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The occasion for this paper is a proof of the Mordell-Lang conjecture for
function fields, and associated results. Some of the results have been proved
earlier by different methods, while others (notably in positive characteristic)
are new. The main interest in both cases is the use of model-theoretic tools;
indeed the proof requires no special ingenuity but follows naturally from
model-theoretic considerations. This exposition attempts therefore to give
an account of the proof and of the model theory that goes into it; I did not
describe parts of model theory that are not relevant to the proof, but on
the other hand made no effort to suppress model theoretic apparatus that
is used in it.

§1 is devoted to the basic notions of model theory. The results mentioned
there can be found in [4], though the point of view here is closer to that of
Abraham Robinson. In §2 we describe parts of stability theory. For our
purposes, it can be viewed as a foundations for certain kinds of geometry,
analogous to algebraic geometry. In particular in §2.4-2.6 we consider a
central notion, modularity, a dividing line between linear and non-linear
geometries of this type. It is ultimately this dichotomy, applied to a certain
structure lying inside an Abelian variety, that creates an equally sharp line
between “arithmetic” Abelian varieties and others, and yields conclusions
concerning non-isotrivial Abelian varieties, and torsion points of Abelian
varieties over number fields.
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In §2.6 we describe a classification of model-theoretic geometries having
a dimension theory similar to that of algebraic geometry. §3.1 contains an
application of this result to algebraic differential equations, in the form of a
very rough classification of such equations into three classes (Theorem3.3).
One of the classes consists essentially of those equations whose solutions
can be algebraically parameterized. Another involves special differential
equations, discovered by Manin, inside Abelian varieties. It may seem sur-
prising that a very basic and general model theoretic classification, applied
to the case algebraic differential equations, should lead to a consideration of
Abelian varieties at all.

By a quite similar scheme we obtain similar results about difference
equations, as well as certain structures in characteristic p > 0.

In §3.2 we deduce the geometric Mordell-Lang conjecture, and mention
some other corollaries involving torsion points. Here is an oversimplified
description of that proof. It concerns an Abelian variety A, a certain group
I’ of points of A, and a subvariety X. We will consider (A4,+,T,X) as
an abstract geometry of the type described in §2. We will know that the
axioms of these geometries are satisfied by interpreting the situation in a
differential algebraic setting (following an idea of A. Buium’s), or in another
setting known to have the right abstract properties. The general theory
of §2 will allow us to decompose the geometry into certain “minimal” or
irreducible ones. The classification in §3.1 will show that each irreducible
geometry is modular, or else equivalent to algebraic geometry over a certain
field k. Modularity will imply that I' meets X in a simple way. The other
alternative restricts the situation considerably and in particular, following a
brief investigation of the identity of the field k, will show that A is defined
over a number field.

1 Model Theory

1.1 Introduction

Model theory often deals with mathematical structures familiar from algebra
or geometry, but from a point of view of its own. I will try in this section
to explain this point of view.

Formally, a structure in the sense of model theory is a set A (or perhaps a
number of sets A,, called sorts), and a collection D of relations, or definable
sets, RC A™ (or RC A,, x...x A,,.). One makes the assumption that D
contains the diagonals and is closed under the following operations: intersec-
tions, complements, and inverse and direct images under projections from
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a product of m sorts to a partial product (such as A™ — A™~1.) Often D
is generated, under these operations, by some “basic” relations Ry,... , Rg;
in this case one denotes the structure as (A; Ry,... , Rx), though keeping in
mind the larger class of sets that can be constructed from these.

These are sometimes called Ist-order structures. Here are some examples
of structures related to number theory; (3.1-3.3) are used in the results
reported on in this talk.

(1) (N; +,-) or (Z;+,-); D is generated by the graphs, in Z3, of addition
and multiplication. This structure is the subject of Godel’s theorem (see
e.g. [37]). Though one begins with the simple relations {+,} and applies
very basic geometric operations, Godel showed that one obtains an almost
arbitrary subset of Z within D; the study of these sets belongs to recursion
theory, or descriptive set theory, but not to geometry or number theery.
Later J. Robinson showed the same is true of the field (Q; +, -). Thus though
one may ultimately be interested in Z or Q, they are not directly amenable
to model theoretic analysis of the geometric kind we will consider. One may
note that in number theory too, one approaches these objects through a
host of auxiliary structures.

