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W 2,2-conformal immersions of a closed

Riemann surface into R
n

Ernst Kuwert and Yuxiang Li

We study sequences fk : Σk → R
n of conformally immersed, com-

pact Riemann surfaces with fixed genus and Willmore energy
W(f) ≤ Λ. Assume that Σk converges to Σ in moduli space, i.e.,
φ∗k(Σk) → Σ as complex structures for diffeomorphisms φk. Then
we construct a branched conformal immersion f : Σ → R

n and
Möbius transformations σk, such that for a subsequence
σk ◦ fk ◦ φk → f weakly in W 2,2

loc away from finitely many points.
For Λ < 8π the map f is unbranched. If the Σk diverge in moduli
space, then we show lim infk→∞ W(fk) ≥ min(8π, ωn

p ). Our work
generalizes results in [12] to arbitrary codimension.

1. Introduction

Let Σ be a closed oriented surface of genus p ∈ N0. For an immersion
f : Σ → R

n the Willmore functional is defined by

W(f) =
1
4

∫
Σ
|H|2 dμg,

where H is the mean curvature vector and g is the induced metric on Σ.
The infimum among closed immersed surfaces of genus p is denoted by
βn

p . We have βn
0 = 4π, which is attained only by round spheres [21]. For

p ≥ 1 we have the inequalities 4π < βn
p < 8π [8, 18]. In this paper we study

compactness properties of sequences fk : Σ → R
n with W(fk) ≤ Λ. By the

Gauß equations and Gauß–Bonnet, the second fundamental form is then
equivalently bounded by

∫
Σ
|Afk

|2 dμgk
≤ 4Λ + 8π(p− 1).

In [14] Langer proved a compactness theorem for surfaces with ‖A‖Lq ≤ Λ
for q > 2, using that the surfaces are represented as C1-bounded graphs
over discs of radius r(n, q,Λ) > 0. Clearly, the relevant Sobolev embedding
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fails for q = 2. For surfaces with ‖A‖L2 small in a ball, L. Simon proved an
approximate graphical decomposition, see [18], and showed the existence of
Willmore minimizers for any p ≥ 1, assuming for p ≥ 2 that

βn
p < min

{
4π +

∑
i

(βn
pi
− 4π) :

∑
i

pi = p, 1 ≤ pi < p

}
= ωn

p .

This inequality was confirmed later in [2]. As limp→∞ βn
p = 8π by [10], we

have ωn
p > 8π for large p. Recently, using the annulus version of the approx-

imate graphical decomposition lemma, a compactness theorem was proved
in [12] for surfaces in R

3 under the assumptions

lim inf
k→∞

W(fk) <

{
8π, if p = 1,
min(8π, ω3

p), if p ≥ 2.

Moreover, it was shown that these conditions are optimal. For n = 4 the
result was proved under the additional assumption lim infk→∞W(fk) < β4

p +
8π
3 . In [13] these compactness theorems were applied to prove the existence

of a Willmore minimizer with prescribed conformal type.
Here we develop a new approach to compactness, generalizing the results

of [12] to any codimension. As main tools we use a convergence theorem of
Hurwitz type for conformal immersions, which is due to Hélein [6], and the
estimates for the conformal factor by Müller and Šverák [15]. The paper is
organized as follows. In Section 2 we introduce the notion of W 2,2 conformal
immersions, and recall the main estimate from [15] as well as the monotoni-
city formula from [18]. In Section 3 we adapt the analysis of [15] to show
that isolated singularities of conformal immersions with square integrable
second fundamental form and finite area are branchpoints, in a suitable
weak sense. The compactness theorem for conformal immersions is presented
in Section 4. We first deal with the case of a fixed Riemann surface in
Proposition 4.1, and extend the result to sequences of Riemann surfaces
converging in moduli space in Theorem 4.1. Finally in Section 5, we study
surfaces whose conformal type degenerates and show that the lower bound
from [12] extends to higher codimension. Along the lines, we state a version
of Theorem 5.1.1 in [6] with optimal constants.

2. W 2,2 conformal immersions

Definition 2.1. Let Σ be a Riemann surface. A map f ∈W 2,2
loc (Σ,Rn) is

called a conformal immersion, if in any local conformal coordinates
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ϕ : U → Σ with U ⊂ C the metric gij = 〈∂if, ∂jf〉 is given by

gij = e2uδij , where u ∈ L∞
loc(U).

The set of all conformal immersions f ∈W 2,2
loc (Σ,Rn) is denoted by

W 2,2
conf,loc(Σ,R

n), and by W 2,2
conf(Σ,R

n) if Σ is compact.

It is easy to see that for f ∈W 2,2
conf(Σ,R

n) one has in local conformal
coordinates on U

u =
1
2

log
(

1
2
|Df |2

)
∈W 1,2

loc (U).

The induced measure μg, the second fundamental form A and the mean
curvature vectorH are given by the standard coordinate formulae. We define
Kg by the Gauß equation

Kg =
1
2
(|H|2 − |A|2g) = e−4u(〈A11, A22〉 − |A12|2).

In a local parameter, we will now verify the weak Liouville equation
∫

U
〈Du,Dϕ〉 =

∫
U
Kge2uϕ, for all ϕ ∈ C∞

0 (U).

In particular, this shows that Kg is intrinsic. We start by computing

〈∂2
ijf, ∂kf〉 + 〈∂2

kif, ∂jf〉 = 2 e2u∂iu δjk,

which implies after permutation of the indices that

〈∂2
ijf, ∂kf〉 = e2u(∂iu δjk + ∂ju δik − ∂ku δij).

Expanding explicitly yields

∂2
11f = A11 + ∂1u ∂1f − ∂2u ∂2f,

∂2
22f = A22 − ∂1u ∂1f + ∂2u ∂2f,

∂2
12f = A12 + ∂2u ∂1f + ∂1u ∂2f,

and we obtain

〈A11, A22〉 − |A12|2 = 〈∂2
11f, ∂

2
22f〉 − |∂2

12f |2 + 2e2u|Du|2.
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For any u ∈W 1,2 ∩ L∞(U), f ∈W 2,2
loc (U,Rn) and ϕ ∈ C∞

0 (U), we have the
formula

∫
U

(
〈∂2

11f, ∂
2
22f〉 − |∂2

12f |2
)

e−2uϕ

=
∫

U

(
〈∂1f, ∂

2
12f〉∂2

(
e−2uϕ

) − 〈∂1f, ∂
2
22f〉∂1

(
e−2uϕ

))
.

