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Pretzel knots with unknotting number one

Dorothy Buck, Julian Gibbons and Eric Staron

We provide a partial classification of the 3-strand pretzel knots
K = P (p, q, r) with unknotting number one. Following the classifi-
cation by Kobayashi and Scharlemann–Thompson for all parame-
ters odd, we treat the remaining families with r even. We discover
that there are only four possible subfamilies which may satisfy
u(K) = 1. These families are determined by the sum p+ q and
their signature, and we resolve the problem in two of these cases.
Ingredients in our proofs include Donaldson’s diagonalization the-
orem (as applied by Greene), Nakanishi’s unknotting bounds from
the Alexander module, and the correction terms introduced by
Ozsváth and Szabó. Based on our results and the fact that the
2-bridge knots with unknotting number one are already classified,
we conjecture that the only 3-strand pretzel knots P (p, q, r) with
unknotting number one that are not 2-bridge knots are P (3,−3, 2)
and its reflection.

1. Introduction

The unknotting number u(K) is the minimal number of times a knot K
must be passed through itself in order to unknot it, an invariant that is at
once easy to define yet at the same time almost always extremely difficult
to compute. Indeed, it took many years to calculate u(K) for the majority
of knots with ten or fewer crossings, and while exhibiting an upper bound
is straightforward (by performing an unknotting), lower bounds are more
elusive: it is generally not known which knot diagrams will realize the actual
unknotting number (see [1, 17, 24]).

One classical lower bound for the unknotting number is the knot
signature, σ(K), which satisfies |σ(K)| ≤ 2u(K) (see [15]). For example,
if u(K) = 1, it follows that |σ(K)| = 0, 2. This condition is often the first
port of call when investigating unknotting number. As one might expect,
however, it is rarely sufficient — infinite families of knots with the same
signature but wildly different unknotting numbers are known to exist. It is
only in certain cases, for example when K is a torus knot, that the bound
is tight [11, 21].
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Specific to the case of unknotting number one, there are a number of
other topological obstructions, many concerning the double-branched cover
Σ(K). The most important of these for this paper is the Montesinos the-
orem: if u(K) = 1, then Σ(K) arises as half-integral surgery on some knot
κ ⊂ S3. That is, Σ(K) = S3

±D/2(κ) (see [13]). This has various implications:
cyclic H1(Σ(K)), restrictions on the 4-manifolds with Σ(K) as boundary,
and symmetries in the correction terms of Σ(K) (see [18, 20]).

Following both these leads, our main result in the present work is a
partial classification of the 3-strand pretzels K = P (p, q, r) with unknotting
number one. Such knots are unchanged by permutations of their parameters,
and have reflections given by

P (p, q, r) = P (−p,−q,−r).

For K to be a bona fide knot, we require either that all three parameters
be odd, or that exactly one of them be even (say r = 2m). The first of
these cases (all odd) has been studied independently by Kobayashi [10] and
Scharlemann and Thompson [23], who give the criterion that

u(K) = 1 ⇐⇒ ±{1, 1} or ± {3,−1} ⊂ {p, q, r},

and thus our work concentrates on the case P (p, q, 2m). As a consequence
of fact that u(K) = u(K), we assume that 2m is non-negative, and, having
dealt with the casem = 0 early on, thereafter restrict our attention tom > 0.

As a final piece of set-up, recall that Kanenobu and Murakami [9] and
Torisu [26] have given a complete description of the 2-bridge knots with
unknotting number one. Since the double-branched cover of a pretzel knot
is Seifert fibred over S2, it follows that P (p, q, r) is not a 2-bridge knot if
and only if all three of p, q, r �= ±1 (or else the double-branched cover would
have fewer than three exceptional fibres and therefore be a lens space). As
r is even, r �= ±1, and so our primary interest will be when p, q �= ±1.

1.1. Main results

Our first result, determined by way of knot signatures, says that there are
only four families of 3-strand pretzel knots (excluding 2-bridge knots), r
even, which stand a chance of satisfying u(K) = 1. Having identified these
families according to their values p+ q, our main theorem is then the fol-
lowing.
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Main Theorem. Suppose that K = P (p, q, 2m), m �= 0, is a pretzel knot
with unknotting number one. Then, up to reflection, p+ q = 0,±2, 4 and
m > 0. Moreover:

(1) If p+ q = −2, then K = P (1,−3, 2m), P (−1,−1, 2m) (all 2-bridge);

(2) If p+ q = 0, then K = P (3,−3, 2) (which is not 2-bridge).

The table below indicates which pretzels in each family have unknotting
number one, together with our conjectures. We present it as a more digestible
version of the theorem’s conclusions.

Family Knots must be... Conjecture
p+ q = −2 P (1,−3, 2m), P (−1,−1, 2m) −
p+ q = 0 P (3,−3, 2) −
p+ q = 2 Unknown P (3,−1, 2m), P (1, 1, 2m)
p+ q = 4 Unknown P (3, 1, 2), P (5,−1, 4),

P (5,−1, 2)

Most of these are in fact 2-bridge as at least one parameter is ±1. Hence,
we have the following conjecture:

Conjecture 1.1. The only 3-strand pretzel knots P (p, q, r) with unknotting
number one that are not 2-bridge knots are P (3,−3, 2) and its reflection.

The pretzel referred to in this conjecture is the following:

and the circle indicates the unknotting crossing.

1.2. Motivation

This work was motivated by the following question: Which algebraic knots,
in the sense of Conway, satisfy u(K) = 1? A complete treatment of algebraic
knots can be found in [7, 25], but in brief, the distinct types are 2-bridge,
large algebraic, and Montesinos length three, with the characterization being
split according to the topology of their double covers. To wit, we have the
following division.
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K 2-bridge Large algebraic Montesinos length three
Σ(K) Lens space Graph manifold Atoroidal Seifert fibred

(toroidal) (S2 with 3 exceptional fibres)

As stated previously, Kanenobu and Murakami have solved the prob-
lem for 2-bridge knots in [9], and this solution was later generalized using
Gordian distance by Torisu [26]. The large algebraic case is dealt with by
Gordon and Luecke [7] in terms of the constituent algebraic tangles of K.
However, because the double-branched cover of a Montesinos knot of length
three is neither a lens space nor toroidal, neither of these results apply. It is
then natural to ask the following question.

Question 1.2. Which Montesinos knots of length three have unknotting
number one?

In [26], Torisu makes the following conjecture. He proves the theorem
immediately afterwards as evidence for his claim.

Conjecture 1.3 Torisu. Let K be a Montesinos knot of length three. Then
u(K) = 1 if and only if K = M(0; (p, r), (q, s), (2mn± 1, 2n2)), where p, q,
r, s, m, and n are non-zero integers, m and n are coprime, and ps+ rq = 1.

Theorem 1.4 Torisu. Let K be a Montesinos knot of length three and
suppose the unknotting operation is realized in a standard diagram. Then
u(K) = 1 if and only if it has the form in Conjecture 1.3.

A proof of the following conjecture (see Conjecture 4.8 of [5]) would also
prove Conjecture 1.3.

Conjecture 1.5 Seifert fibring conjecture. For a knot in S3 which is
neither a torus knot nor a cable of a torus knot, only integral surgery slopes
can yield a Seifert fibred space.

A complete explanation of why Conjecture 1.5 implies Conjecture 1.3
can be found in [26]. In short, if a Montesinos knot K ⊂ S3 has unknotting
number one, then Σ(K), a Seifert fibred space, equals S3

±D/2(κ), where D is
odd and κ ⊂ S3 is a knot. If the Seifert fibring conjecture is true, then κ is
either a torus knot or a cable of a torus knot. In either case, Dehn surgery
on these knots is well understood (see Moser [14]), and after some numerical
calculations the desired result is achieved.

Of interest to us is what Torisu’s conjecture predicts about 3-strand
pretzel knots with unknotting number one. After a little work, it is not
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difficult to see that it not only suggests the results proved in this paper, but
also implies our conjecture in the p+ q = 2, 4 cases. Thus, our work can be
seen as a partial proof of Torisu’s conjecture.

1.3. Organization

As foreshadowed, we first use the knot signature to separate our knots into
four types of candidates for u(K) = 1. These are split according to whether
p+ q = 0,±2, 4. All four require different approaches.

When p+ q = −2, we use the Montesinos theorem coupled with a cer-
tain plumbing for Σ(K) to glue together a closed, oriented, simply connected,
smooth, negative-definite 4-manifold, and thence apply Donaldson’s diago-
nalization theorem. This turns out to be insufficient as an obstruction to
unknotting number one, so to make more progress we use a strengthened
version of this approach due to Greene. The result, in the case p+ q = −2,
is that K must be 2-bridge to satisfy u(K) = 1. We conjecture that this is
true in greater generality (i.e., for the remaining p+ q = 2, 4 cases).

When p+ q = 0, we do two things. First, we use the Alexander module
of the pretzel to conclude that m = 1. Second, we employ the correction
terms of Σ(K) as defined by Ozsváth and Szabó to prove that p = 3. This
last part is a two-step procedure in which we first consider the Ozsváth–
Szabó obstruction modulo Z to narrow down possible Spinc-structure label-
ings compatible with the required symmetries, before making use of the full
obstruction to complete the proof in these restricted cases.

Our results give us evidence for the truth of our conjecture, which would
leave only the chiral knot P (3,−3, 2) and its reflection as the non-2-bridge
knots with unknotting number one.

2. Preliminary work: signature requirements

We use the following theorem to determine the signature of our pretzels. It
is Theorem 6 in [6].

Theorem 2.1 Gordon–Litherland. For any checkerboard-coloured dia-
gram D of the knot K with associated Goeritz matrix G(D),

σ(K) = sgn(G(D)) − μ(D),

where μ(D) is the correction term of the diagram.
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(a) (b)

Figure 1: (a) Pretzel knot P (p, q, r), where p < 0, and q, r > 0; and (b) the
knot P (p, q, r) with a checkerboard colouring.

