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The Weitzenbock formula for the
Fueter-Dirac operator

ANDRES J. MORENO AND HENRIQUE N. SA EARP

We find a Weitzenbock formula for the Fueter-Dirac operator which
controls infinitesimal deformations of an associative submanifold
in a 7-manifold with a Gg—structure. We establish a vanishing
theorem to conclude rigidity under some positivity assumptions
on curvature, which are particularly mild in the nearly parallel
case. As applications, we find a different proof of rigidity for one
of Lotay’s associatives in the round 7-sphere from those given by
Kawai [I4], [I5]. We also provide simpler proofs of previous results
by Gayet for the Bryant-Salamon metric [I1]. Finally, we obtain an
original example of a rigid associative in a compact manifold with
locally conformal calibrated Ga-structure obtained by Ferndndez-
Fino-Raffero [9].
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1. Introduction

The theories of Riemannian holonomy and calibrated geometry are related
by the fact each Riemannian manifold with reduced holonomy is equipped
with a calibration. In particular, a reduction to the exceptional holonomy
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group Gg can only occur in real dimension 7, in which case the relevant
calibrations are a 3—form ¢ and its Hodge dual 4-form v := %y, and their
calibrated submanifolds are called associative and coassociative, respectively
(cf. Deﬁnition. In this article, we propose a computational tool to study
the deformation theory of associative submanifolds, in favourable cases of
interest.

Let (M7, ¢) be a smooth manifold with Ga—structure. In [19], McLean
proved that a class in the moduli space of associative deformations corre-
sponds to a harmonic spinor of a twisted Dirac operator, under the torsion-
free hypothesis Vi = 0. Then, Akbulut and Salur [2,[3] generalized McLean’s
theorem for a general Go-structure, identifying the tangent space at an as-
sociative submanifold Y3 in (M7, ¢) with the kernel of

(1.1) Da:Q%Y,NY) — Q(Y,NY),

where A = Ay + a, for Ay the induced connection on NY and some a €
QYY,ad(NY)). We obtain a Weitzenbdck formula for the operator (L.1]),
that is, a relation between the second-order elliptic square 12A2 and the
trace Laplacian V*V of the induced Levi-Civita connection on NY. Un-
der suitable positivity assumptions on curvature, this implies rigidity, i.e.,
that Y has “essentially” no infinitesimal associative deformations, in the
following sense. Denote by G := Stab(y) C Aut(M) the group of global au-
tomorphisms preserving . The infinitesimal associative deformations of Y
consist of:

(i) trivial deformations given by the action of G on Y (see [15] and [21]);

(ii) non-trivial deformations, which depend intrinsically on the geometry
of the associative submanifold.

For instance, in [I5], an associative submanifold is considered rigid if all
infinitesimal associative deformations are trivial; in the particular case of the
homogeneous space M = S7, the symmetry group of ¢ is G = Spin(7). On
the other hand, Gayet [I1] and McLean [19] consider a generic Go-structure,
i.e., without symmetries. So, G is 0—dimensional and Y is rigid if the space
of nontrivial infinitesimal deformation vanishes.

The exposition is organised as follows. Section 1 is a proactive back-
ground review. We apply results from 4-dimensional spin geometry to obtain
the explicit identification

NY@R(CQS+®C57,
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between the normal bundle of Y and a spinor bundle S = ST ® S~ — Y, in
order to describe the Fueter-Dirac operator in detail. We then deduce some
useful identities in Go—geometry, following Karigiannis [13].

In Section |3 we calculate the general Weitzenbock formula for the op-

erator :
(1.2)  DA’(0) = V*Vo + ik; o+ p(F 7)o + Py(0) + Py(0) + Ps(0),

where P, P, and Pj5 are first order differential operators on NY, involving
the torsion of the Go—structure, and V*V is the connection Laplacian

V'Vn=-> ViVin-Vg,.n

in a global frame {e;} on the associative submanifold Y. The scalar curvature
of Y is denoted by k, and the bundle map

7:Q*(Y,End(S7)) — End(ST ® S7)
is defined by
(13)  p(F7):=p> (eihej) ® F;) = Tole)To(e;) @ F,

where F'~ € Q?(Y,End(S7)) is the curvature of a connection on S~ and
Lo:TY — End(S™) is the spin structure on Y.

In Section we specialise to the nearly parallel case, in which dy and
1 are collinear and the formula simplifies significantly. For a generic
nearly parallel Go—structure, we obtain a vanishing theorem (Theorem [4.4)
to conclude rigidity under suitable intrinsic geometric conditions on Y. As
immediate applications, we propose alternative proofs of rigidity for the
known cases of an associative SU(2)-orbit 3-sphere for Lotay’s cocalibrated
Go-structure on S7 studied by Kawai [14 15 [I7] and the associatives S3 x
{0} of the Bryant-Salamon metric studied by Gayet [11].

Finally, we obtain a hitherto unstudied rigid associative submanifold
(Corollary in a compact manifold S with locally conformal calibrated
Go-structure obtained from the 3-dimensional complex Heisenberg group
by Ferndndez-Fino-Raffero [9]. In view of the systematic nature of their
construction, our method lends itself to the production of many more such
examples.
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2. Spin geometry, Go—structures and the Fueter-Dirac
operator

2.1. Spin geometry of four dimensional space

We begin by recalling some background and fixing notation, so the reader
familiar with e.g. [22] Chapter 2] and [§, Chapter 3] may just skim through
upon a first read.

On an inner product space (V" (-,-)), the Clifford algebra Cl(V) is a
2"-dimensional associative algebra with unit 1, generated by the elements
of some orthonormal basis ey, ..., e, of V' with relations

e; =—1, eej=—eje; for i#j.

A basis for C1(V) is given by
eco=1, er=e;- €

where I = {i1,...,7} C {1,...,n} for i; <--- <y, and CI(V) admits a nat-
ural involution

a: Cl(V) — ClV)

defined by a(z) = 2 := ) ; efxrer, where e := (—l)k(k+1)/2 and ;7 € R are
the components of x in the basis {er}. Denote by deg(ey) := |I| the degree
of an element e; € CI(V'), by Cli (V') the subset of elements of degree k, and
by C1°(V) and CI'(V) the subspaces of elements of even and odd degree,
respectively.

Example 2.1. On V =R* with the Euclidean inner product, we have
Cl(V) = My(H), the 2 x 2 matrices with entries in the quaternions H =
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(i,4,k). The elements of Cl(V) are 1, e;, {eiej}icj, {€iejer}ticj<r and
eregeseyq, with 4,5,k = 1,2, 3,4, with generators

(0 1y (0 & (0 Lo (0K
A7\1 0027 0) 2T\ o) ATk oo

and the involution a(A) = A* is the transpose conjugation.

Denote the set of units of CI(V') by CI*(V). Considering the twisted
adjoint representation Ad : C1* (V) — GI(CL(V)) given by

Ad(z)y = ((2)° — (2)")y7,

where (z)° € C1°(V) and (z)' € C1}(V) are the even and odd parts of z,
respectively. We define the Spin group of V:

Spin(V) := {z € CI°(V)| Ad(z)V =V, i = 1}.

For dim V' > 3, Spin(V') is a compact, connected and simply connected Lie
group, fitting in a short exact sequence [22, Lemma 4.25]

0 — Zy — Spin(V) — SO(V) — 1.
In particular, the following results hold in dimensions 3 and 4:

Lemma 2.2. [22, Lemma 4.4] For every x € Sp(1), there is a unique or-
thogonal matriz §o(x) € SO(3), such that §(x)y = zyx, for all y € Im(H) =
R3, and the map & : Sp(1) — SO(3) is a surjective homomorphism with ker-
nel {£1}, hence

SO(3) = Sp(1)/Zs and Spin(3) = Sp(1).
Lemma 2.3. [22, Lemma 4.6] For every x,y € Sp(1), there is a unique or-
thogonal matriz no(z,y) € SO(4), such that no(z,y)z = xzy, for all z € R* =

H, and the map no : Sp(1) x Sp(1) — SO(4) is a surjective homomorphism
with kernel {£(1,1)}, hence

SO(4) =2 Sp(1) x Sp(1)/Z2 and Spin(4) = Sp(1) x Sp(1)



158 A. Moreno and H. S4 Earp

The last lemma provides two natural surjective homomorphisms p :
SO(4) — SO(3) and, therefore, two exact sequences

1 Sp(1) 5 S0(4) 25 S0(3) 5 1

where 1T (v) = no([v,1]) and .~ (v) = no([1,v]), interpreting ng as the induced
homomorphism on the quotient Sp(1) xz, Sp(1). Those sequences are related
to the SO(4)-action on the spaces of self-dual and anti-self-dual 2-forms of
a 4-dimensional inner-product space.

An element ¢ € H in the canonical basis q =t + xi+yj + zk = (t +
xi) + (y + 21)j can be identified with the 2 x 2 complex matrix

A— t+xi —y+zi
T \y+azi t—ai )’

det A =12+ 2% +y° + 22 = |¢|°.

Since A*A = (det A)I, every q € Sp(1) = S? is identified with a unitary
matrix with determinant 1, that is, SU(2) = Sp(1).

with

Definition 2.4. Let V be a real inner product space of dimension 2n =
2,4 mod 8 or 2n+1=3 mod 8. A spin structure on V is a quadruple
(S,1,J,T), where S is a 2" !-dimensional real inner product space, I and J
are two anti-commuting orthogonal complex structure

I''=r'=-1, J'=J"=-J, I1J=-JI,

and I' : V' — End(9) is a real linear map such that for any v € V holds the
following properties:

L(v)* +T(v) =0, T(v)T(v)=|v|*1, T(v)I=IT(v), T(v)J=JL(v).

Example 2.5. For a vector space V of real dimension 4, using the identifi-
cation V = H and defining S = H & H, we have the maps I" : H — End(H ¢
H), I,J : He H — H @ H defined for v, z,y € H by

L)z, y) = (vy, —vx),  I(2,y) = (xi,yi), J(2,y) = (2],y])-

It is interesting to note that
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where v : H — End(H) also satisfies
Y(©) +7(0) =0, y(v)*y(v) = [o[*1, VveH.

