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The generalized Pohozaev-Schoen identity

and some geometric applications

Ezequiel Barbosa, Allan Freitas, and Levi Lopes Lima

In this note we show how a generalized Pohozaev-Schoen identity
due to Gover and Orsted [GO] can be used to obtain some rigidity
results for V -static manifolds and generalized solitons. We also ob-
tain an Alexandrov type result for certain hypersurfaces in Einstein
manifolds.

1. Introduction

In recent years, Riemannian metrics satisfying certain systems of partial
differential equations involving a function (and/or a vector field) defined on
the underlying manifold have been extensively studied. Examples include
geometric structures related to the class of static metrics appearing in Gen-
eral Relativity, such as the critical metrics introduced in [MT1], and the
generalized Ricci solitons discussed in [PRRS]. The dominant theme here
is to obtain rigidity results making sure that the given metric necessarily
belongs to a class of “trivial” solutions of the corresponding system.

The purpose of this note is to point out that some results in this area can
be quickly derived from a Pohozaev-type integral identity due to Schoen [S].
In fact, we consider here a generalization of Schoen’s identity due to Gover
and Orsted [GO]. This remarkable formula, which is a natural outgrowth
of E. Noether’s brilliant insight that infinite dimensional symmetry groups
lead to locally conserved quantities, actually encompasses a broad class of
integral identities previously established in the literature. As illustrated be-
low through examples, the identity can be used to access many interesting
results on the topics mentioned above. Applications include rigidity state-
ments for V -static manifolds in terms of the boundary behavior of the metric
and certain classification results for generalized Ricci solitons under suitable
assumptions on the underlying geometry.

This paper is organized as follows. In Section 2 we describe the gen-
eralized Pohozaev-Schoen integral identity due to Gover-Orsted [GO] and
present a list of locally conserved tensor fields to which it applies. In Section

223



✐

✐

“1-Freitas” — 2020/4/21 — 12:14 — page 224 — #2
✐

✐

✐

✐

✐

✐

224 E. Barbosa, A. Freitas, and L. L. Lima

3 we apply the classical special case due to Schoen to discuss several re-
sults for V -static manifolds. Examples of such results include a sharp upper
bound for the area of the boundary of a V -static 3-manifold (Theorem 3.9),
which extends a classical estimate due to Boucher-Gibbons-Horowitz [BGH]
for static manifolds, and a characterization in terms of the mean curvature
of V -static manifolds in case the induced metric on the boundary is isomet-
ric to a geodesic sphere in a simply connected space form (Theorem 3.12),
which extends a result due to Miao-Tam [MT1]. When the V -static manifold
is spin and has non-positive scalar curvature, we show in Section 5 how ideas
in [HMRa] can be used to generalize this latter result under the much weaker
assumption that the induced metric on the boundary dominates the round
metric on the geodesic sphere. Finally, in Section 4 we discuss applications
of the generalized Pohozaev-Schoen identity to solitons. In particular, we
provide alternative proofs to results appearing in [BBR] and [GWX] (Theo-
rems 4.2 and 4.3). We also include in this section an Alexandrov-type result
for a certain class of hypersurfaces in Einstein manifolds (Theorem 4.4).

2. The generalized Pohozaev-Schoen integral identity

In this section we discuss the generalized Pohozaev-Schoen identity pre-
sented in [GO]. An earlier manifestation of this identity appears in an old
paper by Pohozaev [Po], where it is proved that Dirichlet solutions of certain
semilinear elliptic equation in domains of Euclidean space satisfy an inte-
gral identity. As another installment of this same principle, Bourguignon
and Ezin [BE] proved that, in the presence of a conformal vector field, the
scalar curvature of a closed Riemannian manifold satisfies a similar integral
identity. It turns out that both identities above are special cases of a more
general identity due to Schoen [S]. In the following we will always denote by
◦

B the trace free part of a symmetric 2-tensor B. Moreover, unless otherwise
stated, all manifolds are assumed to be connected and oriented.

Theorem 2.1 (Pohozaev-Schoen integral identity [S]). Let (Mn, g)
be a compact Riemannian manifold with boundary Σ and X a vector field
on M . Then there holds

∫

M

X(Rg)dM = − n

n− 2

∫

M

〈
◦

Ricg,LXg

〉
dM(2.1)

+
2n

n− 2

∫

Σ

◦

Ricg(X, ν)dΣ,
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where Ricg is the Ricci tensor, Rg is the scalar curvature, L is Lie derivative
and ν is the outward unit normal vector field.

