domains (Lemma A.1).
After that we give a proof for the gluing theorem expressed in Section 2.

In Appendix B, we provide some more formulas for the partition function
of equivariant Gromov–Witten invariants in some special cases.

2. Relative invariants and the Gluing theorem

Let (C, p1, . . . , pr) be a non-singular curve of genus g with r marked points.
Following the notations of Section 1, we take

X = P(O ⊕ L1 ⊕ L2) −→ (C, p1, . . . , pr).

We will review the definition of the section class equivariant Gromov–Witten
invariants relative to divisors F1, . . . , Fr, where Fi is the fiber over the point
pi. For a treatment of the foundations of equivariant relative Gromov–
Witten theory, see [5].

The complex torus T = (C∗)3 acts on X as in Section 1. We need to
fix a basis, Bp, for the equivariant Chow group of each fiber, Fp, which is a
copy of P

2:

AT

∗ (Fp) ∼= AT

∗ (P2) ∼= Z[H, t0, t1, t2]/

⎛
⎝

2∏
j=0

(H − tj)

⎞
⎠.

Let βs ∈ H4(X, Z) be a section class (defined in Section 1). We take

Zh
βs

(g | k1, k2)α1···αr
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to be degree βs, genus h, equivariant Gromov–Witten invariant of X relative
to the divisors F1, . . . , Fr, with restrictions given by αp ∈ Bp, one for each
divisor. More precisely, we take

�L = (l1, . . . , lr) ∈ (Z+)r, �F = (F1, . . . , Fr).

Then following Section 2 of [10], let X[�L] be the lp-step degeneration of X

along each Fp, and let Mh(X/�F , βs) be the moduli space of relative stable
maps q : C ′ → X[�L] from nodal genus h curves2, C ′, to X[�L], for some �L,
which are representing the class βs. Then, Mh(X/�F , βs) is a DM-stack of
virtual dimension −KX · βs (see also [7]).

For each p = 1, . . . , r, we have an evaluation map which is determined
by relative points and is T-equivariant (see [8]):

evp : Mh(X/�F , βs) −→ Fp.

Then,

Zh
βs

(g | k1, k2)α1,...,αr
=
∫

[Mh(X/�F ,βs)]vir

ev∗
1(α1) ∪ · · · ∪ ev∗

r(αr),

where [
Mh(X/�F , βs)

]vir
∈ AT

D

(
Mh(X/�F , βs)

)

is in the Dth equivariant Chow group for

D = −KX · βs = virdim Mh(X/�F , βs).

Note that the invariants can be non-zero even for negative values of D (c.f.
Section 2.1 of [2], and also see Remark 1.5). Then the partition function of
the degree βs, relative, Gromov–Witten invariants is given by

(2.1) Zβs
(g | k1, k2)α1···αr

=
∞∑

h=0

Zh
βs

(g | k1, k2)α1···αr
u2h−2−KX ·βs .

We can also write the partition function of the section class, relative,
Gromov–Witten invariants as

Z(g | k1, k2)α1···αr
=

∑
βs is a section class

Zβs
(g | k1, k2)α1···αr

.

2We assume that all domain curves are connected (see Remark 2.4).
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It is evident that when r = 0, we get the partition function for the ordinary
invariants defined in Section 1.

Remark 2.1. Zβs
(g | k1, k2)α1···αr

is a homogeneous polynomial in t0, t1, t2
of degree

N =
r∑

p=1

deg(αp) − D =
r∑

p=1

deg(αp) + 2g − 2 − k1 − k2 − 3n,

with coefficients in Q((u)). In particular, it is zero if N < 0, and it is a
Laurent series in u, independent of t0, t1, t2, when N = 0 (c.f. [2], Sec-
tion 2.1).

Remark 2.2. We can reexpress the definition of the partition function for
the section class invariants as follows (see Remark 1.4):

Z(g | k1, k2)α1···αr
=
∑
n∈Z

Zβ0+nf (g | k1, k2)α1···αr
.

This sum is finite because by Remark 2.1, it is clear that the sum is ter-
minated from above, and it is also terminated from below because for the
large negative values of n, there is no curve representing the class β0 + nf ,
which means that

Mh(X/�F , β0 + nf) = ∅

for n � 0. To see the last claim, let E = O ⊕ L1 ⊕ L2, and notice that for
n � 0 there is a one to one correspondence between geometric sections rep-
resenting β0 + nf (note that for n � 0, a curve class β0 + nf must be a
geometric section, see Remark 1.2) and degree −n sub-line bundles of E. E
has no sub-line bundle of degree greater than k1 + k2. Therefore, for n � 0,
E has no sub-line bundle of degree −n, which proves our claim.

Before expressing the gluing theorem, we fix a basis, B, for the equivari-
ant Chow group of P

2. We take

x0 := (H − t1)(H − t2),
x1 := (H − t0)(H − t1),
x2 := (H − t0)(H − t2).
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x0, x1, x2 are in fact equivariant classes represented by three fixed points of
the torus action on P

2. We define

B := {x0, x1, x2}.

It is easy to see that B is a basis for AT
∗ (P2) ⊗ Q(t0, t1, t2).

2.1. Convention

From now on, we assume that each αp for p = 1, . . . , r in the definition of
relative partition functions belongs to this basis set, B.

We take

T (x0) := (t0 − t1)(t0 − t2),
T (x1) := (t1 − t0)(t1 − t2),
T (x2) := (t2 − t0)(t2 − t1).

We have these relations:

x2
i = T (xi)xi,

xixj = 0 for i 
= j.(2.2)

Then we raise the indices for the relative partition functions by the
following rule:

Z(g | k1, k2)γ1···γt
α1···αs

:=

⎛
⎝

t∏
p=1

1
T (γp)

⎞
⎠Z(g | k1, k2)α1···αsγ1···γt

.

Then we have the following gluing rules similar to Theorem 3.2 in [2]:

Theorem 2.3. For any choices of elements α1, . . . , αs and γ1, . . . , γt from
the set B and integers satisfying g = g′ + g′′, k1 = k′

1 + k′′
1 and k2 = k′

2 + k′′
2 ,

we have

Z(g | k1, k2)α1···αsγ1···γt
=
∑
λ∈B

Z(g′ | k′
1, k

′
2)α1···αsλZ(g′′ | k′′

1 , k′′
2)λ

γ1···γt
,

and
Z(g | k1, k2)α1···αs

=
∑
λ∈B

Z(g | k1, k2)λ
α1···αsλ.
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The proof of this theorem will be given in Appendix A.

Remark 2.4. In most of the contexts in which the relative Gromov–Witten
invariants are being used, maps with disconnected domain curves are con-
sidered as well as ones with connected domains. In Lemma A.1, we prove
that in our case, where we only deal with section classes, we do not need to
consider disconnected domain curves.

Remark 2.5. In exactly the same way as in [2], one can prove by using The-
orem 2.3 that the partition functions Z(g | 0, 0)α1···αr

give rise to a
1 + 1-dimensional TQFT taking values in the ring R = Q((u))(t0, t1, t2).
The Frobenius algebra corresponding to this TQFT (see [1], Theorem 2.1)
is

H =
2⊕

i=0

Rexi

for xi ∈ B, with multiplication given by

exi
⊗ exj

=
2∑

k=0

Z(g | 0, 0)xk
xixj

ek.

We will prove that this Frobenius algebra and hence the corresponding
TQFT is semi-simple (Proposition 3.11). In Section 5, we use this fact for
proving Theorem 1.6 and 1.7 for the case g = 0.

We will use the following corollary of Theorem 2.3 in our calculations:

Corollary 2.6. With the same notation as in Theorem 2.3, we have

Zβ0+nf (g | k1, k2)α1···αsγ1···γt

=
∑
λ∈B

∑
n=n′+n′′

Zβ0+n′f (g′ | k′
1, k

′
2)α1···αsλZβ0+n′′f (g′′ | k′′

1 , k′′
2)λ

γ1...γt
.

