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We prove a homology vanishing theorem for graphs with positive
Bakry-Émery curvature, analogous to a classic result of Bochner
on manifolds [3]. Specifically, we prove that if a graph has pos-
itive curvature at every vertex, then its first homology group is
trivial, where the notion of homology that we use for graphs is
the path homology developed by Grigor’yan, Lin, Muranov, and
Yau [11]. We moreover prove that the fundamental group is finite
for graphs with positive Bakry-Émery curvature, analogous to a
classic result of Myers on manifolds [22]. The proofs draw on sev-
eral separate areas of graph theory, including graph coverings, gain
graphs, and cycle spaces, in addition to the Bakry-Émery curva-
ture, path homology, and graph homotopy. The main results follow
as a consequence of several different relationships developed among
these different areas. Specifically, we show that a graph with pos-
itive curvature cannot have a non-trivial infinite cover preserving
3-cycles and 4-cycles, and give a combinatorial interpretation of
the first path homology in terms of the cycle space of a graph.
Furthermore, we relate gain graphs to graph homotopy and the
fundamental group developed by Grigor’yan, Lin, Muranov, and
Yau [12], and obtain an alternative proof of their result that the
abelianization of the fundamental group of a graph is isomorphic
to the first path homology over the integers.

1. Introduction

A significant theme in much of graph theory in recent years has been the
application of tools and ideas from continuous geometry to discrete settings,
most specifically to graphs. There has been growing interest both in the ap-
proximation of continuous spaces by discrete ones, and in the understanding
of graphs via their geometric properties. For instance, a classical example
resulting from this way of thinking is the well-known Cheeger inequality
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(see for instance [6]), which proves an isoperimetric inequality for graphs
that was originally formulated for Riemannian manifolds.

One of the principal developments in this area concerns curvature for
graphs. Numerous notions of curvature on graphs have been put forward
[10, 23]. An important and very general notion of curvature for graphs has
been defined via various formulas due to Bakry and Émery, which is called
the Bakry-Émery curvature of a graph (see [1, 20, 24]).

In addition, there are various notions of homology and cohomology for
graphs. Recent work has introduced one such theory called the path ho-
mology [13]. Path homology has been shown to be a non-trivial homology
theory which is invariant under a notion of homotopy for graphs [12]. Using
this homotopy theory, the fundamental group for a graph is defined in [12],
and it is shown that the first path homology is isomorphic to the abelian-
ization of this fundamental group. Furthermore, it satisfies nice functorial
properties, namely the Künneth formulas hold for graph products [14]. For
these reasons, it seems that the path homology is a more appropriate notion
of homology for graphs than others that have been proposed. See [14] for
a discussion of various homology theories for graphs and the advantages of
the path homology.

In this paper, we prove an important connection between graph curva-
ture and homology. Namely, we prove a homology vanishing theorem for
graphs with positive Bakry-Émery curvature. Homology vanishing theorems
are ubiquitous in continuous geometry, and give important structural infor-
mation about manifolds. Our vanishing theorem is analogous to a funda-
mental result of Bochner on manifolds which states that a manifold with
positive curvature at every point has trivial first homology [3].

Theorem 1.1. If a finite graph G has positive Bakry-Émery curvature at
every vertex, then its first path homology group is trivial.

It turns out that Bakry-Émery curvature on graphs is also compatible
with the notion of homotopy and fundamental group from [12]. Our homo-
topy theorem is analogous to a fundamental result of Myers on manifolds
which states that the fundamental group of a manifold with positive curva-
ture is finite [22].

Theorem 1.2. If a finite graph G has positive Bakry-Émery curvature at
every vertex, then its fundamental group π1(G) is finite.
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Showing that these classical theorems from geometry hold for graphs
reinforces the idea that the path homology is a good notion of homology for
graph theory.

While Theorems 1.1 and 1.2 can be considered the main results of this
paper, our proofs are executed by developing relationships between several
different areas of graph theory, which are interesting on their own. Par-
ticularly, we give a concrete, combinatorial interpretation of the first path
homology of a graph in terms of the cycle space of the graph, which is the
space of linear combinations of incidence vectors of cycles of a graph. Specif-
ically, we prove that the first path homology is isomorphic to the cycle space
modulo the space generated by simple cycles of length 3 and 4. It is an open
question to find a similar nice interpretation of the path homology groups
beyond the first.

Further, we develop relationships between the cycle space, and the notion
of a gain graph which is a graph with edges labeled with elements of a group.
The cycle space of a graph always has a basis of size equal to the cyclomatic
number of the graph, but there are various different classes of cycle bases
depending on certain properties. See [19] for a discussion of different kinds
of cycle bases. One of our contributions is to give a new kind of cycle basis
based on a gain graph, which we call a Γ-circuit generator, where Γ is the
group associated with a gain graph.

In addition, we investigate the fundamental group as defined in [12], and
give an interpretation of this group relating to gain graphs. Then, via results
of [8], we are able to describe this fundamental group as the fundamental
group of the topological space obtained by attaching a 2-cell to each cycle
of length 3 or 4 in G. This allows us to connect graph coverings with the
fundamental group. Our results also give an alternative proof of the result in
[12] that the first path homology over Z is isomorphic to the abelianization
of this fundamental group.

1.1. Organization and main results

The remainder of this paper will be organized as follows. In Section 2, we
will give the technical preliminaries, including definitions and known results
concerning gain graphs, cycle bases, covers of graphs, graph homology, and
graph curvature. In addition to relevant known results, we present some new
lemmas that will be useful later.

In Section 3.1, we prove a relationship between the path first homology
group of a graph and its cycle space. Namely, we show that the first homology
group H1(G,F), for a field F, is isomorphic to the F-cycle space modulo the
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space generated by all 3- and 4-cycles. This gives an interpretation of what
the first path homology group is “measuring” in terms of a well-studied
combinatorial concept–the cycle space.