Given the relevance of (2.1) in connection with several deep questions
in Geometric Analysis, it is natural to seek for a derivation of this identity
from basic principles. This has been accomplished in [GO]. Realizing that
the proof of (2.1) is a consequence of the contracted Bianchi identity and
integration by parts, these authors were able to deduce a rather general
version of (2.1). In this regard, the next definition isolates the key concept
interpolating between the infinitesimal symmetries defined by vector fields
and the corresponding integral identity.

Definition 2.2. A symmetric 2-tensor B on a Riemannian manifold is said
to be locally conserved if it is divergence free, i.e. ∇iBij = 0.

We now display examples of tensor fields fitting into this definition.

Example 2.3. The contracted Bianchi identity in Riemannian (or
Lorentzian) geometry says that the Einstein tensor

Eg = Ricg −
Rg

2
g

is locally conserved. This plays a central role in General Relativity and is
of course at the core of the classical work by E. Noether on the relationship

between symmetries and conservation laws. Notice that
◦

Eg =
◦

Ricg.

Example 2.4. Set Qg = Pg − Jg, where

Pg =
1

n− 2

(
Ricg −

Rg

2(n− 1)
g

)
,

is the Schouten tensor and J = gijPij is its trace. It follows once again from
the contracted Bianchi identity that Qg is locally conserved.

Example 2.5. Let (M, g) be a hypersurface of Euclidean space R
n+1, II

its second fundamental form and H = gijIIij the mean curvature. It follows
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that II satisfies the contracted Codazzi equation

∇iIIij = ∇jH,

and therefore the symmetric 2-tensor A = II −Hg is locally conserved. This
result holds more generally if Rn+1 is replaced by any Einstein manifold; see
the proof of Theorem 4.4 below.

Example 2.6. (Lovelock tensors) Let (Mn, g) be a Riemannian manifold
and dM the associated volume element. Given a vector field X ∈ X (M) we
have

d(iXdM) = d(iXdM) + iXd(dM) = LXdM = (divgX)dM,

where L is Lie derivative and iX is contraction with X. Thus, the
correspondence X ↔ ω = iXdM defines an isomorphism between A1(M)
and An−1(M), where Ap(M) denotes the space of differential p-forms on
M . Obviously, X is divergence free if and only if ω is closed. Similarly,
the correspondence X1 ⊗X2 ↔ iX1

dM ⊗ iX2
dM defines an isomorphism be-

tween T 2(M), the space of covariant 2-tensors overM and An−1(M)⊗A0(M)

An−1(M). By restriction we obtain an isomorphism between S2(M) ⊂
T 2(M), the subspace of symmetric 2-tensors, and S2(An−1(M)) ⊂
An−1(M)⊗A0(M) An−1(M), where by definition η ∈ S2(Ap(M)) if and only
if it is symmetric in the sense that

η(ei1 ∧ · · · ∧ eip ⊗ ej1 ∧ · · · ∧ ejp) = η(ej1 ∧ · · · ∧ ejp ⊗ ei1 ∧ · · · ∧ eip).

It is easy to check that B ∈ S2(M) is locally conserved if and only if the
corresponding element B̃ ∈ S2(An−1(M)) satisfies d∇B̃ = 0, where d∇ is
the covariant exterior differential. Now, for each 1 ≤ k ≤ [(n− 1)/2] define
L̃2k ∈ S2(An−1(M)) by

L̃2k = Rg∧
k· · · ∧Rg ∧ g ∧ · · · ∧ g,

where Rg is the curvature tensor of g. Since d∇g = 0 (g is parallel) and

d∇Rg = 0 (Bianchi identity) we see that d∇L̃2k = 0. Thus, the corresponding
symmetric two-tensor L2k, called the Lovelock tensor, is locally conserved
[L]. It is easy to check that L2 is a multiple of Eg, the Einstein tensor.

We now state the generalized Pohozaev-Schoen identity considered in
[GO].
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Theorem 2.7. [GO] Let (M, g) be a compact Riemannian manifold with
boundary Σ. If B is a locally conserved symmetric 2-tensor and X is a vector
field on M there holds

(2.2)

∫

M

X(b)dM =
n

2

∫

M

〈
◦

B,LXg
〉
dM − n

∫

Σ

◦

B(X, ν)dΣ,

where b = gijBij is the trace of B.