3. Calculations

We will work with the space

X = P(O ⊕ L1 ⊕ L2) → (C, p1, . . . , pr)

throughout this section. In accordance with the notations in [2], we will use
the words cap, tube and pants to refer to the case where the base curve, C,
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is a genus zero curve with one, two and three marked points, respectively
(see Remark 1.5). We sometimes refer to the partition functions by referring
to the space to which they correspond. We will use the notation

φ := 2 sin
u

2

in the later calculations.
Similar to Section 4.3 in [2], one can see that the following partition

functions determine the theory completely:

Z(0 | 0, 0)α, Z(0 | 0, 0)α1α2 , Z(0 | 0, 0)α1α2α3 , Z(0 | −1, 0)α,

Z(0 | 0,−1)α, Z(0 | 1, 0)α, Z(0 | 0, 1)α.

We refer to the partition functions above as the basic partition functions.
By the discussion given in Remark 2.2, one can prove the following

lemma:

Lemma 3.1. The basic partition functions are given by

Z(0 | 0, 0)α = Zβ0(0 | 0, 0)α, Z(0 | 0, 0)α1α2 = Zβ0(0 | 0, 0)α1α2 ,

Z(0 | −1, 0)α = Zβ0(0 | −1, 0)α, Z(0 | 0,−1)α = Zβ0(0 | 0,−1)α,

Z(0 | 1, 0)α = Zβ0−f (0 | 1, 0)α, Z(0 | 0, 1)α = Zβ0−f (0 | 0, 1)α,

Z(0 | 0, 0)α1α2α3 = Zβ0(0 | 0, 0)α1α2α3 + Zβ0+f (0 | 0, 0)α1α2α3 .

Proof. We prove the last equality as follows. In the right hand side, we
do not have any partition function of degree β0 + nf for n < 0, because
O ⊕ L1 ⊕ L2 does not have any sub-line bundle of a positive degree, as L1
and L2 are of degree zero. We also do not have any partition function of
degree β0 + nf for n > 1 because

N =
3∑

p=1

deg(αp) − D

= (2 + 2 + 2) − (3H + 2F ) · (β0 + nf) = 4 − 3n,

which is negative for n > 1 (see Remark 2.1). The other equalities are proved
similarly. �

The rest of this section is devoted to computing the terms that appeared
in the right hand sides of the equations in Lemma 3.1.
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3.1. Calculations via localization

The complex torus acts on X as before. We define

S0: the locus of (1 : 0 : 0) in X ∼= P(O ⊕ L1L
−1
0 ⊕ L2L

−1
0 ),

S1: the locus of (0 : 1 : 0) in X ∼= P(L0L
−1
1 ⊕ O ⊕ L2L

−1
1 ),

S2: the locus of (0 : 0 : 1) in X ∼= P(L0L
−1
2 ⊕ L1L

−1
2 ⊕ O).

It is clear that S0, S1 and S2 are fixed under the torus action on X. One can
also see that S0, S1 and S2 represent the classes β0, β0 − k1f and β0 − k2f ,
respectively.

As before, let βs be a section class. The torus action on X induces
an action on Mh(X/�F , βs). We denote the fixed locus of this action by
Mh(X/�F , βs)T.

By notations of Section 2, we let Si[�L] ⊂ X[�L] be the lp-step degeneration
of Si along intersection points τip = Si ∩ Fp for p = 1, . . . , r, and i = 0, 1, 2,
such that Si[�L] is still fixed under the induced actions on X[�L]. Then,
Mh(X/�F , βs)T parameterizes maps q : C ′ → X[�L] for some �L, whose images
are either of Si[�L] ∪mi

n=1 fn for i = 0, 1 or 2, where by the last expression we
mean Si[�L] with mi T-fixed fiber curves, fn (fn represents the class bf for
some b ∈ Z

+), are attached to it at some points. Note that the choice of
i ∈ {0, 1, 2}, and also the number of fibers which are attached to Si[�L], mi,
are constrained by the class βs.

In general, the moduli space Mh(X/�F , βs)T can be quite complicated
because of the existence of the fibers attached to each Si[�L]. However, in
the special case where mi = 0 for some i (i.e., there is no fiber attached
to Si[�L]), it is evident that the corresponding component of Mh(X/�F , βs)T

(parameterizing maps with images equal to Si[�L]) is the moduli space of
degree one relative stable maps to curves, which we denote by Mh(Si/�τi, 1),
where �τi = (τi1, . . . , τir).

3.2. Assumption

For the rest of Section 3.1, we assume that

(3.1) Mh(X/�F , βs)T =
⋃
i∈I

Mh(Si/�τi, 1),

where I ⊂ {0, 1, 2}, depending on the class βs.
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Then one can see that the T-fixed part of the perfect obstruction theory
of Mh(X/�F , βs) is exactly the usual obstruction theory of

⋃
i∈I Mh(Si/�τi, 1),

and therefore
[
Mh(X/�F , βs)T

]vir ∼=
∑
i∈I

[
Mh(Si/�τi, 1)

]vir
.

In the special case where mi = 0 for all possible i, the assumption
above holds. One can see easily that this is the case for all the partition
functions in the right hand sides of equations in Lemma 3.1, except for
Zβ0+f (0 | 0, 0)α1α2α3 .

In this section, we will use localization for calculating the former par-
tition functions. Zβ0+f (0 | 0, 0)α1α2α3 will be calculated in Section 3.3 by
combining the results of this section with the gluing techniques.

Applying the relative virtual localization formula (see Section 3 of [5]3),
we can write

Zβs
(g | k1, k2)α1···αr

=
∑
i∈I

∞∑
h=0

u2h−2−KX ·βs

∫

[Mh(Si/�τi,1)]vir

ev∗
1(α1) ∩ · · · ∩ ev∗

r(αr)
e(Normvir

i )
,(3.2)

where Normvir
i is the equivariant virtual normal bundle of the component

of the T-fixed loci in Mh(X/�F , βs), and e(Normvir
i ) is its equivariant Euler

class.
Let π : U → Mh(X/�F , βs) and q : U → X be the universal curve and the

universal map, respectively, and let NSi/X be the normal bundle of Si in X.
Then we have the following lemma for evaluating e(Normvir

i ):

Lemma 3.2. For each i ∈ I, the equivariant Euler class of the virtual
normal bundle of the component of the fixed loci, which is isomorphic to
Mh(Si/�τi, 1), is given by

e(Normvir
i ) = e(R•π∗q

∗NSi
/X) = e

(
R•π∗q

∗(LjL
−1
i ⊕ LkL

−1
i )
)
,

where j and k are two distinct elements of {1, 2, 3} − {i}.

Proof. Following the notations of [5], for a normal crossings divisor D con-
tained in the smooth locus of a variety V , by TV (− log D), we mean the dual

3In [5], the authors assume for convenience that the relative divisor is in the fixed
locus, but it is straight forward to adapt their methods to the case at hand [4].
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of the sheaf of Kähler differentials with logarithmic poles along D. Let

q̃ : C ′ −→ Si[�L] ↪−→ X[�L]

be a relative map corresponding to an element of Mh(Si/�τi, 1) and

c : X[�L] → X

be the natural contraction map. For the divisor D ⊂ V as above, and a
given integer l ≥ 0, let D∞ be the infinity section of the lth component of
the l-step degeneration of V along D (see Section 2.1 of [5] for more details).
Note that when l = 0, D∞ is D. Then by the description of TV (− log D)
given in Section 2.8 of [5], we have the following equality in K-theory

ρ∗
i TX[L]

⎛
⎝−

r∑
p=1

log Fp,∞

⎞
⎠ = TSi[L]

⎛
⎝−

r∑
p=1

log τip,∞

⎞
⎠⊕ c∗NSi/X ,

where ρi is the inclusion of Si[�L] into X[�L], and hence

H∗

⎛
⎝C ′, q̃∗TX[L]

⎛
⎝−

r∑
p=1

log Fp,∞

⎞
⎠
⎞
⎠

= H∗

⎛
⎝C ′, q̃∗TSi[L]

⎛
⎝−

r∑
p=1

log τip,∞

⎞
⎠
⎞
⎠⊕ H∗(C ′, q̃∗c∗NSi/X).