Section 3.2 investigates the relationships between cycle spaces and gain
graphs. In particular we prove that a collection of circuits generates F-cycle
space if and only if it is a Γ-circuit generator, where Γ is the additive group
of the field F.

Section 3.3 explores the relationship between gain graphs and covers of
graphs. In particular, we use a construction due to Gross and Tucker [16]
to produce coverings of graphs corresponding to gain functions, and show
that those coverings preserve precisely the cycles that are balanced under
the gain function.

In Section 3.4, we connect the Bakry-Émery curvature to coverings of
graph. Using a known diameter bound involving the curvature [9, 21], we
prove that a graph with positive curvature has no infinite covering that
preserves 3- and 4-cycles.

In Section 3.5, we combine all these results to prove Theorem 1.1, the
main result of the paper.

Section 3.6 investigates the fundamental group of a graph π1(G) under
the notion of homotopy from [12]. This notion of homotopy treats 3- and
4-cycles as contractible subgraphs. We show that this fundamental group
is isomorphic to a quotient of a canonical gain group balanced on the set
of 3- and 4-cycles. Indeed, we define a generalization of the fundamental
group, treating any arbitrary collection of cycles as contractible, and show
that this is similarly isomorphic to a quotient of a canonical gain graph with
the same set of cycles. As in classical topology, we connect the fundamental
group with the universal covering allowing us to prove Theorem 1.2. We also
show how our results give an alternate proof Theorem 4.23 of [12], which
says that H1(G,Z) is the abelianization of π1(G).

Finally, in Section 4, we discuss some open questions and possible weak-
ening of the hypotheses of Theorem 1.1. We discuss a different notion of ho-
mology, and observe that Theorem 1.1 does not hold for this other definition.
This strengthens the notion that the path homology has many advantages
over other graph homology theories.

2. Preliminaries

We will denote a graph, either directed or undirected, as G = (V,E). Two
vertices are called adjacent if they are connected by an edge. The neigh-
borhood of a vertex v is the set of vertices adjacent to v. The degree of a
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vertex v is the number of vertices adjacent to v. For a subset S ⊂ V , the
subgraph of G induced by S is the subgraph of G obtained by deleting all
vertices not in S (so the induced subgraph has vertex set S and all edges
between those vertices that were present in S). A circuit or simple cycle C is
a simple closed walk (x1, . . . , xn) of distinct vertices xi adjacent to xi+1, and
xn adjacent to x1. A circuit with k vertices will be referred to as a k-cycle.
We write S(G) for the set of all circuits in G.

2.1. Path homology of graphs

In this section, we will give definitions for a homology theory on graphs that
has been developed in recent years, called path homology. See [11, 13, 14].
This homology theory is most naturally described for directed graph, and
the homology of an undirected graph is obtained by orienting each edge of
an undirected graph in both possible directions.

For a directed graph G = (V,E) (without self-loops) we start by defining
an elementary m-path on V to be a sequence i0, . . . , im of m+ 1 vertices of
V . For a field F we define the F-linear space Λm to consist of all formal
linear combinations of elementary m-paths with coefficients from F. We
identify an elementary m-path as an element of Λm denoted by ei0···im , and
{ei0···im : i0, . . . , im ∈ V } is a basis for Λm. Elements of Λm are called m-
paths, and a typical m-path p can be written as

p =
∑

i0,...,im∈V

ai0···imei0···im , ai0···im ∈ F.

Note that Λ0 is the set of all formal linear combinations of vertices in V .
We define the boundary operator ∂ : Λm → Λm−1 to be the F-linear map

that acts of elementary m-paths by

∂ei0···im =

m∑

k=0

(−1)kei0···̂ik···im ,

where îk denotes the omission of index ik.
For convenience, we define Λ−1 = 0 and ∂ : Λ0 → Λ−1 to be the zero

map.
It can be checked that ∂2 = 0, so that the Λm give a chain complex (see

[14]). When it is important to make the distinction, we will use ∂m to denote
the boundary map on Λm, ∂m : Λm → Λm−1.

An elementary m-path i0 · · · im is called regular if ik ̸= ik+1 for all k,
and is called irregular otherwise. Let Im be the subspace of Λm spanned by
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all irregular m-paths, and define

Rm = Λm/Im.

The space Rm is isomorphic to the span of all regular m-paths, and the
boundary map ∂ is naturally defined on Rm, treating any irregular path
resulting from applying ∂ as 0.

In the graph G = (V,E), call an elementary m-path i0 · · · im allowed if
ikik+1 ∈ E for all k. Define Am to be the subspace of Rm given by

Am = span{ei0···im : i0 · · · im is allowed}.

The boundary map ∂ on Am is simply the restriction of the boundary map
on Rm, however, it can be the case that the boundary of an allowed m-path
is not an allowed (m− 1)-path. So we make one further restriction, and call
an elementary m-path p ∂-invariant if ∂p is allowed. We define

Ωm = {p ∈ Am : ∂p ∈ Am−1}.

Then it can be seen that ∂Ωm ⊆ Ωm−1. The Ωm with the boundary map ∂
give us our chain complex of ∂-invariant allowed paths from which we will
define our homology:

· · ·Ωm
∂
→ Ωm−1

∂
→ · · · → Ω1 → Ω0 → 0.

Observe that Ω0 is the space of all formal linear combinations of vertices of
G, and Ω1 is space of all formal linear combinations of edges of G. We can
now define the homology groups of this chain complex.

Definition 2.1 (path homology). The path homology groups of the graph
G over the field F are

Hn(G,F) = Ker ∂|Ωn
/Im ∂|Ωn+1

.

A standard fact is that dim H0(G,F) counts the number of connected
components of G ([13]).