For the sake of completeness we include here the simple proof of this
result. First observe that integration by parts yields

∫

Σ
B(X, ν)dΣ =

∫

M

∇i(BijX
j)dM.

Since B is locally conserved and symmetric we find that

∇i(BijX
j) = Bij∇iXj =

1

2
Bij(∇iXj +∇jXi) =

1

2
⟨B,LXg⟩ .

Therefore,

∫

Σ
B(X, ν)dΣ =

1

2

∫

M

⟨B,LXg⟩dM

=
1

2

∫

M

⟨
◦

B,LXg⟩dM +
1

2n

∫

M

b ⟨g,LXg⟩dM

=
1

2

∫

M

⟨
◦

B,LXg⟩dµg +
1

n

∫

M

b divgXdµg.

Since
∫

M

b divXdM = −
∫

M

X(b)dM +

∫

Σ
b g(X, ν)dΣ,

the result follows.
We now list a few useful consequences of this result.

Corollary 2.8. If M is closed then

(2.3)

∫

M

X(b)dM =
n

2

∫

M

〈
◦

B,LXg
〉
dM.
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Corollary 2.9. If X is a conformal vector field, i.e., LXg = fg for some
function f on M , then

(2.4)

∫

M

X(b)dM = −n
∫

∂M

◦

B(X, ν)dΣ.

In particular,
∫
M
X(b)dM = 0 if M is closed.

Remark 2.10. It is easy to check that the classical Pohozaev-Schoen iden-
tity (2.1) follows from (2.2) by taking B = Eg as in Example 2.3.

3. Applications of the Pohozahev-Shoen identity to V -static

manifolds

Let M be a connected, smooth n-manifold with (a possibly disconnected)
boundary Σ. Fix a metric γ on Σ and let Mγ be the set of all metrics on M
such that g|TΣ = γ. Next we consider the volume functional V : Mγ → R.
Fix a constant K and consider the set MK

γ of all metrics g ∈ Mγ such that

Rg = K. In [MT1] it is proved that a metric g ∈ MK
γ with the property

that the first Dirichlet eigenvalue of (n− 1)∆g +K is positive is a critical
point for the volume functional in MK

γ if and only if there exists a smooth
function λ on M such that

(3.1) − (∆gλ)g +∇2
gλ− λRicg = g on intM,

and λ|Σ = 0, where ∆g and ∇2
g are the Laplacian and the Hessian operator

with respect to g, respectively. We then say that g is a V -static metric with
potential function λ and that (M, g) is a V -static manifold. We may assume
that Rg = K = εn(n− 1), ε = −1, 0, 1. We then set Mε

γ = MK
γ . Also, it is

known that λ ≥ 0 and Σ = λ−1(0). In fact, each connected component of
Σ is umbilical with mean curvature given by H = −(∂λ/∂ν)−1 > 0. In the
following we always assume that M is compact. For further results on the
geometry of V -static manifolds see [MT1], [MT2] and [CEM].

In [MT1, Theorem 6] it is shown that among compact domains in sim-
ply connected space forms, geodesic balls are the only V -static manifolds
(in the spherical case one has to assume that the ball is contained in an
open hemisphere). A natural question here is to ask if this characterizations
remains valid in a larger class of metrics. The next result provides a partial
answer to this question.

Theorem 3.1. [MT2, Theorem 2.1, Theorem 4.1] Let (M, g) be a compact
V -static manifold which is either Einstein or simply connected and locally
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conformally flat. If Σ is connected then (M, g) is isometric to a geodesic ball
in a simply connected space form.

Similar results in low dimensions have been obtained in [BDR]. Here
we use the Pohozaev-Schoen integral identity (2.2) to characterize these
examples as the limiting cases of certain geometric inequalities. The next
definition provides some motivation for our results.

Definition 3.2. A complete and connected Riemannian manifold (Mn, g)
with a (possibly nonempty) boundary Σ is said to be static if it there exists
a non-negative function λ on M satisfying

(3.2) − (∆gλ)g +∇2
gλ− λRicg = 0 in intM,

and Σ = λ−1(0).

The left hand side of (3.2) happens to be the formal L2-adjoint of the
linearization of the scalar curvature operator and as such it plays a central
role in problems involving the prescription of this invariant. Also, the identity
appears in General Relativity, where it defines static solutions of Einstein
field equations. It is easy to check that the scalar curvature Rg of g in (3.2)
is necessarily constant, so we may assume that Rg = εn(n− 1), ε = 0, 1,−1.
Moreover, Σ = λ−1(0) is a totally geodesic hypersurface.