The first equality in the lemma follows from this, and a comparison of
the moving parts of the obstruction/deformation sequences of Mh(X/�F , βs)
and Mh(Si/�τi, 1) under the induced torus action (See (2) and (3) in [5]),
and noting that we consider degree 1 maps to Si[�L].

The second equality in the lemma follows from the isomorphism:

NSi/X
∼= LjL

−1
i ⊕ LkL

−1
i . �

Remark 3.3. The last expression in Lemma 3.2 is consistent with the
notations of Section 2.2 of [2], where the authors considered the moduli
space of maps from curves to the total space of a direct sum of two line
bundles over a curve.
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For manipulating the evaluation functions in (3.2), we use the following
Cartesian diagram for each p = 1, . . . , r, and i ∈ I:

Mh(Si/�τi, 1) −−−−→ {τip}

ji

⏐⏐�
⏐⏐�

Mh(X/�F , βs)
evp−−−−→ Fp,

where two vertical maps are inclusions, and τip is the intersection point of
Si with Fp, which is the fixed point of the torus action on Fp representing
the class xi ∈ B. From this diagram, it is clear that ev∗

p(αp), restricted to
Mh(Si/�τi, 1), is a class of pure weight for each p and can be taken out of
the integrals.

We summarize all the discussion above in the following equation:

Zβ(g | k1, k2)α1···αr
=

∞∑
h=0

u2h−2−KX ·βs

∑
i∈I

⎛
⎝

r∏
p=1

(evp ◦ ji)∗(αp)

⎞
⎠

×
∫

[Mh(Si/�τi,1)]vir

e
(
−R•π∗q

∗(NSi/X)
)
.(3.3)

By chasing the diagram above, one can see easily that

(3.4) (evp ◦ ji)∗(xk) =

{
T (xi) if i = k

0 otherwise

for k ∈ {0, 1, 2} (see Section 2 for the definition of T (−)).

3.2.1. Computing degree β0, level (0, 0) cap, tube and pants

Lemma 3.4. Partition functions for the degree β0, level (0, 0) cap, tube
and pants are given by

Zβ0(0 | 0, 0)xa
= 1

Zβ0(0 | 0, 0)xaxb
=

{
T (xa) if a = b

0 otherwise

Zβ0(0 | 0, 0)xaxbxc
=

{
T (xa)2 if a = b = c

0 otherwise

for a, b, c ∈ {0, 1, 2}.
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Proof. Since k1 = k2 = 0, all S0, S1 and S2 represent the class β0, and so in
(3.3) we have I = {0, 1, 2}.

We use the results of Sections 6.2 and 6.4.2 in [2] to evaluate the integrals
in (3.3), for the cap, tube and pants. We prove the formula for the tube, and
the other cases are similar. By Lemma 6.1 in [2] (for d = 1), and Lemma 3.2,
and also by (3.3) and (3.4), we have

Zβ0(0 | 0, 0)xaxb
=

∞∑
h=0

u2h−2−KX ·β0

(
(ev1 ◦ j0)∗(xa)(ev2 ◦ j0)∗(xb)

·
∫

[Mh(S0/(τ01,τ02),1)]vir
e
(
−R•π∗q

∗(L1L
−1
0 ⊕ L2L

−1
0 )
)

+ (ev1 ◦ j1)∗(xa)(ev2 ◦ j1)∗(xb)

·
∫

[Mh(S1/(τ11,τ12),1)]vir
e
(
−R•π∗q

∗(L0L
−1
1 ⊕ L2L

−1
1 )
)

+ (ev1 ◦ j2)∗(xa)(ev2 ◦ j2)∗(xb)

·
∫

[Mh(S2/(τ21,τ22),1)]vir
e
(
−R•π∗q

∗(L0L
−1
2 ⊕ L1L

−1
2 )
))

=
2∑

i=0

(δi
aT (xi))(δi

bT (xi))
1

T (xi)

= δb
aT (xa).

Note that the weights of the torus action on the first and the second factors
of LjL

−1
i ⊕ LkL

−1
i are ti − tj and ti − tk, respectively (which they play the

roles of t1 and t2 in Lemma 6.1 in [2]). �
3.2.2. Computing degree β0, level (0, −1) and (−1, 0) and degree
β0 − f , level (0, 1) and (1, 0) caps

Lemma 3.5. Partition functions for the degree β0, level (0,−1) and (−1, 0)
caps are given by

Zβ0(0 | 0,−1)xa
= (ta − t2)φ−1

Zβ0(0 | −1, 0)xa
= (ta − t1)φ−1

for a = 0, 1, 2.

Proof. We prove the first formula, and the second one is proved in a similar
way. We have k1 = 0 and k2 = −1, S0, S1 represent the class β0, but S2
represents the class β0 + f . Therefore in (3.3) we have I = {0, 1}.
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By Lemma 6.3 in [2] (for d = 1), and also Lemma 3.2 and (3.4), we can
rewrite (3.3) as

Zβ0(0 | 0,−1)xa
=

∞∑
h=0

u2h−2−KX ·β0

(
(ev1 ◦ j0)∗(xa)

∫

[Mh(S0/τ01,1)]vir

× e
(
−R•π∗q

∗(L1L
−1
0 ⊕ L2L

−1
0 )
)

+ (ev1 ◦ j1)∗(xa)
∫

[Mh(S1/τ11,1)]vir

× e
(
−R•π∗q

∗(L0L
−1
1 ⊕ L2L

−1
1 )
))

=
(

δ0
aT (x0)
t0 − t1

+
δ1
aT (x1)
t1 − t0

)
φ−1

= (ta − t2)φ−1.

�

Lemma 3.6. Partition functions for the degree β0 − f, level (0, 1) and (1, 0)
caps are given by

Zβ0−f (0 | 0, 1)xa
= (ta − t0)(ta − t1)φ−2

Zβ0−f (0 | 1, 0)xa
= (ta − t0)(ta − t2)φ−2

for a = 0, 1, 2.

Proof. For the first relation, note that only S2 represents the class β0 − f ,
and so we have I = {2}. Note also that the normal bundle of S2 in X is
level (−1,−1) in this case. The rest of the proof is quite similar to the proof
of Lemma 3.5, except that this time the relevant integral is obtained by
applying Theorem 3.2 in [2] to the level (0,−1) and (−1, 0) caps (given by
Lemma 6.3 in [2]) and the level (0, 0) pants (given in Section 6.4.2 in [2]) to
get the level (−1,−1) cap. �

3.3. Calculations via gluing techniques

In this section, we use Corollary 2.6 (which is referred to as the gluing
formula), and the results of Section 3.1 to find Zβ0+f (0 | 0, 0)α1α2α3 . For a
treatment of gluing spaces and applying the gluing theorem, see Appendix A.
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We first need to find the following partition functions of tubes:

Z(0 | 0,−1)α1α2 = Zβ0(0 | 0,−1)α1α2 + Zβ0+f (0 | 0,−1)α1α2 ,

Z(0 | 0, 1)α1α2 = Zβ0−f (0 | 0, 1)α1α2 + Zβ0(0 | 0, 1)α1α2 .(3.5)

Similar relations hold after swapping the degrees. These equalities can be
proven similar to the proof of Lemma 3.1.