As an aside, because we will always be using the same diagram for our
pretzels, we will write G(K) and μ(K) with this diagram understood. More-
over, when we speak of the determinant of K, this will always be positive.
The determinant of G(K), however, can be signed, and this is important for
our later classification. Thus, in general, detK = |detG(K)|.

With these conventions in mind, we apply the theorem above to a stan-
dard diagram of the knot P (p, q, r), figure 1(a), where p and q are odd, and
r is even. By shading and labeling the three regions of figure 1(a) as marked
by the Xi in 1(b), we obtain the Goeritz matrix of K:

G(K) =
(
p+ r −p
−p p+ q

)
.

Note that the matrix G(K) is 2 × 2, and therefore sgn(G(K)) ∈
{−2, 0, 2}. In particular if u(K) = 1, then μ is restricted to {−4,−2, 0, 2, 4}.
According to [6], the correction term μ is the sum of the crossing numbers in
the p and q columns. Since |p|, |q|, |r| > 1, if p and q are both the same sign
then |μ| = |p| + |q| ≥ 6, a contradiction. So without loss of generality, take
p > 0 and q < 0. Furthermore the reflection invariance of unknotting number
allows us to assume r = 2m > 0 (we ignore m = 0 for reasons below). Rela-
bel the knot K = P (p, q, r) as K = P (k,−k + n, 2m), where m > 0, k > 1
odd, and n ∈ {−4,−2, 0, 2, 4}. The Goeritz matrix thus becomes:

G(K) =
(
k + 2m −k
−k n

)
,
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which implies

det(G(K)) = −k2 + kn+ 2mn.

If we consider the case when n = −4, then we compute easily that
σ(K) = 4, which is not within the range for unknotting number one. Also, if
n = 4 and detG(K) < 0, then σ(K) = −4, and we can rule this possibility
out for the same reason. Hence, we have five remaining cases:

Case n detG(K) σ(K)
1 −2 2
2 0 0
3a 2 <0 −2
3b 2 >0 0
4 4 >0 −2

The first two of these are treated in Sections 3, 4, and 5, whereas the
remaining cases are the domain of our concluding remarks in Section 6.

Although we mentioned that we will only be considering m > 0, for com-
pleteness we can dismiss m = 0 immediately. In this instance, P (p, q, 0) =
T (p, 2)#T (q, 2), and since unknotting number one knots are prime (see
Scharlemann and Thompson [22] or Zhang [27]), it follows that one of
p, q = ±1. Then, as mentioned in the Introduction (via [11, 21]), since the
signature of torus knots is a tight bound on u(K), and σ(T (k, 2)) = 1

2(k − 1)
for k ≥ 1, we obtain the following result.

Lemma 2.2. If K = P (p, q, 0) and u(K) = 1, for p, q odd, then pq = ±3.

3. The case p + q = −2

In this section, we consider K = P (k,−k − 2, 2m) where k odd, k ≥ 1, and
m > 0. Our method has two main ingredients: the signed Montesinos the-
orem and Greene’s application of Donaldson’s diagonalization theorem to
u(K) = 1. Our main theorem is the following.

Theorem 3.1. Suppose that k,m > 0 and k is odd. Then P (k,−k − 2, 2m)
has unknotting number one if and only if k = 1.

Recall that when K = P (k,−k − 2, 2m) we have σ(K) = 2. Since the
conclusion to the above theorem is that k = 1, we aim to prove it by estab-
lishing that if k ≥ 3 then u(K) �= 1. In the case k = 1, we can change any
crossing in the central column to obtain P (1,−1, 2m), which is manifestly
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the unknot. The only knots with p+ q = −2 not treated, then, are those of
the form P (−1,−1, 2m), and the fact that u(K) = 1 is clear in that instance.

As mentioned, our first ingredient is the “signed” version of the Mon-
tesinos theorem (see Proposition 4.1 of [8]).

Theorem 3.2 Signed Montesinos. Suppose that K is a knot that is
undone by changing a negative crossing (so σ(K) = 0, 2). Then Σ(K) =

S3
−εD/2(κ) for some knot κ ⊂ S3, where D = det(K), and ε = (−1)

1
2σ(K). In

particular, −Σ(K) = S3
εD/2(κ) bounds a smooth, simply connected,

4-manifold WK with ε-definite intersection form −εRn, where

Rn =
(−n 1

1 −2

)

and D = 2n− 1.

As we have σ(K) = 2, if u(K) = 1 then −Σ(K) bounds a negative-
definite 4-manifold WK from Theorem 3.2. In order to use Donaldson’s The-
orem A we need another 4-manifold that is bounded by Σ(K), call this XK ,
with intersection form QK , so that we can glue them together to obtain a
closed manifold X = XK ∪Σ(K) WK . Since the boundary Σ(K) is a rational
homology 3-sphere, QK ⊕Rn embeds into the intersection form QX of X,
as can be seen from the Mayer–Vietoris sequence (see [8]). As WK is simply
connected (by Theorem 3.2), if XK is simply connected then so too is X.
We are now ready to use Donaldson’s Theorem A (see [3]).

Theorem 3.3 Donaldson. Let X be a closed, oriented, simply connected,
smooth 4-manifold. If the intersection form QX is negative-definite, then
QX diagonalizes over the integers to − id.

In the light of the above comments, we have the following corollary.

Corollary 3.4. If X = XK ∪Σ(K) WK is simply connected and negative-
definite, then there exists an integral matrix A such that

(3.1) −AAt = QK ⊕Rn.

Thus, if we can show that there does not exist an A satisfying (3.1),
then u(K) > 1 (or K is the unknot). The first question, then, is how to find
XK , and for this we use plumbing. A good reference for the following section
is [4].
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3.1. Plumbings

Let G be a vertex-weighted simple graph with vertex set V (G) and labels
w(v) on each v ∈ V (G). In general, we take w(v) < 0 since we are mainly
concerned with negative-definite manifolds. To construct a 4-manifold X =
X(G) from G, take the 2-disc bundle B(v) over S2 of Euler number w(v) for
each v ∈ V (G), and plumb B(v) and B(v′) if and only if v and v′ are adjacent
in G. This manifold X has free H2(X), generated by the homology classes
of spheres Sv corresponding to the vertices. We will write these as [Sv].

Supposing that G is a tree, thenX(G) is simply connected. The manifold
Y = Y (G) = ∂X is given by a Kirby diagram of unknots, linked geometri-
cally according to the weighted adjacency matrix for G (so that the slopes
on the components are the weights of the corresponding vertices). The inter-
section form Q for X(G) is then also the adjacency matrix for G. Explicitly,
we have 〈[Sv], [Sv]〉 = w(v) for each vertex, and 〈[Sv], [Sv′ ]〉 = 1 if the two
distinct vertices are connected by an edge, zero otherwise.

Since Σ(K) is a Seifert fibred space, it has the surgery presentation given
in figure 2(a). Hence, we can obtain a plumbing with boundary Σ(K) using
the corresponding graph. However, for what will follow, this 4-manifold is
insufficient since it is not negative-definite. Instead, we use the alternative
presentation in figure 2(b) and the corresponding plumbing shown in figure 3.

(a) (b)

Figure 2: (a) Kirby diagram for Σ(K); and (b) alternative Kirby diagram
for Σ(K).

Figure 3: A graph G for a plumbing XK with boundary Σ(K). The vertices
are labelled from left to right along the top row as v1 to vk+2m−1; the final
vertex is vk+2m.
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Two things must be checked about the plumbing in figure 3. First, that
the boundary is Σ(K). This is easily done once we observe that

k

k − 1
=

k−1︷ ︸︸ ︷
[2, 2, . . . , 2]

2m
2m− 1

=

2m−1︷ ︸︸ ︷
[2, 2, . . . , 2].

Here [a1, . . . , a�] denotes the Hirzebruch–Jung continued fraction. Therefore,
as ∂XK has a Kirby diagram given by unknots linked according to G, we
can slam-dunk these unknots along the two long arms to obtain the diagram
in figure 2(b). Performing +1 twists around each of the two non-integrally
framed unknots will then recover figure 2(a).

The second requirement is that QK , the intersection form of XK , be
negative-definite. The key component here is Sylvester’s criterion.

Lemma 3.5 Sylvester. Let M be a square matrix and Mi its upper (i× i)-
submatrix. Then M is negative-definite if and only if the sign of detMi is
(−1)i for all i.

Observing that the upper submatrices of QK , with the exception of the
total matrix, are all −2 along the diagonal and 1 in the spots adjacent to
the diagonal, the determinants are (−1)i(i+ 1). It is then also easy to see
that detQK = detG(K) < 0, and as the rank of QK is odd, we are done.

At this point in the proceedings, we form X = XK ∪Σ(K) WK , which
is closed. Unfortunately, however, for this choice of X there always exists
an A satisfying (3.1). To get around this problem, we mimic the work of
Greene [8], in which Heegaard Floer homology is used to impose a certain
structure on A. In order to explain this, we review some Heegaard Floer
homology.

3.2. Correction terms and sharpness

Ozsváth and Szabó have shown in [18] that the Heegaard Floer homology of
a rational homology sphere Y is absolutely graded over Q. They also give a
definition of correction terms, d(Y, t), which are the minimally graded non-
zero part in the image of HF∞(Y, t) inside HF+(Y, t). These are strongly
connected to the topology of 4-manifolds with Y as boundary, for any such
negative-definite, smooth, oriented X which has an s ∈ Spinc(X) such that
s|Y = t must satisfy

(3.2) c1(s)2 + b2(X) ≤ 4d(Y, t).
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A rational homology 3-sphere Y is an L-space if rank ĤF (Y ) = |H1(Y )|.
Furthermore, a sharp 4-manifold X with L-space boundary Y is defined by
the property that for every t ∈ Spinc(Y ) there is some s ∈ Spinc(X) with
s|Y = t that attains equality in the bound (3.2).

We are now able to present Greene’s theorem. It is proved in [8]. (Our
convention for L(p, q) should be taken as the −p/q surgery on the unknot.)