As a standard example of some of the interesting behavior of this ho-
mology, consider the directed 4-cycle pictured below.

x

yy z

x ww

z
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A 4-cycle with this orientation will be called a square. Note that the 2-paths
exyz and exwz are allowed but not ∂-invariant, since the edge xz is missing
from the graph. However, if we consider the linear combination exyz − exwz,
then note

∂(exyz − exwz) = eyz − exz + exy − (ewz − exz + exw)

= eyz + exy − ewz − exw ∈ Ω1.

Thus exyz − exwz ∈ Ω2, and it turns out that Ω2 = span{exyz − exwz}. It can
be seen that Ker ∂1 is spanned by exy + eyz − ewz − exw, which is precisely
Im ∂2, so H1(G,F) = 0. A triangle is the oriented 3-cycle pictured below.

x

yy

zx z

A directed graph with two vertices x, y and edges (x, y) and (y, x) we will
refer to as a 2-cycle. Similar computations show that H1 is trivial for a
triangle and 2-cycle as well. If the graph G is an oriented cycle other than
the square, triangle, or 2-cycle, (in particular, any cycle of length more than
4), then dim H1(G,F) = 1. See [14] for details.

2.2. Graph homotopy and fundamental group

There is a separate notion of homotopy for graphs [12] under which the
path homology is invariant. Via this homotopy, one can define a fundamen-
tal group of a graph. Namely, for a graph G, we specify a base vertex v∗,
and define a based loop as a map ϕ : In → G where In is a path on vertices
0, . . . , n, and ϕ satisfies ϕ(0) = ϕ(n) = v∗. Here, the map ϕ is a graph map,
meaning that for x ∼ y, either ϕ(x) ∼ ϕ(y) or ϕ(x) = ϕ(y). Two loops are
considered equivalent if there is a C-homotopy between them, where homo-
topy is defined in a way anologous to homotopy of algebraic topology. The
exact definition of this is not needed here, but details can be found in [12].
We will make use of the following result from [12] to determine when two
loops are equivalent. For our purposes, we can take this as the definition
of C-homotopy. To state this, we need the following terminology: given a
loop ϕ : In → G, the word of ϕ, denoted θφ is the sequence v0, . . . , vn with
vi = ϕ(i) for i = 0, . . . , n.
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Theorem 2.2 (Theorem 4.13 of [12]). Two based loops ϕ : In → G and
ψ : Im → G are C-homotopic if and only if the word θψ can be obtained from
θφ by a finite sequence of the following transformations and their inverses:

1) · · · abc · · · 7→ · · · ac · · · where (a, b, c) are vertices forming a triangle in
G (and the · · · denotes the unchanged part of the word);

2) · · · abc · · · 7→ · · · adc · · · where (a, b, c, d) forms a square in G;

3) · · · abcd · · · 7→ · · · ad · · · where (a, b, c, d) is a square in G;

4) · · · aba · · · 7→ · · · a · · · if a ∼ b;

5) · · · aa · · · 7→ · · · a · · · .

One interpretation of this is that triangles, squares, and single edges are
contractible subgraphs of a graph.

The set of all equivalence classes of loops in G forms a group called the
fundamental group of G, denoted π1(G). The group operation is concatena-
tion of loops, the identity element is the trivial loop that maps all vertices
to the base vertex, and the inverse of a loop is the loop traversed in reverse
order. See [12] for details of why this is well-defined and forms a group.

2.3. Curvature bounds in graphs

For an undirected graph G = (V,E), the graph Laplacian is the operator ∆
on the space of functions f : V → R given by

∆f(x) =
∑

y∼x

(f(y)− f(x)).

The Bakry-Émery operators are defined via

Γ(f, g) :=
1

2
(∆(fg)− f∆g − g∆f)

Γ2(f, g) :=
1

2
(∆Γ(f, g)− Γ(f,∆g)− Γ(g,∆f)) .

We write Γ(f) := Γ(f, f) and Γ2(f) = Γ2(f, f).

Definition 2.3 (Bakry-Émery Curvature). A graph G is said to satisfy
the curvature dimension inequality CD(K,n) for someK ∈ R and n ∈ (0,∞]
if for all f ,

Γ2(f) ≥
1

n
(∆f)2 +K · Γ(f).
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Remark. A critical observation concerning the Bakry-Émery curvature is
that it is a very local property. Indeed, the curvature of a vertex x is com-
pletely determined by the 2-ball centered at x, that is, the graph induced
by the vertices at distance at most 2 from x. In fact, the full 2-ball is not
even needed, but the “open” 2-ball, meaning the 2-ball deleting any edges
between vertices at distance 2 from x. See [7, Section 2.1] for a more detailed
discussion of this local aspect of the curvature. Note in particular, in this
open 2-ball at a vertex, there will be no induced simple circuits of length
5 or more–any such long circuit will have a chord, or an edge between two
vertices of the circuit, so that there is a smaller 3-cycle or 4-cycle within it.
So in a sense, the curvature at x does not “see” induced cycles containing x
of length longer than 4.

We state a diameter bound in terms of curvature, similar to the Bonnet-
Myers theorem from geometry, proven for graphs in [21]. A similar result is
found in [9]. We define the diameter of a graph G, denoted diam(G) to be
the maximum distance between two vertices in G, where distance is given
by the minimum number of edges in a path connecting two vertices.

Theorem 2.4 (Bonnet-Myers Theorem, Corollary 2.2 of [21]). Let
G be a graph satisfying CD(K,∞) for some K > 0, and let Dmax be the
maximum degree in G. Then

diam(G) ≤
2Dmax

K
.

2.4. Cycle space

In this section we give the necessary preliminaries associated with the cycle
space of a graph. We take definitions primarily from [19].

In a directed graph G = (V,E), an oriented circuit C is a subset of E
that can be written C = C+ ∪ C− consisting of forward pointing edges in
C+ and backward pointing edges in C− such that reversing all the directed
edges in C− yields a simple directed cycle. The incidence vector ϕC of an
oriented circuit C is a vector in {0,±1}E such that an entry corresponding
to an edge in C+ is 1, corresponding to an edge in C− is −1 an an edge not
in C is 0.