3.3.1. Computing degree β0, level (0, −1) and (−1, 0) and degree
β0 − f , level (0, 1) and (1, 0) tubes

Lemma 3.7. Partition functions for the degree β0, level (0,−1) and (−1, 0)
tubes are given by

Zβ0(0 | 0,−1)xaxb
=

⎧
⎪⎪⎨
⎪⎪⎩

(t0 − t1)(t0 − t2)2φ−1 if a = b = 0,

(t1 − t0)(t1 − t2)2φ−1 if a = b = 1,

0 otherwise.

Zβ0(0 | −1, 0)xaxb
=

⎧
⎪⎪⎨
⎪⎪⎩

(t0 − t2)(t0 − t1)2φ−1 if a = b = 0,

(t2 − t0)(t2 − t1)2φ−1 if a = b = 2,

0 otherwise

for a, b ∈ {0, 1, 2}.

Proof. The first relation is simply proved by attaching the level (0,−1) cap to
the level (0, 0) pants and applying the gluing formula. This is schematically
indicated by the following picture:

xa xa

xa

xa

b0

b0b0

xa

xa

(0,0)

=
(0,−1)(0,−1)

Zβ0(0 | 0,−1)xaxa
= Zβ0(0 | 0,−1)xa

Zβ0(0 | 0, 0)xa
xaxa

.

The result is now obvious by applying Lemmas 3.5 and 3.6. The proof of
the second relation is similar. �
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Similar to the proof of Lemma 3.7, we can prove this:

Lemma 3.8. Partition functions for the degree β0 − f, level (0, 1) and (1, 0)
tubes are given by

Zβ0−f (0 | 0, 1)xaxb
=

{
(t2 − t0)2(t2 − t1)2φ−2 if a = b = 2,

0 otherwise.

Zβ0−f (0 | 1, 0)xaxb
=

{
(t1 − t2)2(t1 − t0)2φ−2 if a = b = 1,

0 otherwise

for a, b ∈ {0, 1, 2}.

3.3.2. Computing degree β0, level (0, 1) and (1, 0), and also degree
β0 + f , level (0, −1) and (−1, 0) tubes We do the calculations for
degree β0, level (0, 1) and degree β0 + f , level (0,−1) tubes, the (1, 0) and
(−1, 0) cases are similar.

We attach two tubes of levels (0,−1) and (0, 1) to get a tube of level
(0, 0) (see the picture). Now applying gluing formula and using Lemmas 3.7
and 3.8, we get

xa xa

b0 b0 b0 b0 b0

xa xa xa

−f+f
ax

xa

xaxa

xa

=
(0,0) (0,−1) (0,1)

+
(0,−1) (0,1)

Zβ0(0 | 0, 0)xaxa
= Zβ0(0 | 0,−1)xaxa

Zβ0(0 | 0, 1)xa
xa

+ Zβ0+f (0 | 0,−1)xaxa
Zβ0−f (0 | 0, 1)xa

xa

for a = 0, 1, 2.
By using Lemmas 3.4, 3.7 and 3.8, we can solve the equations above for

the other unknowns:

Zβ0(0 | 0, 1)x0x0 = (t0 − t1)φ,

Zβ0(0 | 0, 1)x1x1 = (t1 − t0)φ,

Zβ0+f (0 | 0,−1)x2x2 = φ2.

By changing relative conditions, we can get more relations:

b0b0b0

x0 x0 x1x1

x0

x0

=
(0,0) (0,−1) (0,1)

0 = Zβ0(0 | 0, 0)x0x1 = Zβ0(0 | 0,−1)x0x0Zβ0(0 | 0, 1)x0
x1

,
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which implies that

Zβ0(0 | 0, 1)x0x1 = 0.

We can also write (by using Lemmas 3.7 and 3.8):

xa

b0 b0 b0 b0b0

xa ax
xa

xa

x2 x2 x2
x2

x2

−f +f
=

(0,0)
+

(0,1) (0,−1)(0,1)(0,−1)

0 = Zβ0(0 | 0, 0)x2xa
= Zβ0(0 | 0, 1)x2xa

Zβ0(0 | 0,−1)xa
xa

+ Zβ0−f (0 | 0, 1)x2x2Zβ0+f (0 | 0,−1)x2
xa

for a = 0, 1. This with Lemmas 3.7 and 3.8 implies that

Zβ0(0 | 0, 1)x0x2 = Zβ0+f (0 | 0,−1)x0x2(t2 − t1)φ−1,

Zβ0(0 | 0, 1)x1x2 = Zβ0+f (0 | 0,−1)x1x2(t2 − t0)φ−1.(3.6)

Attaching the level (0, 0) cap to the level (0, 1) tube, we get three rela-
tions:

xa

x1

b0b0b0b0b0b0b0

x0

xaxaxa

x2

x1 x2x0

= +
(0,0) (0,1) (0,0) (0,1)

+
(0,1) (0,0) (0,1)

0 = Zβ0(0 | 0, 1)x0
xa

+ Zβ0(0 | 0, 1)x1
xa

+ Zβ0(0 | 0, 1)x2
xa

for a = 0, 1, 2. We already know that

Zβ0(0 | 0, 1)x1
x0

= Zβ0(0 | 0, 1)x0
x1

= 0,

so we get

Zβ0(0 | 0, 1)x0x2 = (t2 − t1)φ,

Zβ0(0 | 0, 1)x1x2 = (t2 − t0)φ,

Zβ0(0 | 0, 1)x2x2 = (2t2 − t0 − t1)φ.

Combining with (3.6), we find

Zβ0+f (0 | 0,−1)x0x2 = Zβ0+f (0 | 0,−1)x1x2 = φ2.
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By writing more relations in a similar way (see the pictures, a = 0, 1),
we can prove

Zβ0+f (0 | 0,−1)x0x0 = Zβ0+f (0 | 0,−1)x1x1 = Zβ0+f (0 | 0,−1)x0x1 = φ2.

xaxaxa xa xa ax
b0 b0 b0+f b0+f b0+f

xa x2

xa x2

=
(0,0)

+
(0,1) (0,−1) (0,1) (0,−1)

b0+f b0b0 b0+f b0+f

x2

x2

x1x0x0 x1x1x0

x0

x0

=
(0,0)

+
(0,1) (0,−1) (0,1) (0,−1)

We now summarize all we have proven in this section into the following
lemma:

Lemma 3.9. Partition functions for the degree β0, level (0, 1) and (1, 0)
tubes and also for the degree β0 + f, level (0,−1) and (−1, 0) tubes are
given by

[Zβ0(0 | 0, 1)xaxb
] =

⎡
⎢⎢⎣

t0 − t1 0 t2 − t1

0 t1 − t0 t2 − t0

t2 − t1 t2 − t0 2t2 − t0 − t1

⎤
⎥⎥⎦φ,

[Zβ0(0 | 1, 0)xaxb
] =

⎡
⎢⎢⎣

t0 − t2 t1 − t2 0

t1 − t2 2t1 − t0 − t2 t1 − t0

0 t1 − t0 t2 − t0

⎤
⎥⎥⎦φ,

[Zβ0+f (0 | 0,−1)xaxb
] =

⎡
⎢⎢⎣

1 1 1

1 1 1

1 1 1

⎤
⎥⎥⎦φ2,

[Zβ0+f (0 | −1, 0)xaxb
] =

⎡
⎢⎢⎣

1 1 1

1 1 1

1 1 1

⎤
⎥⎥⎦φ2,

for a, b ∈ {0, 1, 2}, where partition functions with the index xaxb are the
(a + 1, b + 1) entry of the matrices above.
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3.3.3. Computing degree β0 + f , level (0, 0) pants

Lemma 3.10. Partition functions for the degree β0 + f, level (0, 0) pants
are given by

Zβ0+f (0 | 0, 0)x0x1x2 = 0, Zβ0+f (0 | 0, 0)x0x2x2 = (t2 − t1)φ3,

Zβ0+f (0 | 0, 0)x1x2x2 = (t2 − t0)φ3, Zβ0+f (0 | 0, 0)x0x0x2 = (t0 − t1)φ3,

Zβ0+f (0 | 0, 0)x1x1x2 = (t1 − t0)φ3, Zβ0+f (0 | 0, 0)x2x2x2

= (2t2 − t0 − t1)φ3,

Zβ0+f (0 | 0, 0)x0x1x1 = (t1 − t2)φ3, Zβ0+f (0 | 0, 0)x0x0x1 = (t0 − t2)φ3,

Zβ0+f (0 | 0, 0)x0x0x0 = (2t0 − t1 − t2)φ3, Zβ0+f (0 | 0, 0)x1x1x1

= (2t1 − t0 − t2)φ3.