Theorem 3.6 Greene. Suppose K is a knot in S3 with unknotting num-
ber one such that either (i) σ(K) = 0 and K can be undone by changing a
positive crossing, or (ii) σ(K) = 2. Suppose also that Σ(K) is an L-space
and

d(Σ(K), 0) = −d(L(detK, 2), 0).

Then if XK is a smooth, sharp, simply connected 4-manifold with rank r
negative-definite intersection form QK , and XK is bounded by Σ(K), there
exists an integral matrix A such that −AAT = QK ⊕Rn, and A can be cho-
sen such that the last two rows are (xr+2, . . . , x3, 1, 0) and (0, . . . , 0,−1, 1).
Furthermore the values x3, . . . , xr+2 are non-negative integers and obey the
condition

(3.3) x3 ≤ 1, xi ≤ x3 + · · · + xi−1 + 1 for 3 < i < r + 2,

and the upper right r × r matrix of A has determinant ±1.

We have already shown that XK is simply connected and negative-
definite, so what remains is to check that Σ(K) is an L-space, and that
XK is sharp. For the L-space condition, we refer to Section 3.1 of [2], which
immediately yields our result. To show thatXK is sharp, we use Theorem 1.5
in [19]. Since the negative-definite plumbing diagram has one “overweight”
vertex (or “bad” in the sense of [19]), it follows that XK is sharp.

The remaining condition on the correction terms is more difficult to
check, and will require some more sophisticated knowledge of the Hee-
gaard Floer homology of plumbed manifolds. Since this is material best
presented in Section 5, we ask the reader to suspend his or her disbelief
until Lemma 5.4.

3.3. The Proof of Theorem 3.1

We are now ready to prove Theorem 3.1. To do this, we show that the A
described in Theorem 3.6 does not exist when k ≥ 3. We begin by writing
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down QK ⊕Rn:

QK ⊕Rn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 . . . 0
1 −2 1
0 1 −2

. . . 1
...

. . . . . .
1

1 −2 0
0 1 0 −k − 2

−n 1
1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here the (k + 2m, k) and (k, k + 2m) entries are both 1. It will be help-
ful to label the rows of A as v1, . . . , vk+2m+2. Observe that −(AAT )i,j =
−vi · vj . Since |vi · vi| = 2 for i �= k + 2m and k + 2m+ 1, each row of A
(except rows k + 2m and k + 2m+ 1) has two non-zero entries, each of
magnitude 1. Without loss of generality set v1 = (1,−1, 0, . . . , 0). Making
this choice and applying the two row conditions from Theorem 3.6, the
remaining rows must take the following form (after permuting the columns
of A):

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
1 −1

. . . . . .

1 −1
∗ ∗ . . . . . . ∗ ∗ ∗ ∗
∗ ∗ . . . . . . ∗ ∗ 1

−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This implicitly requires us to note that k + 2m− 1 ≥ 4, and so the first
k + 2m− 1 rows cannot have more than one non-zero entry in the same
spot.
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Next letAk+2m+1,1 = α. Since vi · vk+2m+1 = 1 for i = 1, 2, . . . , k + 2m−
1, each of the first k + 2m entries along the (k + 2m+ 1)-th row all equal α:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
1 −1

. . . . . .

1 −1
∗ ∗ . . . . . . ∗ ∗ ∗ ∗
α α . . . . . . α α 1 0

−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

According to Theorem 3.6, α = 0 or 1.

(1) If α = 0, v2
k+2m+1 = n = 1

2(det(K) + 1) = 1, and therefore det(K) = 1.
One can use the Goeritz matrix to show that detP (k,−k − 2, 2m) =
k2 + 2k + 4m, so clearly α �= 0.

(2) If α = 1, then v2
k+2m+1 = n = 1

2(detK + 1) = k + 2m+ 1. This only
happens if k2 = 1, which contradicts our assumption that k ≥ 3.

The reader will note, as before, that knots of the form P (1,−3, 2m) have
unknotting number one for all integral m. We have thus completed the first
piece of our classification.

4. The case p + q = 0: first results

In this section, we tackle the knots K = P (k,−k, 2m). Our general method
is as follows: we first pin down the value of m using the Alexander module,
finding that m = 1, then employ Heegaard Floer homology to deduce the
value of k. One naturally wonders if the methods of the previous section
will help us in this endeavour, but unfortunately the previous method only
allows us to identify the sign of the crossing change involved.

Our ultimate goal over this section and the next is the following theorem.

Theorem 4.1. Suppose that k,m > 0 and k is odd. Then P (k,−k, 2m) has
unknotting number one if and only if k = 3 and m = 1.

The determinant of P (k,−k, 2m) is always k2. Hence, in Theorem 3.2,
we can always take D = k2, and so n = k2+1

2 .
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4.1. The Alexander module

Recall that we can construct the infinite cyclic coverX∞ of a knot. This has a
deck transformation group Z, generated by some element t. Then H1(X∞; Z)
is a Z[t, t−1]-module A, called the Alexander module, from which much topo-
logical information can be extracted. This is done via the rth elementary
ideal, denoted Ar, which is the ideal of Z[t, t−1] spanned by the (n− r +
1) × (n− r + 1)-minors of any n× n presentation matrix for A.

From Nakanishi [16], in the form cited in Lickorish [12], we know that
the Alexander module can be used to bound the unknotting number. For
our purposes, we present the following definition-theorem (see Theorem 7.10
of Lickorish [12]).

Theorem 4.2 Unknotting via Alexander module. Suppose that V , an
n× n matrix, is a Seifert matrix for K in S3. Then the Alexander module
of K is presented by the matrix A = tV − V t. Moreover, if Z[t, t−1]/Ar �= 0,
it follows that u(K) ≥ r.

Using this, we can now prove the following lemma.

Lemma 4.3. Suppose k ≥ 3, m > 0, and k is odd. Then if P (k,−k, 2m)
has unknotting number one, m = 1.

Proof. We take the following Seifert surface for our pretzels, P (k,−k, 2m).
The curves are indexed starting with the central column of loops, largest
to smallest, followed by the same labeling in the first column. For the last
two curves, we take the big loop around the hole, then the loop crossing
the “bridge”. The different shadings represent differences in orientation (the
lighter shading having a normal out of the page), and all curves, except the
big loop, should be oriented clockwise.
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From this, we construct a Seifert matrix for P (k,−k, 2m) of the form

V =

⎛
⎜⎜⎝
Xk 0 0 0
0 −Xk 0 0
1 −1 0 0
0 0 1 m

⎞
⎟⎟⎠ ,

where Xk is the (k − 1) × (k − 1) lower triangular matrix of 1’s, and 1 is a
suitably sized row of 1’s.

Consequently, the Alexander module is presented by

A =

⎛
⎜⎜⎝
Mk 0 −1t 0
0 −Mk 1t 0
t −t 0 −1
0 0 t m(t− 1)

⎞
⎟⎟⎠ ,

from which we can compute the relevant minors. Here, Mk = tXk −Xt
k, and

t is a row with all entries t.
We claim, that for k ≥ 3, the second elementary ideal, A2, generated by

these minors (in Z[t, t−1]), is precisely given by

A2 =

〈
k−1∑
i=0

(−1)itk−1−i,m(t− 1)

〉
.

For the moment, we assume this, and call the first polynomial Pk(t). Then we
can show that A2 = Z[t, t−1] if and only if m = 1, since k is odd. Indeed, the
quotient Z[t, t−1]/ 〈Pk(t)〉 is the Z-module consisting of all integral Laurent
polynomials with the form

ak−2t
k−2 + ak−3t

k−3 + · · · + a1t+ a0,

together with their unit multiples (that is, multiples of tn for n an inte-
ger). These are forced to be zero in A/A2 if and only if they fall in the
ideal 〈m(t− 1)〉. In particular, we require all ai to be divisible by m. This
statement then implies m = 1.

When m = 1, observe that Pk(t) is in fact, for k odd,

Pk(t) = tk−1 − tk−3(t− 1) − tk−5(t− 1) − · · · − (t− 1),
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which means that in the quotient Z[t, t−1]/ 〈m(t− 1)〉, the polynomial is a
unit, since Pk(t) ≡ tk−1, whence Z[t, t−1]/A2 = 0. Hence there is no obstruc-
tion to unknotting number one, since the theorem guarantees only that
u(K) ≥ 1.

What remains then is to check our claim. As a first step, we can com-
pute the determinant of Mk, which goes as follows. Here, for a row vector v,
we use the notation v∗ to indicate a square matrix with each
row v.

detMk = det

⎛
⎜⎜⎜⎜⎜⎝

t− 1 −1 −1 . . . −1
t t− 1 −1 . . . −1
t t t− 1 . . . −1
...

...
...

. . .
...

t t t . . . t− 1

⎞
⎟⎟⎟⎟⎟⎠

= t−1 det

⎛
⎜⎜⎜⎜⎜⎝

t2 0 0 . . . −1
t t− 1 −1 . . . −1
t t t− 1 . . . −1
...

...
...

. . .
...

t t t . . . t− 1

⎞
⎟⎟⎟⎟⎟⎠

= t detMk−1 + (−1)k−1t−1 det
(
tt Mk−2

t t

)

= t detMk−1 + (−1)k−1 det
(

0 Mk−2 − t∗

1 1

)

= t detMk−1 + det(Mk−2 − t∗)
= t detMk−1 + (−1)k−1.

From this recurrence, we can see that detMk = Pk(t). Now it is not hard
to see that for any other minor, supposing that the m(t− 1) entry remains,
we can expand down the final column or row. This yields two terms, one that
contains m(t− 1) as a factor, and the other of which is the determinant of
a block diagonal matrix, one factor of which is either det(Mk) or det(−Mk),
both of which are Pk(t) up to sign. The remaining case, when m(t− 1) is
removed, is a calculation very much like that following this paragraph, and
therefore has Pk(t) as a factor. What remains to be done, then, in order to
prove that A2 is spanned by these two key polynomials is to ensure that they
are both actually in the ideal. This is proved by the following two example
minors.
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First, we delete the first row and final column:

detA1,2k = det

⎛
⎜⎜⎝

tt Mk−1 0 −1t

0 0 −Mk 1t

t t −t 0
0 0 0 t

⎞
⎟⎟⎠

= t det

⎛
⎝tt Mk−1 0

0 0 −Mk

t t −t

⎞
⎠

= −t2 det
(
Mk−1 − t∗ t∗

0 −Mk

)

= (−1)kt2 det(Mk−1 − t∗) detMk

= t2Pk(t).