This follows by approximation from the case when f is smooth. Now for f
conformal

〈∂1f, ∂
2
12f〉 = e2u∂2u and 〈∂1f, ∂

2
22f〉 = −e2u∂1u,

which yields

∫
U

(
〈∂2

11f, ∂
2
22f〉 − |∂2

12f |2
)

e−2uϕ =
∫

U
〈Du,Dϕ〉 − 2

∫
U
|Du|2ϕ,

and the Liouville equation follows.

Remark 2.1. More generally if g = e2ug0 where g0 is any smooth conformal
metric, then

−Δg0u = Kge2u −Kg0 weakly.

Testing with a constant function, we infer for closed Σ the Gauß–Bonnet
formula ∫

Σ
Kg dμg = 2πχ(Σ).

W 2,2 conformal immersions f can be approximated by smooth immer-
sions in the W 2,2 norm. In fact, a standard mollification fε will be immersed
for small ε > 0, by an argument of [17].

2.1. Gauß map and compensated compactness

By assumption the right-hand side Kg e2u of the Liouville equation belongs
to L1. In [15] Müller and Šverák discovered that the term can be written as
a sum of Jacobi determinants, and that improved estimates can be obtained
from the Wente lemma [20] or from [4]. The following result is Corollary 3.5.7
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of [15]. Recall that in their notation, ω denotes twice the standard Kähler
form and W 1,2

0 (C) is the space of functions v ∈ L2
loc(C) with Dv ∈ L2(C).

Theorem 2.1. Let ϕ ∈W 1,2
0 (C,CPn) satisfy

∫
C

ϕ∗ω = 0 and
∫

C

Jϕ ≤ γ < 2π.

Then there is a unique function v ∈W 1,2
0 (C) solving the equation −Δv =

∗ϕ∗ω in C with boundary condition limz→∞ v(z) = 0. Moreover

‖v‖L∞(C) + ‖Dv‖L2(C) ≤ C(γ)
∫

C

|Dϕ|2.

For f ∈W 2,2
conf(D,R

n) let G ∈W 1,2(D,CPn−1) be the associated Gauß
map. Here we embed the Grassmannian G(2, n) of oriented 2-planes into
CPn−1 by sending an orthonormal basis e1,2 to [(e1 + ie2)/

√
2]. Then

Kg e2u = ∗G∗ω and
∫

D
|DG|2 =

1
2

∫
D
|A|2 dμg.

Corollary 2.1. For f ∈W 2,2
conf(D,R

n) with induced metric gij = e2uδij,
assume ∫

D
|A|2 dμg ≤ γ < γn =

{
8π, if n = 3,
4π, if n ≥ 4.

Then there exists a function v : C → R solving the equation

−Δv = Kg e2u in D,

and satisfying the estimates

‖v‖L∞(C) + ‖Dv‖L2(C) ≤ C(γ)
∫

D
|A|2 dμg.

Proof. We follow [15]. Define the map ϕ : C → CPn−1 by

ϕ(z) =

{
G(z), if z ∈ D,

G(1
z ), if z ∈ C\D.
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Then ϕ ∈W 1,2
0 (C,CPn−1) and

∫
C
ϕ∗ω = 0. For n ≥ 4, we have

∫
C

Jϕ = 2
∫

D
JG ≤ 1

2

∫
D
|A|2 dμg ≤ γ

2
< 2π.

Thus the result follows from Theorem 2.1. The same is true for n = 3, since
then ∫

C

Jϕ =
1
2

∫
D
|Kg| dμg ≤ 1

4

∫
D
|A|2 dμg ≤ γ

4
< 2π.

�

The function Kg e2u belongs actually to the Hardy space H1; see [4].
This implies that v has second derivatives in L1, and in particular that v
is continuous [15]. As u−v is harmonic, it follows that u is also continuous,
but this will not be used here. The following is an immediate consequence
of Corollary 2.1.

Corollary 2.2. Let f ∈W 2,2
conf(D,R

n) with induced metric gij = e2uδij. If
∫

D
|A|2 dμg ≤ γ < γn,

then we have the estimate

‖u‖L∞(D 1
2
) + ‖Du‖L2(D 1

2
) ≤ C(γ)

(∫
D
|A|2 dμg + ‖u‖L1(D)

)
.

2.2. Simon’s monotonicity formula

We briefly review the monotonicity identity from [18] for proper W 2,2 con-
formal immersions f : Σ → R

n. For more details we refer to [11]. Since
f is locally Lipschitz, the measure μ = f(μg) is an integral varifold with
multiplicity function θ2(μ, x) = #f−1{x} and approximate tangent space
Txμ = Df(p) · TpΣ a.e. when x = f(p). The immersion f satisfies

∫
Σ

divgX dμg = −
∫

Σ
〈X,H〉 dμg, for any X ∈W 1,1

0 (Σ,Rn).

For the varifold μ this implies the first variation formula
∫

divμφdμ = −
∫
〈φ,Hμ〉 dμ, for φ ∈ C1

c (Rn,Rn),
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where the weak mean curvature is given by

Hμ(x) =

⎧⎪⎨
⎪⎩

1
θ2(μ, x)

∑
p∈f−1{x}

H(p), if θ2(μ, x) > 0,

0, else.

From the definition we have trivially the inequality

W(μ, V ) :=
1
4

∫
V
|Hμ|2 dμ ≤ 1

4

∫
f−1(V )

|H|2 dμg.

Observing that Hμ(x) is μ a.e. perpendicular to Txμ, the proof of the mono-
tonicity identity in [18] extends to show that for Bσ(x0) ⊂ B�(x0) one has

gx0(�) − gx0(σ) =
1

16π

∫
B�(x0)\Bσ(x0)

∣∣∣∣Hμ + 4
(x− x0)⊥

|x− x0|2
∣∣∣∣
2

dμ,

where

gx0(r) =
μ(Br(x0))

πr2
+

1
4π

W(μ,Br(x0)) +
1

2πr2

∫
Br(x0)

〈x− x0, Hμ〉 dμ.

Applications include the existence and upper semicontinuity of θ2(μ, x) and,
for closed surfaces, the Li–Yau inequality; see [9],

θ2(μ, x) ≤ 1
4π

W(f).

Another consequence is the diameter bound from [18]. If Σ is compact and
connected, then for f ∈W 2,2

conf(Σ,R
n) one obtains

(2.1)
(
μg(Σ)
W(f)

) 1
2

≤ diam f(Σ) ≤ C(μg(Σ)W(f))
1
2 .