(2.1) (R;+,-). A few years after Godel’s work, Tarski showed that a
quite different situation holds for the real field. The elements of D in this
case are geometrically reasonable objects, the semi-algebraic subsets of R™.
In particular the definable subsets of R itself are finite unions of intervals.

Tarski’s paper was entitled “a decision procedure for elementary geome-
try” (and not: “for the real field” ). Indeed suppose we extend this structure
by adding a sort E for Euclidean 3-space, and a map d : E? — R (distance).
In this “language” we can evidently discuss triangles, circles, and general
real algebraic varieties. The point is that, in the model-theoretic view of
R, this was already present. E can be interpreted as R3, and the relation
d(z,y) = z is already part of D.

We will note below (paragraph on formulas) that if X C R™ is a definable
set, the closure cl(X) of X is also definable. Similarly, the derivative of a
definable function is readily seen to be definable, as is distance from a point
to a variety. The class of definable subsets of R™ thus forms a limited but
useful universe; when a problem can be formulated within it, one may freely
apply many geometric operations without leaving it. For some applications
of this to asymptotic properties of algebraic functions, see [13], Appendix
A2.

(2.2) The other (p-adic) completions of @, and their algebraic extensions,
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enjoy similar properties. It is most natural to present these fields with three
sorts: K for the field itself, k for the residue field, I' for the value field. One
has relations for the valuation ring, the valuation map, and the reduction
map. In particular, every subvariety of K™ is a definable set, and so is
every set of the from {z : v(f(z)) > m}, f a rational function. The set of
m’th powers in K is also definable; it is the projection to K of the graph
of y = ™. A theorem of Macintyre, following work of Ax and Kochen,
states that all definable sets are obtained from these (using finite unions
and intersections, and pullbacks by rational functions.)

(2.3) (G;+,-), or an algebraically closed field of another characteristic.
Here the definable sets are the constructible sets; finite Boolean combina-
tions of algebraic subvarieties of C* (defined over Q.) (“Tarski-Chevalley
theorem”).

The examples (2.1-2.3) considered above represent a different founda-
tional outlook on very well known geometries. Work of Denef, Van den
Dries, and others, in the past decade has extended this framework to in-
clude, for example, local analytic geometry. For each type of “geometry”,
one must prove the analog of the Tarski-Chevalley and Tarski-Seidenberg
theorems. Introducing even one new function into the class of definable sets
has a high cost; one must rewrite the foundations for each such addition. (A
recent example is Wilkie’s addition of the global real exponential function
to the local semi-analytic universe.) Once such work is done, however, one
has a geometric “paradise”, in which many constructions can be carried out,
with a guarantee of not encountering any pathological sets on the way.

We will now turn to examples of a different kind. Classically the geome-
tries involved are viewed as infinite-dimensional.

(3.1) A differential field is a field (here, of of characteristic zero) equipped
with a derivation D. (One can also consider several derivations.) Together
they form a structure (U;+, -, D). We choose U = U to be the universal do-
main for differential fields of characteristic zero; this notion will be explained
below. An affine differential-algebraic subvariety is a subset of U™ defined
by the vanishing of finitely many algebraic differential equations. The alge-
braic theory of such varieties was developed by Ritt and by Kolchin; they
are also called Kolchin - closed sets. Each Kolchin closed subset of U™ is
definable. Conversely, by a theorem of A. Robinson’s, every definable set is
a finite Boolean combinations of Kolchin-closed subsets of U™ (defined over
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Q)

(3.2) The analog in characteristic p > 0 is a separably closed field
(K,+,+), with [K : KP] = p. To bring out the analogy with (3.1), one
could add a derivation of K, or a stack of Hasse derivations. These are how-
ever automatically linear over K? or KP", hence definable whether or not
they are added explicitly. (More precisely, the family of derivations forms
a definable KP-vector space, definably dual to K; a particular derivation
is definable once one picks out a € K \ KP.) Here we will not stress this
analogy, and work directly with the field structure. The definable sets will
be described in §3.1.