The last equality uses our previous calculation, and the fact thatMk−1 −
t∗ is an upper-triangular matrix with all its (k − 2) diagonal entries being
−1. Since t2 is a unit, we know that Pk(t) is in A2. We now check that
m(t− 1) is too, as evidenced by the following minor.

detA1,k = det

⎛
⎜⎜⎜⎜⎝

tt Mk−1 0 −1t 0
0 0 1 1 0
0 0 −Mk−1 1t 0
t t −t 0 −1
0 0 0 t m(t− 1)

⎞
⎟⎟⎟⎟⎠

= m(t− 1) det

⎛
⎜⎜⎝

tt Mk−1 0 −1t

0 0 1 1
0 0 −Mk−1 1t

t t −t 0

⎞
⎟⎟⎠

= m(t− 1) det

⎛
⎜⎜⎝

0 Mk−1 − t∗ t∗ −1t

0 0 1 1
0 0 −Mk−1 1t

t t −t 0

⎞
⎟⎟⎠ .

The last matrix determinant is then manipulated as

−t det(Mk−1 − t∗) det
(

1 1
−Mk−1 1t

)
= (−1)k−1 det

(
Mk−1 −1t

t t

)
,
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and this in turn is almost Mk. The right-hand side is in fact, up to sign,

detMk − (t− 1) detMk−1 + t detMk−1 = detMk + detMk−1 = tk−1.

It follows that m(t− 1) is in A2, at last completing our proof. �

4.2. Donaldson diagonalization and Σ(k, −k, 2)

As foreshadowed, we can try to mimic the work in Section 3. However, since
in this case the signature of K vanishes, the only progress we can make is
to pin down the sign of the unknotting crossing. This is due to problems
gluing the pieces of our closed manifold X since the orientations must be
compatible. This information, however, will be relevant in the next section
on the Heegaard Floer homology obstruction.

Lemma 4.4. Suppose k ≥ 3 is odd. Then if K = P (k,−k, 2) has unknotting
number one, it is undone by changing a negative crossing.

Proof. Suppose that K is undone with a positive crossing. Then, K is
undone by changing a negative crossing. Hence, in the signed Montesinos
theorem (Theorem 3.2), Σ(K) = S3

−D/2(κ), where κ is a knot in S3 and
D = detK = detK, and so −Σ(K) bounds a negative-definite 4-manifold
with intersection form Rn.

The plumbing in figure 3 is negative-definite, proved exactly analogously
to the case treated in Section 3.1. As before, Σ(K) is an L-space via Section
3.1 of [2]. The fact that d(Σ, 0) = d(L, 0) = 0 is, also as before, delayed until
Lemma 5.4.

Knowing that Theorem 3.6 is applicable, we glue these two 4-manifolds
together, as before, and the matrix A should appear as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
1 −1

1 −1
. . . . . .

1 −1
1 −1

a a a . . . a b b c c

d d d . . . d d d 1
−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Denote the rows by vi, with a total of k + 4 rows. Then vk · vk+2 = −1, so
b = a+ 1. Then vk+2 · vk+2 = k implies

(4.1) ka2 + 2(a+ 1)2 + 2c2 = k,

when we must have a = 0,−1 (else the left-hand side is too big). We split
the cases:

(1) If a = 0, then from (4.1) we have 2c2 + 2 = k. This is nonsense for parity
reasons.

(2) If a = −1, then c = 0 (from (4.1)). Then vk+2 · vk+3 = 0 tells us kd = 0,
whence d = 0. The fact that vk+3 · vk+3 = n yields up n = 1, so k2 = 1,
contradicting k ≥ 3.

This completes the proof. �

5. Heegaard Floer homology of Σ(P (k, −k, 2))

To complete the work started in the previous section we now compute the
graded Heegaard Floer homology of Σ(P (k,−k, 2)). The key technology for
this is found in Ozsváth and Szabó [19], where the two authors present a
combinatorial algorithm for determining the Heegaard Floer homology of
plumbed three-manifolds (such as small Seifert fibred spaces, as we have
here).

Before we can explain why the Heegaard Floer homology is relevant,
however, it is good to streamline some notation. Define D := detP (k,
−k, 2) = k2 and write Σ := Σ(P (k,−k, 2)) and L := L(D, 2). The integer n
should be defined byD = 2n− 1 and sinceD ≡ 1 mod 4, we set n = 2s+ 1.
We remind the reader that we implicitly only care about k ≥ 3, since k = 1
yields the unknot.

Now the obstruction to u(K) = 1, taken from Theorem 4.1 of [20]. We
present only the half of this theorem where D ≡ 1 mod 4, since that is all
we need.

Theorem 5.1. If κ is a knot in S3 such that S3
−D/2(κ) is an L-space, where

D ≡ 1 mod 4, and if

(5.1) d(S3
−D/2(κ), 0) = d(L, 0),
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then for i = 0, 1, . . . , s,

(5.2) d(S3
−D/2(κ), i) − d(L, i) = d(S3

−D/2(κ), 2s− i) − d(L, 2s− i),

where the labeling on the Spinc-structures is by 1
2c1.

The symmetries exhibited in (5.2) give our obstruction to unknotting
number one as follows. By Lemma 4.4 we know that K = P (k,−k, 2) must
be undone by changing a negative crossing. Therefore, applying Theorem 3.2,
Σ(K) = S3

−D/2(κ) for some knot κ. We already know that Σ(K) is an L-space.
Hence, provided that we can establish that (5.1) holds, the Equations (5.2)
will give our obstruction: we shall show that if k ≥ 5, at least one of them
must fail.

If the reader is wondering why we do not use the full power of The-
orem 1.1 of [20], the reason is that the conditions on positive and even
matchings are not strong enough to obstruct our pretzels. The symmetry
condition, however, is, and this is essentially just Theorem 5.1.

5.1. Correction terms of Σ

Recall from Section 3.1 that a 4-manifold with boundary can be constructed
by plumbing disc bundles over S2 according to a graph G. In this instance
our X = X(G) uses the same graph as in figure 3. As X is simply connected,
we can identify H2(X) = Hom(H1(X),Z), and so H2(X) is the Z-module
spanned by the Hom-duals [Sv]∗. By mapping H2(X) to H2(X, ∂X) via
Poincaré duality, we have the following commutative diagram:

(5.3)

Spinc(X) −−−−→ Spinc(Σ)

c1

⏐⏐� c1

⏐⏐�
0 −−−−→ H2(X) −−−−→ H2(X) −−−−→ H2(Σ) −−−−→ 0⏐⏐�

⏐⏐�
⏐⏐�

0 −−−−→ Z
b2(X) Q−−−−→ Z

b2(X) α−−−−→ cokerQ −−−−→ 0.

The vertical maps between the lower two rows are isomorphisms and we
use them to identify each of their domains and codomains. From the middle
row, it is now clear that kerα is spanned by those K which are Z-linear
combinations of the rows of Q.

To see how the Spinc-structures on X and Σ fit into this picture, define
the set of characteristic covectors for G, denoted Char(G), to be those K ∈
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H2(X) such that

〈K, [Sv]〉 ≡ 〈[Sv], [Sv]〉 mod 2 for all v ∈ V (G).

Now, it is well known that the Spinc-structures on X correspond precisely
with Char(G) via c1; similarly, the Spinc-structures on Σ are in bijection
with 2H2(Σ) (also via c1). Since H2(Σ) is of odd order, the Spinc-structures
are therefore in bijection with H2(Σ) and hence also with coker(Q).

What we want, then, is a good set of representatives for coker(Q), since
these will represent the Spinc-structures on Σ. We write t(K) for the Spinc-
structure on Σ determined by the equivalence class [K] in coker(Q) deter-
mined by K ∈ Char(G). We observe that if s1, s2 ∈ Spinc(X) restrict to the
same Spinc-structure on Σ, then their corresponding covectors (respectively
K1,K2) are congruent modulo 2H2(X). In other words, K1 ≡ K2 mod Q,
since H2(Σ) is of odd order, or (K1 −K2)Q−1 ∈ Z

b2(X).
The results that Ozsváth and Szabó give in [19] state that, assuming Q

is negative-definite and that there is at most one overweight vertex in the
graph, the correction term d(Y, t) is

(5.4) d(Y, t) =
1
4

(
max

K:t(K)=t
〈K,K〉 + |G|

)
.

A vertex v is overweight if w(v) > −d(v), where d(v) is the degree of v.
We will write all elements K ∈ H2(X) according to their evaluations on

all v ∈ V (G) (that is, in the Hom-dual basis). Written thus, the square in
(5.4) is KQ−1Kt. Incidentally, (5.4) also shows that X is sharp.

Having set this all up, the actual algorithm for finding the maximizers
K for (5.4) is as follows. Consider all K ∈ Char(G) that satisfy

(5.5) w(v) + 2 ≤ 〈K, [Sv]〉 ≤ −w(v) for all v ∈ V (G).

Set K0 := K. Then, should one exist, choose a vi+1 ∈ V (G) such that

〈
Ki, [Svi+1 ]

〉
= −w(vi+1),

and set Ki+1 := Ki + 2 PD[vi+1] (which we will refer to as pushing down the
value of Ki on vi+1). By PD[v] we mean the image of PD[Sv] in H2(X) using
(5.3). Pushing down then amounts to adding two copies of the corresponding
row of Q.
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After continuing in this fashion, terminate at some covector Kn when
one of two things happens. Either

w(v) ≤ 〈Kn, v〉 ≤ −w(v) − 2 for all v ∈ V (G),

in which case we say the path (K0,K1, . . . ,Kn) is maximizing, or

〈Kn, v〉 > −w(v) for some v ∈ V (G),

in which case the path is non-maximizing. Ozsváth and Szabó show (in
Proposition 3.2 of [19]) that the maximizers required for computing correc-
tion terms can be taken from a set of characteristic covectors Char∗(G) satis-
fying (5.5) with the additional property that they initiate a maximizing path.