Given a spin structure on a 4-dimensional space V, consider S = ST &
S—, where ST and S~ are copies of C? with standard Hermitian metric (-, -).
The associated symplectic form compatible with the almost complex struc-
ture I : ST — ST is defined by w(z,y) := (x, Iy). Now, consider the (real)
4-dimensional space Hom;(S™, S7) = Re(Hom(S™*, S7)) of linear maps over
the quaternions, where Hom(S™*, S™) are complex linear maps. Unitary ele-
ments of Homy (ST, S™) preserve the Hermitian and symplectic structures,
and v : V — Homy(S*,S™) defined above acts on the standard basis by

e = (5 9) = (g %) aten= (7 ) = (2 ).

Up to isomorphism, the above generate SU(2) = Spin(3), since the sym-
metry group SU(2)" x SU(2)~ of (S*,S57) is connected. Thus ~ fixes the
orientation of V' and, using the sympletic form to identify ST with its dual,
we have

(2.1) VeorC=2St®cS™.

Moreover, given v € V, consider the Hermitian adjoint v(v)* : S~ — ST of
the map ~y(v) : ST — S~. Then, for orthonormal vectors v,v" € V, the map
y(v)*y(v'") defines an endomorphism of ST which satisfies

Y(w)y(w) =1 and ~(v)*y(v') +7"()y(v) = 0.
In particular, we have a natural action p of A%(V) on ST defined by
p(v AV)s = —y(v)*y(v')s for se ST.

Now, with respect to the Euclidean metric, the 2-forms split as A%(V) =
A% (V)@ A% (V), where A% (V) and A% (V) denote the self-dual and anti-self-
dual forms, respectively:

AL(V)={Be N (V) | B = £p}.

We observe that A% (V) acts trivially on S, by direct inspection on basis
elements:

AQ,(V) = Span{e; Aea —e3 Neg,e1 Neg —ea Aes,er ANes —eq Aeat
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pler Aeg — ez Aey) = —(e1) v(e2) + v(es)*y(eq) |
(56 )G )G )

*

pler Aeg —ea Aes) = —y(er)*y(es) + v(e2) (e )
N IO
pler Aes —es Aes) = —y(e1) v(es) +v(ea)*y(e2)

)
0 —1 1 0
(66 )
Thus we get the isomorphisms A% (V) — su(S™) and A% (V) — su(S™).

2.2. Go—manifolds and associative submanifolds

We first present some algebraic and geometric proprieties of manifolds with
Ga-structures which can be found e.g. in |7, [12].
The octonions O = H @ H = R® are an 8-dimensional, non-associative
division algebra. On the imaginary part Im(Q) = R, the cross product
x : RTxR" — R’
(u,v)  — Im(uv)
corresponds to a 3-form ¢g € Q3(R"), defined by o (u,v,w) w)

= (u x
with the Euclidean inner product. In coordinates (x1,...,z7) € R7, we ﬁx
the convention

(2.2) 0o = 123 | M5 | Q167 4 (246 _ 257 _ 34T 356

and accordingly its dual 4—form

1/}0 1= %y = 64567 + 62367 + 62345 + 61357 _ 61346 _ 61256 _ 61247.

The Lie group Gz can be defined as the stabiliser of ¢p in GI(7,R).

Definition 2.6. Let M be a smooth oriented 7-manifold. A Go—structure
is a 3-form o € Q3(M) such that, around every p € M, there exists a local
section f of the oriented frame bundle Pgo (M) such that

Pp = (fp>*§00-
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The Go—structure ¢ determines a Riemannian metric and a volume form
by the relation (cf. [13])

(2.3) (uap) A (vap) A ¢ = 6g,(u,v) voly, .

Consequently, ¢ induces a Hodge star operator x, and the Levi-Civita con-
nection V¥, though for simplicity we omit henceforth the subscripts in
g =gy, * := %, and V := V¥, Moreover, the model cross-product on R
induces the bilinear map on vector fields

o4 P:QYTM) x QUTM) — QYTM)
(24) (u,v) +— Pu,v) =uxwv.

The Gao-structure ¢ is called torsion-free if Vo =0, in which case we say
that (M, ¢) is a Ga-manifold. This condition is equivalent to VP = 0.

Remark 2.7. Regarding orientation conventions, some authors adopt the
model 3-form to be

o = 6567 + 6125 + 8136 + 6246 + 6147 _ e345 _ 6237

)

(cf. [I9, Chapters 4 and 5]), which relates to (2.2]) by the orientation-reversing
automorphism of R”

I3
1 0 0 O
0O 1 0 O
0O 01 O
0 0 0 -1

In this case, relation (2.3)) becomes

(uapo) A (vapo) A o = —6go(u, v) voly, .

Unless otherwise stated, we adopt throughout the convention ({2.2]).

Definition 2.8. Let (M,¢) be a 7-manifold with Gg-structure. A 3-
dimensional submanifold Y C M is called associative if p|y= vol(Y').
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The etymology of Definition stems from the associator x €
Q3(M, TM), defined by

(2.5) Y(u,v,w, z) = xp(u, v,w, z) = (x(u, v,w), z).

In a local orthonormal frame {e;};—1. 7 of T M, one has y = — Zzzl(ei_nb) ®
e;. Expressing x in terms of the cross product (c.f. [12]),

(2.6) x(u,v,w) = —u x (v X w) — (u, v)w + (u, w)v,
and using the relation (c.f.[12])

o(u,v,w) + i\x(u, v,w)]*= [uAvAw?,
we see that the associative condition is equivalent to x|y = 0.

Remark 2.9. In the sign convention of Remark the associator is writ-
ten as

X(u,v,w) =u x (v X w)+ (u, v)w — (u, w)v

Lemma 2.10. IfY is an associative submanifold, then there is a natural
identification TY = A%(NY).

Proof. Fix local orthonormal frames ey, ez, es and 14,715,716, 17 of TY and
NY, respectively, about a point p € Y

(2‘7) Op = 6123 + 61(7745 _|_7767) +€2(7746 +1775) _ 63(7747 +7756)

and
e1ap = e+ 4+ 7,
ea1p = 31 4 % 45,
e300 = e'? — ptT _ 50,
Denote wy = (e109)|n,v, w2 = (e22¢)|N,y, w3 = —(e32¢)|n,y and define on

each fibre the isomorphism e; € T,Y — w; € A2 (N,Y), which obviously
varies smoothly with p. O
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2.3. The twisted Dirac operator

The oriented orthonormal frame of T'Y has the form {ej, ez, e3 = €1 X ea}.
So, with respect to the splitting TM|y=TY & NY, the cross product in-
duces maps

QUTY) x QUTY) — QUTY), QUTY) x QO(NY) — QO(NY),
QUNY) x QUNY) — QUTY).

In particular, the map v : Q°(TY) x Q°(NY) — Q°(NY) endows NY with
a Clifford bundle structure.

Since the Levi-Civita connection of (M, ) induces metric connections on
the bundles TY and NY, the composition

(2.8) QO(NY) V2% Q0(TY) @ QO(NY) 2 QO(NY)

defines a natural Fueter-Dirac operator 1P 4,(c) :== y(V a,(0)), where Ay €
Q1(Y,s0(4)) denotes the connection induced on NY by the Levi-Civita con-
nection V¥ of the Go-metric of (M, ¢). To simplify the notation, the twisted
Dirac operator induced by the normal connection Ay will be denoted just
by ).

The normal bundle NY of an associative submanifold is trivial [7, Lemma
5.1, arXiv version: 1207.4470v3]. In particular, the second Stiefel-Whitney
class wa(INY') vanishes, so there exists a spin structure on NY [16, Theorem
1.7]. This is equivalent to the existence of a map I' : NY — End(S) such
that

(o) +T(0)* =0 T(0)T(0) = (0,0)1 o€ Q°Y,NY),

where S is a vector bundle of (real) rank 8 and it splits into I'-eigenbundles
ST and S~ of rank 4. We saw in the last Section that the Spin structure
induces an isomorphism

pa: AZ(NY) = su(S%),
so, by Lemma the spin structure Ty : TY — End(S™) on TY coin-
cides with the spin structure on NY via the projection Spin(4) = Spin(3) x

Spin(3). Defining the Clifford multiplication

7:=Tg®1g:TY — End(ST®S57)
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and using the spin connection V on ST ® S,
Vie®e)=VioRe+o®V e,

we form the Dirac operator D : QU(Y, St ® §7) — Q%(Y, ST ® S7) by

3
Dio®e) = 7(e))Vilo®e).

i=1

Proposition 2.11. Under the isomorphism (2.1, we have NY &g C =
St ®c 8™, the Spin connection ¥V and the Clifford multiplication T agree
with the induced connection V+ on NY and v, respectively.

Proof. In fact, each section 0 ® € of ST ®c S~ induces a section v = 0* ® ¢
on Hom(S™,57) = (S7)* ® S~ such that v(o) = 0*(0) ® € = ¢, then
Vv=V(o*®e)=(V)'o*@ec+0"®V e,
where Vv is a section on T*Y ® Hom(S™,S™), so, for each o section on S*
(Vv)(o) = (V)0 (o) ®e+0*(0) @V e
= [do*(0) —o*(VTo)®e+o*(0)®@V e
=—v(VTa)+V (v(o)).
On the other hand, the Spin connection V is compatible with the induced
connection V=1, in the following sense. Given sections n of NY and ¢ of ST,

under the isomorphism I : NY — Hom(S*, S™) induced by (2.1]), one has
V= (T'(n)o) =T(Vin)o +T'(n)V+o, or, equivalently,

I(Vtn)o = -T(n)VTo + V™ (I'(n)o).