Given a field F, the cycle space of G over F, or F-cycle space, denoted
C(G,F), is the subspace of FE spanned by all incidence vectors of oriented
circuits of G.
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A circulation on G is a function ϕ : E → F satisfying

∑

x
(x,v)∈E

ϕ(x, v) =
∑

x
(v,x)∈E

ϕ(v, x)

for all v ∈ V . Observe that the cycle space C(G,F) is simply the space of all
circulations on G (see [19]).

Definition 2.5 (F-cycle basis). A subset B ⊂ C(G,F) is called an F-cycle
basis of G if B is a vector space basis of C(G,F). In the literature, a Q-cycle
basis is also called a directed cycle basis, where Q is the field of rational
numbers, and an F2-cycle basis is also called an undirected cycle basis, where
F2 is the field with 2 elements.

According to [19], we define the determinant of a set of cycles. Let r be
the cyclomatic number of G and let B ⊂ S(G) be of size r. Corresponding
to [19, Definition 22], consider the matrix M(B,F) over the field F with the
incidence vectors of B as columns. Let M(B,F, T )be the r × r submatrix
that arises when deleting the arcs of the spanning tree T of G. Remark that
M(B,F) consists only of the entries 0 and ±1. Now write

detB := | detM(B,Q, T )|.

It is shown in [19] that detB does not depend on the choice of the spanning
tree T . The following theorem is a simple generalization of the characteri-
zation of directed and undirected cycle basis via determinants (see [19]).

Theorem 2.6. A set B ⊂ C(G,F) is an F-cycle basis if and only if detB ̸≡
0 mod χ(F) where χ(F) denotes the characteristic of the field F.

Proof. It is easy to see that B is a F-vector space basis of C(G,F) if and only
if M(B,F, T ) is invertible as a matrix over F for a given spanning tree T of
G. This holds true if and only if detM(B,F, T ) ̸= 0 which is equivalent to

detM(B,F, T ) ̸≡ 0 mod χ(F).

This directly implies the theorem. □

2.5. Gain graphs and circuit generators

Let G = (V,E) be a undirected graph. We will denote by E⃗ the set that
contains two directed arcs, one in each direction, for each edge in E. Let Γ
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be a group. A gain graph is a triple (G,ϕ,Γ) where ϕ : E⃗ → Γ is a map sat-
isfying ϕ(xy) = ϕ(yx)−1 for all edges (xy) ∈ E⃗. The map ϕ is called the gain
function of the gain graph. Denote by Φ(G,Γ) the set of all gain functions
from the graph G to the group Γ.

Gain graphs have also been referred to as voltage graphs, and are special
cases of biased graphs (see [25]). When Γ is a group of invertible linear
transformations, they are also called connection graphs [5], and the map ϕ
can be considered as a connection corresponding to a vector bundle on the
graph [17].

For the most part, we will take terminology about gain graphs and biased
graphs from [25]. A theta graph is the union of three internally disjoint simple
paths that have the same two distinct endpoint vertices. A biased graph is a
pair (G,B) where B ⊂ S(G) is a set of distinguished circuits, called balanced
circuits, that form a linear subclass of circuits, that is, B has the property
that if any two circuits of a theta graph are in B, then so is the third. We
say B ⊂ S(G) is a cyclomatic circuit set if the cardinality of B equals the
cyclomatic number of G, |E| − |V |+ c where c is the number of components
of the graph. Typically, we will be thinking of connected graphs with c = 1.

Gain graphs are biased graphs in a natural way. Define the order of a
circuit C = (x1, . . . , xn) under a gain function ϕ via

oφ(C) := inf {r > 0 : [ϕ(x1x2) . . . ϕ(xn−1xn)ϕ(xnx1)]
r = eΓ} .

We say the gain function ϕ is balanced on a circuit C = (x1, . . . , xn) if
oφ(C) = 1. Denote by B(ϕ) the set of balanced circuits. Then (G,B(ϕ))
defines a biased graph.

Definition 2.7 (Γ-circuit generator). We say a set B of circuits is a
Γ-circuit generator if for all ϕ ∈ Φ(G,Γ), ϕ balanced on B implies that ϕ is
balanced on the entire graph G.

Definition 2.8 (Canonical gain graph). Let G = (V,E) be a graph and
let B be a linear subclass of circuits. We define the group Γ(G,B) via the
presentation

Γ(G,B) = ⟨E⃗|B⟩,

i.e., Γ(G,B) is generated by the oriented edges and each circuit C =
(x1, . . . , xn) ∈ B gives a relation (x1x2) . . . (xn−1xn)(xnx1) = eΓ where we
identify (xy) = (yx)−1 ∈ E⃗. There is a natural gain function ϕB given by
the natural mapping of E⃗ into Γ(G,B), and the corresponding gain graph
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(G,ϕB,Γ(G,B)) is called the canonical gain graph associated with the biased
graph (G,B).

2.6. Circuit preserving coverings

Let G = (V,E) be a connected graph. Define the neighborhood of a vertex
v to be the set of all vertices adjacent to v. If G̃ = (Ṽ , Ẽ) is a graph, and Ψ :
G̃→ G is a surjective graph homomorphism such that Ψ is locally bijective
(i.e., Ψ is bijective when restricted to the neighborhood of a single vertex),
then the pair (G̃,Ψ) is called a covering of G.

Since Ψ is locally bijective, than it can be seen that |Ψ−1(x)| is constant
for all vertices x ∈ V . If this constant value is m, we say that (G̃,Ψ) is a
covering with m sheets, or is an m-sheeted covering. Here, m can be infinite.