To apply this to our pretzel, consider the plumbing in figure 3. Note
that vk is the central (3-valent) vertex. With the labeling specified there,
our intersection form Q has matrix

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1

1 −2
. . .

−2 1
1 −2 1 1

1 −2
1 −k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and as there is only one overweight vertex (the central one), the above
algorithm is applicable. We present the result of it below.

Proposition 5.2. The following characteristic covectors initiate maximiz-
ing paths:

(1) (0, 0, . . . , 0, 2, 0, . . . , 0, j), where the 2 is in the ith place, and j ∈ Z is
odd and 2 − k ≤ j ≤ k − 4;

(2) (2, 0, . . . , 0, 0, k − 2) and (0, . . . , 0, 2, k − 2); and

(3) (0, . . . , 0, j) where j is an odd integer satisfying 2 − k ≤ j ≤ k.

Moreover, there are no other vectors that initiate full paths.

Proof. Let K ∈ Char(G) satisfy (5.5). We show that if K satisfies either of
two conditions below then it must initiate a non-maximizing path.

First suppose that there are two v ∈ V (G) such that 〈K, [Sv]〉 = −w(v).
Then, pushing down at vk+2 if necessary, we have a substring of K that
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looks like (2, 0, . . . , 0, 2). On pushing down the 2’s and then iterating with
the 2’s created within this substring, we eventually obtain a value 4 in the
substring and thus K initiates a non-maximizing path.

We now consider K = (0, . . . , 0, 2(i), 0, . . . , k − 2) for i = 2, . . . , k. Push
down the 2 here to create 2’s on either side. Keep pushing these newly created
2’s down in either direction; the result is (−2, 0, . . . , 0, 2(i), 0, . . . ,−2, k). On
repeating this procedure, we end up with k + 2 in the final co-ordinate. As
this is too large, K initiates a non-maximizing path.

The remaining K, then, are precisely those listed above. Since there are
(k + 1)(k − 2) = k2 − k − 2 such vectors of the first kind, 2 of the second,
and k of the last, we have k2 in total. That being the order of H2(Σ), these
must enumerate the different Spinc-structures on Σ. �

We give the maximizers Char∗(G) the following names:

K1
i,j := (0, . . . , 2(i), . . . , 0, j) for j odd, 2 − k ≤ j ≤ k − 4,

K2
1 := (2, 0, . . . , k − 2) K2

2 := (0, . . . , 0, 2, k − 2),

K3
j := (0, . . . , 0, j) for j odd, 2 − k ≤ j ≤ k.

It will sometimes be useful to allow K1
i,j to define the same type of covector

as above, but with a value for j outside the range and parity specified. In
this case we emphasize that it does not represent a maximizer useful for
calculating the corresponding correction term. Following this trend, it is
also sometimes useful to set

K1
0,j := K3

j .

To compute the correction terms, then, we need Q−1. This calculation is
surprisingly tractable so we present the result directly: Q−1 = 1

k2 (cij), where

cij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−i(k2 − jk + 2j) i ≤ j ≤ k − 1,
−2jk i = k, j ≤ k,

−jk i = k + 1, j ≤ k,

−k2 i = j = k + 1,
−2j i = k + 2, j ≤ k,

−k i = k + 2, j = k + 1,
−(k + 2) i = j = k + 2,
cji all i, j.
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This in turn permits an explicit calculus of the squares below:

(K1
i,j)

2 =

{
− 1

k2 (4i(k2 − ik + 2i) + (k + 2)j2 + 8ij) for i = 0, . . . , k,
− 1

k2 (4k2 + (k + 2)j2 + 4kj) for i = k + 1,

(K2
i )2 =

{
−(k + 2) for i = 1,
− 1

k2 (k3 + 6k2 − 12k + 8) for i = 2.

The computation of d(Σ, t(K)) is then trivial. In what follows we write
d(·,K) in place of d(·, t(K)) as the meaning is clear.

5.2. Correction terms for the lens space L

We need to repeat this procedure for the corresponding lens space, L(D, 2),
which has a plumbing given by the tree H on two vertices, weighted −n and
−2 (recall k2 = 2n− 1 = 4s+ 1). It therefore has intersection form given by

Rn =
(−n 1

1 −2

)
,

and in this case the inverse is trivially

R−1
n = − 1

k2

(
2 1
1 n

)
.

What remains is then to establish the labeling of the Spinc-structures on
L as they are required for Theorem 5.1 and compute their correction terms.
This is in fact already done by Ozsváth and Szabó in [19].

Lemma 5.3 Ozsváth and Szabó. The lens space L(D, 2) has character-
istic covectors given by the map ψ : Z/(D) −→ coker(Rn), defined below.

(5.6) ψ(i) =

⎧⎪⎨
⎪⎩

(2i− 1, 2) 0 ≤ i ≤ s,

(2i− 4s− 1, 0) s+ 1 ≤ i ≤ 3s+ 1
(2i− 8s− 3, 2) 3s+ 2 ≤ i ≤ 4s.

,

To compute the correction terms, we write

d(L,ψ(i)) =
−ψ(i)

(
2 1
1 n

)
ψ(i)t + 2k2

4k2
,
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or more explicitly,

d(L,ψ(i)) =

⎧⎪⎪⎨
⎪⎪⎩

− 1
k2 (2i2) 0 ≤ i ≤ s,

− 1
2k2 ((2i− k2)2 − k2) s+ 1 ≤ i ≤ 3s+ 1

− 1
k2 (2(k2 − i)2) 3s+ 2 ≤ i ≤ 4s.

,

5.3. First application of Theorem 5.1

To compare our correction terms for Σ and L we will need the isomorphism
ϕ : Z/(D) → coker(Q) implicit in Theorem 5.1. Since ϕ was only implicit in
our statement of the theorem, let us be clear what we are doing. Suppose
we can construct a particular isomorphism φ : Z/(D) → coker(Q). Then, we
have two labelings of Spinc-structures: one, ψ, for Spinc(L), the other, φ,
for Spinc(Σ). Theorem 5.1 then tells us that there exists a labeling ϕ for
Spinc(Σ) such that

(5.7) d(Σ, ϕ(i)) − d(Σ, ϕ(2s− i)) = d(L,ψ(i)) − d(L,ψ(2s− i))

for i = 0, 1, . . . , s. We want to show, therefore, that for k ≥ 5 such a ϕ cannot
exist by way of contradiction: if ϕ did exist, then we could precompose our φ :
Z/(D) → coker(Q) with some automorphism of Z/(D) such that equations
(5.7) are satisfied. This automorphism must be multiplication by some 

coprime to k2. That is, there must exist some 
 such that

(5.8) d(Σ, φ(i
)) − d(Σ, φ(2s
− i
)) = d(L,ψ(i)) − d(L,ψ(2s− i)).

To prove that u(K) > 1 when k ≥ 5, we claim that no such 
 exists, and it is
in this direction that we proceed over the course of the following pages. First,
however, we must specify a φ by specifying φ(1). We must also compute φ(0)
to check the hypotheses of Theorem 5.1, but in this we have no choice.

As we saw in (5.3), the kernel of α is generated by PD[v]. Thus, on
observing that

(5.9) K2
1 = −2

k∑
i=1

PD[vi] − PD[vk+1] − PD[vk+2],

we see that K2
1 is the zero element of coker(Q).
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Now to find a unit. This time we need to find a K such that m[K] = [K2
1 ]

if and only k2|m. Equivalently, a K such that (mK −K2
1 )Q−1 ∈ Z

k+2 if and
only k2|m. Setting K = K1

1,−1, we have

mK −K2
1 = (2(m− 1), 0, . . . , 0,−m− (k − 2)),

and on computing the (k + 2)-th co-ordinate of (mK −K2
1 )Q−1 we find

((mK −K2
1 )Q−1)k+2 = 1

k2 (k2 −m(k − 2)) ∈ Z.

It follows that k2|m since k2 and k − 2 are coprime, k being odd. Thus K1
1,−1

is a unit.
Our choice of φ, which we now fix, is then specified by

φ(0) = K2
1 , φ(1) = K1

1,−1.

At this point, we are able to check that (5.1) in Theorem 5.1 is satisfied.
Using the same sort of methods, we can also check the same hypothesis for
Theorem 3.6 for our pretzels P (k,−k − 2, 2m), as promised in Section 3.2.

Lemma 5.4. If K = P (k,−k, 2), P (k,−k − 2, 2m), then d(Σ(K), 0) =
−d(L(detK, 2), 0). In the first case, both correction terms vanish.

Proof. We do P (k,−k, 2) first. By (5.4) we have

d(Σ(K), 0) =
(K2

1 )Q−1(K2
1 )t + (k + 2)
4

.

Since PD[vi] is the i-th row of Q, it follows that if K ′ =
∑k+2

i=1 ki PD[vi] then
K ′Q−1 =

∑k
i=1 kiei, where ei is the i-th standard basis vector for Z

k+2. Thus
the square in the above correction term is nothing more than

∑k
i=1 ki〈K ′,

[Svi
]〉, and on computing this for K ′ = K2

1 using (5.9) we find that d(Σ(K),
0) = 0. Since detK ≡ 1 mod 4, it is also true that d(L(detK, 2), 0) = 0 (cal-
culated similarly), and we are done.