Proof. We attach the level (0, 1) cap to the level (0, 0) pants to obtain the
degree β0, level (0, 1) tube. Applying the gluing formula together with
Lemmas 3.6 and 3.9, we get the following relation

xa

b0
b0+f

xb

xa
x2b0−f

x2

xb

(0,0)

=
(0,1) (0,1)

Zβ0+f (0 | 0, 0)x2xaxb
= Zβ0(0 | 0, 1)xaxb

φ2.

From this, we can get all Zβ0+f (0 | 0, 0)xaxbxc
with at least one of a, b, c equal

to 2. If we attach the level (0,−1) cap to the level (0, 0) pants to obtain the
degree β + f , level (0,−1) tube, we will get

xa xb

b0+f
b0+f

xb

xa
b0

(0,0)
(0,−1)

b0+f

xb

xa
b0

(0,0)
(0,−1)

x0 x1

x1x0

=
(0,−1)

+

Zβ0+f (0 | 0, 0)x0x0x1 − Zβ0+f (0 | 0, 0)x0x1x1 = (t0 − t1)φ3,

Zβ0+f (0 | 0, 0)x0x0x0 − Zβ0+f (0 | 0, 0)x0x0x1 = (t0 − t1)φ3,

Zβ0+f (0 | 0, 0)x0x1x1 − Zβ0+f (0 | 0, 0)x1x1x1 = (t0 − t1)φ3.(3.7)
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We now write a Frobenius relation as follows (all the pants are level (0, 0)):

x1 x1

x0

x1 x1

x1
x0 x1

x1

x0

x1

x0

x0 x0 x0 x0

b0

b0

b0

b0

b0+f

b0+f

b0+f

b0+f x0

x1

x0

x1

= ++

0 = Zβ0+f (0 | 0, 0)x0x1x1Zβ0(0 | 0, 0)x0
x0x0

+ Zβ0(0 | 0, 0)x1x1x1Zβ0+f (0 | 0, 0)x1
x0x0

,

where the left hand side is zero by Lemma 3.4.
By Lemma 3.4, this simplifies to

(t0 − t2)Zβ0+f (0 | 0, 0)x0x1x1 = (t1 − t2)Zβ0+f (0 | 0, 0)x0x0x1 .

Combining this with (3.7), we will find the rest of the partition functions in
the lemma. �

We now know all the partition functions of pants, and so we are able to
prove the semi-simplicity of the TQFT (see Remark 2.5):

Proposition 3.11. The level (0, 0) TQFT resulted from our setting and
Theorem 2.3 is semisimple.

Proof. By Lemmas 3.4 and 3.10, we have

Z(0 | 0, 0)xc
xaxb

|u=0 = Zβ0(0 | 0, 0)xc
xaxb

=

{
T (xa) if a = b = c,

0 otherwise.

This means that for u = 0, the basis {ex0/T (x0), ex1/T (x1), ex2/T (x2)} of
the corresponding Frobenius algebra (see Remark 2.5) is idempotent:

exi

T (xi)
⊗

exj

T (xj)
= δj

i

exi

T (xi)

This proves the semi-simplicity when u = 0 (see [1], Section 2). Now the
proposition follows from Proposition 2.2 in [1]. �
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4. Proof of Theorem 1.6

We now know everything we need in order to prove Theorem 1.6. We first
find the first and second level creation operators and also genus adding
operator, which are by definition

U1 =
[
Z(0 | 1, 0)xb

xa

]
, U2 =

[
Z(0 | 0, 1)xb

xa

]
, G =

[
Z(1 | 0, 0)xb

xa

]
,

respectively. Here partition functions with the lower index xa and the upper
index xb are the (b + 1, a + 1) entry of the matrices above.

We can find U1 and U2 by simply raising the indices in Lemmas 3.8
and 3.9:

U2 =
[
Zβ0−f (0 | 0, 1)xb

xa

]
+
[
Zβ0(0 | 0, 1)xb

xa

]
=

⎡
⎢⎣

0 0 0
0 0 0
0 0 (t2 − t0)(t2 − t1)

⎤
⎥⎦φ−2

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
t0 − t2

0
t2 − t1

(t0 − t1)(t0 − t2)

0
1

t1 − t2

t2 − t0
(t1 − t0)(t1 − t2)

1
t2 − t0

1
t2 − t1

2t2 − t0 − t1
(t2 − t0)(t2 − t1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

φ

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ

t0 − t2
0

(t2 − t1)φ
(t0 − t1)(t0 − t2)

0
φ

t1 − t2

(t2 − t0)φ
(t1 − t0)(t1 − t2)

φ

t2 − t0

φ

t2 − t1

(t2 − t0)2(t2 − t1)2φ−2 + (2t2 − t0 − t1)φ
(t2 − t0)(t2 − t1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(4.1)

U1 is obtained in a similar way, and it is as in Theorem 1.6.
By Lemma 3.4,

[
Zβ0(0 | 0, 0)xb

xa

]
is the identity matrix, and by the gluing

formula, we can write

[
Z(0 | 0, 0)xb

xa

]
=
[
Z(0 | 0, 1)xb

xa

] [
Z(0 | 0,−1)xb

xa

]
.
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Therefore, by Lemmas 3.7 and 3.9, we have

U−1
2 =

[
Zβ0(0 | 0, −1)xb

xa

]
+

[
Zβ0+f (0 | 0, −1)xb

xa

]

=

⎡

⎢
⎣

t0 − t2 0 0

0 t1 − t2 0

0 0 0

⎤

⎥
⎦ φ−1

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
(t0 − t1)(t0 − t2)

1
(t0 − t1)(t0 − t2)

1
(t0 − t1)(t0 − t2)

1
(t1 − t0)(t1 − t2)

1
(t1 − t0)(t1 − t2)

1
(t1 − t0)(t1 − t2)

1
(t2 − t0)(t2 − t1)

1
(t2 − t0)(t2 − t1)

1
(t2 − t0)(t2 − t1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

φ2

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(t0 − t1)(t0 − t2)2φ−1 + φ2

(t0 − t1)(t0 − t2)
φ2

(t0 − t1)(t0 − t2)
φ2

(t0 − t1)(t0 − t2)

φ2

(t1 − t0)(t1 − t2)
(t1 − t0)(t1 − t2)2φ−1 + φ2

(t1 − t0)(t1 − t2)
φ2

(t1 − t0)(t1 − t2)

φ2

(t2 − t0)(t2 − t1)
φ2

(t2 − t0)(t2 − t1)
φ2

(t2 − t0)(t2 − t1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(4.2)

U−1
1 is obtained in a similar way. U−1

1 and U−1
2 are the first and second

level annihilation operators, respectively.
Now we are going to find the matrix G. By the same argument as that

given for Lemma 3.1, one can prove that

Z(1 | 0, 0)xaxb
= Zβ0(1 | 0, 0)xaxb

+ Zβ0+f (1 | 0, 0)xaxb

for a, b ∈ {0, 1, 2}. Thus, we have

G =
[
Zβ0(1 | 0, 0)xb

xa

]
+
[
Zβ0+f (1 | 0, 0)xb

xa

]
.