We call a covering (G̃,Ψ) trivial if Ψ restricted to any connected compo-
nent of G̃ is a graph isomorphism. We say it is non-trivial otherwise, i.e., if
there is at least one connected component of G̃ on which Ψ is not one-to-one.

Let B ⊂ S(G) be a set of circuits. We say a covering (G̃,Ψ) is a B
preserving covering of G if for all circuits C = (x1, . . . , xn) ∈ B and all x̃1 ∈
Ṽ with Ψ(x̃1) = x1, there exist a circuit C̃ = (x̃1, . . . , x̃n) ∈ Ṽ s.t. Ψ(x̃k) =
xk for all k. Note in particular that every circuit in the pre-image of C has
length equal to the length of C.

3. Main results

3.1. Homology

In this section, we give a combinatorial interpretation of the first homology
group in terms of the cycle space. We will state this for a general directed
graph G = (V,E).

Theorem 3.1. Let F be a field with characteristic not equal to 2, and let
C(G,F) denote the F-cycle space of the directed graph G. Let TS denote the
subspace of C(G,F) that is generated by all 2-cycles, triangles, and squares
of G. Then

H1(G,F) ∼= C(G,F)/TS.

The rest of this section will be devoted to proving this theorem.
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Recall that by definition,

H1(G,F) = Ker ∂1/Im ∂2

where ∂1 denotes the boundary operator on 1-paths and ∂2 the boundary
operator on 2-paths.

Observe that the space Ω1 of 1-paths can be naturally identified with
the space of functions from the edge set to the field F; that is

Ω1
∼= {ϕ : E → F}.

Lemma 3.2. Ker ∂1 ∼= C(G,F).

Proof. The action of ∂1 on Ω1 can be given as

∂1ϕ =
∑

(u,v)∈E

ϕ(uv)(ev − eu) =
∑

v



∑

(x,v)∈E

ϕ(xv)−
∑

(v,x)∈E

ϕ(vx)


 ev.

Therefore ϕ ∈ Ker ∂1 if and only if

∑

(x,v)∈E

ϕ(xv) =
∑

(v,x)∈E

ϕ(vx) for all v.

Thus the kernel of ∂1 is exactly the space of all circulations on G, which is
the cycle space C(G,F) (see the remark after the definition of cycle space in
Section 2.4). This gives the lemma. □

Lemma 3.3. Im ∂2 ∼= TS.

Proof. First, let ϕ be the incidence vector of a 2-cycle in G. That is we
have edges xy and yx in G. Then ϕ is identified with the element eyx − exy
of Ω1. Note that exyx is allowed, and

∂2exyx = eyx − exy.

Thus ϕ ∈ Im ∂2.
Suppose we have a triangle in G consisting of edges xy, yz, and xz with

incidence vector ϕ. Then

∂2(exyz − ezyx) = eyz − exz + exy

which is the triangle ϕ. So any triangle is contained in Im ∂2.
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Similarly let ϕ be a square of G with edges xy, yz, xw, wz. Then exyz −
exwz is allowed, and

∂2(exyz − exwz) = eyz − exz + exy − ewz + exz − exw

= eyz + exy − ewz − exw

Therefore any square is in Im ∂2 as well. It follows that the space TS ⊂
Im ∂2.

Conversely, we must show Im ∂2 ⊂ TS. Let ϕ ∈ Im ∂2 so we can write

ϕ = ∂2

(
∑

xyz

axyzexyz

)

=
∑

xyz

axyz(eyz − exz + exy),

where the sum is taken over ∂-invariant allowed paths xyz of G. We will
split this sum into three cases. First, we may have that z = x, in which case
xy and yx are both edges of G since the sum only includes allowed paths of
G. In this case, exx vanishes (see Section 2.1). When x ̸= z, then we must
have xy and yz are edges of G, again, since Ω2 consists only of ∂-invariant
allowed elements. We then further split this sum depending on whether xz
is an edge or not. That is, the sum above is equal to

∑

xyx

axyx(eyx − exy) +
∑

xyz
z ̸=x

xz∈E(G)

axyz(eyz − exz + exy)

+
∑

xyz
z ̸=x

xz ̸∈E(G)

axyz(eyz − exz + exy).

If is clear that the first term is a linear combination of 2-cycles and the
second is a linear combination of triangles.

For the last term, since it is allowed, any exz term must cancel. Thus,
for any xyz for which axyz is non-zero in the last sum, there must be some
other allowed 2-path in which exz shows up as a term. Namely, there exists
w ̸= y such that xwz is allowed in G, and the coefficient axwz = −axyz. This
then is a linear combination of squares of G. Thus Im ∂2 ⊂ TS, and we have
shown the lemma. □

Lemma 3.2 and Lemma 3.3 together immediately give the proof of The-
orem 3.1.
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Remark. If G is an undirected graph, then Theorem 3.1 still holds. To
compute the homology, we simply treat each edge as two directed edges, one
in each direction. Then all the 2-cycles cancel when we take the quotient, so
the homology is the cycle space of the undirected graph modulo the 3-cycles
and 4-cycles.

3.2. Cycle space and gain graphs

Theorem 3.4. Let F be a field with additive group Γ. Let B ⊂ C(G,F) be
a collection of circuits of a graph G. T.f.a.e.:

1) B spans the F-cycle space of G.

2) B is a Γ-circuit generator.

Proof. 1 ⇒ 2: We aim to show that every gain function ϕ is balanced on
all cycles when assuming that ϕ is balanced on B. Now, ϕ is balanced on C
if and only ϕ(C) = 0. Since ϕ is linear and ϕ(C) = 0 for all C ∈ B due to
assumption, we infer that ϕ(C) = 0 for all C ∈ span(B) = C(G,F) since we
assume that B spans the cycle space of G.