3. Classification of isolated singularities

In [15] Müller and Šverák studied the behavior at infinity of complete, con-
formally parameterized surfaces with square integrable second fundamental
form. Here we adapt their analysis to the case of finite isolated singularities.
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Theorem 3.1. Suppose that f ∈W 2,2
conf,loc(D\{0},Rn) satisfies

∫
D\{0}

|A|2 dμg <∞ and μg(D\{0}) <∞,

where gij = e2uδij is the induced metric. Then f ∈W 2,2
loc (D,Rn) and we have

u(z) = m log |z| + ω(z), where m ∈ N0, ω ∈ C0 ∩W 1,2(D),

−Δu = −2mπδ0 +Kg e2u, in D.

The multiplicity of the immersion at f(0) is given by

θ2(f(μg�Dσ(0)), f(0)) = m+ 1 for any small σ > 0.

Moreover, if m = 0 then f is a conformal immersion on D.

Proof. We may assume
∫
D |A|2 dμg < 4π; hence the Gauß map G : D →

G(n, 2) has energy

∫
D
|DG|2 =

1
2

∫
D
|A|2 dμg < 2π.

Extending byG(z) := G(1/z̄) for |z| > 1 yieldsG ∈W 1,2
0 (R2, G(n, 2)), where

∫
R2

G∗ω = 0 and
∫

R2

JG ≤
∫

D
|DG|2 < 2π.

Thus there is a function v ∈ C0 ∩W 1,2
0 (R2) such that

−Δv = Kg e2u and lim
z→∞ v(z) = 0,

‖v‖C0(R2) + ‖Dv‖L2(R2) ≤ C

∫
D
|A|2 dμg.

Now consider the harmonic function h : D\{0} → R, h(z) = u(z) − v(z) −
α log |z|, where

α =
1
2π

∫
∂Dr(0)

∂(u− v)
∂r

ds ∈ R, for r ∈ (0, 1).
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We claim that h has a removable singularity at the origin. Let h = Reφ
where φ : D\{0} → C is holomorphic, and compute for m = min{k ∈ Z :
k ≥ α}

|zm eφ(z)| = |z|m eh(z) ≤ eu(z)−v(z) ≤ C eu(z) ∈ L2(D).

Thus zm eφ(z) = zkg(z) for k ∈ N0 and g : D → C\{0} holomorphic, which
yields h(z) = (k −m) log |z| + log |g(z)|. But the choice of α in the defini-
tion of h implies k = m, thereby proving our claim. Moreover from |z|α =
eu(z)−v(z)−h(z) ∈ L2(D), we conclude that

u(z) = α log |z| + ω(z), where α > −1, ω ∈ C0 ∩W 1,2(D).

Next we perform a blow-up to show that α = m. For any z0 ∈ C\{0} and
0 < λ < 1/|z0| we let

fλ : D 1
λ
(0) → R

n, fλ(z) =
1

λα+1
(f(λz) − f(λz0)).

The fλ have induced metric (gλ)ij = e2uλδij , where

uλ(z) = u(λz) − α log λ = α log |z| + ω(λz).

Putting ω0 = ω(0), we have

uλ(z) → α log |z| + ω0 in C0
loc ∩W 1,2

loc (C\{0}).

Furthermore, the Gauß map of fλ is given by Gλ(z) = G(λz), in particular
DGλ → 0 in L2

loc(C\{0}). Using the formula

|D2fλ|2 = 2 e2uλ(|DGλ|2 + 2|Duλ|2),

we obtain by Vitali’s theorem

|D2fλ|(z) → 2 eω0α

|z|1−α
in L2

loc(C\{0}).

As fλ(z0) = 0, we can find a sequence λk ↘ 0 such that the fλk
converge

in C0
loc(C\{0}) and weakly in W 2,2

loc (C\{0}) to a limit map f0 : C\{0} → R
n

satisfying f0(z0) = 0. After passing to a further subsequence, we can also
assume that Gλk

→ L in W 1,2
loc (C\{0}), where L ∈ G(n, 2) is a constant. It
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is then easy to see that f0 maps into the plane L. Further we have

〈∂if0(z), ∂jf0(z)〉 = e2ω0 |z|2αδij .

Using that f0 is locally in W 2,2 ∩W 1,∞ we verify the identity

〈Δf0, ∂jf0〉 = ∂i〈∂if0, ∂jf0〉 − 1
2
∂j〈∂if0, ∂if0〉.

Since f0 is conformal, maps into L and has rank two almost everywhere
we see that f0 is harmonic on C\{0}. Identifying L ∼= C by choosing an
orthonormal frame e1,2, the conformality relations are

4
∂f0

∂z

(
∂f0

∂z

)
=

∣∣∣∣∂f0

∂x

∣∣∣∣
2

−
∣∣∣∣∂f0

∂y

∣∣∣∣
2

− 2i
〈
∂f0

∂x
,
∂f0

∂y

〉
= 0.

Since the two factors on the left are holomorphic, the identity principle
implies that f0 is holomorphic on C\{0}, after replacing e1, e2 by e1,−e2 if
necessary. Now |f ′0(z)| = eω0 |z|α and thus for some β ∈ [0, 2π)

f ′0(z) = eω0+iβzα on C\[0,∞).

As f ′0 is single-valued, we must have α = m ∈ N0 and

f0(z) =
eω0+iβ

m+ 1
(
zm+1 − zm+1

0

)
.

In particular, we have the desired expansion u(z) = m log |z| + v(z) + h(z),
and u satisfies the stated differential equation. Furthermore,

|D2f |2 = 2 e2u
(|DG|2 + 2|Du|2) ∈ L1(D),

thus f ∈W 2,2(D,Rn). Assuming without loss of generality f(0) = 0, we
claim that

lim
z→0

|f(z)|
|z|m+1

=
eω0

m+ 1
.

Since |Df(z)| = |z|m eω(z) with ω bounded, we have |f(z)| ≤ C|z|m+1. Now
let zk → 0 be a given sequence. We can assume that ζk := zk

|zk| → ζ with
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|ζ| = 1, and compute

∣∣∣∣ |f(zk)|
|zk|m+1

− eω0

m+ 1

∣∣∣∣ =

∣∣∣∣∣
∣∣∣fλk

(ζk) +
1

λm+1
k

f(λkz0)
∣∣∣

−
∣∣∣eω0+iβ

m+ 1
(ζm+1 − zm+1

0 ) +
eω0+iβ

m+ 1
zm+1
0

∣∣∣
∣∣∣∣∣

≤
∣∣∣∣fλk

(ζk) − eω0+iβ

m+ 1
(ζm+1 − zm+1

0 )
∣∣∣∣ + C|z0|m+1.

Letting k → ∞ we obtain, for a constant C <∞ depending only onm and ω,

lim inf
k→∞

∣∣∣∣ |f(zk)|
|zk|m+1

− eω0

m+ 1

∣∣∣∣ ≤ C|z0|m+1.