(3.3) An analog of a different kind is obtained if one takes an automor-
phism in place of a derivation (difference fields). There is again a universal
domain, or rather a family of universal domains depending on the restric-
tion of the automorphism to Q. Here the family of definable sets includes
“difference varieties”, defined by polynomials in X, X?,... where o is a
formal symbol for an automorphism. But D consists of something more
than difference varieties; the basic definable sets describe the behavior of
the automorphism on etale covers of a given variety. (See §3.1).

The examples given so far were defined in terms of a fundamental struc-
ture ( the complex or real field, or differential field.) We took pains to
emphasize that a whole geometry (in this case, of algebraic varieties) is
generated by it. Though the geometry involves high-dimensional objects,
in some sense its richness emanates from the one-dimensional fundamental
structure. This duality can be reversed; when presented with a geometry
synthetically, one can attempt to find an associated fundamental structure
that gives rise to it. (Historically this is of course the first direction.) The
next examples will be directly defined as a kind of geometry. The problem
of identifying an intrinsic fundamental structure or structures responsible
for their nature and complexity will be a major theme of this paper.

(4.1) Let X be a compact complex manifold; let D be generated by the
closed analytic subvarieties of X. D consists in this case of finite Boolean
combinations of analytic subvarieties. The fact that D is closed under the de-
finable operations is due to Zilber; it relies essentially on Remmert’s proper
mapping theorem.

(4.2) Let Ar be the set of solutions (in the universal domain) to an
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algebraic differential equation F(z,Dz,... ,D"z) = 0. If F1,...,F,, are
such equations, A; = Af,, call a subset W C A; x ... x Ay, Kolchin - closed
if it is also given as the solution set of an algebraic differential equation,
in variables Xi,...,X,,. In particular, this defines the (Kolchin)-closed
subsets of (Ar)™. Let D be the class of finite unions of differences of two
Kolchin closed sets. It can be shown, using (3.1), that (AF, D) is a first-order
structure.

If F is linear, the graph of addition on Afp3 is a Kolchin closed set;
there are many others, though they may not be immediately evident. In
the non-linear case, it is less clear what D is, and at all events one does not
expect a group or ring structure. There is no apparent intrinsic organizing
principle for the class of definable sets (despite the external “upper bound”
one has, in the class of all definable sets of the universal domain of differential
fields). We will find such an organizing principle, arising from ideas in
abstract model theory. This will in return yield information on the algebraic
differential equation with which we started.

It is important not only what relations are present, but just as much so,
which ones are not. For instance, compare the ring (Z,+,-) to the group
(Z,+,1) in which a generator has been distinguished. Model-theoretically,
they are entirely different structures. The latter has a very simple geometry
of definable sets; every definable set or relation is a Boolean combination of
cosets of subgroups. In particular, multiplication cannot be constructed by
a finite sequence of operations of the type allowed, though it can be con-
structed set-theoretically since (Z,+,-) has the same automorphism group
as (Z,+,1). We will see later how to establish a kind of Galois theory for
this kind of question, though initially no automorphisms are present.

When seeing a copy of Z, occurring for instance as the value group of
Qp, the model theorist immediately asks: what kind of Z is it? What is the
structure? (In the case of the value group of Qp, the answer is: precisely
(Z,+, <); no non-obvious relations are induced on elements of Z as p-adic
values. This is a consequence of Macintyre’s theorem or Ax-Kochen-Ershov,
see below.)

Formulas and sentences. Assume a structure is given in terms of some
“basic” generators of the class of definable sets; for instance, the graphs of +
and - on a field. The definable sets are then formed by a sequence of geomet-
ric operations: intersection, projection, etc. A formula (in n variables) is a
description of a definable subset (of an n-fold product, or Cartesian power),



Ehud Hrushovski 67

given via the procedure from obtaining it from some “basic” definable sets
by projections, intersections, etc. One thinks not so much of the definable
set, but of the conditions for membership in that set. Thus the intersection
of two sets corresponds to the conjunction of two formulas, denoted by &.
The projection of a definable set from U x V' to U corresponds to the exis-
tential quantifier: for D C (U x V), u € pry D iff (3v)((u,v) € D). Similarly
the complement corresponds to the negation symbol —.