Let (M, g) be a static manifold with Σ =
l⋃

i=1
Σi, where Σi are the con-

nected components of Σ. When ε = 1 Chruśchiel [Cr] showed that

(3.3)

l∑

i=1

κi

∫

Σi

(Rγi
− (n− 2)(n− 1)) dΣi ≥ 0,

where γ = g|Σ, γi = γ|Σi
and κi is the restriction of |∇gλ| to Σi. Moreover,

the equality implies that M is a round hemisphere and, a fortiori, l = 1.
This inequality has important applications. For instance, if n = 3 and Σ is
connected it leads to the famous Boucher-Gibbons-Horowitz [BGH] upper
bound for the area |Σ| of Σ:

(3.4) |Σ| ≤ 4π,

with the equality holding if and only if M is isometric to the round hemi-
sphere (de Sitter space). Further results on static-type metrics can be found
in [QY] and the references therein.
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We now give natural extensions of these results to V -static manifolds. We
start with a general integral identity which is a direct consequence of (2.2).

Theorem 3.3. Let (Mn, g) be a compact V -static manifold with bound-

ary Σ =
l⋃

i=1
Σi, and Rg = εn(n− 1), where ε = −1, 0, 1. Then the following

integral identity holds:

(3.5)

∫

M

λ|
◦

Ricg |2dM = −
∑

i

κi

∫

Σi

(Ricg(ν, ν)− ε(n− 1)) dΣi,

where κi is the restriction of |∇gλ| to Σi. In particular,

(3.6)
∑

i

κi

∫

Σi

(Ricg(ν, ν)− ε(n− 1)) dΣi ≤ 0,

with the equality holding if and only if (M, g) is isometric to a geodesic ball
in a simply connected space form.

Proof. We apply (2.2) with B = Eg, the Einstein tensor, and X = ∇gλ, so

that
◦

E=
◦

Ricg and L∇gλg = 2∇2
gλ. Using (3.1) we see that

⟨
◦

Ricg,∇2
gλ⟩ = λ⟨

◦

Ricg,Ricg⟩ = λ|
◦

Ricg |2.

Thus, (3.5) follows immediately by observing that ν = −∇gλ/|∇gλ|g. Fi-
nally, if the equality holds in (3.6) then from (3.5) we conclude that (M, g)
is Einstein and the rigidity statement follows from Theorem 3.1. □

Corollary 3.4. Let (M, g) be as in the theorem and assume that

Ricg(ν, ν) ≥ ε(n− 1)

along Σ. Then (M, g) is isometric to a geodesic ball in a simply connected
space form.

The next result is an immediate consequence of (3.5) and Gauss equa-
tion.

Theorem 3.5. Let (Mn, g) be a compact V -static manifold with bound-

ary Σ =
l⋃

i=1
Σi, and Rg = εn(n− 1), where ε = −1, 0, 1. Then the following
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integral identity holds:

(3.7)

∫

M

|
◦

Ricg |2dM =
1

2

l∑

i=1

κi

∫

Σi

(
Rγi

− ε(n− 2)(n− 1)− n− 2

n− 1
H2

i

)
dΣi,

where gi = g|Σi
and Hi is the mean curvature of Σi. In particular,

(3.8)

l∑

i=1

κi

∫

Σi

(
Rγi

− ε(n− 2)(n− 1)− n− 2

n− 1
H2

i

)
dΣi ≥ 0,

with the equality holding if and only if (M, g) is isometric to a geodesic ball
in a simply connected space form.

Proof. Gauss equation applied to the totally umbilical embedding Σi ⊂M
says that

2Ricg(ν, ν) +Rγi
= εn(n− 1) +

n− 2

n− 1
H2

i ,

which can be rewritten as

2 (Ricg(ν, ν)− ϵ(n− 1)) = ε(n− 2)(n− 1) +
n− 2

n− 1
H2

i −Rgi .

The result follows. □

We now present an upper bound for the volume of V -static manifolds
with ε ≥ 0 and a connected boundary.