This proves our claim since z0 ∈ C\{0} was arbitrary. Now

lim
�↘0

μg

(
D�(0)

)
πr(�)2

= m+ 1, where r(�) =
eω0

m+ 1
�m+1.

Choose σ ∈ (0, 1) such that f(z) �= 0 for z ∈ Dσ(0)\{0}, and let �1,2 > 0 be
such that

1
γ
r(�1) = r = γr(�2), where γ ∈ (0, 1).

Then for r > 0 sufficiently small we have the inclusions

D�1(0) ⊂ (
f−1(Br(0)) ∩Dσ(0)

) ⊂ D�2(0).

It follows that

γ2μg(D�1(0))
πr(�1)2

≤ f(μg�Dσ(0))(Br(0))
πr2

≤ 1
γ2

μg(D�2(0))
πr(�2)2

.

Letting r ↘ 0, γ ↗ 1 proves that θ2(f(μg�Dσ(0)), 0) = m+ 1. �

A map f : Σ → R
n is called a branched conformal immersion (with

locally square integrable second fundamental form), if f ∈W 2,2
conf,loc(Σ\S,Rn)

for some discrete set S ⊂ Σ and
∫

Ω
|A|2 dμg <∞ and μg(Ω) <∞, for all Ω ⊂⊂ Σ.
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The number m(p) as in Theorem 3.1 is the branching order, and m(p) + 1
is the multiplicity at p ∈ Σ. The map f is unbranched at p if and only
if m(p) = 0. For a closed Riemann surface Σ and a branched conformal
immersion f : Σ → R

n, consider now

f̂ = Ix0 ◦ f : Σ\f−1{x0} → R
n, where Ix0(x) = x0 +

x− x0

|x− x0|2 .

Then ĝ = e2vg where v = −log |f − x0|2. The weak Liouville equation says
that

∫
Σ
ϕKĝ dμĝ −

∫
Σ
ϕKg dμg = −

∫
Σ
〈D log |f − x0|2, Dϕ〉g dμg,

for all ϕ ∈ C∞
0 (Σ\f−1{x0}).

A simple computation shows |Â◦|2dμĝ = |A◦|2 dμg; hence by the Gauß
equation

1
4

∫
Σ
ϕ|Ĥ|2 dμĝ − 1

4

∫
Σ
ϕ|H|2 dμg = −

∫
Σ
〈D log |f − x0|2, Dϕ〉g dμg.

At a point p ∈ f−1{x0} of order m ∈ N0, choose conformal coordinates on
the unit disc D and introduce the rescaled maps

fλ : D → R
n, fλ(z) =

1
λm+1

(f(λz) − x0).

From the proof of Theorem 3.1, we have that fλk
→ f0 weakly in W 2,2 away

from the origin for a subsequence λk ↘ 0, where f0 is given by

f0(z) =
eω0

m+ 1
Lzm+1, for some L ∈ O(2, n), ω0 ∈ R.

Fix a smooth function ϕ : R
n → [0, 1], such that |ϕ(z)| = 1 for |z| ≥ 1 and

ϕ = 0 in a neighborhood of the origin. Using as cut-off function ϕλ(z) =
ϕ( z

λ), we obtain

∫
D
〈D log |f − x0|2, Dϕλ〉g dμg =

∫
D

2〈f(z) − x0, ∂if(z)〉
|f(z) − x0|2

1
λ
∂iϕ

( z
λ

)
dz

=
∫

D

2〈fλ(ζ), ∂ifλ(ζ)〉
|fλ(ζ)|2 ∂iϕ(ζ) dζ.
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Now for λk ↘ 0 the right-hand side converges to

∫
D

2〈f0, ∂if0〉
|f0|2 ∂iϕ = 2(m+ 1)

∫
D

∂rϕ

r
= 4π(m+ 1).

Adding the contribution of the finitely many preimages we conclude

(3.1) W(f̂) = W(f) − 4π
∑

p∈f−1{x0}
(m(p) + 1).

4. Weak compactness of conformal immersions

Proposition 4.1. Let Σ be a closed Riemann surface and fk ∈W 2,2
conf

(Σ,Rn) be a sequence of conformal immersions satisfying

W(fk) ≤ Λ <∞.

Then for a subsequence there exist Möbius transformations σk and a finite
set S ⊂ Σ, such that

σk ◦ fk → f, weakly in W 2,2
loc (Σ\S,Rn),

where f : Σ → R
n is a branched conformal immersion with square integrable

second fundamental form. Moreover, if Λ < 8π then f is unbranched and
topologically embedded.

We will use the following standard estimate.

Lemma 4.1. Let Σ be a two-dimensional, closed manifold with smooth
Riemannian metric g0, and suppose that u ∈W 1,2(Σ) is a weak solution of
the equation

−Δg0u = F, where F ∈ L1(Σ).

Then for any Riemannian ball Br(p) and q ∈ [1, 2) we have

‖Du‖Lq(B
g0
r (p)) ≤ C r

2
q
−1‖F‖L1(Σ), where C = C(Σ, g0, q) <∞.
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Proof. We may assume that ‖F‖L1(Σ) = 1 and
∫
Σ u dμg0 = 0. The function

u is given by

u(x) =
∫

Σ
G(x, y)F (y) dμg0(y),

where G(x, y) is the Riemannian Green function; see Theorem 4.13 in [1].
In particular, G(x, y) = G(y, x), and we have the estimate

|DxG(x, y)| ≤ C

d(x, y)
, where C = C(Σ, g) <∞.

By Jensen’s inequality we get
∫

Br(p)
|Du|q dμg0 ≤

∫
Br(p)

( ∫
Σ
|DxG(x, y)||F (y)| dμg0(y)

)q
dμg0(x)

≤
∫

Σ
|F (y)|

∫
Br(p)

|DxG(x, y)|q dμg0(x) dμg0(y)

≤ C

∫
Σ
|F (y)|

∫
Br(p)

1
d(x, y)q

dμg0(x) dμg0(y).

Now if d(p, y) < 2r we can estimate

∫
Br(p)

1
d(x, y)q

dμg0(x) ≤
∫

B3r(y)

1
d(x, y)q

dμg0(x) ≤ Cr2−q.

In the other case d(p, y) ≥ 2r, we have d(x, y) ≥ r on Br(p), which implies

∫
Br(p)

1
d(x, y)q

dμg0(x) ≤
C

rq
μg(Br(p)) ≤ Cr2−q.