Therefore, V' agrees with the Spin connection V via the isomorphism T
Finally, with respect to the Clifford multiplications we have

TY — % End(S+)

P

End(NY @ C)

®lgnacs—)
>

End(S+ ®cS7)

and by Schur’s lemma ~ and 7 are the same. ([

In conclusion, (2.8)) defines a twisted Dirac operator.
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2.4. Torsion tensor and local description of ¢

We will briefly review the intrinsic torsion forms of a Go—structure and define
the full torsion tensor Tj;, using local coordinates, following [I3]. Our goal
is to derive Lemma [2.16] a set of ‘Leibniz rules’ for the covariant derivative
and curvature operators with respect to the vector cross-product, which will
be instrumental in Section [3

As before, let (M, ) be a smooth 7-manifold with Ga-structure. In a
local coordinate system (z1,...,27), a differential k—form a on M will be

written as
1

o= Hail...ikdacil A Adxt
where the sum is taken over all ordered subsets {ij---ip} C {1,...,7} and
Q,..i,, 1s skew-symmetric in all indices, i.e. a;,..;, = a(e;,, ..., €;, ). A Rieman-
nian metric g on M induces on QF := QF(M) the metric g(dz?,dz?) := g%,
where (g/) denotes the inverse of the matrix (g;;).
A Gg-structure ¢ splits Q°® into orthogonal irreducible Go representa-

tions, with respect to its Go—metric g. In particular,
P=Ra0, and P =0,

where QF C QF denotes (fibrewise) an irreducible Go-submodule of dimen-
sion [, with an explicit description:

02 = {X1p; X € QUTM)}

0 ={Be0* BNy =0}
(29) Qi{) = {f(P;f € COO(M)}

Q2 = {X; X € QUTM)}

L o y
037 = {hijg’dz’ A (M) 293 hij = hyi, trg(hij) = g hi; = 0}
The analogous decompositions of 2 and Q° are obtained from these by
the Hodge isomorphism x*,, : OF - Q7% Decomposing dp € Q* and dy €
0%, we introduce the four torsion forms (cf. [5])
ToEQ(l), 1 EQ%, 7269%4, 7'369%7,

defined by

do=T100+311 ANp+ 13 and dip =41 Ap — *70.
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Naturally, these forms arise from the theorem of Fernandez and Gray [10],
asserting that a Ge-—structure is torsion-free (Vo = 0) if, and only if, ¢ is
closed and co-closed. So, if either condition fails, the torsions Vo € Q! @ Q3
and Vi) € Q' ® Q% can be expressed in terms of the four torsion forms.

Lemma 2.12 ([13], Lemma 2.24). For any vector field, the 3-form V x¢
lies in the subspace Q3 of Q3.

Proof. It suffices to consider a coordinate vector X = ¢; and check that
9(Vip,n) = 0 for an arbitrary n € Q3 & Q3. O

In a local frame {ey,...,er}, denoting V;p := %Vlgoabcdm“ A dzb A dxc
and identifying Q2 = Q! we see from (2.9) that V¢ is spanned by interior
products e, ), which defines a 2—tensor 1y, by

vlQ‘DLzbt: = ﬂmgmn¢nabc

called the full torsion tensor.

Proposition 2.13 ([13], Theorem 2.27). The full torsion tensor Ty, is

1

T
ﬁglm - (7_3)lm - (Tl)lm - 7(7_2)lm7

2.1 T =
( 0) Im 4 9

where Ty is a function, g, = g(er, em), 71 = (11)1da! is QL -form which can be
written as a Q%—form T = 1(T1)abdx A dzb with (Tl)ab (Tl)lg Okab, T2 =
%(Tg)abdl’a’ Adzb and 5 = 5(73)img™ cpljkdx Adxd AdzF s a Q27 -form.

In [13] Lemma A.14], Karigiannis compiles several useful identities among
the tensors g, ¢ and :

(211) Yrstutabeag™ 9™ 9'°g"" =168
(212) wrstu¢abcd95b tc ud =24grq
Differentiating (2.11]) and -, one obtains

(213) vlwrstuwabcdgTGQSbgtCQUd 0

(214) Vlwrstuwabcngb tc ud - _wrstuvlwabcngbgtcgud-
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Lemma 2.14. For any vector field X, the 4-form V x1 lies in the subspace
Ol of QL.

Proof. The proof is, basically, the same as in Lemma Considering X =
e; and applying (2.13]), we have

1
g(vlw’ w) = ﬂvlwrstuwabcdgrag%gtc ud _ ()7

so Vi L Q‘ll. To see that Vi L 9‘217, consider some 7 € (237 in local form,

1 . .
’]’, = ghz]gjlwlabcdxl /\ d.f[]a /\ dCL‘b /\ dl‘c,

and take the inner product with V;y:

1 , 1
9(Vip,m) = gvﬂﬁrstuhi%ﬁzabcg”gsagtbguc = 5hlrvzwrstuwzabcg”gtbg“c =0,

using that, hl" = ¢g"h;;g’! is a symmetric (0,2)-tensor (since h;; is a sym-

metric (2, 0)-tensor), while Vi%rstu¥iabeg®® g "¢ is skew-symmetric in r and

I, by [2.19). 0

Using Lemma above and the identity *(X ) = ¢ A X* (X € QO(M)),
where X is the 1-form defined by X°(Y) = g(X,Y), one has:

Corollary 2.15. With the above notation,

vlwrstu = _Crlr()ostu + ﬂs%prtu - ,—Tltgprsu + ﬂu@rst-

For a torsion-free Go—structure, the cross-product (2.4)) is parallel, so it
satisfies the Leibniz rule

V(uxv)=Vuxv+ux Vv, YuvecQ(TM).

In general, the action of V on the cross product can be expressed in terms
of the total torsion tensor:
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Lemma 2.16. For the vector fields u,v,w,z € Q°(TM), we have

7
(i) Va(uxv)=Vyuxv+uxVo+ Z T(z,em)X(€m,u,v).

m=1
(i) R(w,z)(uxv) = R(w,2)uxv+ux Rw,z)v+T(w,zu,v), where T
is given, in an orthonormal local frame {ey,...,er} of TM, by

7
T(w,z,u,v) = Z T(2,em) (V) (em, u, v, -)?

- T(’LU, em)(vz¢)(em7 u, v, ')ﬁ
1 ((VoT) (2, em) — (VT (w, em)) X(€m, 1, 0).

Proof.

(i) The proof goes along the lines of [I1, Lemma A.1], using the fact that
the torsion Vi takes values in Q3 (c.f. Lemma . Consider normal
coordinates x1, ..., x7 about a given p € M and an orthonormal frame
e1,...,e7. At the point p, we have:

7 7
(u x v) ZVZ (uxv,e)e) = sz(cp(u,v,ei)ei)
i=1
7

—Zz u, v, €;))e; + o(u,v,e;,)V e

-3

= (gp 2,0, 6;) + @o(u, Vo, ) + o(u,v, V)

_l’_

(vm(u,v,ez-))ei

7
= Z <‘P(vzu7 v, ei) + (P(u7 V.o, ez‘)

7
+ Z T(Z, em)w(ema u,v, ez)) €

m=1

7
=V,u xv+uxV,v+ Z T(z,em)X(em,u,v).

m=1

Notice that we used (Vje;), = 0 in the third and fourth equalities.
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(ii) Using the first part, we have

VuVz(uxv) =Vy,Voux v+ Vyu X Vv 4+ Vyu X Voo +ux Ve, Voo

7
+ Z (T(w,em)(@b(em,vzu,v,ei)—{—w(em,u, Vzv,ei)>

i,m=1
+ ((VaT)(zem) + T(Vasz,em) ) ey v, 1)
+ T(Z7 em) <¢(em7 unv Ua ei) + Q;Z)(eﬁla ’LL, va, ei)

+ (Vo) (ems u, v, ei)>>ei.

Using symmetries of the curvature R(w,2) = V,V, — V.V — V[, 4
and the fact that V is torsion-free, one has [w, z] = V2 — V,w, and
we compute

R(w,z)(u x v) =R(w, 2)u X v+ u x R(w, z)v

7
Py <T(z, em) (Vo)) (€ms 1, v, €1)

i,m=1

+ ((va)(z, em) — (VT (w, em))i/)(em,u, v, )

— T(w, em)(V20)(em, u, v, ei)> ei,

which concludes the proof.

3. The Fueter-Dirac Weitzenbock formula

We now address the general framework proposed by Akbulut and Salur [2], 3],
in which the role of torsion in the associative deformation theory is captured
by a twisted Fueter-Dirac operator. Given an associative submanifold Y3 in
(M, ), the Go—structure induces connections on the bundles NY and TY.
Moreover, Proposition m gives an identification NY = Re(ST ®@c S7),
with the respective reductions AZ(NY) = su(S*) = ad(ST). We will refer to
elements in the kernel ker I) of the Dirac operator as harmonic spinors
twisted by S, or simply, twisted harmonic spinors.

Denote by A(S*) the space of connections on each spinor bundle S¥,
and let Ag € Q'(Y,50(4)) be the induced connection on NY, so that the
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isomorphism s0(4) = s0(3) @ s50(3) gives a decomposition Ay = Ad @ A,
with AT € A(S*). Fixing these reference connections, each A(S*) is an

affine space modelled on Q!(Y,ad(S%)), so a connection A* € A(S¥) is of
the form

A% = AT 1ot for oF € QL(Y,ad(5h)).
Thus a connection on NY has the form

A=Ag+a= (A +a") @ (4A; +a7) for acQ(Y,ad(NY)).

Now, using the Clifford multiplication (indeed the cross-product), we define
the twisted Dirac operator

3
Da:=) eixV, : QNY)-Q(NY)
j=1

where V := V4 is given by a connection on NY and the normal sections
in ker(Ip,) are called harmonic spinors twisted by (S~, A). The following
Definition is adopted from [2]:

Definition 3.1. Let Y be an associative submanifold of (M, ¢). The Fueter-
Dirac operator associated with Y is

3
(3.1) Dao:=) eix Vi o—eixale)o),

=1

where a € Q'(Y,ad(NY)) defined by a(e;)(0) = (Vy(e;))*" is the normal
component of V,(e;), and V is the Levi-Civita connection on M.

We know from [2, Theorem 6] that the linearisation of the deformation
problem for an associative submanifold Y of (M, ¢) at Y is identified with
ker ID 5, so this space is called the infinitesimal deformation space of Y. Our
motivation is precisely the expectation that a Weitzenbock formula for ,
in favourable cases at least, can give information about the deformation
space ker ID 5.
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3.1. The general squared Fueter-Dirac operator
Lemma 3.2. Let {ey,ea,e3} and {n4,...,n7} be orthonormal frames of the
vector bundles TY and NY , respectively. Then

7

3
(3.2) Dao=> eix Vo= (Vo)) (€1, €2, €3)mn

i=1 k=4

Proof. Since Ay is the connection induced on NY by the Levi-Civita con-
nection on M given by the Go metric g,, we have V4, = V1. Now, for each
o€ Q(NY),

3
Zei x a(e;)(o) =e1 X (Vgel)L + €9 X (Vgeg)L + ez X (Vgeg)L
i=1

—(eg x e3) X (Vyer)T + (e3 x e1) x (Vyez)t
+ (e1 X e3) X (Vye3)t

=x((Voer) ", ez, e3) + X((Voe2) ", e5,e1)
+x((Voes) ™, e1, e2)

=(0)-

Since Y is associative exactly when x|ry= 0, this implies
X((vaei)La €5, ek’) = X(vaeia €5, Ek).