2 ⇒ 1: We indirectly prove the claim. Assume B does not span the
cycles space (B does not contain an F-cycle basis). Then, there exists a
basis B̃ and C0 ∈ B̃ s.t. B ⊂ span(B̃ \ {C0}). The matrixM(B̃,F) is a r × |E|
matrix with full rank r. Hence, the multiplication with the gain functions

M(B̃,F) : Φ(G,F) → FB̃ is surjective. In particular, there exists ϕ ∈ Φ(G,F)
such that for C ∈ B̃,

ϕ(C) =
[
M(B̃,F)ϕ

]
(C) =

{
1 : C = C0

0 : C ∈ B̃ \ {C0}
.

This implies ϕ(C) = 0 for all C ∈ B and ϕ(C0) = 1 which proves that B is
not a Γ-circuit generator. This finishes the proof. □

3.3. Gain graphs and covering

For gain graphs, there is a natural construction of a covering of the graph
that is derived from the gain function. This construction is given in [16] and
is a variant on a construction from [15].

Definition 3.5. Let G = (V,E) be a graph Let ϕ be a gain function on G
into group Γ. We define the (ordinary) derived graph, denotedGφ = (V φ, Eφ)
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as

V φ = V × Γ

Eφ = {{(u, g), (v, gϕ(uv))} : uv ∈ E, g ∈ Γ} .

There is a natural projection Ψ : Gφ → G given by Ψ((u, g)) = u. It is
clear, as noted in [16], that Ψ is a covering map, so that (Gφ,Ψ) is a covering
of G with |Γ| sheets.

Lemma 3.6. Let (G,ϕ,Γ) be a gain graph, with (Gφ,Ψ) the corresponding
ordinary derived covering. Given a circuit C of length n of G, the pre-image
Ψ−1(C) consists of a collection of vertex disjoint circuits {C̃} where each
C̃ is of length oφ(C) · n. In the case oφ(C) is infinite, Ψ−1(C) contains an
infinite path.

Proof. Let C = (x1, . . . , xn) be a circuit of G, and fix g ∈ Γ. Set g1 = g, and
define gj+1 = gjϕ(xjxj+1) where the index j on the x’s is taken (mod n).
Then since xjxj+1 ∈ E for all j, then {(xj , gj), (xj+1, gj+1)} ∈ Eφ for all

j by definition. Now we ask, when (if ever) does the sequence C̃ =
((x1, g1), (x2, g2), . . .) return to its starting point at (x1, g1). Clearly, for this
to be the case, the index j satisfies j ≡ 1 (mod n), and every time j becomes
1 (mod n), the associated element gets mapped by ϕ(C). So the sequence
comes back to (x1, g1) when the xj have come back to x1 oφ(C) times. The
sequence cannot intersect itself at any earlier point by minimality of oφ(C).

Therefore clearly C̃ is a circuit of length oφ(C) · n. If there are multiple
distinct circuits in Ψ−1(C), it is clear that they are vertex disjoint by the
definition of Gφ. □

We remark that for the derived cover (Gφ,Ψ), every circuit in Ψ−1 has
the same length, oφ(C) · n.

Corollary 3.7. Let (G,ϕ,Γ) be a gain graph with (Gφ,Ψ) the associated
ordinary derived covering.If B is a collection of circuits of G, then ϕ is
balanced on B if and only if the covering from Gφ to G preserves B.

Proof. For the derived covering Gφ, a cycle C of length n is balanced if and
only of ϕ(C) is the identity, which holds if and only if oφ(C) = 1 so that
Ψ−1(C) is a collection of vertex disjoint cycles of length n by Lemma 3.6.
This is the definition of C being preserved under the cover. □

Remark. It is proven in [16] that any regular covering of a graph is a
derived covering for some group and some gain function. In addition, [16]
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defines a generalization of the ordinary derived graph called the permutation
derived graph and shows that any covering of a graph, regular or not, arises
as a permutation derived covering. The results above can also be done for
permutation derived coverings as well (although the lengths of circuits in
the pre-image of the covering map may not be constant).

3.4. Curvature and covering

Theorem 3.8. Suppose a finite graph G satisfies CD(K,∞) for some K >
0. Then, there exists no infinite covering of G preserving all 3- and 4-cycles.

Proof. Suppose there exists an infinite covering (G̃,Ψ) of G preserving all 3-
and 4-cycles. Consider any x ∈ G̃ and its image Ψ(x). Since Ψ preserves 3-
and 4-cycles, then the image of any 3- or 4-cycle containing x in G̃ is a 3- or
4-cycle containing Ψ(x) in G. Then since Ψ is locally bijective and preserves
these cycles, we see that the open 2-ball around x (see the remark after
Definition 2.3) is isomorphic to the open 2-ball around Ψ(x). This implies
that G̃ and G satisfy the same curvature bound CD(K,∞) (see the remark
after Definition 2.3). Now, Theorem 2.4 implies diam(G̃) ≤ 2Dmax

K
and thus

finiteness of G̃. This is a contradiction and therefore proves that there is no
infinite covering of G preserving 3- and 4-cycles. □

3.5. Proof of main result

We now have all the tools needed to prove the main result, which we restate
as follows.

Theorem 3.9. If G is a finite graph satisfying CD(K,∞) for some K > 0
and if F is a field with characteristic 0, then

H1(G,F) = 0.

Proof. Suppose by way of contradiction that H1(G,F) is non-trivial. Let
B be the collection of triangles and squares in G. Then by Theorem 3.1,
the cycle space of G is not generated by B. Then by Theorem 3.4, B is
not a Γ-circuit generator where Γ is the additive group of F. Thus there is
some gain function ϕ : E⃗ → Γ that is balanced on all triangles and squares,
but is unbalanced on some other cycle, call it C. Then we can construct
the ordinary derived covering Gφ with projection Ψ of Section 3.3. Since ϕ
is not balanced on C and since F has characteristic 0, then o(ϕ(C)) = ∞.
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By Lemma 3.6, Ψ−1(C) contains an infinite path, and by Corollary 3.7, Ψ
preserves B. But then Ψ is an infinite covering of G preserving all triangles
and squares, so by Theorem 3.8, G cannot satisfy CD(K,∞) for someK > 0
at every vertex. This implies the result. □

3.6. Homotopy and fundamental group

In this section we examine the fundamental group of a graph as defined by
Grigoryan et. al. [12], and connect this to the group for the canonical gain
graph defined previously.