The statement of the lemma follows. �

Proof of Proposition 4.1: We may assume μgk
�|Ak|2 → α as Radon mea-

sures, and put

S = {p ∈ Σ : α({p}) ≥ γn}.
Choose a smooth, conformal background metric g0 and write gk = e2ukg0.
Then

∫
Σ
|Kgk

e2uk | dμg0 =
∫

Σ
|Kgk

| dμgk
≤ 1

2

∫
Σ
|Ak|2 dμgk

≤ C(Λ).
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From the equation −Δg0uk = Kgk
e2uk −Kg0 , we thus obtain using

Lemma 4.1 for arbitrary q ∈ (1, 2) the bound

∫
Σ
|Duk|q dμg0 ≤ C = C(Λ,Σ, g0, q).

By dilating the fk appropriately we can arrange that
∫

Σ
uk dμg0 = 0,

and then get by the Poincaré inequality; see Theorem 2.34 in [1],

‖uk‖W 1,q(Σ) ≤ C.

In particular, we can assume that uk → u weakly in W 1,q(Σ). For any
p /∈ S, we choose conformal coordinates on a neighborhood Uδ(p) ∼= Dδ(0),
where Uδ(p) ⊂⊂ Σ\S. Putting (gk)ij = e2vkδij we have (g0)ij = e2(vk−uk)δij
and hence, for a constant depending on Uδ(p),

‖vk‖W 1,q(Uδ(p)) ≤ C.

Passing to a smaller δ > 0 if necessary, we obtain from Corollary 2.2 the
estimate

‖vk‖L∞(Uδ(p)) + ‖Dvk‖L2(Uδ(p)) ≤ C.

Hence we can assume that vk converges to v on Uδ(p) weakly in W 1,2 and
pointwise almost everywhere. But now |Dfk| = evk and Δfk = e2vkHk, where
by assumption ∫

Uδ(p)
|Hk|2e2vk dx dy ≤ Λ.

Translating the fk such that fk(p) = 0 for some fixed p ∈ Σ\S, we finally
obtain

‖fk‖W 2,2(Ω) ≤ C, for any Ω ⊂⊂ Σ\S.

In particular, the fk converge weakly in W 2,2
loc (Σ\S) to some f ∈W 2,2

loc (Σ\S),
where f has induced metric g = e2ug0 and u ∈ L∞

loc(Σ\S). If lim supk→∞ μgk

(Σ) <∞, then μg(Σ) <∞ by Fatou’s lemma, and the main statement of
Proposition 4.1 follows from Theorem 3.1.
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To prove the statement also in the case μgk
(Σ) → ∞, suppose that

there is a ball B1(x0) with fk(Σ) ∩B1(x0) = ∅ for all k. Then f̂k = Ix0 ◦ fk

converges to f̂ = Ix0 ◦ f weakly in W 2,2
loc (Σ\S), and f̂ has induced metric

ĝ = e2ûg0 where û = u− log |f − x0|2 ∈ L∞
loc(Σ\S). Moreover, Lemma 1.1

in [18] yields that

μĝk
(Σ) ≤ Λ

(
diam f̂k(Σ)

)2 ≤ 2Λ.

Thus μĝ(Σ) <∞ and the result follows as above. To find the ball B1(x0) we
employ an argument from [12]. For μk = fk(μgk

) we have by equation (1.3)
in [18]

μk(BR(0)) ≤ CR2, for all R > 0.

Thus μk → μ and fk(μgk
�|Hk|2) → ν as Radon measures after passing to a

subsequence. Equation 1.4 in [18] implies in the limit

μ(B�(x))
�2

+ ν(B�(x)) ≥ c > 0, for all x ∈ sptμ, � > 0.

As shown in [18], p. 310, the set of accumulation points of the sets fk(Σ)
is just sptμ. For R > 0 to be chosen, let B2(xj), j = 1, . . . , N , be a maxi-
mal collection of 2-balls with centers xj ∈ BR(0), hence N ≥ Rn/4n. Now if
sptμ ∩B1(xj) �= ∅ for all j, then summation of the inequality over the balls
yields

cN ≤
N∑

j=1

(
μ
(
B2(xj)

)
+ ν

(
B2(xj)

)) ≤ C(Λ, n)(R2 + 1).

Therefore sptμ ∩B1(xj) = ∅ for some j, if R = R(Λ, n) is sufficiently large.
The additional conclusions in the case Λ < 8π are clear from formula (3.1)
and Theorem 3.1. �

The following existence result is proved independently in a recent
preprint by Rivière [16]. It extends previous work of Kuwert and Schätzle
[13]. In their paper, it is shown that the minimizers are actually smooth.

Corollary 4.1. Let Σ be a closed Riemann surface such that

βn
Σ = inf{W(f) : f ∈W 2,2

conf(Σ,R
n)} < 8π.

Then the infimum βn
Σ is attained.
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We now generalize Proposition 4.1 to the case of varying Riemann sur-
faces. The following standard lemma will be useful, see [5] for a proof.

Lemma 4.2. Let gk, g be smooth Riemannian metrics on a surface M , such
that gk → g in Cs,α(M), where s ∈ N, α ∈ (0, 1). Then for each p ∈M there
exist neighborhoods Uk, U and smooth conformal diffeomorphisms ϕk : D →
(Uk, gk), ϕ : D → (U, g), such that ϕk → ϕ in Cs+1,α(D,M).

Theorem 4.1. Let fk ∈W 2,2(Σk,R
n) be conformal immersions of compact

Riemann surfaces of genus p. Assume that the Σk converge to Σ in moduli
space, i.e., φ∗k(Σk) → Σ as complex structures for suitable diffeomorphisms
φk, and that

W(fk) ≤ Λ <∞.

Then there exist a branched conformal immersion f : Σ → R
n with square

integrable second fundamental form, a finite set S ⊂M and Möbius trans-
formations σk, such that for a subsequence

σk ◦ fk ◦ φk → f, weakly in W 2,2(Σ\S,Rn).

The convergence of the complex structures implies that φ∗kg0,k → g0,
where g0,k, g are the suitably normalized, constant curvature metrics in Σk,
Σ; see chapter 2.4 in [19]. The proof is now along the lines of Proposition 4.1,
using the local conformal charts from Lemma 4.2.

5. The energy of surfaces diverging in moduli space

5.1. Hélein’s convergence theorem

The following result, with constant 8π/3 instead of γn, is due to Hélein;
see Theorem 5.1.1 in [6]. To obtain the constant γn, one combines with the
estimate of [15]. For convenience of the reader, we include the proof. At the
end of the subsection we will show that γn is in fact optimal.