Furthermore, the section x(Vs(e;), e, ex) lies on the normal component, so

]~

(<>) = (<X(VU(€1)762763)3771€> + <X(elav0(e2)>e3)7nk>

£l
Il
A

+ (x(e1,e2, Vo (e3)), k) k

M-

(—(Vo)(e1, €2, e3,mk) + o (t(e1, €2, €3,1mk))

i
S

- w(elv €2, €3, va(nk)))nk

7
(Vb)) (mk, €1, €2, €3) M.
k=

b
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To obtain the second equality we used the covariant derivative of :

(Vﬂ/’)(ela €2, 63)77k) = 0-(1/}(617 €2, €3, 77k)) - ¢(va€17 €2, 63777k)
- w(ela €2, €3, vUnk‘)

and equation ([2.5)), and for the last one we used the skew-symmetry of V1)
and the associativity condition x(e1, ez, e3) = 0. O

Corollary 3.3. If ¢ is torsion free (i.e. Vo =0), thena=A — Ay = 0.

The purpose of this Section is to study in detail the expression for the
squared Fueter-Dirac operator obtained from . Fix p € Y and choose
local orthonormal frames {ej,es,es3} and {n4,ns,m6,m7} of TY and NY,
respectively, such that

(3.3) (Veej)p= (Ven)p = (Vynk)p =0

for all 4,5 =1,2,3 and k,l =4,5,6,7. Observe that, for any sections o,n €
Q%TMly), one has

(3.4) Vo(n) € QU(TMly) = Q(TY) & Q°(NY),

so both tangent and normal components of (3.3 vanish at p. Then the
following holds at p:

3 3 7
2
Da'o= Z ei X Vi (ej % VjL ZZ e;xVia V) (nk, e1, €2, €3)Mk
5,5=1 j=1 k=4
3 7
(3.5) =D e x ViH{(Voh) (m €1, €2, €3)mi’}
i=1 =4
7
+ Z (V(Vaiﬁ)(m,el,ez,eg)m@b)(nka €1, €2, 63)77k,
k=4

and we organise that expression in five components:
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3
¢A2O': Z e; X (ej XVZLV]LO')

1,j=1

)

3 7
+ Z Z T:ilw(elvej'>vjL g, 77m)€z X Mm

i,j,l=1m=4

(1)

7
> (e, Vi 0,10) (Vi ) (s €1, €2, €3)n
1 kn=4

Moo

<.
Il

(1)

3 7
=D el Voth(mse1, €2, e3))er X my

=1 =4

(Iv)

7
+ Z (VU¢)(nla €1, €2, 63)(vnﬂ/))(77ka €1, €2, 63)77.% .
k=4

-~

V)

To obtain (I) and (II) we used Lemma (i) and the property (Vje;), = 0,
whereas (IV) follows from the Leibniz rule for V+ and (V;n,), = 0.

Lemma 3.4. Denoting by V*V the Laplacian of the connection V*, by k
the scalar curvature of Y, by F'~ the curvature associated to the spin bundle
S7, and by p the natural extension p @ lgnas-) of p: Q2(Y) — End(S™),
one has

(I) =V*Vo + —o+p(F)o.
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Proof. In terms of an orthonormal frame {e1, e2,e3} of TY,

3 3
—Zei X (e; x Vit Vi o)+ Z ei X (e; XVf‘lea)
i=1 ij=1
i#]
==Y ViVio-> (eixe) xViVia
i i#]

= —Zv-i Vio—Ver,.o

—Z e x &) x (Vi Vi =V Vi =V ))o
1<j

= V*Vo — Z(ez X ej) X Rl(ei,ej)a.

i<j
Here R+ € Q°(A%2T*Y ® End(NY)) is the normal curvature of Y:
(3.6) R*(ei,e)0 = (Vi Vi = V5 Vi =V )0
To obtain the second equality, we used in each term of the form

e; X (ei X Vf_ Vf_ U) = *X(eiaelﬁv% v?% U)
—{ei, €;) VZ-L VZ-LO' + <ei,ViL VZ»L o)e; = —VZ»L VZ»L o

Moreover, for i # j,

€ X (63 X VJ_ VJ_ ) X(elve])v VJ_ ) <€i,€j> Vf‘ Vj‘O'
+ (e, Vi Vi 0)ej
= —X(Vi Vjo,eie;) =V Viox(exe))

—(eiXej) XV%V;‘O’

Since V := V3@ =Vt @ 1g- 4+ 1g+ ® V~ agrees with the induced
connection V+, one has R* = FV = Ft @ 1g- + 1g+ ® F'~, where F* is
the curvature of the connection V*. Now, using Proposition we identify
the normal section o with the section kK ® e € Q°(S* ® S7), and recall that
the Clifford product of the normal bundle v(e;)o = e; X o coincides with
Clifford multiplication

T:=Tg®1g- :TY — End(ST ® S7),
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where I is the spin structure on TY. Defining

R ) i= 5 3 (e (e EY (no2),

and using (2.6]), we have

—Z(ei X ej) X RL(ei,ej)a :Zei X (ej X Rl(ei,ej))a
1<j 1<j

:é > (e(e) (B (ene))o)

1
—5 ST FY (k0 e) = R(x @)
ij
Therefore,

R(k®e) = %Z(Fo ®1g-)(e)(To® HS’)(ej)Figv'(H ®¢)
ij
_ ;Z(FO ® 15-)(e)(To ® Lg-)(e) (Fin @ ¢ + 1 ® Fire)

N 52@0(60?0(%% W@ty D (To(ei)To(e)) © Fje.

1) )

Each endomorphism Fj; : Q%(S%) — Q%(S7) is given by the formula (c.f.
[16], Theorem 4.15.])

1

Fjr=3 > (Rijlex), en)To(ex)To(er)r,
k<l

where R;; = R(e;, e;) is the Riemann tensor of the induced connection on
Y, with components Réjk = (R;j(er), er). Then, for the first term,
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ZR]kFO ei)To(e;)To(ex)To(er)w

zgkl
1
= 8Z< Z le“o(ez)f‘o e;)To(e;) Z RWFO ei)To(ej)To(e;)
L g, (i=k) i3,(5=k)
41 > (Bl + Ry + Rhyj)To(ei)Tolej)Toler) ) Toler)s
i#jFkF
- Z(Z RLTo(e;) ZRWFO ei )I‘O(el)ﬁ
- ZRZ]ZFO €;j )To( €l ZRUZ FO € Fo(el> + Fo(el)ro(ej»
Ul igl
— L sl
=13 Rldln = — Z Rijik =
ijl

where k denotes the scalar curvature of Y. For the second term, recall that
O?(Y,End(S7)) = Q%(Y) ® QY(End(S7)), so

F™=> (eihe) @ F;.
1<j
Moreover, observe that T'y (also 7) induces a map p: Q*(Y) — End(S™)
defined by
anez A 6] : ZUUFO ez)FD(ej)
1<j 1<j
and consider the extension

pi=p® lgnqs-) Q?(Y,End(S7)) = End(ST ® S7)

given by
p(Y (eine)) ® F) = (Tolei)Toles) ® Fy).
i<j 1<j
Then,

() = £ 3 (To(ea)Toles) @ B )(n 0 )
tj
= éﬁ(Z(ei Nej) @ F;)(k®e¢)
ij
= P(F ) @) 0
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3.2. First-order corrections

The correction terms (IT),...,(V) can be conveniently organised into three 15¢
order differential operators Py, P», P3 on sections of NY.

Lemma 3.5.

3 3
(H):Pl(O') = ZTMB]‘XV;'U—T]‘%‘BJ‘XV%U—Q Z Cijv,ﬁa,
ij=1 (i,j,k)E€SY

where Sg are the even permutations in S3, Tj; is the full torsion tensor and
Ci; the anti-symmetric part of T;;.

Proof. By Lemma [2.12] we have
3 7
(D) = Y Y Tlei en)t(en €, Vi o,mp)er X ni = (%).
ijm=1 k=4

Since x(en, €, VjL o) € QU(NY), then using (2.6 we have

() =

T(e;, en)e; X X(VjL O, en,€;5)
1

.

—T(ej, en)e; X (Vj‘a X (en X €5))
1

T (e;, en)(x(ei,Vj‘ g,en X €5) — (€, en X €j) le o)
1

~.

M 21 50 51

T(@i,en)(v;a X (6i X (en X e])) - @(eiaenaej) v; O')

t,J,n=1
Using relations e; X es = eg and e; X (e, X €;) = —x(€;, €n,€j) — (€i,en)ej +

(€i,ej)en. The first term of the sum is equal to

3
E Tiiej X lea—Tjiej X VZJ'O'
1,j=1
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Moreover, since (e, e2,e3) = 1, the second term becomes

3
(3.7) -2 > CyVio

(i,5,k)€S3

where QCij = T%j — ,T]z ]

Lemma 3.6. With the above notation

7 7
(38) Z n¢ Tk, €1, €2, 63)77k: - Z Tnknk)
k=4 k=4
Proof. Since Y is associative, Corollary gives Vprios = —Thk. O

Denote the following two operators on NY, involving the full torsion

tensor
7

3
=> " ((ViT)(o,m) + T(Vi o,m))es x m,

=1 =4

7 3
Py(o) =) (T(U,m) + ele, Vi 07771)>le77k-

k,l=4 i=1

With this notation, we arrive at one of our main theorems:

Theorem 3.7. The Weitzenbick formula for (3.1)) is
1
(3.9) ]Z)AZ(U) =V*Vo + Zk co+p(F " )o+ Pi(o) + Pa2(0) + Ps(o)

Proof. We examine the five components of I A2 as on page Compo-
nents (I) and (II) have been studied in Lemmata [3.4] and Now, applying
Lemma we have