Recall from Theorem 2.2, the fundamental group of a graph can be de-
scribed as the group of equivalence classes of loops, where loops are equiv-
alent if their corresponding words differ by a finite sequence of application
of some rules. These rules amount to triangles, squares, and trees being
contractible. We will generalize this notion.

Definition 3.10. Let B be a collection of circuits of a graph G. Define
π1(G,B) to be the group of equivalence classes of loops in G where two
loops ϕ : In → G and ψ : Im → G are considered equivalent if the word θψ
can be obtained from θφ via a finite sequence of the following transformations
and their inverses:

1) · · · av1 · · · vib · · · 7→ · · · aw1 · · ·wjb · · · where (a, v1, . . . , vi, b, wj , . . . , w1)
is a circuit from B;

2) · · · aba · · · 7→ · · · a · · · if a ∼ b;

3) · · · aa · · · 7→ · · · a · · ·

Observe then that the fundamental group π1(G) is precisely π1(G,B)
where B is the collection of all triangles and squares in G.

Recall that, in Section 2, we defined for a family of circuits B the canon-
ical gain group Γ(G,B). Now, for a fixed spanning tree T of a graph G, we
define the group Γ(G, T,B) via the presentation

Γ(G, T,B) = ⟨E⃗ | T,B⟩.

Theorem 3.11. For any spanning tree T of G, we have

π1(G,B) ∼= Γ(G, T,B).

In particular, the group Γ(G, T,B) is independent of the spanning tree T up
to isomorphism.



✐

✐

“5-Kempton” — 2022/1/11 — 19:45 — page 1467 — #19
✐

✐

✐

✐

✐

✐

A homology vanishing theorem for graphs 1467

Proof. Let Γ := ⟨E⃗ | T ⟩ where we identify the edge xy with (yx)−1. Define
a map ϕ : Γ → π1(G,B) as follows. First, given g ∈ Γ, choose the shortest
representative word e1 · · · ek without spanning tree edges, then associate to
this word the loop given by starting at the base point v∗, and taking the
unique path from v∗ through T to the starting point of e1, then go to the
endpoint of e1, and take the unique path in T from that vertex, to the
starting vertex of e2, continue in this manner until we reach the endpoint of
ek, and take the unique path in T from there to v∗. Then ϕ(e1 · · · ek) is the
equivalence class of this loop in π1(G,B).

Recall that Γ(G, T,B) = ⟨E⃗ | T,B⟩,so by definition of a group presen-
tation, is Γ/⟨B⟩ where ⟨B⟩ is the normal closure of the set B. So what we
need to show is that ϕ is a well-defined surjective group homomorphism
whose kernel is the normal closure of B. Then we will be done by the first
isomorphism theorem for groups.

Clearly, ϕ is well-defined. To see that it is a homomorphism, consider
ϕ(e1 · · · ej)ϕ(ej+1 · · · ek). Since T is a spanning tree, the path in T from
the endpoint of ej to v∗, and from v∗ to the start of ej+1 is equivalent to
the path in T from the end of ej to the start of ej+1, possibly via appli-
cation of the · · · aba · · · 7→ · · · a · · · rule of the definition of π1(G,B). Thus
ϕ(e1 · · · ej)ϕ(ej+1 · · · ek) = ϕ(e1 · · · ek) as desired.

To show that ϕ is surjective, suppose the sequence v∗, v1, . . . , vk, v∗ is
the word of a loop in G. Then either vi = vi+1 or (vi, vi+1) is an edge of G.
If vi = vi+1, we can get rid of one of these via the · · · aa · · · 7→ · · · a · · · rule.
Due to the · · · aba · · · 7→ · · · a · · · , we can assume without obstruction that
the loop is non-backtracking, i.e., vi+2 ̸= vi for all i. We consider the loop
v∗w1 · · ·wnv∗ = ϕ((v∗, v1)(v1, v2) · · · (vk−1, vk)(vk, v∗)). Since between every
two vertices within a spanning tree there exists a unique non-backtracking
path connecting both, we infer wi = vi and n = k meaning that ϕ maps g
to the loop v∗v1 · · · vkv∗. This proves surjectivity of ϕ.

Now, to see that B ⊂ Ker(ϕ), suppose that if e1, . . . , ek = (u1, u2), . . . ,
(uk, u1) are edges of a circuit from B with vertices u1, . . . , uk. Then ϕ(e1 · · · ek)
is a loop whose word is has the form v∗ · · · vnu1u2 · · ·uku1vn · · · v∗, and by
rules 1 and 2 of Definition 3.10, so this word belongs to Ker(ϕ).

Finally, we wish to show that Ker(ϕ) is a subset of the normal closure of
B. Let w = e1 · · · ek ∈ Ker(ϕ). Then ϕ(w) is equivalent to the trivial loop,
so this means that the word of the the loop ϕ(w) can be obtained form the
trivial word v∗ from a sequence transformations using the rules in Defini-
tion 3.10. Rules 2 and 3 can be ignored since these will not arise as images
of words in Γ (they are equivalent to words in which these do not occur;
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recall that xy and (yx)−1 are identified). Then proceeding by induction on
the applications of rule 1, this rule corresponds precisely to inserting edges
of a circuit of B into the word w. So w is in the normal closure of B. This
implies the result. □

The next corollary follows immediately. An equivalent formulation is
found in [2, Theorem 5.11].