Theorem 5.1. Let fk ∈W 2,2
conf(D,R

n) be a sequence of conformal immer-
sions with induced metrics (gk)ij = e2ukδij, and assume

∫
D
|Afk

|2 dμgk
≤ γ < γn =

{
8π, for n = 3,
4π, for n ≥ 4.
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Assume also that μgk
(D) ≤ C and fk(0) = 0. Then fk is bounded in

W 2,2(Dr,R
n) for any r ∈ (0, 1), and there is a subsequence such that one

of the following two alternatives holds:

(a) uk is bounded in L∞(Dr) for any r ∈ (0, 1), and fk converges weakly
in W 2,2

loc (D,Rn) to a conformal immersion f ∈W 2,2
conf,loc(D,R

n).

(b) uk → −∞ and fk → 0 locally uniformly on D.

Proof. By Corollary 2.1 there is a solution vk of the equation −Δvk =
Kgk

e2uk satisfying

‖vk‖L∞(D) + ‖Dvk‖L2(D) ≤ C(γ)
∫

D
|Afk

|2 dμgk
.

Clearly hk = uk − vk is harmonic on D. Now
∫

D
e2u+

k = |{uk ≤ 0}| +
∫
{uk>0}

e2uk ≤ C,

and hence
∫

D
u+

k ≤ C.

For dist (z, ∂D) ≥ r where r ∈ (0, 1) we get

hk(z) =
1
πr2

∫
Dr(z)

(uk − vk) ≤ 1
πr2

∫
D
u+

k + ‖vk‖L∞(D) ≤ C(γ, r).

Thus uk = vk + hk is locally bounded from above, which implies that the
sequence fk is bounded in W 1,∞

loc (D,Rn). As Δfk = e2ukHfk
, we further have

for Ω = D1−r(0)
∫

Ω
|Δfk|2 =

∫
Ω

e2uk |Hfk
|2 dμgk

≤ C(γ, r)
∫

Ω
|Afk

|2 dμgk
≤ C(γ, r).

Thus fk is also bounded in W 2,2
loc (D,Rn) and converges, after passing to a

subsequence,W 2,2-weakly to some f ∈W 2,2
loc ∩W 1,∞

loc (D,Rn). Now if
∫
D u

−
k ≤

C, then for dist (z, ∂D) ≥ r

hk(z) =
1
πr2

∫
Dr(z)

(uk − vk) ≥ − 1
πr2

∫
D
u−k − ‖vk‖L∞(D) ≥ −C(γ, r).
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Thus uk = vk + hk is bounded in L∞
loc ∩W 1,2

loc (D), and uk converges pointwise
to a function u ∈ L∞

loc(D). We conclude

gij = 〈∂if, ∂jf〉 = e2uδij ,

which means that f is a conformal immersion as claimed in case (a). We will
now show that

∫
D u

−
k → ∞ implies alternative (b). Namely, we then have

hk(0) =
1
π

∫
D

(uk − vk) → −∞.

As C(γ, r) − hk ≥ 0 on Ω, we get by the Harnack inequality

sup
Ω′

hk ≤ 1
C(r)

inf
Ω′
hk + C(γ, r) → −∞, where Ω′ = D1−2r(0).

Thus uk = vk + hk → −∞ and fk → 0 locally uniformly on D. �

Applying Lemma 4.2, we get a version of Hélein’s theorem for conformal
immersions with respect to a convergent sequence of metrics.

Corollary 5.1. The statement of Theorem 5.1 continues to hold for immer-
sions fk ∈W 2,2(D,Rn) with induced metric gk = e2ukg0,k, if the (g0,k)ij con-
verge to δij smoothly on D.

Relating to Remark 5.1.3 in [6], we now show that the constant 4π in
Theorem 5.1 is optimal for n ≥ 4. For ε > 0, we consider the conformally
immersed minimal discs

fε : D → C
2, fε(z) =

(
1
2
z2, εz

)
.

We compute (gε)ij = e2uεδij where uε(z) = 1
2 log(|z|2 + ε2), and further

∫
D
|Afε

|2 dμgε
= −2

∫
D
Kgε

dμgε
= 2

∫
∂D

∂uε

∂r
ds =

4π
1 + ε2

< 4π.

As fε(z) → (1
2z

2, 0) for ε↘ 0, none of the two alternatives (a) or (b) is
satisfied. For the optimality of γ3 = 8π we also follow [15] and consider
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Enneper’s minimal surface

f : C → R
3, f(z) =

1
2

Re
(
z − 1

3
z3, i

(
z +

1
3
z3

)
, z2

)
.

We have fλ(z) = 1
λ3 f(λz) → −1

6(z3, 0) ∈ C × R = R
3 as λ↗ ∞. Restricting

fλ to D yields conformally immersed discs with
∫
D |Afλ

|2 dμgλ
< 8π.

5.2. The case of tori

The following was proved in [12] for n = 3, and for n = 4 with bound min(8π,
β4

1 + 8π
3 ).

Theorem 5.2. Let Σk be tori which diverge in moduli space. Then for any
sequence of conformal immersions fk ∈W 2,2

conf(Σk,R
n) we have

lim inf
k→∞

W(fk) ≥ 8π.

Proof. We may assume that Σk = C/Γk where Γk = Z ⊕ Z(ak + ibk) is nor-
malized by 0 ≤ ak ≤ 1

2 , a2
k + b2k ≥ 1 and bk > 0. We also assume that the

fk : Σk → R
n satisfy

1
4

lim sup
k→∞

∫
Σk

|Afk
|2 dμgk

= lim sup
k→∞

W(fk) ≤ Λ <∞.

We lift the fk to Γk-periodic maps from C into R
n. Theorem 3.1 shows that

fk is not constant on any circle Cv = [0, 1] × {v}, v ∈ R. Hence by passing to
1
λk

(fk(u, v + vk) − fk(0, vk)) for suitable λk > 0, vk ∈ [0, bk), we may assume
that

1 = diam fk(C0) ≤ diam fk(Cv) for all v ∈ R, and fk(0, 0) = 0.

Arguing as in the proof of Proposition 4.1, we obtain B1(x0) ⊂ R
n such that

fk(Σk) ∩B1(x0) = ∅ for all k. For f̂k = Ix0 ◦ fk we have f̂k(Σk) ⊂ B1(x0),
and Lemma 1.1 in [18] implies an area bound μĝk

(Σk) ≤ C. Up to a sub-
sequence, we have μĝk

�|Af̂k
|2 → α as Radon measures on the cylinder C =

[0, 1] × R. The set S = {w ∈ C : α({w}) ≥ γn} is discrete, and

�(w) = inf{� > 0 : α(D�(w)) ≥ γn} > 0, for w ∈ Ω = C\S.

Now f̂k converges locally uniformly in Ω either to a conformal immersion, or
to a point x1 ∈ R

n. This follows from Theorem 5.1 together with a continu-
ation argument, using that �(w) is lower semicontinuous and hence locally
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bounded from below. Note

f̂k(C0) ⊂ Ix0

(
B1(0)

) ⊂ R
n\Bθ(x0), where θ =

1
|x0| + 1

> 0.