Theorem 3.6. Let (Mn, g) be a compact V -static manifold with a con-
nected boundary Σ and Rg = εn(n− 1), where ε = 0, 1. Then

∫
ΣRγdΣ > 0

and the following upper bound for the volume |M | of M holds:

(3.9) |M | ≤ n− 1

nH

(
ε(n− 1)(n− 2) +

n− 2

n− 1
H2

)−1 ∫

Σ
RγdΣ.

Proof. From (3.8) we have

(3.10)

∫

Σ
RγdΣ ≥

(
ε(n− 1)(n− 2) +

n− 2

n− 1
H2

)
|Σ|.

On the other hand, taking trace of (3.1) and integrating over M we get

(n− 1)

∫

M

∆gλdM + εn(n− 1)

∫

M

λdM + n|M | = 0.
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But ∫

M

∆gλdM =

∫

Σ

∂λ

∂ν
dΣ = −|Σ|

H
,

so we obtain

(3.11) |Σ| = H

n− 1

(
n|M |+ εn(n− 1)

∫

M

λdM

)
≥ n

n− 1
H|M |,

and the result follows by combining (3.10) and (3.11). □

Remark 3.7. If ε = 0 this theorem corresponds to [CEM, Proposition 2.5
(b)]. In this case, the equality implies that (M, g) is isometric to a geodesic
ball in a simply connected space form. Clearly, if ε = 1 then the inequality
(3.9) is always strict.

As a consequence of Theorem 3.5 we obtain a topological classification
for the (connected) boundary of a positive V -static 3-manifold.

Theorem 3.8. Let (M3, g) be a compact V -static manifold with a connected
boundary Σ and Rg = 6ε, where ε = −1, 0, 1. If ε = −1 assume that H > 2.
Then Σ is diffeormophic to the 2-sphere.

Proof. It follows from Theorem 3.5 and Gauss-Bonnet formula that

(3.12) 4πχ(Σ) ≥
(
2ε+

1

2
H2

)
|Σ|,

where χ(Σ) is the Euler characteristic of Σ. Thus, χ(Σ) > 0. □

It is worthwhile to state the following extension of (3.4), which is an
immediate consequence of the proof above.

Theorem 3.9. Let (M3, g) be a compact V -static manifold with a connected
boundary Σ and Rg = 6ε, where ε = −1, 0, 1. If ε = −1 assume that H > 2.
Then

|Σ| ≤ 4π

(
ε+

1

4
H2

)−1

.

Moreover, equality holds if and only if (M3, g) is isometric to a geodesic ball
in a simply connected space form.

Using Theorem 3.5 and Chern-Gauss-Bonnet formula for closed 4-mani-
folds we obtain the following result.
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Theorem 3.10. Let (M5, g) be a compact V -static manifold with connected
boundary Σ and Rg = 20ε, where ε = −1, 0, 1. If ε = −1 we assume that
H > 4. Assume also that Σ is Einstein. Then there holds

8π2χ(Σ) ≥ 1

24

(
12ε+

3

4
H2

)2

|Σ|,

with the equality holding if and only if (M, g) is isometric to a geodesic ball
in a simply connected space form. In particular, χ(Σ) > 0.

Proof. It follows from Theorem 3.5 that

(
12ε+

3

4
H2

)
|Σ| ≤

∫

Σ
RγdΣ.

Using Hölder inequality we obtain

(
12ε+

3

4
H2

)2

|Σ| ≤
∫

Σ
R2

γdΣ.

Now recall that the Chern-Gauss-Bonnet formula says that

8π2χ(Σ) =
1

4

∫

Σ
|Wγ |2dΣ+

1

24

∫

Σ
R2

γdΣ− 1

2

∫

Σ
|

◦

Ricγ |2dΣ,

where W is the Weyl tensor. Under our assumptions, this leads to

8π2χ(Σ) ≥ 1

24

∫

Σ
R2

γdΣ,

and the result follows. □

Let us now recall a result proved in [MT1, Corollary 3] which, under
suitable assumptions, characterizes certain V -static manifolds as the limiting
cases of geometric inequalities involving the geometry of the boundary.

Theorem 3.11. Let (M, g) be an n-dimensional compact V -static manifold
with a connected boundary Σ and Rg = εn(n− 1).

(i) If ε = 0, (Σ, γ) is isometric to a geodesic sphere in R
n and M is

spin if n ≥ 8, then Ricg(ν, ν) is a non-positive constant along Σ, and
Ricg(ν, ν) = 0 if and only if (M, g) is isometric to a geodesic ball in
R
n;
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(ii) If n = 3, ε = 0 and Ricg(ν, ν) = 0 along Σ, then (M, g) is isometric to
a geodesic ball in R

3.