37
(I11) Z Z o(ei, Vi o, m) Ty
=1 k,l=4

As to (IV), for each i =1,2,3 and [ =4,5,6,7, we use Lemma to
find

ei((Voh)(m, e1, €2,€3)) = —ei(T(o,m)) = —(ViT)(o,m) — T(Vi o,m).
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Then, indeed,

37
= > (Vi) (om) + T(Vio,m))ei x m = Pa(o),
4

i=1 =

7
Finally, a simple calculation gives (V Z T (o, )TNk, and
k,l=4

7 3
(V) + 1) = 37 (Tlom) + 3 pless ¥ ovm) ) T = Pr(0)

=1

Corollary 3.8. Let (M7, ) be a Go-manifold. Then,
1
D" =" ="V + k4 p(F)

In [I1], Gayet obtains a Weitzenbock-type formula when the Ga-structure
is torsion-free:

(3.10) P =V'V+R- A

The term R(c) = w+ Zle R(e;,0)e; can be seen as a partial Ricci opera-
tor, where R is the curvature tensor of g on M and 7t is the orthogonal
projection to NY, and

A:QUNY) — Q°(Sym(TY)),

defined by A(c) = S o S(0), is a symmetric positive 0*"~order operator de-
termined by the shape operator S(0)(X) = —(Vxo)'. With these data,
Gayet formulates a vanishing theorem for a compact associative subman-
ifold Y of a Go—manifold and proves that Y is rigid when the spectrum
of the operator R — A is positive. The advantage of formula lies in
the relation between the intrinsic and extrinsic geometries of the associative
submanifold, because R — A is obtained from a curvature term

3
(3.11) — Z(e, X ej) X RJ‘(ei,ej)a.

i<j

While one cannot entirely apply his proof to the general case (because the
full torsion tensor is nonzero), we are able to adapt some of its steps.
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Given u,v € Q%(TY), and their respective local extensions u,v to T M,
the TY -valued 2-form B(u,v) := Vg0 — V, v relates to the shape operator
by (B(u,v),0) = (Sy(u),v), for 0 € Q°(TM). These data define a natural
0*h—order operator

3

(3.12) B(o) =Y (ei x ¢;) x Blej, So(es)).

ij=1
Proposition 3.9. The curvature term in can be rewritten as

3
(3.13) = (ei x e5) x R (es,¢5)0 = R(0) + B(o)

1<J
1 T (e o
€; X (e’b+17 g, €4, €Z+1) ;

1€L3

where R(o) = n+ 322 | R(ei,0)e; is the partial Ricci operator defined in

(3.10) and T is defined in (2.15) by

T(€i+1, g, €, €i+1)
7

Z (0, em) (Vis19) (ems €, €541, )

m=

- Tz‘+1m( o) (€m, €is €it1, )?

+ (Vi D)o em) = (Vo) it em) ) X(emseis€isa).

Proof. Expanding the summands in the frame {n4,...,77} and using anti-
symmetry of the mixed product and the Ricci equation, we have
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3 7
1
+ 5 Z Z<[Sav S(eixej)xnk]eia €j>77k .

(%)

Applying the Bianchi identity R(e;,ej)o0 = —R(o,e;)e; — R(ej,0)e; to the
first term, expanding the sum and using Lemma we have:

3
(%) = 7wt Z (ei x e;) X R(ej,0)e;

ij=1
= 71 (e3 X R(es,0)e1 — ez X R(es,0)e; —e3 x R(ey,0)es

+e1 X R(es,0)ea + e2 X R(ej,0)es — ey X R(ea,0)es)
J‘(—el X [R(eg,0)e1 X e2 + €1 X R(ea,0)es +T (e2,0, €1, €3)]

O
—eg X [R(es,0)ea X e3 + ea X R(es,0)es +T (e3,0,ea,e3)]
(Imn
—e3 X [R(e1,0)e3 X e1 + e3 X R(e1,0)e1 +T (e1,0,€e3,¢€1)]
(T1T)

+e3 X R(eg,0)e1 +e1 X R(es,0)ea + ea X R(ey,0)es).

=T

Using the identity
ux (vxXw)+ovx(uxw)= (uwv+ (v,wu—2(u,v)w,
we check that

(I) = —e3 x R(ea,0)e1 — (e2,0,e1,e2)e1 + 2(ea, 0,e1,e1)ez + R(ez, 0)ea
(IT) = —e1 x R(es,0)e2 — (e3,0,e2,e3)ea + 2(e3, 0, €2, e2)e3 + R(es, 0)es
(ITT) = —e2 X R(e1,0)e3 — (e1,0,e3,e1)es + 2(e1,0,e3,e3)er + R(e1,0)eq,
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where (e1,0,e3,e1) := (R(e1,0)es, e1). Cancelling terms and taking the or-
thogonal projection on (I) + (II) 4 (III), we find

(x) = R(o) — 7w+ <Z e; X T(eiy1,0,€i, ez~+1)>.

Finally, by the symmetry of S, and S, «e,) the second term is

XN

3 7
- % Z Z<<S(€i><€j)><77k (61'),50(6]')) - <So(ei)75(ei><ej)><m (ej)>>77k

i,j=1 k=4

(St (e Sote5)

-

S,
I
—

I I
=10
~ 1M~

(B Sotea (e e5) x ) )

S
<
I
—_
5
N

~

w(ei X ej, Mk, Blei, Sy(e5)))nk

I
IMw

k

3
E e; X €j) X B(ei, Sy(e5))
)

a{ﬂ

<
Il
—
I
N

(

4. The nearly parallel case and applications

The torsion-free condition for a Ge-structure is highly overdetermined, so
examples are difficult to construct and seldom known explicitly. In terms of
the Ferndndez-Gray classification recalled in Section the next natural
‘least-torsion’ case consists of the so-called nearly parallel structures, for
which the torsion forms 71, 7, 73 vanish and the remaining torsion is just a
constant:

Definition 4.1. Let (M, ) a manifold with a Ga-structure, ¢ is called
nearly parallel if

dy = 07,

with 79 # 0 constant.
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Regarding the deformations of associative submanifolds, our approach
unifies previously known results by means of a Bochner-type vanishing the-
orem. This technique requires a certain ‘positivity’ of curvature, which can
in practice be found in cases of interest studied by several authors.

4.1. Proof of the vanishing theorem

Following Proposition the full torsion tensor in the nearly parallel case
is given by T;; = 72g;;, which drastically simplifies the Weitzenbock formula

(3-9):

Proposition 4.2. The Weitzenbick formula for the Fueter-Dirac operator
(3.1) in the nearly parallel case is

1 78
(4.1) ]DAQ(U) :V*Va—l—1k-0+p(F7)a+TolD(o)+%~a
Proof. Given the orthonormal frame {ey, ea, €3, M4, ..., 7}, it suffices to prove
that the last three terms in (3.9) satisfy
2
(P1 + P2 + P3)(U> = T()lD(U) + % - 0.

At a point p € Y, for P;, we have C;; = 0, because 71 and 72 are zero, then

g Tue]xVU ﬂe]XV U—*T@ZGJXV o — T()§€]><VU

,j=1 Jj=1 Jj=1

= %TO (o).

The next two components are

7
Py(0) =D D ((ViT)(o,m) + T(Vi oym))es x my

=1 =4

Mw

w

7

DZZQ Vi o mei X

=1 =

_To wVig=10
_4216 xvia—4]ﬁ(a),

I
W

w
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7 3
Py(o) =) (T(@ m)+ > ele, Vio, 77[))le77k

i=1
:7—027: D (o, m) +

4 49 y T
_|_

7
T0 T0
= 4z<49(0a771) ZQO ei,Vmﬂn))m

1

3
> olei, Vio, 771)> 9 Mk )M
3
(
1

Corollary 4.3. FEquation (4.1) can be rewritten as

2
(12)  Pa’(0)=V'Vo + R(0) +B(o) + 1 Blo) + L o
Proof. For a nearly parallel Go-structure, the full torsion tensor is T;; =

29ij, thus VI' = 0 and so:

3

7
Zei x T(eiy1,0,€;,€i41) :Z Z ( (0,em)(Vig1¥)(em, €i, €it1, €1)

1€23 €Z3 m,l=1

(ei+17 €m)(Va"t/1)(€m, €, €41, el)> e; X e

Z Z ( H—ll/} ag, 61767,-1-1761)

ZEZ3 =1

- (Va#))(@iﬂ, €i, €itl, el)>€i X e

Z Z ( Viy19)(o, 6z,€z+1,61)>6i X €

Z€Z3l 1
7
70
- Z ZT(eiHaeiH)‘P(U, €i,€1)ei X €
1€27Z3 =1
Tg 3 9
- 16 ' gleiy1,eir1)e; X (0 x e;) = 16 0o
1€7L3

Here we used the skew-symmetry of V,, ¢ for the third equality and Corollary
for the fourth one. Equation (4.2) now follows from Proposition[3.9] O
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Theorem 4.4. Let (M,p) be a T-manifold with a nearly parallel Go-
structure. If Y C M is a closed associative submanifold such that the op-

erator p(F'~) associated to the curvature of the bundle S~ (c.f. and
59

Lemma is bounded below by —(% — 278), then Y is rigid.

Proof. Let o be a section of NY,

Alo]? = Z@i€i<(7,0> = QZ:ei(Vil o,0)
=2 (Vi Vio.0)+(Vio,Vio)
= —2(V*Vo,0) 4 2|Vt o|?

= —2(Pp*(0),0) + k 0,0) +2(p(F~)o,0)

2(
7_2
+ 210(Ip(0),0) + §°|a|2+zva al?.

Taking o € ker ID,, equation (3.2]) gives

7
(43) Z 0'17[} 77ka€1762,63)<77k7 >
k=4
7 7
= _ZT(Uv 77k) Nk, 0 Z U 77k
k=4 k:

By Stokes’ theorem, it follows that

k 2 & 7
0:/}/(4|0’|2—|—< (F7)o,0) ZOX_: o, M) 1%|O"2—|—|VLO'|2>CZV01Y

k=4
ko3 )
= [ (5= 2o+ 010201 + 17+ o voly

By assumption, (p(F~)o,0) > —(IZ - %TS) (0,0), so V+ o =0 and this

implies [)(o) = 0. Notice from Lemma that the Fueter-Dirac operator is
Dy = lD—l—% with 79 # 0.