For calculating the terms in the right hand side of this, we attach two pants
at two points (see the picture) and apply the gluing formula:

b0
b0

b0

xaxaxaxa

xa

xa
xa

xa
(0,0) (0,0)

=

(0,0)
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xa xaxb

b0b0 b0+fb0+f
b0+f

xa

(0,0)

xa

xb

xb
xb xbxb xa

xa

xa xb

=

(0,0)

+
(0,0)(0,0)(0,0)

Zβ0(1 | 0, 0)xaxa
= Zβ0(0 | 0, 0)xaxaxa

Zβ0(0 | 0, 0)xaxa
xa

,

Zβ0+f (1 | 0, 0)xaxb
= Zβ0(0 | 0, 0)xaxaxa

Zβ0+f (0 | 0, 0)xaxa
xb

+ Zβ0+f (0 | 0, 0)xaxbxb
Zβ0(0 | 0, 0)xbxb

xb
,

which implies that
[
Zβ0(1 | 0, 0)xb

xa

]

=

⎡
⎣

(t0 − t1)(t0 − t2) 0 0
0 (t1 − t0)(t1 − t2) 0
0 0 (t2 − t0)(t2 − t1)

⎤
⎦

and
[
Zβ0+f (1 | 0, 0)xb

xa

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2(2t0 − t1 − t2)
(t0 − t1)(t0 − t2)

t0 + t1 − 2t2
(t0 − t1)(t0 − t2)

t0 + t2 − 2t1
(t0 − t1)(t0 − t2)

t0 + t1 − 2t2
(t1 − t0)(t1 − t2)

2(2t1 − t0 − t2)
(t1 − t0)(t1 − t2)

t1 + t2 − 2t0
(t1 − t0)(t1 − t2)

t0 + t2 − 2t1
(t2 − t0)(t2 − t1)

t1 + t2 − 2t0
(t2 − t0)(t2 − t1)

2(2t2 − t0 − t1)
(t2 − t0)(t2 − t1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

φ3.

Now Theorem 1.6 for g ≥ 1 is a direct application of the gluing rules
(Theorem 2.3).

The same formula holds for g = 0, which follows from the semi-simplicity
of the level (0, 0) TQFT (see Remark 2.5 and Proposition 3.11. See also
Section 2 in [1], and Section 5 in [2]).

5. Proof of Theorem 1.7

We first prove the following lemma:

Lemma 5.1. Any P
2-bundle over a curve C is deformation equivalent to

P(O ⊕ O ⊕ L) −→ C,

where O → C is the trivial bundle and L → C is a line bundle.
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Proof. First, we show that every P
2-bundle over a curve C is of the form

P(E) → C, where E → C is a rank 3 bundle. A rank 3 vector bundle
(resp. P

2-bundle) over C is classified by an element in Ȟ1(C,Gl(3)) (resp.
Ȟ1(C, PGl(3))), where Gl(3) (resp. PGl(3)) is the (non-Abelian) sheaf of
Gl(3) (resp. PGl(3)) valued holomorphic functions on C. From the exact
sequence of sheaves

0 −→ O∗ −→ Gl(3) −→ PGl(3) −→ 0,

we get a map

Ȟ1(C, PGl(3)) −→ Ȟ2(C,O∗).

By examining the cocycles, one can see that a P
2-bundle over C is of the form

P(E) → C if and only if the corresponding element in Ȟ1(C, PGl(3)) goes to
zero under the above map. This element is represented by the Čech cocycle
obtained from the transition functions of the bundle. But Ȟ2(C,O∗) = 0
for a curve C; this completes the first part of the proof of the lemma.

Next, we show that P(E) → C is deformation equivalent to

P(O ⊕ O ⊕ L) → C.

It is a standard fact that for a rank 3 bundle E over a curve, we have the
following exact sequence of bundles over C (see [6], Example 5.0.1):

0 −→ O ⊕ O −→ E(m) −→ L −→ 0,

for some line bundle L and some m � 0 such that E(m) is globally generated
by its sections. Thus E(m) corresponds to an element

v ∈ Ext1(L,O ⊕ O).

We can deform E(m) by deforming the extension class v to 0 inside this
vector space. But 0 ∈ Ext1(L,O ⊕ O) corresponds to

O ⊕ O ⊕ L → C.

So we have proven that E(m) is deformation equivalent to O ⊕ O ⊕ L.
Now we use the isomorphism P(E) ∼= P(E(m)) to complete the proof of the
lemma. �
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By this lemma, we assume that the space X = P(O ⊕ O ⊕ L), and we
let c1(L) = k. For simplicity, we use the following notations in this section:

A =
[
Zβ0(1 | 0, 0)xb

xa

]
, B =

[
Zβ0+f (1 | 0, 0)xb

xa

]
, C =

[
Zβ0−f (0 | 0, 1)xb

xa

]
,

E =
[
Zβ0(0 | 0, 1)xb

xa

]
, N =

[
Zβ0(0 | 0,−1)xb

xa

]
, M =

[
Zβ0+f (0 | 0,−1)xb

xa

]
.

A and B were given at the end of Section 4, and C and E (respectively, N
and M) were the first and the second matrices in the right hand side of (4.1)
(respectively, (4.2)). By using the notations of the previous sections, we
can write

G = A + B, U2 = C + E, U−1
2 = N + M,

and hence the formula in Theorem 1.6 (for k1 = 0 and k2 = k) reads as
follows:

Z(g | 0, k) = tr((A + B)g−1(C + E)k).

Now we are looking for those terms in this formula that correspond to
Calabi–Yau section class. If we denote this class by βcs = β0 + nf, then
n must satisfy

KX · β = 0 =⇒ 2g − 2 − k − 3n = 0.

If for given g and k there is an integral solution for n in this equation, then
the Calabi–Yau class exists. We write the above equation in terms of n
instead of k:

Z(g | 0, k) = tr((A + B)g−1(C + E)2g−2−3n).

Now by the gluing formula, G = A + B commutes with U2 = C + E, and so
we have

(5.1) Z(g | 0, k) = tr(((A + B)(C + E)2)g−1(C + E)−3n).

5.1. Notation

For two matrices U and V , by (Ua, V b) for a, b ∈ Z
+, we mean the sum of

the all the products that we can write containing a copies of U and b copies
of V . For example

(U2, V ) = U2V + UV U + V U2.
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We first assume that g > 0. We distinguish two cases:
(i) n < 0. One can see that E3 = 0 and BE 2 = 0, and so we have

Z(g | 0, k) = tr(((A + B)(C2 + E2 + (E, C)))g−1

× ((E2, C) + (E, C2) + C3)−n)

= tr((AE2 + B(E, C) + · · · )g−1((E2, C) + · · · )−n).

A, B, C and E correspond to the classes β0, β0 + f, β0 − f and β0, respec-
tively. One can see that only those terms that have been written in the last
equality above contribute to make the class βcs = β0 + nf . Thus,

Zβcs
(g | 0, k) = tr((AE2 + B(E, C))g−1((E2, C))−n)

= tr((AE2 + BEC + BCE)g−1(E2C + CE2 + ECE)−n)

= tr((AE2)g−1(CE2)−n) + tr((BEC)g−1(E2C)−n)

+ tr((BCE)g−1(ECE)−n).(5.2)

For the last equality, we only used the fact that E3 = BE2 = 0 again, and
also

(5.3) tr(UV ) = tr(V U),

for any two matrices U and V .
Now one can see easily by induction that for any non-negative integer a

AE2 (CE2)a = AE2 =

⎡
⎢⎣

1 1 1
1 1 1
1 1 1

⎤
⎥⎦φ2.