(iii) If n = 3, ε = −1 and (Σ, γ) is isometric to a geodesic sphere in H
3,

then Ricg(ν, ν) is a constant satisfying Ricg(ν, ν) ≤ −2 along Σ, and
Ricg(ν, ν) = −2 if and only if (M, g) is isometric to a geodesic ball in
H

3.

We extend this result in the following way; see Remark 3.13 below.

Theorem 3.12. Let (M, g) be an n-dimensional V -static manifold with a
connected boundary and Rg = εn(n− 1). Assume that (Σ, γ) is isometric to
a totally umbilic hypersurface (Σε, γε) in a simply connected space form of
curvature ε. Then there holds

Hε ≥ H

where H and Hε are the mean curvature of Σ and Σε, respectively. Equality
holds if and only if (M, g) is isometric to a geodesic ball in the corresponding
simply connected space form.

Proof. It follows from Gauss equation that

2Ricg(ν, ν) +Rγ = εn(n− 1) +
n− 2

n− 1
H2

and

Rγε
= ε(n− 2)(n− 1) +

n− 2

n− 1
H2

ε .

As (Σ, γ) is isometric to (Σε, γε), we have Rγ = Rγε
. Hence,

(3.13) 2Ricg(ν, ν)− 2ε(n− 1) =
n− 2

n− 1
(H2 −H2

ε ) .

By integrating over (Σ, γ) = (Σε, γε) and using (3.5), the inequality follows
since H and Hε are positive constants. Finally, if H = Hε we conclude that
(M, g) is Einstein and the rigidity statement follows from Theorem 3.1. □

Remark 3.13. Notice that (3.13) justifies our claim above that Theo-
rem 3.12 extends Theorem 3.11.

Corollary 3.14. Let (Mn, g) compact V -static manifold with a connected
boundary Σ and Rg = n(n− 1). Then (Σ, γ) can not be isometric to the
standard unit (n− 1)-sphere.
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Proof. If the isometry exists then the theorem yields the contradiction H =
0. □

Remark 3.15. If ε = 0,−1 and M is spin then Theorem 3.12 can be im-
proved in the sense that it suffices to assume that γ ≥ γε; see Section 5.

4. Applications of the generalized Pohozahev-Schoen

identity to generalized solitons and an Alexandrov-type

theorem

So far we have presented applications of the Pohozaev-Schoen identity (2.1).
We now discuss a few applications of the generalized Pohozaev-Schoen iden-
tity (2.2). In particular, we present an alternative approach to results ap-
pearing in [BBR] and [GWX]. Even though those results are not directly
related to static-type metrics, which is our main focus here, we include them
in order to illustrate the flexibility of the method. Even in the “classical”
case where B = Eg, the Einstein tensor, the use of (2.1) substantially simpli-
fies the proofs of results otherwise obtained by involved computations. We
also include here an Alexandrov-type theorem for hypersurfaces suggested
by Example 2.5.

We start with a definition which encompasses concepts introduced in
[PRRS] and [GWX].

Definition 4.1. An h-generalized almost soliton is a complete Riemannian
manifold (Mn, g) endowed with a locally conserved symmetric tensor B, a
vector field X and two smooth functions µ and h satisfying

B +
h

2
LXg = µg.

In case h = 1 we say that (M, g,B,X, µ) is a generalized almost soliton. If
X is a gradient field then we say that the corresponding soliton is a gradient.
Moreover, if X is a Killing field then we say that the soliton is trivial.

Theorem 4.2. Let (M, g,B,X, µ) be a generalized almost soliton with M
closed.

(i) If b = gijBij is constant then X is a conformal vector field. Moreover,
if X is a gradient field then (M, g) is conformally equivalent to a round
sphere.

(ii) If B = Eg and the almost Ricci soliton (M, g) is non-trivial and has
constant scalar curvature then it is a gradient and (M, g) is isometric
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to a standard sphere. In fact, X decomposes as a sum of a Killing and
a gradient field.

Proof. By definition we have that LXg = −2
◦

B +fg for some f . Then using
the generalized Pohozaev-Schoen identity in the form (2.3) we obtain that∫
M

|
◦

B |2dM = 0 and hence
◦

B= 0. It follows that LXg = fg and therefore
X is a conformal vector field. By setting f = 2φ and taking trace we get
φ = divgX/n. Thus, if X is a gradient field, X = ∇gψ, then ψ satisfies

∇2
gψ = φg =

∆gψ

n
g.