Then, from )5 (c0) = 0 it follows that o = 0, i.e. ker D, = {0}. O
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4.2. The associative submanifolds of the 7-sphere

In [17], Lotay defines a Go-structure ¢ on S7, writing R® \ {0} 2 Rt x S7,
such that

q)0|(r,p): 7"3d7‘ A 90|p+r4 * 90|pa

where @ is the Spin(7)-structure of R®, r the radial coordinate on R and
* the Hodge star on S7 induced by the round metric. Since ® is closed, it
follows that dp = 4 % ¢ i.e.  is a nearly parallel Go—structure.

Consider the 7—sphere as the homogeneous space Spin(7)/Gs, viewing
Spin(7) as the Gy frame bundle over S7. From the structure equations of
Spin(7) [I7, Chapter 4], the second fundamental form B € Q°(Sym?(TY)* ®
NY') (c.f. [I7, Definition 4.5]) satisfies

3

(4.4) > i x Blei, e5) = 0.

=1

Using (4.4)), the operator B(o) from (3.12) is given by

3 3 3
B(G) = —Zei X (Z e; X B(ejvsa(ei)> - Z <6Z‘,6]‘>B(6j,sg(€i))
i=1 =1 wi=1
3
= —ZB(Q’,SJ(GZ'))
i=1

Taking the inner product with the section o itself, one obtains the non-
positivity property

3
(B(0),0) = =) (Blei, Sq(ei)), 0)
i=1
3 3
==Y (So(es), Solen)) = = D lISa(en)|.
i=1 i=1
Consider the action of SU(2) on S” given by
z1 azi + bz
29 —bz1 + @29 a b
(4.5) - — azs + bz for <—b a) € SU(2).

24 —523 + azy
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By Corollary we have,

Da*(0) = V*Vo +R(0) + B(0) +4Pa(0).
or, in terms of the operator lD,
(4.6) P* =V*Vo + R(0) + B(o) + 2 (o) + 30,

which coincides with the formula given by Kawai [15]. Consider the orbit
S3 < ST of the point (1,0,0,0) under action (4.5). The tangent space to S*
at a point (21, 29,0, 0) is spanned by the vectors

Xl = (227 _Zlaoao)a X2 = <i227i21a070)7 X3 = (iZl,—iZQ,0,0).

As the induced metric on S3, from the round metric on S”, coincides with
the round metric of constant curvature 1, the following results of [4] can be
adapted to our case.

Lemma 4.5. The normal bundle NS® can be trivialized by parallel sections
o1,...,04 of the connection V.

Proof. It suffices to show that the curvature operator R vanishes (c.f.
(3.6). Let u,v be tangent vector fields of S3, and o a section of NS3,
then the Ricci equation gives

RL(u,v)a = <RL(’U,,’U)O', Nk )Mk

ko
=~ || -~
i

({(R(u, v)o,mk) + ([So, Sy Ju, v) )ik

o

=l
o~

((u, o) (v, k) — (v, 0) (u, nk)) e = 0.

Eonl
I
o~

At the third equality we used the well-known facts that the metric on S”
has constant sectional curvature equal to 1 and that S® C S7 is a totally
geodesic immersed submanifold. O

The following Weitzenbock formula relates the operator D = I — Id with
the Laplacian of the connection V+ on N S2.



188 A. Moreno and H. S4 Earp

Lemma 4.6. On the normal bundle NS3, the following formula holds:
(4.7) D?* =V*V +1d.
Proof. In a local orthonormal frame e, e, e3 around p € S, we compute
D?*(0) = ]D2(a) —2D(0)+0=V*Vo+R(0) + 40
=V*Vo + (i(a, eive; — (e, ei>0'>l + 40
= V*Vo + 0.121

O

Consider a basis 1 = fo, f1, f2,... of L?(S3,R), consisting of eigenfunc-
tions of the Laplace operator:

Afi = Nifi.

As a direct consequence from Lemma and (4.7)), we obtain a natural
eigenbasis for the operator D? on sections of N.S3:

Lemma 4.7. D?*(fior) = (A + 1)(fiog).

Since the metric on S? has constant curvature 1, the eigenvalues of the
Laplace operator on S3 are

e =k(k+2) k>0,

with multiplicities my, = (k + 1)? [25, Proposition 22.2 and Corollary 22.1].
Together with Lemma [4.7] this gives:

Corollary 4.8. D? has eigenvalues (k + 1) with multiplicities 4(k + 1)2,
k>0.

In general, for an operator T and a vector u such that T?u = p?u, if

vE = (T + p)u #0

then v* is an eigenvector of T with eigenvalue 4. Let us apply this principle

to T = D, with p} = (k+1)? and u, = fxoj, for j =1,...,4.
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Let us first look at the case k = 0, in which fo =1 and A\p = 0, so ug = 0}

and ,ug =1, i.e.,
’Ui = (D :|:/,L(])0’j = DO’j + 0j.

Now, Ip o; = 0by Lemma so Doj = —o; and therefore vt = 0 and v~ =
—20;. Accordingly, v~ is an eigenvector of D with eigenvalue —pug = —1.
Since v~ = —20j, for j =1,...,4, the multiplicity of —pp = —1 is at least
4, but the multiplicity of (—pg)? = p2 =1 is already 4, by Corollary
therefore the multiplicity of —pg = —1 is exactly 4.

Now, for k£ > 1, we take uy = fro; and pp = k + 1, and use the trivial
fact that e; x o; and o; are linearly independent for all 1, j:

vii =(D % w)ur = Pup — (1F pe)uy
3

=> ei(fu)eixoj— (A F k) fu o5 #0.
i—1 ) v
20 4o

Thus vf: is an eigenvector of D with eigenvalue 4, and it follows that v
is an eigenvector of I) with eigenvalue 1 + juy, such that m(1 + ug) +m(1 —
pr) = 4(k + 1)2. It remains to determine the multiplicities of the eigenvalues
1+ (k+ 1). We introduce the following notation, for k > 1:

ua' =1—pp =0, ,u: =14pur=k+2, and ui‘k =1—pu, = —k.
From Corollary multiplicities of opposite index add up as m(u) +
m(p",) = 4(k + 1) Alternatively, in the sign convention of Remark
we denote the eigenvalues of I by

o =0, p-p,=-k—2, and pu, =k, k=>1,

and again we know m(u; ) +m(p”,) = 4(k + 1)%

Lemma 4.9. The multiplicities in both sign conventions satisfy the follow-
ing relations:

m(ct) = m(up) = 20k + 1)(k +2), k> 0.

and

m(pg) =m(uy) = 2k(k+1), k>1
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Proof. From the above, the operator P —% has eigenvalues

3 3 3
ag:—i, a::k—i—i—l and oﬂ_’k:— —3
Let a; := —a™,. Since y;, = —p™,, we have m(a,f) = m(,u,f), for all k € Z,

and so
m(a;) + m(ozj_tk) =4(k+ 1)

Now the claim clearly holds for £ = 0 and, by induction on k£ > 1, we have

m(/‘i(/ﬁ_l)) =m(a’ * k+1)) = 4(k + 2) m(o (24_1))
Ak +2)% —m(ay) = A(k* + 4k +4) — 2(k + 1)(k +2)
2(k +2)(k + 3).

To obtain the second equality we used the relation
n 3 _
T :(k+1)+§—1:ak,

and for the last one we used the induction hypothesis on o . O

The group Aut(S”, ) = Spin(7) of automorphisms of S7 which fix the
Go—structure induces trivial associative deformations, and the associative
3—sphere is invariant by the action of the embedded subgroup K = SU(2) x
SU(2) x SU(2)/Zy C Spin(7), where Zg is generated by (—1,—1,—1) [19,
Theorem IV 1.38]. Therefore the space of infinitesimal associative deforma-
tions of S3 has dimension at least dim(Spin(7)/K) = 12.

Corollary 4.10. The 3-sphere in S” is rigid as an associative submanifold.

Proof. Since pT is the eigenvalue corresponding to the space of infinitesimal
associative deformations, by Lemma dim(ker Pp) = m(pt,) =12. O

4.3. The example of Bryant and Salamon

In [6], Bryant and Salamon constructed an example of a 7-manifold with
constant scalar curvature and holonomy exactly Ga:

Theorem 4.11. Let (M3, ds?) be a Riemannian 3-manifold with constant
sectional curvature K = 1. Let S(M) — M denote the standard spinor bun-
dle, let r : S(M) — R be the squared Buclidean norm, and let do? denote
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the quadratic form of rank 4 on the total space of S(M) = M3 x R* which
restricts to the standard flat metric on each fibre and whose null space at
each point is the horizontal space of the standard spin connection. Then the
following metric on S(M) is complete and has holonomy Ga:

(4.8) g =3(r+1)*3ds? + 4(r + 1)"Y3do?.

Herer = |a|*= aa denotes squared radial distance and a : Pspins) (M) x H —
H is the projection onto the second factor.

The corresponding associative submanifold is of the form S x {0} for
0 € R*. Now, a compact spin manifold of positive scalar curvature admits
no harmonic spinors (see e.g. [16]) — in fact, the same conclusion holds if the
scalar curvature is just nonnegative and somewhere positive — but McLean
showed in [19] that the moduli space of associative deformations at Y is
the space of harmonic twisted spinors on Y, that is, the kernel of its Dirac
operator.

Observe that the normal bundle of S3 x {0} is isomorphic to the spinor
bundle of S3. In general, let Y3 be an oriented Riemannian manifold and 7 :
Pso(Y') = Y the frame bundle of oriented isometries. Now let & : Pgpin(Y) —
Pso(Y) be the Spin double cover of the bundle Pso(Y). The normal bun-
dle of S (as a submanifold of S® x R?) can be written as an associated
bundle NS? = Pso(5%) Xg0(4) H, via the representation o : SO(4) — GI(H),
o([p, q)) (v) = pvg. Now, the spinor bundle of S3 can be written as S(S3) =
Pspin(5?) X spin(s) H via the inclusion .~ : p € Spin(3) < (1,p) € Spin(4) and
the representation ¢ : Spin(3) x Spin(3) — GI(H), ¢(p, ¢)(v) = vg. So the iden-
tification R* 22 H gives a bundle map

P:8(S% - NS3
by ®(p,v) = (£{(p),v). Observe that ® is well-defined:

®(pg—",<(1,9)(v)) = (£(p- 9),vg)
= (£(p)¢o(g), o([1, g]) (v))
= (&(p),v) - g = ®(p,v).