Note that as we had already computed (K2
1 )2 we could have done this

proof immediately. However, the method just presented allows us to
generalise to P (k,−k − 2, 2m), whose double-branched cover is also an
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L-space. There we replace (5.9) with

K = −
m∑

i=1

2iPD[vi] − 2m
k∑

i=m+1

PD[vi]

−
k+2m−1∑
i=k+1

(k + 2m− i) PD[vi] − PD[vk+2m]

= (0, . . . , 0, 2(m), 0, . . . , 0, k + 2 − 2m),

if k ≥ m, or

K = −
k∑

i=1

2iPD[vi] −
m∑

i=k+1

(k + i) PD[vi]

−
k+2m−1∑
i=m+1

(k + 2m− i) PD[vi] − PD[vk+2m]

= (0, . . . , 0, 2(m), 0, . . . , 0,−k + 2),

if k ≤ m. One can check that these initiate maximizing paths, and as Σ(K) is
an L-space these must be unique representatives of the zero Spinc-structure.
This tells us that d(Σ(K), 0) = −1

2 . Similarly, as detK ≡ 3 mod 4, we have
d(L(detK, 2), 0) = 1

2 , and we are done. �

Having now checked all the hypotheses and set ourselves up for Theo-
rem 5.1, we now make our first applications of it.

Proposition 5.5. Suppose P (k,−k, 2) has unknotting number one. Then
there exists an 
 coprime to k2 such that


2(3k − 2) ≡ −8 mod k2.

Equivalently,

(5.10) 
2 ≡ 6k + 4 mod k2.
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Proof. We observe that if φ(i) = [K], then φ(i
) = 
φ(i) = 
[K] = [
K]. Thus
φ(i
)Q−1 ≡ 
φ(i)Q−1 mod Z, and so φ(i
)2 ≡ 
2φ(i)2 mod Z. Thus,

d(Σ, φ(i
)) − d(Σ, φ(2s
− i
)) ≡ 
2(d(Σ, φ(i)) − d(Σ, φ(2s− i))) mod Z.

(5.11)

Now use our previous calculation of L’s correction terms:

d(L,ψ(0)) − d(L,ψ(2s)) = − 1
2k2 (k2 − 1).

It is also a routine matter of calculation to find

φ(2s) =

⎧⎪⎨
⎪⎩
K1

k+1,−1
2 (k+1)

k ≡ 1 mod 4,

K3
1
2 (k−1)

k ≡ 3 mod 4,

from which we deduce that

d(Σ, φ(0)) − d(Σ, φ(2s)) =

{
1

16k2 (5k3 − 3k + 2) k ≡ 1 mod 4,
1

16k2 (−3k3 + 4k2 − 3k + 2) k ≡ 3 mod 4.

Applying (5.11) to (5.8) in the case when i = 0 and substituting in the
above calculations, we find that we must have

−8(k2 − 1) ≡
{

2(5k3 − 3k + 2) mod k2 if k ≡ 1 mod 4,

2(−3k3 + 4k2 − 3k + 2) mod k2 if k ≡ 3 mod 4,

which transforms into the equivalent statement (5.10) after a simple rear-
rangement (to make 
2 the subject). �

As a remark, if we look at (5.8) modulo Z for any other value of i we
recover the same congruence. Therefore, no further information is to be
gained along these lines. However, equation (5.10) by itself cuts down the
number of possible 
 considerably. In the case that k is a prime power, for
instance, it determines k up to sign (see next section).

5.4. Precise applications of Theorem 5.1

The rest of the proof that u(K) > 1 for k ≥ 5 follows the following line
of reasoning. We show that we cannot satisfy (5.8) with an 
 satisfying
(5.10) for i = 0 and r simultaneously, where r is the residue of 
 modulo k.
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This requires us to do the following:

(1) Pinpoint the values of φ(2s
), φ(r
), φ(2s
− r
), and compute their
squares;

(2) Compute the differences

Z(i) := d(Σ, φ(i
)) − d(Σ, φ(2s
− i
)) − d(L,ψ(i)) + d(L,ψ(2s− i)),

for i = 0, r;

(3) Obtain a good reason why Z(0) and Z(r) cannot simultaneously be zero
for k ≥ 5.

For the reader who does not like results plucked out of thin air, the
following formulae are the tools used to compute the values of φ called for
in the first step above.

Lemma 5.6. We have the following equivalences (in H2(X)):

(A): K3
J+kB ∼ K1

−B,J+2B (B): K1
I,J ∼ K1

I+1,J+k−2 (C): K1
I,J ∼ K1

I,J+k2 .

where B ≤ 0 and J are arbitrary integers.

Proof. This is an easy calculation: simply verify that (K −K ′)Q−1 ∈ Z
k+2,

for the above K,K ′. �

As mentioned before, if k is a prime power then there is an essentially
unique choice of 
. The situation becomes much more complicated if k has
several different prime factors; to deal with this complexity, we introduce
some auxiliary notation.

Proposition 5.7. Let 
 = ak + r, where 0 ≤ a < k and 0 < r < k. Then
we can choose r even and set r2 = Ak + 4, where

(5.12) A+ 2ar ≡ 6 mod k,

and 0 ≤ r −A < k
4 + 1.

Proof. Since ±
 have the same effect on the correction terms, and k is odd,
one of ±
 will have even r and we make this choice. Notice that as 
 is
coprime to k, we cannot have r = 0.
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From (5.10), 
2 ≡ 6k + 4 mod k2, but also 
2 ≡ 2ark + r2 mod k2, and
substituting gives the desired congruence (5.12).

For the inequality, we have r −A = r − r2−4
k . By considering this

quadratic in the range from 0 to k, we find it is always positive, maxi-
mizes when r = k

2 , and has maximum k
4 + 4

k . Since r −A is an integer, and
as k ≥ 5, the upper bound follows. �

Proposition 5.8. In the case that k is a prime power, then r = 2, A = 0,
and a = k+3

2 .

Proof. This is a direct calculation using (5.10), and the observation that
when k is prime power, square roots modulo k are unique up to sign. �

To carry out our programme we now have to branch out into several
different cases. Since the condition that r is even implies nothing about a
and the parity of a becomes important in what follows, we divide our proof
according to whether a is even or odd. However, in Step 1 of our recipe, one
value of φ turns out to be independent of a.

Proposition 5.9. For k ≥ 5,

φ(r
) = −K1
A
2 ,k−4−A

.

Proof. By direct verification. Check that (−r
K1
1,−1 −K1

A
2 ,k−4−A

)Q−1 ∈
Z

k+2, which is easy. �

One final notational remark. Strictly speaking, we want to compute
d(Σ, i), but as there is the conjugation symmetry d(Y, i) = d(Y,−i), some-
times we will in fact compute φ(−i) instead of φ(i). We write φ(i) = −K to
mean φ(−i) = K by an abuse of notation to streamline our statements.

5.4.1. The case a even According to Step 1, we must now compute the
values of φ(2s
), φ(2s
− r
). This is done in the following two propositions.
For the interested reader, these calculations were performed originally by
assuming that K had the form K3

j , and then applying Lemma 5.6 until the
subscripts fitted their required conditions.

Proposition 5.10 r ≡ 2 mod 4. If r ≡ 2 mod 4 and a is even, then we
define parameters B := 1 + r

2 − a
2 − A

2 ∈ (−k
2 ,

k
2 ) and J := − r

2−4 < 0.



Pretzel knots with unknotting number one 395

These give

φ(2s
− r
) =

⎧⎪⎪⎨
⎪⎪⎩

K1
−B,J+2B if B ≤ 0, J + 2B > −k,

K1
2−B,J+2B+2k−4 if B ≤ 0, J + 2B ≤ −k

−K1
B,−J−2B if B ≥ 0

,

and also

φ(2s
) =

⎧⎪⎨
⎪⎩
K1

a−r
2 ,

r
2−a

if a ≥ r,

−K1
r−a
2 ,a− r

2

if a ≤ r.

Proposition 5.11 r ≡ 0 mod 4. If, on the other hand, r ≡ 0 mod 4, then
we instead define B := r

2 − a
2 − A

2 ∈ (−k
2 ,

k
2 ) and J := k − r

2 − 4 > 0, giving

φ(2s
− r
) =

⎧⎪⎪⎨
⎪⎪⎩

K1
−B,J+2B if B ≤ 0

−K1
B,−J−2B if B ≥ 0, J + 2B < k

−K1
B+2,−J−2B+2k−4 if B ≥ 0, J + 2B ≥ k

,

and also

φ(2s
) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K1
a−r+2

2 ,
r
2−a+k−2

if a ≥ r − 2

−K1
r−a−2

2 ,a− r
2−k+2

if r
2 ≤ a ≤ r − 2

−K1
r−a+2

2 ,a− r
2+k−2

if a < r
2

.

Proof (of both propositions). This is a straightforward verification. To per-
form it, one need only check that (mK1

1,−1 −K)Q−1 ∈ Z
k+2 for the right

choices of m and K from the above. In doing so, one must use the con-
gruence (5.12) to guarantee the result. The numerous cases occur to fit the
various restraints imposed on i, j in K1

i,j ; the parity of r
2 makes a difference

because of the fact that j must be odd. �

This completes Step 1. The next step is to compute Z(i) for i = 0, r. As
this is straightforward, if tedious, we present the result immediately. In the
tables below, the “case” label will become relevant later. First for i = r:
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Case r mod 4 Conditions 16k2Z(r)
A 2 B ≤ 0 (4kr + 8k2)A+ (2 − 3k)r2

J + 2B > −k + ((4a− 24)k − 8k2)r − 4k3

+ (8a+ 16)k2 + 32ak − 8
B 2 B ≤ 0 (4kr − 8k2)A+ (2 − 3k)r2 + (4a− 24)kr

J + 2B ≤ −k + 12k3 + (−8a− 16)k2 + 32ak − 8
C 2 B ≥ 0 (4kr − 8k2)A+ (2 − 3k)r2

+ ((4a− 24)k + 8k2)r − 4k3

+ (−8a+ 48)k2 + 32ak − 8
D 0 B ≤ 0 4Akr + (2 − 3k)r2 + ((4a− 24)k − 4k2)r

+ 8k2 + 32ak − 8
E 0 B ≥ 0 (4kr − 16k2)A+ (2 − 3k)r2

J + 2B < k + ((4a− 24)k + 12k2)r + (−16a+ 8)k2

+ 32ak − 8
F 0 B ≥ 0 4Akr + (2 − 3k)r2 + ((4a− 24)k + 4k2)r

J + 2B ≥ k + 72k2 + 32ak − 8

And now for i = 0:

Case r mod 4 Conditions 16k2Z(0)
1 2 a ≥ r (2 − 3k)r2 + (4ak − 8k2)r − 4k3

+ 8ak2 − 8
2 2 a ≤ r (2 − 3k)r2 + (4ak + 8k2)r − 4k3

− 8ak2 − 8
3 0 a ≥ r − 2 (2 − 3k)r2 + (4ak − 4k2)r + 8k2 − 8
4 0 r

2 ≤ a ≤ r − 2 (2 − 3k)r2 + (4ak + 12k2)r
− (16a+ 24)k2 − 8

5 0 a < r
2 (2 − 3k)r2 + (4ak + 4k2)r + 8k2 − 8

This completes Step 2. We remark that since all the above entries must
be zero, we can manipulate them and divide out any resulting common
factors (such as 4k) without sacrificing equality with zero. These reduced
versions are what we will often use.