Corollary 3.12. Let B be the collection of triangles and squares of G, and
T any spanning tree of G. Then

π1(G) ∼= Γ(G, T,B)

where π1(G) denotes the fundamental group of G from [12].

In [8], DeVos, Funk, and Pivotto make use of the group we are calling
Γ(G, T,B) to determine when a biased graph comes from a gain graph. As
a step in this, they prove that this group is isomorphic to the fundamental
group of the topological space obtained by attaching a 2-cell to every circuit
of B (see the proof of Theorem 2.1 of [8]). Thus we have the following.

Corollary 3.13. Let K be the 2-cell complex obtained by attaching disc to
each circuit of B. Then π1(G,B) is isomorphic to the fundamental group of
this topological space. In particular, the fundamental group π1(G) of [12] is
isomorphic to the fundamental group of the space obtained by attaching a
disc to each triangle and square of G.

In particular, there is a canonical 1-1 correspondence between coverings
of the 2-cell complex K, and coverings of G preserving B. Therefore, we
can now characterize the existence of an infinite connected covering of G
preserving B.

Corollary 3.14. Let G = (V,E) be a connected graph and let B be a set of
circuits. T.f.a.e:

1) There exists no infinite connected covering of G preserving B

2) The fundamental group π1(G,B) is finite.

Proof. Due to the 1-1 correspondence between coverings of the 2-cell com-
plex K and B preserving coverings of G, the first statement is equivalent to
finiteness of the universal cover of K, which is equivalent to finiteness of the
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fundamental group of K. This implies the corollary since the fundamental
group of K is isomorphic to π1(G,B). □

Combining this corollary with Theorem 3.8, we immediately obtain the
following relation between curvature and the fundamental group.

Corollary 3.15. Suppose a finite graph satisfies CD(K,∞) for some K >
0. Then, π1(G) is finite, where π1(G) denotes the fundamental group of G
from [12].

We now characterize the abelianization of the fundamental group
π1(G,B).

Proposition 3.16. Let B be any collection of cycles of G. Then

Ab π1(G,B) ∼= C(G,Z)/⟨B⟩

where Ab denotes the abelianization of the group, and ⟨B⟩ denotes the set of
all integer linear combinations of cycles in B.

Proof. Let T be a spanning tree. Due to Theorem 3.11,

π1(G,B) ∼= ⟨E⃗ | T,B⟩.

Let Γ := ⟨E⃗ | T ⟩. We observe that Ab Γ ∼= C(G,Z). Abelianization of π1(G,B)
yields

Ab π1(G,B) ∼= ⟨E⃗ | T,B, {sts−1t−1}⟩

∼=
⟨E⃗ | T, {sts−1t−1}⟩

⟨B⟩
∼=

Ab Γ

⟨B⟩
∼=

C(G,Z)

⟨B⟩

which finishes the proof. □

It is known from Theorem 4.23 of [12] that

Ab π1(G) ∼= H1(G,Z).

This result now also follows from Theorem 3.1, Theorem 3.11, and Propo-
sition 3.16 taken together, so we have come up with an alternative proof of
this result.
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4. Conclusion

We conclude with some discussion of some open questions, possible weaken-
ing of hypotheses in the main result, and other notions of homology.

First, we point out that, of course, the converses of Theorems 1.1
and 1.2 do not hold. Indeed, it is well-known that in trees other than paths
or the star on 4 vertices, there will typically be vertices with negative cur-
vature (see, for instance [7]). However, all trees have trivial first homology
[11] and trivial fundamental group.

It is natural to ask if the hypotheses of Theorem 1.1 can be weakened,
but still obtain trivial first homology. Any cycle of length greater than 4
has non-negative curvature everywhere, but has non-trivial first homology.
This shows that we cannot replace that hypothesis of “positive” with “non-
negative.” It is of interest to ask if it is sufficient to assume non-negative
curvature with the added condition that at least one vertex has positive
curvature.

Another result due to Bochner [4] is that a Riemannian manifold of non-
negative curvature has finite-dimensional first homology group. We conjec-
ture that this holds for graphs as well.

4.1. A remark on clique homology

Another commonly used notion of homology in graph theory is the clique
homology coming from the clique complex, or flag complex of the graph. In
this theory, the chain complex is

· · ·Cn → Cn−1 → · · · → C1 → C0 → 0

where Cn is the space of all formal F-linear combinations of n-cliques of the
graph G. (Hence it is still the case that C1 is all formal linear combinations
of edges, and C0 all formal linear combinations of vertices.) The boundary
map ∂ of a clique is the sum of all its “faces,” viewing the graph as a cell
complex with an n-cell filling each n-clique. Then the clique homology groups
are defined in the same way,

Hclique
n (G,F) = Ker ∂|Cn

/Im ∂|Cn+1
.

The action of the boundary operator here is essentially the same as the
boundary operator for the path homology that we hav given. Thus, it is still
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the case that

Ker ∂1 ∼= C(G,F)

but now the space C2 is the linear combinations of 3-cliques (which are
3-cycles). So it becomes apparent that

Im ∂2 ∼= T

where T is the space spanned by all 3-cycles of the graph. Thus we have the
following theorem.

Theorem 4.1. Let F be a field with characteristic not equal to 2, and let
C(G,F) denote the F-cycle space of G. Let T denote the subspace of C(G,F)
that is generated by all simple triangles of G. Then

Hclique
1 (G,F) ∼= C(G,F)/T.

Hence for both the path and clique homology theories, the first homology
group “counts” cycles of the graph, but there are certain types of cycles
ignored depending on the theory; clique homology does not see triangles,
and path homology sees neither triangles nor squares.

Observe in particular that the homology vanishing theorem for path
homology, Theorem 1.1, does not hold for the clique homology (a simple
4-cycle being a counterexample). We take this as further evidence that the
path homology is an appropriate homology theory for graph theory.
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