Formally, formulas are formed by starting with a symbol for each ba-
sic definable set, including the symbol = for the diagonal, as well as the
symbols 3, &, -, and forming expressions according to certain (evident) syn-
tactic rules. One can also use the universal quantifier V; (Vz)¢(z) can be
defined as —~3z—¢(z); similarly “or” , “implies”, etc. Any statement nor-
mally encountered in mathematics, concerning the objects at hand, can in
fact by formulated with ease. However, there is a lot of weight put on the
proviso “objects at hand”; one is forced to be quite precise about just what
is part of the structure; in particular the collection of sequences, or even of
finite subsets, of a structure A cannot directly be referred to, unless it is
either explicitly put in as part of the structure or shown to be interpretable
in another way.

Formulas can also be used to assert properties of the structure, rather
than point to a particular definable set. By definition, a sentence is a
formula with no free variables; it represents an theorem (or false assertion)
about the geometry of the structure.

Examples of formulas.

1. in (R, +, ), the inequality relation <- the subset of R? lying above the
diagonal- can be described as the projection of the affine variety y = = + 22
in R3:

(3)(y =z + 22)

2. If D C R" is a definable set, defined by a formula ¢(z) = ¢(z1,... ,zn),
the closure of D is also definable:

(yh'“ ayn) €
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3. For any field F', the following sentence is either true or false (abso-
lutely, without reference to particular parameters):

(‘v’a) oo (Vf)(axo)(aml)(amz)(ﬂ(l‘o =T =22 = 0)
& (aa:g + bxoz1 + cxozo + dw% + ex1To + fm% =0))

It asserts that every degree 2 hypersurface in P2 has a solution; similarly,
one can write down a sentence o4, stating that every degree d hypersurface
in P™ has a solution with coordinates from the given field. The field is
algebraically closed iff every such sentence holds true in it. Similarly, with
infinitely many sentences, one can express the fact that a valued field is
Henselian.

The linguistic interpretation of the basic operations usefully comple-
ments the geometric one. It is sometimes harder to comprehend directly the
sequence of geometric operations - pullbacks, intersections, complements
and projections - leading from a set to its closure, or from the graph of a
function to that of its derivatives, than to read a formula such as in (2).

There are close connections between the class of sentences true in a
fundamental structure, and the nature of the definable sets in the associated
“geometries”. Rarely does one determine one without saying a great deal
about the other. For instance, it is not very different to prove the Tarski-
Seidenberg theorem mentioned above, and to prove that the sentences true
in R are those that follow from the axioms of real closed fields.

Model-theoretic categories. We can make the above discussion more
explicit by describing some categories model theory works with.

Embeddings:  This is the usual category used in algebra. The objects
are structures whose definable sets are generated by a given collection of
symbols, the basic relations, such as rings by {+,-}. The morphisms are
maps respecting a given set of relations.

Elementary embeddings : The objects are the models of a given theory,
i.e. the structures in which a given collection of sentences is true. The mor-
phisms are those embedding that respect arbitrary formulas. In other words,
they respect not only the basic relations, but the comportment of the class
D of definable sets with respect to projections, intersections, complements.
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Interpretations:  This is the most characteristic model theoretic cate-
gory. Here the objects are structures, that need not be in the same language.
The morphisms involve the linguistic viewpoint on formulas, and do not cor-
respond to algebraic maps. An interpretation of A in B is a partial map
f+B™ — A, such that for any C' € Dy, the pullback f*C of C under f is
in Dp. In particular, the domain of f is in Dpg, and so is the equivalence
relation £ = f~!(=) on dom(f).

One can therefore identify A as a set with B"/E. The induced structure
on B"/E, by definition, is the class of E-invariant relations on B™, present
in Dg. An interpretation identifies A, as a structure, with B™/E endowed
with a sub-class of the relations in the induced structure. (We will often be
interested in the case where the entire induced structure is taken.)

Familiar interpretations include the “construction” of natural numbers
from sets; of rational from natural numbers; of reals from the structure
consisting of the rationals, and the sets of rationals; of complex from real
numbers; of formulas and recursive sets in the natural numbers (Godel);
of algebraic geometric objects in the real or complex fields. Model theory
undertakes to describe systematically the possible interpretations, in a given
structure or class of structures.