It is easy to check that ® is a bundle isomorphism.
In those terms, we obtain a trivial alternative for Gayet’s proof of rigidity
of $3 [11], using Theorem and the fact that 79 = 0.
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Proposition 4.12. Let S3 x R* be the Go-manifold with the metric (£.8).
Then S3 = 83 x {0} is rigid as an associative submanifold.

Proof. Since the normal bundle of S® x {0} coincides with the Spin bundle
S(S93), the term p(F~) vanishes, and we conclude immediately from Theo-

rem [4.4] O

4.4. Locally conformal calibrated case and applications

As an application of the Fueter-Dirac Weitzenbock formula and Propo-
sition [3.9] we focus on locally conformal calibrated Go—structures, whose
associated metric is (at least locally) conformal to a metric induced by a
calibrated Go—structure. We provide a novel example of a rigid associative
submanifold, inside a compact manifold S with a locally conformal cali-
brated Ga—structure, studied by Ferndndez, Fino and Raffero [9].

Definition 4.13. A Go—structure is locally conformal calibrated if it has
vanishing torsion components 79 = 0 and 73 = 0, so

dp =311 N @,
dp =41 N + 12 A @.

A SU(3)-structure on a 6-manifold N is a pair (w, ;) € Q2(N) x Q3(N)
such that Q4 = 2(Q+ Q), where Q € Q(A3(T*N ® C)) is a decomposable

complex 3-form and

w3 1 _

i — 1
Q= —=-QANQ=-0Q, AQ_ with Q_:=—(Q-Q).
wAQy =0 and =3 A 1 + A wit 2i( )
The SU(3)-structure (w, Q24 ) is said to be coupled if dw = €4 with ¢ a non-
zero real number. So, the product manifold N x S! has a natural locally
conformal calibrated Go—structure defined by

p=wAdt+Q,

with 70 = 0,73 =0 and 7 = —£dt.

Example 4.14. [9, Example 3.3] Consider the 6-dimensional Lie algebra
ngg, and let {e1,...,es} be a SU(3)-basis. With respect to the dual basis
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{el, ..., €5}, the structure equations of nog are

(4.9) (0,0,0,0, '3 — 24, et 4 ¢23),

and we denote its components by de’ := 0, for i = 1,....,4, de® := e!3 — *
and deb := e + €3, The pair

(4.10) w=e2 43 0 and Q, = el36 _ QM5 _ o235 246

defines a coupled SU(3)-structure on ngg with dw = —Q,. Denote by G
the 3-dimensional complex Heisenberg group with Lie algebra Lie(G) = nag

given by
1 2z =23
G:{ 0 1 2z|; 21,22,236((:}.

0 0 1
The structure equations (4.9) can be rewritten as

4 dzg + 21dzy = €° + i€b.

dzy = e' + ieQ, dze = €3 + ie
By [I8, Theorem 7], G admits a uniform discrete subgroup I' C G, i.e., a
discrete subgroup such that I'\G is compact, the elements of which have
21, 22, z3 € Z[i]. The left-invariant forms w and Q4 on G are well defined in
the quotient I'\G. Consider the automorphism v : G — G defined by

1 21 =23 1 @21 23
0 1 2|30 1 —izn],
0 0 1 0 0 1

and denote by Diff, := ((p,t) — (v(p),t + 1)) the infinite cyclic subgroup of
diffeomorphisms of (I'\G) x R. The manifold

S = ((F\G) x ]R) /Diff,,

is endowed with a locally conformal calibrated Go—structure as follows: for
the left-invariant coframe given in (4.9)), we have

v*(e1) = —eq, v¥(e2) =e1, v(e3) = ey,
v¥(es) = —es, V'(e5) = e5, V' (eg) = €.

Hence v*w =w and v*Qy = Q4, for (w,Q) defined in (4.10). Denoting
by p1: (I'\G) x R — I'\G the projection onto the first factor, the forms
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piw € Q*((N\G) x R) and piQ; € Q*((I\G) x R) are invariant under ~,.
Therefore, we have differential forms @ € Q%(S) and Q € Q3(S) satisfying
the same relations as (w,4) from (4.10). In this setup, the 3-form

(4.11) F=0Ae+Qy

defines a locally conformal calibrated Go-structure on S. Here e’ denotes
the pullback of the canonical closed 1-form on R by the projection ps :
(I"\G) x R — R. The torsion forms of ¢ are

1 ~ 4
T = 567, Ty =« where a= -3 <612 + e+ 2656>

and, by Proposition [2.13] the full torsion tensor is
T = B, with 8 =e!? + 3 + €.

The 7-manifold from Example contains an associative submanifold,
corresponding to a particular Lie subalgebra:

Example 4.15. Consider the Abelian subalgebra ng = Span(es, eg) C nog
and its respective Lie group G’ = [G, G] = exp(nyg) C G, which is generated
by the commutator [g,h] = ghg~'h~!. Since G’ is obtained as the maximal
integral submanifold of G given by the left-invariant distribution

A(g) = (dLg)ingg for g e G,

ie. (Lpn)«(A(g)) C A(hg) (c.f. [24, Theorem 6.5]), we get an integral distri-

bution A on I'\G. Representing G’ by

1 0 =3
G/:{ 0 1 0 ;Z3E(C},
0 0 1
we see that, for each p =T'¢g’ € I'\G’, we have T,(I'\G') = A(I'¢’), and so

I'\G' is a compact embedded submanifold of I'\G. Now v|g= Id and the
quotient map (I'\G)) x R — S is a local diffeomorphism, so

Y = ((F\G’) X R) /Diff, = (T'\G') x S*

is a compact embedded submanifold of S. Moreover,

TipnY = T,(T\G") ® TiR = njg & R,
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and indeed @|7,y= vol(es, e, e7). Hence, Y is a closed associative submani-
fold of S.

Now, we assess formula (3.1)) of Section for Example The first

correction term is

Pl(O') = —T5665 X Vé_O' — T6566 X Véo— — 2T56V7la
= —(er x eg) X Vgo — (e7 X e5) x Vo — 2Vro
= e7 x (o) — V7o,

Here, to obtain the second equality we used the associative relation ez x eg =
—e7 and for the last one we used the identity (u X v) X w = —u X (v X w),
for mutually orthonormal u,v,w. To calculate P», we need the covariant
derivative of the total torsion tensor T’

(412) vakl = ei(Tkl) - F%Tml - F;?’Tkm = _F%Tml — F;?Tkm

Since S is locally isometric to G x R, the Christoffel symbols of the Go-
metric on S are defined by the structure constants of the Lie algebra ngg (cf.
[20]):

1

Ffj = 5(041']']@ — QK t+ Oé]m'j) with Qi = <[€i, 6]'], €k>-

Applying this to Example we find

1
P?3:F23:F§6:F22:F§3:F§2:—§

1
I‘?4:F‘2"5:F:135:I‘}16:Fé4:Fé3:—§
1
F%:nglzrgl:F21:Fé1:Fg1:+§
1

[y =T5, =T8, =T5; =T, =T%, = +§

Ffj = 0, otherwise.

Using the cross product defined by (4.11]) and the above Christoffel symbols,

we have:

i
)66,i><el for ¢=0,1 and [=1,2,3,4.

(4.13) Vieirs = Vigse = ( 5
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Notice that the full torsion tensor of the Go—structure (4.11]) can be written
as

(4.14) T(u,v) = —(er xu",v") + (e7 x ut,vt) for u,ve QTS|y)

where u" and u' are the tangent and normal components of u, respectively.
Combining these facts with Lemma (i), we have

(4.15)
7
Vu(v x w) =Vyuu xw+ v x Vyw+ ZT(u, em)X(em, v, w)
i=1

=V xw+vx Vow—x(er xu',v,w) + x(er x ut, v,w).

Now, for P, we obtain:

I
M-
] =

s
Il
o

Py (o) ei(T(o,ex))e; X ek

k=1

i x (VH(T(0,ex)er) — T(o,ex) Viex)
1

a1l

I
.M"

ﬁ
Il
S

k

1
ele (e7 X o) E E (e7 x 0, ex) 2)€Z+5X(66_i><6k)
i=0,1 k=1

Il
N
< i M\]
ot

e; X (e7 x VZ'LO') —e; X x(er x ej,e7,0)

(=1’

, 2
i=0,1

€45 X (6671' X (67 X 0'))

7
= —2Vio + Z —e7 x (e; x Vio)
i=5
(-1

7(6i+5 X 6671') X (67 X 0')

- Z eirs X x(er X eiys,e7,0) + 5

i=0,1

-~

*)
= —er x (o) — 2VF0 — 30

For the third equality, we used (4.14) in the first term and (4.13) in the
second one. The fourth equality follows from (4.15) and, finally, a short
calculation gives:
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—1)¢
(*) = Z —€;45 X ((67 X ei+5) X (67 X (T)) + (2>(€i+5 X 66,0 X
i=0,1
(1)
= Z —((6i+5 X 67) X ei+5) X (67 X 0') + T(€i+5 X ee_i) X
1=0,1
1
= —((e5 X e7) x e5) X (e7 X o) + 5(65 X eg) X (e7 X 0)
1
— ((66 X 67) X 66) X (67 X O’) — 5(66 X 65) X (67 X O')
=0+ L + o+ L 3
=0 20‘ g 20‘ = o0.
Finally, for P, we have
4 7
=> ( 0, €k) Z@(eiyvf@%))Tklez
k,l=1 =5
4 7
:Z(e7xaek —I-Z e; X V; O'€k>>67><€k
k=1 =5
=erx (e x0)+er x P(o) = —0 +er x P(o)

Now, writing the curvature tensor as

7
Rleep)ern =3 (rlkrd Tl — (1L — T m>em

I,m=1

and using the last expression, we have

4
R(es, ) > o (TsT8 = DT = (T = D) T ) e

l, 15=1

\IﬁM\I

4

Z ( J5F5z>6m

I,m =1

197

(e7 x o)

(67 X 0')

_ 3pl 13 472 74, _ 9
=g F15F53€1 + o F25F54€2 + o F35F51€3 + o F45F52€4 = —Z,
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7
Rles,0)es = > >~ o7 (Dol = Thel i = (T = Tho) 7 e
I,m=1j=1
7 4
Z ( Grﬁl)em
Im =1
g
=0 F16F6461 + o F26F63€2 =+ 0—3]‘_‘?‘}6]‘—%263 -+ 0'4]?}161_‘%164 = —Z
Therefore,
L 1 1
R(U) = (R(€5, 0)65 + R(eﬁ, 0)66 + R(e7, 0')67> B _ZU _ ZU +0

=——0.