Proposition 5.12. If a is even, then no 
 exists which ensures that Z(r) =
Z(0) = 0.

Proof. The idea is to show that none of the Z(r) = 0 equations in case α
is compatible with any of the Z(0) = 0 equations in case β (for appropriate
choices of α and β). If both the α and β equations are satisfied, then we
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should have

Z(r) ± Z(0) = 0.

Thus, we must compare cases α = A,B,C with cases β = 1, 2 (six com-
binations), as well as cases α = D,E, F with cases β = 3, 4, 5 (nine more
combinations). In each case, both of the new equations generally involve A,
a, and r, so obtaining contradictions can be difficult. The following method
is useful in a large number of cases.

(1) Cancel sufficient common factors from all the terms;

(2) Substitute A = r2−4
k ;

(3) Solve the Z(r) + Z(0) = 0 equation for a (linear) and substitute it into
the Z(r) − Z(0) = 0 equation, taking care to observe that the coefficient
of a in Z(r) + Z(0) = 0 is non-zero (so there are no “divide by zero”
issues). This gives a new equation fα,β(r) = 0 to be satisfied;

(4) Find an argument to prove that the function fα,β is positive or negative
over the range 2, 4 ≤ r < k. The choice of 2 or 4 depends on the minimum
value of r allowed by α and β.

(5) Hence, conclude that α and β are not compatible.

We illustrate the procedure once, then just summarize the relevant fα,β .
Take α = A and β = 1. Cancelling terms, we obtain:

Z(r) + Z(0) = 0 = (2r + k + 2)(r2 − 4) − (8k + 12)kr − 4k3 + 8k2 − 12k
+ 4ak(r + 2k + 4)

Z(r) − Z(0) = 0 = (r + 2k)(r2 − 4) − 6rk + 4k2 + 8ak.

Observe that the coefficient of a in the first equation is non-zero, so solving
for a and substituting directly into the second, we find that

fA,1(r) = r4 + 4kr3 + (4k2 − 8)r2 + (8k2 − 16k)r + 16k3 − 16k2 + 16 = 0.

Since k ≥ 5, the coefficients of r are all positive, whence fA,1(r) > 0 on
0 < r < k, giving the contradiction we require.

In a similar vein, we now summarize the other data in the following
table.
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α, β fα,β(r)
A, 1 r4 + 4kr3 + (4k2 − 8)r2 + (8k2 − 16k)r + 16k3 − 16k2 + 16
B, 1 r4 − (5k2 − 2k + 8)r2 + 4k4 + 16k2 − 8k + 16
C, 1 r4 − (3k2 − 2k + 8)r2 + 16k2r − 4k4 + 32k3 + 16k2 − 8k + 16
A, 2 r4 − (5k2 + 2k + 8)r2 + 4k4 + 16k2 + 8k + 16
B, 2 r4 − 4kr3 + (2k2 − 8)r2 + (8k3 − 8k2 + 16k)r − 8k4

+ 16k3 − 16k2 + 16
C, 2 r4 − 4kr3 + (4k2 − 8)r2 + (8k2 + 16k)r − 16k3 − 16k2 + 16
D, 3 r4 − 8r2 + 8k2r − 16k2 + 16
E, 3 r4 − 4kr3 + (k2 + 2k − 8)r2 − (4k3 − 8k2 − 16k)r + 8k3 − 16k2

− 8k + 16
F, 3 r4 + (2k2 − 8)r2 + 24k2r − 16k2 + 16
D, 4 r4 − 4kr3 − (k2 + 2k + 8)r2 + (4k3 + 8k2 + 16k)r − 8k3 + 48k2

+8k + 16
E, 4 r4 − 8kr3 + (16k2 − 8)r2 + (8k2 + 32k)r − 32k3 − 16k2 + 16
F, 4 r4 − 4kr3 + (k2 − 2k − 8)r2 − (4k3 − 24k2 − 16k)r − 72k3 + 48k2

+ 8k + 16
D, 5 r4 − (2k2 + 8)r2 − 8k2r − 16k2 + 16
E, 5 r4 − 4kr3 − (k2 − 2k + 8)r2 + (4k3 − 8k2 + 16k)r + 8k3 − 16k2

− 8k + 16
F, 5 r4 − 8r2 + 8k2r − 16k2 + 16

We attack these cases case by case.

A1: Already done.

B1, A2: In both situations, fα,β = r4 −Nr2 +M . The turning points
of this quartic occur when r = 0 or r2 = N

2 , so provided that N
2 ≥ k2,

we know that fα,β is decreasing on 0 < r < k. As this happens to be
true, and

fα,β(k − 1) =

{
8k3 + 5k2 + 6k + 9 if α = B, β = 1
4k3 + 13k2 + 18k + 9 if α = A, β = 2

,

we see that fα,β(r) > 0 on 0 < r < k, which is our contradiction.

C1: The function is not obviously useful, but we know 1 + r
2 − a

2 − A
2 ≥ 0

(by case C) and a ≥ r (by case 1), whence we are forced to conclude
that A = 0. However, then r = 2 and a = k+3

2 by direct computation,
and the condition from case C fails. Contradiction.
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B2: We aim to show that f(r) := fB,2(r) < 0 on 0 < r < k and for k ≥ 7.
Indeed, compute the derivatives:

df

dr
(r) = 4r3 − 12kr2 + (4k2 − 16)r + (8k3 − 8k2 + 16k)

d2f

dr2
(r) = 12r2 − 24kr + (4k2 − 16)

d3f

dr3
(r) = 24r − 24k.

As we can see, d3f
dr3 (r) < 0, whence d2f

dr2 is decreasing. Observing that
d2f
dr2 (0) = 4k2 − 16 > 0 while d2f

dr2 (k) = −8k2 − 16 < 0, we know there
is precisely one zero in the range 0 < r < k. Hence, df

dr has one turning
point, and it is a maximum by the negativity of d3f

dr3 . Checking at both
extremes of the range again finds that df

dr (r) > 0, and so f is increasing.
However,

f(k) = −k4 + 8k3 − 8k2 + 16,

which is negative for k ≥ 7, and so fB,2(r) = f(r) < 0 on the range
prescribed. If k = 5, then observe that r = 2, and direct computation
finds fB,2(2) < 0.

C2: We play around with the Z(r) − Z(0) = 0 equation, which gives

2k = r + 8a
A−6 .

Ponder this a moment. Since r
2 is odd, we know that r2

4 = A
4 k + 1 ≡ 1

mod 4, and so A ≡ 0 mod 16. If A ≥ 16, then it must follow that
2k ≤ r + 4

5a < 2k, which is nonsense. If A = 0, then we find instead
2k = r − 4

3a < 2k, also a contradiction.

D3, F5: Write

fD,3(r) = (r4 − 8r2) + (8k2r − 16k2 + 16).

The two bracketed expressions are both positive once r ≥ 4, but since
r ≡ 0 mod 4, it follows that r = 4 is the smallest value for r allowed.
Hence we have our contradiction.

E3, F3: From condition 3, we know that B = r
2 − a

2 − A
2 ≤ 1 − A

2 < 0
unless A = 0. This contradicts conditions E and F. However, if A = 0,
then r = 2 and we violate the condition that r ≡ 0 mod 4.
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D4: Write

fD,4(r) = (r4 − 4kr3 − k2r2 + 4k3r − 8k3)︸ ︷︷ ︸
g(r)

+(8k2r − 2kr2) + (48k2 − 8r2)

+ 16kr + 8k + 16

and observe that except possibly g(r), all the terms are positive. We
aim to show that on the range 2 < r < k we have g(r) > 0. Indeed,
consider its derivatives:

dg

dr
(r) = 4r3 − 12kr2 − 2k2r + 4k3

d2g

dr2
(r) = 12r2 − 24kr − 2k2.

Now, the second derivative is clearly negative on 0 < r < k, and thus
on our range of interest dg

dr is decreasing. Observing that dg
dr (0) = 4k3 >

0 and dg
dr (k) = −6k3 < 0 we know there is precisely one zero to dg

dr on
0 < r < k. That is, g has precisely one turning point, and since d2g

dr2 < 0
it is a local maximum. We compute:

g(4) = 8k3 − 16k2 − 256k + 256 g(k − 2) = 4k3 − 28k2 + 16.

When k ≥ 7, these are both positive, so the function is positive over the
range 4 ≤ r ≤ k − 2. Notice that the requirements that r ≡ 0 mod 4
and r2 ≡ 4 mod k both imply that we need not consider r = 2, k − 1,
and so this suffices for our contradiction. If k = 5, Proposition 5.8 tells
us r = 2, A = 0, a = 4, and cannot be in this case since condition 4 is
violated.

E4: Rearrange the Z(r) − Z(0) = 0 equation to obtain

4k = r − 4
A−2(r − 2a).

At this point we know (from condition 4) that a ≤ r − 2, whence 4k ≤
r + 4k

A−2 < 3k, if A �= 0, since A ≡ 0 mod 4. If A = 0, then a = k+3
2 >

0 = r − 2, a contradiction.

F4: Write

fF,4(r) = (r4 + k2r2 − 2k3r) − 4kr3 − (2k + 8)r2

− (2k3 − 24k2 − 16k)r − (72k3 − 48k2 − 8k − 16).
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Once k ≥ 13, all the bracketed terms are negative. For k < 13, we
contradict conditions F and 4 by way of Proposition 5.8 since k must
be prime power.