1.2 Universal Domains

The notion of a universal domain for the class of fields was introduced by
Weil in the Foundations of Algebraic Geometry. The idea is to have a large
structure with uniform features, in which every field under consideration
can be embedded; in the case of fields it will be a large algebraically closed
field. Questions about a given field can sometimes be reduced to “geometric”
questions about the universal domain, and “rationality” questions; for the
latter one has the aid of Galois theory.

The scheme revolution put this idea into some disuse in algebraic ge-
ometry. In place of the embedding into the universal domain, one puts a
structure sheaf on a variety; in this (alternate) way, one remembers the
way it arose from the fundamental structure. In model theory the universal
domain remains fundamental, and if a field is present, one must do some
synthetic geometry to discover it. Note in particular that example (4.2)
above cannot be intrinsically described as a ringed space.

Here is the general definition; it can be taken either in the embeddings
or elementary embeddings category, or sometimes in intermediate ones.

Let T be a theory, i.e. a set of sentences. Let C be the class of struc-
tures in which T holds true: the class of fields of a given characteristic, or
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differential fields of char. 0, etc. One considers C as a category by taking
morphisms to be embeddings or elementary embeddings (or sometimes an
intermediate choice), as appropriate.

Definition 1.1 A structure U € C is a universal domain for T if every
countable M € C embeds into U, uniquely up to an automorphism of U.

We have combined here two properties of the universal domain; the
existence of an embedding, together with a certain statement of existence of
extensions of a given embedding, is usually called saturation. The uniqueness
is called homogeneity.

The restriction to countable M here is somewhat arbitrary, and can be
replaced with a number of variants. We have not specified U completely, to
avoid getting into entirely irrelevant (and easily solved) set theoretic issues.
For instance if the continuum hypothesis holds, one can ask that U have
the size of the continuum; and then U is determined uniquely, up to a non-
canonical isomorphism.

Existence. There are precise criteria for the existence of a universal do-
main; the essential point is that C should admit amalgamation, i.e. given
two maps f; : A — B; there should exist C € C with and g; : B; — C with
91f1 = gafo. If one uses elementary embeddings, a universal domain always
exists for a given (complete) theory. If one can show amalgamation for a less
restrictive category, say for embeddings, one obtains additional information
on the definable sets of the universal domain. (See below). This can easily
be verified in our examples.

The following general procedure has been described by Abraham Robin-
son:

1) Identify an aspect of a given situation that you wish to concentrate
on, described by universal laws; for instance the ordering on Q, the laws
being the axioms of ordered fields. Here ”universal” refers to the nature of
the quantifiers in the sentences describing the laws; the class of models of
these sentences is to be closed under substructures.

2) Construct a universal domain for the class of structures satisfying
these laws. In the case of ordered fields, one obtains a real closed field.

3) In the universal domain, projections of definable sets are usually easy
to understand. If a € U™ is not in the projection of R C U™*™, this cannot
be due to an accidental occurrence, but rather it must follow from one of
the universal laws of the class that (a,y) € R is impossible (otherwise,
there would be a solution in the universal domain). This makes the class D
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comprehensible in U.

4) We will work with the universal domain itself. However sometimes
one is given in advance a particular structure, such as R or C, and wishes
to determine the structure of their definable sets. This can often be done
most efficiently by finding first the universal domain U (in these examples,
of ordered fields, or fields of char. 0) and then showing that the given
structure forms an elementary submodel. (The fact that the definable sets
of U are understood makes the last task easier.) In the cases of C and
R, Robinson noted that this procedure yields Hilbert’s Nullstellensatz and
Hilbert’s problem on expressing rational functions as sums of squares (proved
earlier by E. Artin), respectively.

The last step expresses a connection between the topological completion
process, yielding a complete ordered or valued field, and the model theoretic
one. The model theoretic completion “includes” the topological one, but
adds also infinite and infinitesimal elements (to R, or to the value group.)

Note that the topological option is not present in examples (3.1-3.3). The
universal domain for differential fields (say) may at first seem disturbing,
being an abstract object whose elements cannot be identified with (say)
functions. It is a unique object, but up to a non-canonical isomorphism.
This is however not essentially different than the case of the algebraic closure
of a field of characteristic p > 0.