Now, we assess the operator 7 defined in equation (2.15) for a pair e;, e; €
QUTY) and o € Q°(NY):

7
T(eja g, €, e] Z T U em v 7/1(€m, €, e]? )jj - T(€j7 em)vaw(emu €, eja )ﬁ
m=l M (1
+ (VjT(a, em) — Vol(ej, em)>x(em, €i, €j) .

(I11)

We will use throughout the proof both the expression of V¢ in terms of T
and ¢ from Corollary and the expression for T given in (4.14). For the
first term,

7
I) = Z<€7 X o, €m>v]‘¢(€m,€i,€j, )ﬂ - v]¢(67 X o, eivej) )ri
m=1

= —T(ej,er x o)p(e;, €5, -)jj +T'(ej,ei)p(er x 0,¢€j, -)ii
—T(ej,ej)pler x 0,ei,-) + T(ej, (e x 7,5, ¢5)
= —<€7 X ej,ei)(e7 X U) X € = <67 X ej,ei>(e7 X €j) X 0.

Here we used the vanishings T'(e;, e7 x ) = 0, again by (4.14), T'(e;,e;) =0,
by skew-symmetry, and p(e7 X 0, ¢e;,¢e;) = (e; X ej,e7 X o) = 0, by orthogo-
nality.
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For the second term,

<€7 X ej7€m>v0'¢(em7€i7ej7 )ﬁ = Vc¢(€7 X €j,€i, €5, )ﬁ

M-

(IT) =

S

T(O’ er x ej)p(ei,ej, )+ T(o,e)pler x ej,ej, )
—T(o,ej)p(er x ej,ei, ) 4+ T(o,-)pler x ej, e, €5)
= — (er X 0, ) {(e7 x ej) X e5,€5) = —((e7 X ej) X e, €;)er X 0.

Again the vanishings T'(c,er xe;j)=T(0,e;) =T (o, e;) =0 follow from (4.14)).
For the third term, we use the derivatives (4.12)) of the torsion tensor:

M~

(II) = — (T(a, Viem) — T(ej, Vgem)>x(em, e, ej)

3
I

I
]~

((67 X 0,Vjem) + (e7 X ej,VUem>>X(em,ei,ej).

—_

3

~—

We now apply (I), (II) and (III) for ¢ = 5 and j = 6:

T(eﬁ,U 65,€6> = <€7 X 66,65>(e7 X 66) X o+ <(€7 X 66) X 65,€6>€7 X o

7
-y ( (e7 X 0, Vgem) + (e7 X g, Va€m>>x(€m,65,€6)

m=1
! 1
=e5 X 0 — Z <—2<67 X 0,65 X €mn) + (65,V0-6m>) X(em, €5, €6)
m=1
1
=e5 X0 — Z (§<e5 X (e7 X 0),em) + oles, em)
m=1

— (Vses, €m>)X(€m, es, €6)
7

1 1
=e5 X 0 — Z (— §<66 X O, em) — 5(66 X U,em>)x(em,e5,e6)

m=1
=e5 X0+ x(eg X 0,e5,e6) = €5 X 0 — (€5 X 0) X (e5 X €g)
=e; X0+ (eg X 0) X e7

:2€5><J.

Here we used repeatedly that e5 x eg = —e7 and e; X (ej X 0) = —e; X (e; X
o) for i # j. At the second and fourth lines we applied again (4.13]), and at
the third line we used the compatibility of the Riemannian connection.



200 A. Moreno and H. S4 Earp

For j =7 and i = 6, we have trivially 7 (e7,0,eg,e7) = 0. Finally, for
j=>5and =7, we have

T (es,0,e7,e5) = (er X e5,e7)(er X e5) x 0 + ((e7 X e5) X e7,e5)er X 0

7
— > ({er X 0, Vsem) + (e7 X €5, Voem)) X(€m, €1, €5)

m=1

= (eg,e7)e¢ X 0 — (eg X e7,e5)e7 X O

7
1
- Z <§<€7 X 0,6 X €m> - <667V0'em>>X(em>e7ae5)
m=1

7

.

m=1

+ <v0'66a 6m>) X(ema €7, 65)

(e6 X (e7 X 0),em) — o{eg, em)

N | —

7
1
=er X0+ 5 E (<€5 X o, €m> =+ <e5 X o, em>) X(em,e7,e5)
m=1

=er x o+ x(es X g,e7,e5) =er X g —(e5 X 0) X (e7 X e5)
=er X0+ (e5 X 0) X eg = 2e7 X 0.

Therefore,
1
(Z eirs X T(eivs, 0, €its, €i+6)> = —do.
1€ZL3
Following the notation of 7, §5.3], we define an operator
D(0) :=e5 x Vzo +es x Vgo,

and recall that the cross-product by e7 defines an almost complex structure
on T(I'\G) denoted by J(o) := er x 0. Then (3.2) becomes

Da(o) =D(0)+ J(6) + J(0),

where ¢ := V7 ¢. To simplify notation, let ||-|| and ((-,-)) denote the L?>-norm
and inner product of sections, respectively (the integral of the correspond-
ing pointwise quantity over the associative submanifold). The next Lemma
gathers some relations between the operators Ip, J and V; although some of
them will not be used in this article, we state them anyway as a curiosity.
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Lemma 4.16. With the above notation, we have the following properties:
(i) D°oJ(o) = —J o P(0) + 20.
(i) ((P°(a),m) = ((o IZ) (M) +2{(e, J(m)))-

)
(iii) ((P°(0),J(5))) =
) {((6,0)) =0a d<<ID (0),J(a))) <0.

(iv
Proof. (i) Using Lemma[2.16] (i), we have,
ZDC OJ(O') =—Jo wc(o_) T65€6 X (65 X ( er X O’))
— Tsees X (eg x (e7 x 0))
=—Jo Dc o)+ 2T56(65 X 66) (67 X 0')

(o)
=—Jolp(o)+2-0.

(ii) Using the Leibniz rule (4.15) and the following trivial calculation,

x(er X e, e5,m) =x(n,e7 X €5, e;) = —n % ((e7 X e;) X €;)
=—nx(e x (e xXer)) =—er X,
we have:
6
(P°(0),m)p ==Y _(Vio,exn)
i=5

= Z{eiw, ei x ) — (0, Vi(e; x 7)) }p

6
—dlvaxn Zaeixvﬁn—x(emei,ei,n»}p
Z:

= div(e x n)p + {0, P°(1)p + 2{c, €7 X ).

(iii) Using (i) and (ii), one has ((IP°(0), J(¢))) = ((J(o), P°(5))), and, by
the vanishing of the normal curvature tensor R*(e;, e7)o =0 for i =
5,6, we have V;V+o = V#Vio. From Lemmam (i) and the com-
patibility of V* with the induced metric in NY, we have:
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7 7
(B(0), J(6))p =Y _(J(0),ei x Vi Via), =D (J(0),Vi(ei x Via))
=5 =5

.

= —(V7(J(0)), B (0))p + e1(J (0), (o))
= —(J(6), D°(0))p + div({J(c), P°(0))er),.

(iv) Again by compatibility of V* with the metric on NY, we have
2(¢,0) = 2(V# 0,0) = e7|o|>. Now Stokes’ Theorem gives

1 1
(4.16) ((6,0)) = 2/ er|o*dvoly = 2/ div(|o|er)d voly = 0.
Y Y

Computing the L2-norm for 1P, (o), we have

DA = 2@ + 51 + o]
+2((B°(0), J(6))) + 2((P(0), J(0))) + 2((5, 7)),

and from Lemma |4.16((iii) and equation (4.16]) it follows that
2 c 2 . c
[Da@)]|" =|B°@)||” +lIsl* + lloll* + 2((B(a), T (0))).

Therefore, by the triangle inequality, ((ID°(c), J(c))) < 0.

Corollary 4.17. The submanifold Y of Exzample is rigid.

Proof. Notice that the operator B vanishes on Y, as can be seen from

B(o) = Y (eixej)x Blej, So(es))

since, Fl-k =0 for j,l=5,6,7 and k=1,....,4. Applying equation (3.9,
Lemma and the previous calculation, we obtain the Weitzenbock for-
mula

1
lDAZ(O') = V*Vo + er x (o) — 3Vio — 50
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Taking the inner product with ¢ and integrating over Y,

/Y<lDA2(O'),O'>dVOly :/Y<V*Va, a>dvoly+/ (e7 x (o), 0)dvoly

Y
—(o,0)dvoly

—/Ys<v$a,a>dvoly—/yé
2/}/@ « B(0),0)dvoly —3/ (&, o) dvoly

Y
1
—/ §<U,a>dvoly.
Y

From Lemma [4.16] (iv), we conclude that

(4.17) /Y<¢A2(O'),O'>dvoly 2/}/(67 x IP(c),0)dvoly —;/(g,c;')clvoly.

Y

So, for o € ker D5, we have I)(0) = —e; x o and, replacing that in ([4.17)),
we get the inequality

1 1
0> —/ (e7 x (e7 X 0),0)dvoly —— / (o,0)dvoly = / (o,0)dvoly .
Y 2 )y 2

Y

Then ¢ = 0 and therefore Y is rigid. g

Afterword

In many cases a Weitzenbock formula is a useful tool to rule out parallel
spinors, but in full generality equation has the drawback of first or-
der terms with unpredictable spectrum. In the nearly parallel case ,
however, the Weitzenbock formula is very similar to the formula for a pa-
rameterized connection with skew-torsion symmetric tensor of Agricola and
Friedrich [I]. In this context and under favourable assumptions, it is possi-
ble to control the spectrum of ). Using the Weitzenbdck formula of [11], we
have

2
.
DA*=V'V4+R+B+7P+0
so, when a normal section lies in ker D5, it corresponds to the eigenvalue T
of Ip. Therefore, nontrivial deformations for an associative submanifold are
in direct correspondence with elements of that eigenspace.
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