That (M, g) is conformally equivalent to a round sphere now follows from
[Y, Theorem 6.3].

Now, if B = Eg then the argument above based on (2.3) shows that
(M, g) is Einstein and X is a conformal vector field, LXg = 2φg. With this
information at hand, the assertions in (ii) follow easily from well-known
results. For instance, we may proceed as follows. First observe that, under
these conditions, it is known that the conformal potential φ satisfies the
identity

(4.1) ∇2
gφ = − Rg

n(n− 1)
φg

see the proof of [H1, Lemma 2.2]. Now assume that φ is a constant function.
From (4.1) we see that either Rg = 0 or φ = 0. In the first case, it follows
from [O, Theorem 6] that X is Killing, which contradicts the non-triviality
of the soliton. Also, if φ = 0 we have again that X is Killing. Thus, φ is
a non-constant function so that X is a non-homothetic conformal field and
that (M, g) is isometric to a round sphere now follows from [NY].

Finally, take trace in (4.1) to get

∆gφ = − Rg

n− 1
φ,

that is, Rg/(n− 1) is a non-trivial eigenvalue of ∆g. In particular, Rg > 0.
Now set

u = −n(n− 1)

Rg
φ

and check directly that LXg = L∇gug. This shows that X −∇gu is Killing.
□
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Item (ii) above corresponds to [BBR, Corollary 1]. By using the same
argument we can approach [GWX, Theorem 1]; see item (ii) in the next
theorem.

Theorem 4.3. Let (M, g,B,X, λ, h) be a generalized h-almost soliton with
M closed.

(i) If v = gijBij is constant and h has a fixed sign, i.e., h > 0 or h < 0,
then X is a conformal vector field. In particular, if X is gradient field
then (M, g) is conformally equivalent to a round sphere.

(ii) If B = Eg, and the generalized almost Ricci soliton (M, g) is non-
trivial, has constant scalar curvature and h has a fixed sign then it is
a gradient and and (M, g) is isometric to a standard sphere. In fact,
X decomposes as a sum of a Killing and a gradient field.

Based on Example 2.5 we now present an Alexandrov-type theorem for
hypersurface (Mn, g) immersed in an Einstein manifold (M̃n+1, g̃) satisfying
an identity of the type

(4.2) II +∇2
gf = µg,

where µ and f are smooth functions onM and II is the second fundamental
form.

Theorem 4.4. Let (M, g) be as above and assume that the mean curva-
ture H = gijIIij is constant. Then M is a totally umbilical hypersurface.

In particular, if M̃ is a simply connected space form then M is a geodesic
sphere.

Proof. We first construct a locally conserved tensor on M . Let {ei}, 1 ≤
i ≤ n be a local orthonormal frame on M , which we extend to M̃ by setting
en+1 = ν. Let hij = II(ei, ej), 1 ≤ i, j ≤ n. It follows from Codazzi equations
that

∇khij −∇jhik = R̃n+1ijk, 1 ≤ i, j, k ≤ n,

where R̃ijkl is the curvature tensor of (M̃, g̃). If we take j = i in this identity
and sum over i we get

∇kH =

n∑

i=1

hii,k =

n∑

i=1

∇ihik +

n∑

i=1

R̃n+1iik =

n∑

i=1

∇ihik + R̃icn+1k.
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Since M̃ is Einstein, R̃icn+1k = R̃
n+1 g̃n+1k = 0 for each k = 1, . . . , n, and

hence ∇iIIij = ∇jH. Therefore, the tensor B = II −Hg is locally con-

served, trgB = (1− n)H and
◦

B =
◦

II. Thus, using (2.3) and (4.2) we obtain

0 =

∫

M

⟨∇gH,∇gf⟩ dM =
n

n− 1

∫

M

|
◦

II|2dM,

and the result follows. □

5. V -static manifolds and spinors

In this section we show how Theorem 3.12 can be improved in case ε = 0,−1
if we assume that the V -static manifold (M, g) is spin. Here we follow closely
the ideas in [HMZ] [HMR] [HMRa]. We retain the notation of Section 3.