Therefore, the first term in (5.2) is

tr((AE2)g−1(CE2)−n) = tr

⎛
⎜⎝

⎡
⎢⎣

1 1 1
1 1 1
1 1 1

⎤
⎥⎦

g−1

φ2g−2

⎞
⎟⎠

= 3g−1φ2g−2.(5.4)
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Again induction on non-negative integers a, b together with simple calcula-
tions imply that

(BEC)b(E2C)a = 3b

⎡
⎢⎢⎢⎢⎢⎣

0 0
t1 − t2
t0 − t2

0 0
t0 − t2
t1 − t0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦

φ2b.

Therefore, the the second term in (5.2) is

tr((BEC)g−1(E2C)−n) = 3g−1φ2g−2.(5.5)

Powers of BCE are more difficult to compute, and so for computing the
third term in (5.2) we first notice that

CEB =

⎡
⎢⎣

0 0 0
0 0 0
3 3 3

⎤
⎥⎦φ2,

and also (ECE)a = ECE for any positive integer a, and so for b > 1, we
can write

(BCE)b(ECE)a = (B(CEB)b−1CE)(ECE) = 3b−1(BCE)(ECE)φ2b−2.

An easy calculation shows that

tr ((BCE)(ECE)) = tr(BCE) = 3φ2.

Putting all together, we can find the third term in (5.2):

tr((BCE)g−1(ECE)−n) = 3g−1φ2g−2.(5.6)

By (5.2)–(5.6), we find Zβcs
(g | 0, k) = 3gφ2g−2, which proves the theorem in

this case.
(ii) n ≥ 0. We have U−1

2 = M + N , and so we can rewrite (5.1) as

Z(g | 0, k) = tr(((A + B)(C + E)2)g−1(M + N)3n).

One can check that (M2, N) = M3 = 0, and so

Z(g | 0, k) = tr((AE2 + B(E, C) + · · · )g−1((M, N2) + N3)n).
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By the same reason as in the last case, we have

Zβcs
(g | 0, k) = tr((AE2)g−1(N2M)n) + tr((BEC)g−1(NMN)n)

+ tr((BCE)g−1(MN2)n).

The rest of the proof is similar to the last case and is omitted.
For g = 0, the result is deduced from the semi-simplicity of the TQFT

(Proposition 3.11, see also Remark 2.5).

Remark 5.2. The partition function for a Calabi–Yau section class is a
priori independent of the equivariant parameters. Hence, the calculation for
Theorem 1.7 can be done with any choice of equivariant parameters. For
example, the choice of

t0 = 0, t1 + t2 = 0,

makes the calculations simpler.

Appendix A. Proof of the Gluing theorem

We first prove the assertion of Remark 2.4, which deals with the fact that
we do not need to consider maps with disconnected domains:

Lemma A.1. The contribution of maps with disconnected domain curves in
the section class equivariant Gromov–Witten invariants of the space P(O ⊕
L1 ⊕ L2) is zero.

Proof. A disconnected domain curve whose image represents the class β0 +
nf is a union of a distinguished connected component, whose image repre-
sents the class β0 + n′f , and a number of other components, whose images
represent the class n′′f for some positive integer n′′. We have

virdimM(X/�F , n′′f) = −(−3H + (2g − 2 − k1 − k2)F ) · n′′f = 3n′′ > 0.

So by a discussion similar to Remark 2.1, one can see that

∫

[Mh(X/�F ,n′′f)]vir

1 = 0.
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Disconnected invariants can be expressed in terms of the products of the
connected invariants4, and so the lemma follows from the vanishing above.

�
Now we return to the proof of Theorem 2.3. We prove the first formula,

and the proof of the second one is similar. For simplicity, we prove the case
s = 0 and t = 0. Extending the argument to the general case is straight-
forward.

Let C0 be a connected curve of genus g with two irreducible components,
C ′ and C ′′ of genera g′ and g′′ respectively, which are attached together at
one point p. In other words

C0 = C ′
⋃

p=p′=p′′

C ′′,

where p′ ∈ C ′ and p′′ ∈ C ′′. Now we consider two P
2-bundles

X ′ = P(O ⊕ L′
1 ⊕ L′

2) −→ C ′, X ′′ = P(O ⊕ L′′
1 ⊕ L′′

2) −→ C ′′,

where L′
1, L′

2, L′′
1 and L′′

2 are line bundles of degrees k′
1, k′

2, k′′
1 and k′′

2 ,
respectively. We attach these two spaces by identifying the fibers, F ′ and
F ′′ over p′ and p′′, respectively, such that the resulting space is W0 = P(O ⊕
L1 ⊕ L2) → C0, where L1 and L2 are line bundles of degrees k1 = k′

1 + k′
2

and k2 = k′′
1 + k′′

2 , respectively. In other words

W0 = X ′
⋃

F=F ′=F ′′

X ′′,

where F is the fiber over p.
Let W → A

1 be a generic, 1-parameter deformation of W0 for which
the fibers Wt for t 
= 0 ∈ A

1 are P(O ⊕ L1 ⊕ L2) → C, where C is a smooth
curve of genus g, and L1 and L2 are line bundles of degrees k1, k2.

We follow Jun Li’s proof of the degeneration formula in [8]. Let W be
the stack of expanded degenerations of W , with central fiber W0, and let

4For non-relative invariants, this follows from the elementary fact that the moduli
space of disconnected stable maps can easily be expressed in terms of products and
finite quotients of connected map moduli spaces. For the relative invariants, the
moduli space of disconnected maps no longer has a simple description in terms
of the moduli spaces for connected maps; however, the corresponding statement
relating the disconnected invariants to the connected invariants still holds. This
can be proven using the results of [11], where the authors prove that the relative
invariants can always be expressed in terms of the non-relative invariants [13].
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Mh(W, β) be the stack of non-degenerate, pre-deformable, genus h, degree
β maps to W, where β is a section class [7].

We have the evaluation maps

ev′ : Mh′(X ′/F ′, β′) −→ F ′ = F, ev′′ : Mh′′(X ′/F ′′, β′′) −→ F ′′ = F.

Li constructs a map

Φη : M(X ′/F ′, β′) ×F M(X ′′/F ′′, β′′) → M(W0, β),

where η includes a pair of classes (β′, β′′), such that β = β′ + β′′ and a pair
of genera (h′, h′′), such that h = h′ + h′′. Then, he gives a virtual cycle
formula, which in our case is

[M(W0), β]vir =
∑

η

Φη,∗∆!
([

M(X ′/F ′, β′)
]vir ×

[
M(X ′′/F ′′, β′′)

]vir
)
,

(A.1)

where ∆ : F → F × F is the diagonal map.

Remark A.2. The torus action on the family W → A
1 gives an action on

the stack of expanded degeneration, W. One can check that pre-deforma-
bility condition is invariant under this action, and so it induces (canonically)
an action on each of the moduli spaces Mh′(X ′/F ′, β′), Mh′′(X ′′/F ′′, β′′) and
Mh(W, β). Therefore, Li’s formula holds in the equivariant Chow groups.

If we work with the basis elements x0, x1, x2 (introduced in Section 2),
for the equivariant Chow group of the fiber F , by using (2.2), one can see
easily that

x∨
0 =

x0

T (x0)
, x∨

1 =
x1

T (x1)
, x∨

2 =
x2

T (x2)

is its dual basis, and so the cohomology class of the diagonal of F × F is
given by [12, Theorem 11.11]

im(∆) =
2∑

i=0

xi × x∨
i

= x0 × x0

T (x0)
+ x1 × x1

T (x1)
+ x2 × x2

T (x2)
.