In the second alternative we thus get |x1 − x0| ≥ θ > 0, and fk|Cv
con-

verges uniformly to the point Ix0(x1) for any Cv ⊂ Ω, in contradiction to
diam fk(Cv) ≥ 1. Therefore f̂k converges to a conformal immersion f̂ : Ω →
R

n. Now the assumption that Σk diverges in moduli space yields that bk →
∞, so that f̂ : Ω → R

n has second fundamental form in L2(C) and finite
area. Applying Theorem 3.1 to the points at v = ±∞ we see that f̂(Cv) →
x± ∈ R

n for v → ±∞. Let us assume that x+ �= x0. Then for any ε > 0 we
find a δ > 0 with I(Bδ(x+)) ⊂ Bε(I(x+)). Choosing v <∞ large such that
f̂(Cv) ⊂ B δ

2
(x+), we get for sufficiently large k

fk(Cv) = I
(
f̂k(Cv)

) ⊂ I
(
Bδ(x+)

) ⊂ Bε(I(x+)).

Taking ε = 1
3 yields a contradiction to diam fk(Cv) ≥ 1. This shows x± = x0

and in particular θ2(μ̂, x0) ≥ 2 where μ̂ = f̂(μĝ). We conclude from the Li–
Yau inequality, see Section 2.2,

lim inf
k→∞

W(fk) = lim inf
k→∞

W(f̂k) ≥ W(f̂) ≥ 8π.

�

5.3. The case of genus p ≥ 2

We first collect some facts about degenerating Riemann surfaces from [3,
7]. By definition, a compact Riemann surface with nodes is a compact,
connected Hausdorff space Σ together with a finite subset N , such that
Σ\N is locally homeomorphic to D, while each a ∈ N has a neighborhood
homeomorphic to {(z, w) ∈ C

2 : zw = 0, |z|, |w| < 1}. Moreover, all transi-
tion functions are required to be holomorphic. The points in N are called
nodes. Each component Σi of Σ\N is contained in a compact Riemann sur-
face Σi, which is given by adding points to the punctured coordinate discs at
the nodes. We have q ≤ ν + 1, where q and ν are the number of the compo-
nents and the nodes, respectively. We denote by pi the genus of Σi and νi the
number of punctures of Σi. If 2pi + νi ≥ 3 or equivalently χ(Σi) < 0, then
Σi carries a unique conformal, complete metric having constant curvature
−1. With respect to this metric, the surface has cusps at the punctures and
area 4π(pi − 1 + νi).
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Next let Σk be a sequence of compact Riemann surfaces of fixed genus
p ≥ 2, with hyperbolic metrics hk. By Proposition 5.1 in [7], there exists a
compact Riemann surface Σ with nodes N = {a1, . . . , ar}, and for each k
a maximal collection Γk = {γ1

k , . . . , γ
r
k} of pairwise disjoint, simply closed

geodesics in Σk with �jk = L(γj
k) → 0, such that after passing to a subse-

quence the following holds:

(1) p− ∑q
i=1 pi = ν + 1 − q ≥ 0.

(2) There are maps ϕk ∈ C0(Σk,Σ), such that ϕk : Σk\Γk → Σ\N is dif-
feomorphic and ϕk(γ

j
k) = aj for j = 1, . . . , r.

(3) For the inverse diffeomorphisms ψk : Σ\N → Σk\Γk, we have ψ∗
khk →

h in C∞
loc(Σ\N).

In the following, we consider a sequence of conformal immersions fk ∈
W 2,2(Σk,R

n) with W(fk) ≤ Λ, and we assume that the hyperbolic surfaces
(Σk, hk) converge to a surface with nodes (Σ, N) as described above.

Lemma 5.1. There exist branched conformal immersions f i : Σi → R
n,

finite sets Si ⊂ Σi and Möbius transformations σi
k, such that

σi
k ◦ fk ◦ ψk|Σi → f i, weakly in W 2,2

loc (Σi\Si,R
n)for i = 1, . . . , q.

Replacing fk by σk ◦ fk for suitable Möbius transformations σk we can take
σ1

k = id and

σi
k(y) = Ixi

(
y − yi

k

λi
k

)
, where xi ∈ R

n, yi
k = (fk ◦ ψk)(bi)

for bi ∈ Σiand λi
k > 0,

for i = 2, . . . , q. Further the maps σi
k ◦ fk are uniformly bounded, and

W(f i) ≥ βn
pi

.

Proof. By the Gauß–Bonnet formula, the second fundamental form is
bounded by ∫

Σk

|Afk
|2 dμfk

≤ C(Λ, p) <∞.

The maps fk ◦ ψk : Σ\N → R
n are conformal immersions with respect to the

metric ψ∗
khk, which converges to h in C∞

loc(Σ\N). Let ξi ⊂ Σi be an embedded
arc, which is subdivided into ξ1i , . . . , ξ

m
i . We can choose a subsequence and
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j0 ∈ {1, . . . ,m} with

diam (fk ◦ ψk)(ξ
j0
i ) = min

1≤j≤m
diam (fk ◦ ψk)(ξ

j
i ) =: λi

k.

We have λi
k > 0 by Theorem 3.1. Select bi ∈ ξj0

i , and define the maps

f i
k : Σk → R

n, f i
k(p) =

fk(p) − yi
k

λi
k

, where yi
k = (fk ◦ ψk)(bi).

As in Proposition 4.1, we can choose B1(xi) ⊂ R
n with f i

k(Σk) ∩B1(xi) = ∅
for all k. Applying (2.1) to Ixi

◦ f i
k yields

μIxi
◦f i

k
(Σk) ≤ C <∞.

Now consider the maps

f̂ i
k = Ixi

◦ f i
k ◦ ψk|Σi : Σi → R

n.

We can assume that μf̂ i
k
�|Af̂ i

k
|2 converges to α as Radon measures, and put

Si = {p ∈ Σi : α({p}) ≥ γn}.

Corollary 5.1 implies that, away from Si, the f̂ i
k subconverge locally uni-

formly either to a conformal immersion, or to a point x1 ∈ R
n. As in Theo-

rem 5.2

f̂ i
k(ξ

j0
i ) ⊂ Ixi

(B1(0)) ⊂ B1(xi)\Bθi
(xi), where θi =

1
|xi| + 1

> 0.