We set ϵ =
√
ε so that ϵ = 0, i if ε = 0,−1, respectively. We consider a

compact spin manifold M of dimension n ≥ 2 endowed with a Riemannian
metric g. Also, we assume that M carries a non-empty boundary Σ. Denote
H = infΣH, where H is the mean curvature of Σ. We fix a spin structure
on M and denote by SM the corresponding spin bundle. If ∇g is the spin
connection on SM induced by g we set

∇̃g
Xψ = ∇g

Xψ +
ϵ

2
X · ψ,

where X ∈ Γ(TM), ψ ∈ Γ(SM) and the dot means Clifford multiplication.
The corresponding Dirac operator is

D̃gψ =

n∑

i=1

ei · ∇̃g
eiψ = Dgψ − nϵ

2
ψ,

where Dgψ =
∑n

i=1 ei · ∇
g
eiψ is the standard Dirac operator. The integral

Lichnerowicz formula reads
∫

M

(
|∇̃gψ|2 − |D̃gψ|2 + Rg − εn(n− 1)

4
|ψ|2

)
dM(5.1)

=

∫

Σ

〈
D̃γψ − H

2
ψ, ψ

〉
dΣ,

where

D̃γψ = Dγψ +
n− 1

2
ϵψ,

where Dγ is the Dirac operator on SΣ, the induced spin bundle on (Σ, γ),
γ = g|Σ.
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Starting from (5.1), the following result is proved in [HMZ] [HMR].

Proposition 5.1. [HMZ] [HMR] Let (M, g) as above and assume that R ≥
εn(n− 1)|ε|2 and H ≥ 0. Then there holds

λ̃γ ≥ H

2
,

where λ̃γ be the lowest positive eigenvalue of D̃γ. Moreover, the equality
implies that (M, g) is Einstein (with Rg = εn(n− 1)) and Σ has constant
mean curvature.

Corollary 5.2. If λγ is the lowest positive eigenvalue of Dγ then

(5.2) λγ ≥ 1

2

√
H2 + ε(n− 1)2.

Moreover, the equality implies that (M, g) is Einstein (with Rg = εn(n− 1))
and Σ has constant mean curvature.

Proof. It is easy to check that

λ̃γ =

√
(λγ)2 − ε

(n− 1)2

4
,

which proves the result. □

Following [HMRa], we combine this with a Vafa-Witten-type bound due
to Herzlich [H2]. Define sε(r) = r if ε = 0 and sε(r) = sinh r if ε = −1. Also,
define cε(r) = s′ε(r). Thus, if h0 is the round metric on the unit sphere
S
n−1 then gε = dr2 + s2ε(r)h0 is the standard metric on the simply connected

space form H
n
ε of curvature ε. Let Bε(r) ⊂ H

n
ε be the ball of radius r and

Sε(r) = ∂Bε(r). Note that Sε(r) has intrinsic metric γε(r) = s2ε(r)g0 and
mean curvature Hε(r) = (n− 1)fε(r), where fε = cε/sε.

Let γ be a metric on Sε(r) satisfying γ ≥ γε(r). A result by Herzlich [H2]
says that

(5.3) λγ ≤ n− 1

2sε(r)
.

Moreover, the equality holds if and only if γ = γε(r). Combining (5.2) with
(5.3) and usint that εs2ε + c2ε = 1, we get the following result.
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Theorem 5.3. Let (M, g) be a spin Riemannian manifold satisfying R ≥
εn(n− 1) and H ≥ 0 on Σ. Assume also that Σ is diffeomorphic to Sε(r)
and that γ = g|Σ ≥ γε(r) there. Then

H ≤ Hε(r).

Moreover, the equality implies that M is Einstein (with R = εn(n− 1)),
γ = γε(r) and H = Hε(r).

As an immediate consequence we obtain the following extension of The-
orem 3.12 when ε = 0,−1 and M is spin.

Theorem 5.4. Let (M, g) be a V -static spin manifold with Rg = εn(n− 1),
ε = 0,−1. Assume that Σ is diffeomorphic to Sε(r) and that γ = g|Σ ≥ γε(r)
there. Then

H ≤ Hε(r).

Moreover, the equality implies that (M, g) = (Bε(r), gε).

Proof. Just observe that the equality H = Hε(r) implies that (M, g) is Ein-
stein and use Theorem 3.1. □

This corresponds to [HMRa, Theorem 2] in our setting. Note also that
for n = 3 the spin condition is superfluous.
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58059-900 João Pessoa, Paráıba, Brazil
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