666 Amin Gholampour

Using this, we can rewrite (A.1) as

[M(W0, β)]vir =
∑

η

Φη,∗

(
2∑

i=0

(ev′)∗(xi) ∩
[
M
(
X ′/F ′, β′)]vir

× (ev′′)∗(xi)
T (xi)

∩
[
M
(
X ′′/F ′′, β′′)]vir

)
.

We now have

Zh
β (g | k1, k2) =

∫

[M(Wt,β)]vir

1 =
∫

[M(W0,β)]vir

1

=
∑

η

2∑
i=0

∫

[M(X′/F ′,β′)]vir

(ev′)∗(xi)
∫

[M(X′′/F ′′,β′′)]vir

(ev′′)∗(xi)
T (xi)

=
∑

η

2∑
i=0

Zh′

β′ (g′ | k′
1, k

′
2)xi

Zh′′

β′′ (g′′ | k′′
1 , k′′

2)xi .

Then we can write

Z(g | k1, k2) =
∑

β is a section class

∑
h

u2h−2−KX ·βZh
β (g | k1, k2)

=
∑

β

∑
h

u2h−2−KX ·β
∑

η

2∑
i=0

Zh′

β′ (g′ | k′
1, k

′
2)xi

Zh′′

β′′ (g′′ | k′′
1 , k′′

2)xi

=
∑

β, h, η, i

u2h′−2−KX′ ·β′
Zh′

β′ (g′ | k′
1, k

′
2)xi

u2h′′−2−KX′′ ·β′′

· Zh′′

β′′ (g′′ | k′′
1 , k′′

2)xi

=
2∑

i=0

Z(g′ | k′
1, k

′
2)xi

Z(g′′ | k′′
1 , k′′

2)xi .

Appendix B. Some special cases

In this appendix, we provide a few more applications of Theorem 1.6. The
proofs of the first three theorems are straightforward. One first expands the
formula in Theorem 1.6 in each case to get a polynomial in t0, t1 and t2.
The partition function that appeared in the statement of each theorem then
corresponds to the terms in this polynomial of a specific degree, determined
by the given curve class in that theorem (see Remark 2.1, and also the proofs
of Theorem 1.7 and Theorem B.4).
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Theorem B.1. Assume that k1 > 0 and k2 ≥ 0. Then the degree β0 −
k1f , level (k1,−k2) equivariant Gromov–Witten partition function of X is
given by

Zβ0−k1f (g | k1,−k2) = (t1 − t0)g+k1−1(t1 − t2)g+k1+k2−1
(
2 sin

u

2

)−2k1−k2

.

Theorem B.2. Assume that k > 0. Then the degree β0 − kf , level (k, k)
equivariant Gromov–Witten partition function of X is given by

Zβ0−kf (g | k, k) = ((t1 − t0)g+k−1(t1 − t2)g−1

+ (t2 − t0)g+k−1(t2 − t1)g−1)
(
2 sin

u

2

)−k
.

Theorem B.3. Assume that k1 ≥ 0 and k2 ≥ 0. Then the degree β0, level
(−k1,−k2) equivariant Gromov–Witten partition function of X is given by

Zβ0(g | − k1,−k2)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t0 − t1)g+k1−1(t0 − t2)g+k2−1
(
2 sin

u

2

)k1+k2

k1 > 0, k2 > 0,

((t0 − t1)g+k1−1(t0 − t2)g−1

+(t2 − t0)g−1(t2 − t1)g+k1−1)
(
2 sin

u

2

)k1

k1 > 0, k2 = 0,

((t0 − t1)g−1(t0 − t2)g+k2−1

+(t1 − t0)g−1(t1 − t2)g+k2−1)
(
2 sin

u

2

)k2

k1 = 0, k2 > 0,

(t0 − t1)g−1(t0 − t2)g−1 + (t1 − t0)g−1

(t1 − t2)g−1 + (t2 − t0)g−1(t2 − t1)g−1 k1 = 0, k2 = 0.

Theorem B.4. Let n be the greatest integer that satisfies 3n ≤ 2g − 2.
Then the degree β0 + nf , level (0, 0) equivariant Gromov–Witten partition
function of X is given by

Zβ0+nf (g | 0, 0) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 g = 3k,

3g
(
2 sin

u

2

)2g−2
g = 3k + 1,

3g−2(g − 1)
(
t20 + t21 + t22

−t0t1 − t0t2 − t1t2
) (

2 sin
u

2

)2g−4
g = 3k + 2.
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Proof. The case g = 0 again follows from the semi-simplicity of the level
(0, 0) TQFT (Corollary 3.2.5, see also Remark 2.5), once one knows the
result for g > 0. So we will assume that g > 0.

Applying Theorem 1.6 to this case, we can write

Z(g | 0, 0) = tr((A + B)g−1),

where A and B were defined in Section 5. We prove each case in this theorem
separately:

(i) g = 3k. In this case, n = 2k − 1, and one can see that (by using the
notation introduced in Section 5):

Zβ0+(2k−1)f (g | 0, 0) = tr((Ak, B2k−1)).

We have

AB2 =

⎡
⎢⎣

1 1 1
1 1 1
1 1 1

⎤
⎥⎦ 9φ6,

so for any positive integer a, we have

(B.1) (AB2)a = 33a−3φ6a−6AB2.

One can prove easily that

B3 = 0, (ABAB2)2 = 0.(B.2)

Applying (5.3) a few times to each term of tr((Ak, B2k−1)), and using
the other equalities above, we can prove that each of these terms is
either zero or is equal to

tr(AB(AB2)k−1) = 33k−6φ6k−12 tr(ABAB2).

However, an easy calculation shows that tr(ABAB2) = 0. This proves
that each term of tr((Ak, B2k−1)) is zero. So,

Zβ0+(2k−1)f (g | 0, 0) = 0.

(ii) g = 3k + 1. In this case β0 + nf is the Calabi–Yau section class,
and we have proved the theorem for this case in more generality in
Section 5.



Gromov–Witten theory of P
2-bundles 669

(iii) g = 3k + 2. In this case n = 2k, and this time we have

Zβ0+2kf (g | 0, 0) = tr((Ak+1, B2k)).

The cases k = 0, 1 can be proved by easy calculations, and so we assume
that k > 1. Applying (5.3) a few times to each term of this, and using
(B.2), we can prove that each term of tr((Ak+1, B2k)) is either zero or is
equal to either of

tr(A(AB2)k), tr((AB)2(AB2)k−1), tr(A2B2(AB2)k−1),

where the number of the terms of the first, the second and the third kinds
are 2k + 1, 3k + 1 and k, respectively. So we can write

Zβ0+2kf (g | 0, 0) = (2k + 1) tr(A(AB2)k) + (3k + 1) tr((AB)2(AB2)k−1)

+ k tr(A2B2(AB2)k−1).(B.3)

Using (B.1), we can write

tr(A(AB2)k) = 33k−3φ6k−6 tr(A(AB2))

= 33k−1(t20 + t21 + t22 − t0t1 − t0t2 − t1t2)φ6k,

tr((AB)2(AB2)k−1) = 33k−6φ6k−12 tr((AB)2(AB2))

= 2 · 33k−1(t20 + t21 + t22 − t0t1 − t0t2 − t1t2)φ6k,

tr(A2B2(AB2)k−1) = 33k−6φ6k−12 tr(A2B2(AB2))

= 33k−1(t20 + t21 + t22 − t0t1 − t0t2 − t1t2)φ6k.

We define Q := t20 + t21 + t22 − t0t1 − t0t2 − t1t2. Putting all these into (B.3),
we get

Zβ(g | 0, 0) = 33k−1(2k + 1 + 2(3k + 1) + k)Qφ6k

= 33k(3k + 1)Qφ6k = 3g−2(g − 1)Qφ2g−4,

and this proves the theorem in this case. �
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