Therefore in the second alternative we get |x1 − xi| ≥ θi, and f i
k ◦ ψk con-

verges to Ixi
(x1) locally uniformly on Σi\Si. But for m > C(Λ,p)

γn
there is a

j ∈ {1, . . . ,m} with ξj
i ∩ Si = ∅, and we conclude 1 ≤ diam (f i

k ◦ ψk)(ξ
j
i ) →

0, a contradiction. Therefore f̂ i
k converges locally uniformly and weakly

in W 2,2
loc (Σi\Si,R

n) to f i ∈W 2,2
conf,loc((Σ

i\Si,R
n). Furthermore, Theorem 3.1

shows that f i extends as a branched conformal immersion to Σi. Applying
the argument for i = 2, . . . , q with fk replaced by σ1

k ◦ fk yields the second
statement of the lemma. Finally, the inequality W(f i) ≥ βn

pi
is clear when f i

is unbranched, otherwise we get W(f i) ≥ 8π > βn
pi

from the Li–Yau inequal-
ity (3.1) in connection with [8]. �
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For our last result we need more details on degenerating hyperbolic sur-
faces. For � > 0 we define a reference cylinder C(�) = [0, 1] × [−T (�), T (�)]
with metric g�, where

T (�) =
1
�

arccot
(

sinh
�

2

)
and g�(s, t) =

�2

cos2 �t
(ds2 + dt2).

The map (s, t) �→ ie�(s+it) yields an isometry between (C(�), g�) and the sec-
tor in the upper half-plane given by 1 ≤ r ≤ e�, |θ − π

2 | ≤ arccot
(
sinh �

2

)
.

The circles ct = {(s, t) : s ∈ [0, 1]} have constant geodesic curvature κg�
(t) =

sin �t and length Lg�
(t) = �/ cos �t. We note

lim
�↘0

κg�

(±(T (�) − t)
)

= 1 and lim
�↘0

Lg�

(±(T (�) − t)
)

=
1

t+ 1
2

,

for any t > 0.

Now let γk ⊂ Σk be a sequence of geodesics with length �k → 0, correspond-
ing to the node a ∈ Σ. By the collar lemma, see [7], there is an isometric
embedding

(
C(�k), g�k

) ⊂ (Σk, hk),

with c0 corresponding to γk. Clearly Tk = T (�k) → ∞. We will need the
following property of the construction in [7]: for any t ∈ [0,∞) there is a
compact set Kt ⊂ Σ\N such that

(5.1) ϕk([0, 1] × [Tk − t, Tk]) ⊂ Kt, for all k ∈ N.

For this we refer to Section 4 in [22].

Theorem 5.3. Let Σk be sequence of compact Riemann surfaces of genus
p ≥ 2, which diverges in moduli space. Then for any sequence of conformal
immersions fk ∈W 2,2

conf(Σk,R
n) we have

lim inf
k→∞

W(fk) ≥ min(8π, ωn
p ).

Proof. We first consider the case q = ν + 1, hence p = p1 + · · · + pq. By
Lemma 5.1 we have, away from a finite set of points, fk ◦ ψk → f1 weakly
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on Σ1 and

fk ◦ ψk − yi
k

λi
k

→ Ixi
◦ f i, weakly on Σi for i = 2, . . . , q.

Now if f i attains xi with multiplicity two or more, then the Li–Yau inequality
(3.1) yields

lim inf
k→∞

W(fk) ≥ W(f i) ≥ 8π.

Otherwise we obtain, again by (3.1),

lim
k→∞

W(fk) ≥ W(f1) +
q∑

i=2

W(Ixi
◦ f i) ≥ βn

p1
+

q∑
i=2

(βn
pi
− 4π) ≥ ωn

p .

In the case q < ν + 1 there must be a node which does not disconnect Σ.
After renumbering we can chose components Σ1, . . . ,Σs, and for each Σi

two punctures a±i such that a+
i , a

−
i+1 correspond to the same node ai for i =

1, . . . , s; here a−s+1 = a−1 . We say that a puncture a±i is good, if either i = 1
or f i(a±i ) �= xi. If both a+

i and a−i are not good, then the theorem follows
with lower bound 8π by the Li–Yau inequality (3.1). Therefore, omitting
subscripts we can assume that there is a node a at which both punctures
are good.

Using the collar embedding we now choose τk ∈ [−Tk, Tk] with

diam fk(cτk
) = min

t∈[−Tk,Tk]
diam fk(ct) =: δk.

The result follows as in Theorem 5.2, once we can show that for a subse-
quence

(5.2) lim
k→∞

|Tk ± τk| = ∞.

For fixed t ∈ [0,∞) the curves ϕk(cTk−t) are contained in the compact set
Kt ⊂ Σ\N . Since ψ∗

khk converges to h smoothly on Kt, we can assume
that the curves converge smoothly to a limiting curve βt in Kt with length
Lh(βt) = (t+ 1

2)−1. Now if ϕk(cTk−t) ⊂ Σ1 we have

diam fk(cTk−t) = diam (fk ◦ ψk)(ϕk(cTk−t)) → diam f1(βt).
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By Theorem 3.1, we see diam f1(βt) > 0 for any t ∈ [0,∞). On the other
hand,

lim sup
k→∞

δk ≤ lim sup
k→∞

(
diam fk(cTk−t)

)
= diam f1(βt).

Letting t→ ∞ we conclude limk→∞ δk = 0 by continuity of f1, which proves
claim (5.2). In the remaining case ϕk(cTk−t) ⊂ Σi for some i ≥ 2, we compute
similarly

diam fk(cTk−t)
λi

k

= diam (Ixi
◦ fk ◦ ψk)(ϕk(cTk−t)) → diam(Ixi ◦ f i)(βt) > 0,

and further

lim sup
k→∞

δk
λi

k

≤ lim sup
k→∞

diam fk(cTk−t)
λi

k

= diam(Ixi ◦ f i)(βt).

Again letting t→ ∞ we see that δk/λi
k → 0, using the fact that the puncture

is good, i.e. f i(a) �= xi. Thus (5.2) holds also for i ≥ 2, and the theorem is
proved. �

The constants βn
p and hence ωn

p are not known explicitly. The Willmore
conjecture in R

n would imply that ωn
2 = 4π(π − 1) > 8π. The inequality

ωn
p > 8π holds at least for large p, since βn

p → 8π as p→ ∞ by [10], as noted
in the introduction.
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[6] F. Hélein, Harmonic maps, conservation laws and moving frames,
Translated from the 1996 French original. With a foreword by James
Eells. Second edition. Cambridge Tracts in Mathematics, 150, Cam-
bridge University Press, Cambridge, 2002.

[7] C. Hummel, Gromov’s compactness theorem for pseudo-holomorphic
curves, Progress in Mathematics 151, Birkhäuser-Verlag, Basel, 1997
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