D5: Write

fD,5(r) = (r4 − 2k2r2 − 8r2) − 8k2r − (16k2 − 16)

and note that all bracketed terms are negative.

E5: Write

fE,5(r) = g(r) + (2k−8)r2 + (8k3 − 8k2r + 16kr) + (8k3−16k2 − 8k + 16),

where g(r) is as in case D4, and all bracketed terms are positive if
k ≥ 7. If k = 5, we are not in this case by Proposition 5.8.

With all possibilities checked, we are finished the proof. �
5.4.2. The case a odd We now repeat for a an odd integer. This is
extremely similar to the previous situation, so we omit proofs which are
virtually identical. As with Step 1 before, the proofs of the following are
straightforward verifications.

Proposition 5.13 r ≡ 2 mod 4. If r ≡ 2 mod 4 and a is odd, then we
define parameters B := 1 + r

2 − a−k
2 − A

2 ∈ [0, k − 1) and J := − r
2−4 < 0,

giving

φ(2s
− r
) =

{
−K1

B,−J−2B if J + 2B < k,

−K1
B+2,−J−2B+2k−4 if J + 2B ≥ k

and also

φ(2s
) =

⎧⎪⎨
⎪⎩
K1

a−r+k
2 ,

r
2−a−k

if r > 2a,

K1
a−r+k

2 +2,
r
2−a+k−4

if r ≤ 2a.

Proposition 5.14 r ≡ 0 mod 4. If, on the other hand, r ≡ 0 mod 4, then
we instead define B := r

2 − a−k
2 − A

2 ∈ [0, k − 1) and J := k − r
2 − 4 > 0, giv-

ing

φ(2s
− r
) =

{
−K1

B,−J−2B if J + 2B < k,

−K1
B+2,−J−2B+2k−4 if J + 2B ≥ k,

and lastly
φ(2s
) = K1

a−r+k
2 +1,

r
2−a−2

.
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With these computed, we then establish the tables exactly as before.
First, i = r:

Case r mod 4 Conditions 16k2Z(r)
A 2 J + 2B < k (4kr − 8k2)A+ (2 − 3k)r2

+((4a− 24)k + 4k2)r + 4k3

+(−8a+ 16)k2 + 32ak − 8
B 2 J + 2B ≥ k (4kr + 8k2)A+ (2 − 3k)r2

+((4a− 24)k − 4k2)r + 4k3

+(8a+ 48)k2 + 32ak − 8
C 0 J + 2B < k (4kr − 16k2)A+ (2 − 3k)r2

+((4a− 24)k + 8k2)r + 16k3

+(−16a− 24)k2 + 32ak − 8
D 0 J + 2B ≥ k 4Akr + (2 − 3k)r2 + (4a− 24)kr + 40k2

+32ak − 8

And now for i = 0:

Case r mod 4 Conditions 16k2Z(0)
1 2 r > 2a (2 − 3k)r2+(4ak − 4k2)r + 4k3 + 8ak2−8
2 2 r ≤ 2a (2 − 3k)r2+(4ak + 4k2)r + 4k3 − 8ak2−8
3 0 − (2 − 3k)r2 + 4akr + 8k2 − 8

As before, we have the following proposition.

Proposition 5.15. If a is odd, then no 
 exists which ensures that Z(r) =
Z(0) = 0.

Proof. Exactly as before, we have another table (though it is much smaller
this time):

α, β fα,β(r)
A, 1 r4 − (5k2 − 2k + 8)r2 + 4k4 + 16k2 − 8k + 16
B, 1 r4 + 4kr3 + (4k2 − 8)r2 + (8k2 − 16k)r + 16k3 − 16k2 + 16
A, 2 r4 − 4kr3 + (4k2 − 8)r2 + (8k2 + 16k)r − 16k3 − 16k2 + 16
B, 2 r4 − (3k2 + 2k + 8)r2 + 16k2r − 4k4 − 32k3 + 16k2 + 8k + 16
C, 3 r4 − 4kr3 − (k2 − 2k + 8)r2 + (4k3 − 8k2 + 16k)r + 8k3 − 16k2

−8k + 16
D, 3 r4 − 8r2 + 8k2r − 16k2 + 16

The case-by-case analysis goes as follows.
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A1: We observe that fA,1 has the same structure as cases A2 and B1 from
the previous section, and that fA,1(k − 1) = 8k3 + 5k2 + 6k + 9 > 0,
whence we are done.

B1: Each of the coefficients of r in fB,1(r) is clearly positive.

A2: The Z(r) − Z(0) = 0 equation gives us

k = 4a−2r
A−2 + r

2 ,

and since A ≡ 0 mod 16 (see case C2 in the previous section), we dis-
cover, barring A = 0, that k < 1

7(2a− r) + r
2 <

11
14k, which is a contra-

diction. If A = 0, we see k = r − 2a+ r
2 < k (since r ≤ 2a by condition

2), also a contradiction.

B2: From condition B, we see J + 2B ≥ k, so r
2 − a−A− 2 ≥ 0.

However, from condition 2, we know that r ≤ 2a, so we have a contra-
diction.

C3: We write

fC,3(r) = g(r) + (2k − 8)r3 + (8k3 − 8k2r + 16kr) + (8k3 − 16k2 − 8k + 16),

where g(r) is the same function as in case D4 above. We know that
all terms are positive for k ≥ 7, and if k = 5, we obtain the usual
contradiction (namely, we are not in this case).

D3: As cases D3 and F5 from the previous section.

All cases are done, and so is the proof. �

5.4.3. The Proof of Theorem 4.1

Proof of Theorem 4.1. For any m, we know k = 1 yields the unknot. Other-
wise, we know by Lemma 4.2 that m = 1. Moreover, we now know from the
previous two subsections that if k ≥ 5, then P (k,−k, 2) cannot have unknot-
ting number one. Since P (3,−3, 2) does indeed have unknotting number one,
the theorem is proved. �

5.5. Examples

To illustrate the above working, we focus on the case that k is prime power.
Recall from Proposition 5.8, there is an essentially unique 
. Then a is even
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or odd according to the congruence of k modulo 4 (cases A1 and A2 respec-
tively). We get:

φ(2
) =K3
k−4 φ((2s− 2)
) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−K3
k k= 5

K1
1
4 (k−5),−1

2 (k+5)
k > 5 and k≡ 1 mod 4

−K1
1
4 (k+5),−1

2 (k−5)
k≡ 3 mod 4

.

We then find (surprisingly independently of the conditions on k modulo 4):

d(Σ, φ(2
)) = − 1
k2 (−2k2 + 8) d(Σ, φ((2s− 2)
)) = − 1

2k2 (−k2 + 25).

Grinding all this into (5.8), we should find Z(2) = 0, but in fact:

Z(2) = 1
2k2 (3k2 + 9) + 1

2k2 (k2 − 9) = 2,

which is blatantly untrue.
We can see this even more concretely in a particular example, namely

k = 5. The correction terms for the lens space in this case are:

d(L, i) = (0,− 2
25 ,− 8

25 ,−18
25 ,−32

25 ,−2,−72
25 ,−48

25 ,−28
25 ,−12

25 , 0,
8
25 ,

12
25 , . . . ).

Here, we have only presented the first half since d(·, i) = d(·,−i). Then for
the double cover, we have, using our isomorphism φ,

d(Σ, i′) = (0, 22
25 ,−12

25 ,− 2
25 ,

2
25 , 0,

42
25 ,

28
25 ,

8
25 ,−18

25 , 0,
12
25 ,

18
25 , . . . ).

Now, solving (5.10) tells us 
 = ±3, so take 
 = 22 and note that indeed
r = 2, A = 0, and a = 4. We find

d(Σ, 22i′) = (0,− 2
25 ,

42
25 ,−18

25 ,
18
25 , 0,

28
25 ,

2
25 ,

22
25 ,−12

25 , 0,
8
25 ,

12
25 , . . . ),

and tabulate the corresponding sides of (5.8), multiplying them by 25:

i Σ(k,−k, 2) −L(k2, 2)
0 −12 −12
1 −10 −10
2 42 −8
3 −6 −6
4 −4 −4
5 −2 −2
6 0 0
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We can see here that the two sides are congruent modulo 25, but not equal,
so the knot P (5,−5, 2) cannot have unknotting number one. We can also
explicitly see the failure of Z(2) = 0, and that the correct value is indeed
Z(2) = 2.

For those who wish to compare this with Theorem 1.1 of [20], we remark
that our choice of 
 also gives us a positive, even matching. This matching,
however, is not symmetric.

6. Further remarks

There are two remaining cases: P (k,−k + 2, 2m) and P (k,−k + 4, 2m). In
these cases we run into difficulties applying the above methods. First of all,
we cannot employ Theorem 3.6, since Σ(K) is not an L-space. Although
some work has or is being done to remove the L-space restriction, any appli-
cation of the theorem to P (k,−k + 2, 2m) when the signature vanishes can
at best isolate the sign of the crossing change, as happened with P (k,−k, 2),
and even naive use of the obstruction without consideration for these ori-
entation hypotheses fails to resolve these cases fully. We end up with two
infinite families in each (detK = 1, 5 and detK = 3, 11, respectively) for
which the theorem provides no obstruction.

Since the proof of Theoerm 3.6 does not require the full power of Theo-
rem 5.1 (including the case when D ≡ 3 mod 4 not stated here), one might
consider using Theorem 5.1 directly. However, even here we have no hope of
a complete proof since (5.2) is vacuously satisfied when detK = 1, 3: we do
not have enough Spinc-structures for any asymmetries to occur. Therefore,
a totally new method will have to be brought to bear if we are to crack these
cases.

In both cases, the authors have tried using the Alexander module to no
effect, and their computations in small cases suggest that neither the Ras-
mussen nor Ozsváth-Szabó τ -invariant are of any use either. They therefore
leave treatment of these two cases to another paper at another time.
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