The key feature of the universal domain is the compactness theorem:

Theorem 1.2 (Model theoretic compactness) Let {X; : i =1,2,...}
be a family of definable subsets of U™. If every finite subfamily has non-
empty intersection, then M;X; # 0

This is the fundamental finiteness principle of model theory. The ap-
parently infinitary nature of the construction of the universal domain really
goes to bring out this finiteness.

In our application, in characteristic p, we will use this theorem as follows:
when A is a definable Abelian group in the universal domain, if p"A # 0 for
any n, then N,p™ A # 0; moreover this intersection reflects the properties of
p™A for large n.

For another application, see the Ax-Kochen theorem, discussed below.

Galois Theory. The universal domain has a large automorphism group;
sufficiently large for a good Galois theory. It is also large enough for the
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“Erlangen program” to hold; different “structures” have different automor-
phism groups. We noted above that (Z,+,-) and (Z,+,1) have the same
(trivial) automorphism group, but are quite different as structures. This
can no longer happen once one goes to the universal domain. If a relation R
is not definable from some others R;, Ry, ..., there exists an automorphism
of the structure with respect to Ry, Ra,... that does not leave R invariant.

We will later need the notion of algebraic closure. If X is a subset of the
universal domain U, let Aut(U/X) be the group of automorphisms of U fixing
X pointwise. We define the algebraic closure acl(X) to be the set of elements
u € U, whose orbit under this group is finite. An equivalent definition in
terms of formulas: a € acl(X) iff ¢(a,b) holds for some formula ¢ and
parameter b from X*, such that ¢(x,b) has a finite number of solutions.
The basics of Galois correspondence are valid here; in particular there is a
bijection between closed subgroups of Aut(acl(X)/X), and subsets of acl(X)
containing X and closed under definable functions. (Here one must use
Shelah’s imaginary elements; we will not discuss this.)

Digression: The Ax-Kochen Theorem. Artin conjectured that a hy-
persurface of degree d in P™ has a p-adic solution, whenever n > d2. This is
not true ([39]), but is true asymptotically in p: for a fixed degree d, for all
sufficiently large p, every hypersurface of degree d in P’ has a p-adic solu-
tion. Ax and Kochen ( [1]) discovered and proved the asymptotic statement
using the model theoretic ideas above. Recalling the proof in full would take
us out of our way, but let us mention some aspects.

The Az-Kochen-Ershov principle states that for a Henselian K of residual
characteristic 0, the set of sentences true in K is determined by the the
knowledge of those true in k (as a field) and I' (as an ordered group.) To
have an idea of the proof, recall the characterization of the Laurent series
field k((t)) ( char(k) = 0) as the unique complete valued field, with residue
field £ value group Z . Replacing “complete” by “Henselian and saturated”
permits a generalization of this result to arbitrary value groups. At the level
of first-order sentences - they do not change upon moving to a universal
domain - it follows then that “Henselian” suffices. (cf. [27].)

Fix an integer d. We saw above that the statement of Artin’s conjecture
for this d (and say, for n = d?) can be made by a first-order sentence ogp,.
The property of being a Henselian valued field can also be expressed by an
infinite collection of sentences.

Consider a structure with a sort P for the set of primes; an additional
sort @, and a function f : @ — P. The fiber Q, = f~1(p) of f above the
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prime p is taken to be the valued field Q,.

Embed this structure in its universal domain. The set E of elements
of P such that the fiber @, fails to satisfy o is a definable set. So is the
set E, of all p such that, in addition, the residue characteristic of @, is at
least n. If the asymptotic conjecture fails, then each E, is non-empty; by
the compactness theorem , there exists an element p* € P (in the universal
domain) such that F' = Q,+ has residue characteristic 0, and o fails. Since
each (), is Henselian, so is F.

It suffices now to show separately, working in characteristic zero, that
o holds in F. Ax and Kochen actually do this using compactness again:
o is known to hold (Chevalley, Tsen) for the fields F,,((T')); repeating the
construction for these, one obtains a field F', limit of the F,((T"))’s. But
F,F' are saturated and evidently have the same residue field and value
group, hence are isomorphic by the Ax-Kochen-Ershov principle mentioned
above.

2 Stability

The model theory discussed so far stayed close to algebra and its foun-
dations. We move now to another school, pursuing model theory in the
abstract. These schools developed quite separately from the the 50’s to the
early 80’s . Moreover, starting in the 70’s, the abstract model theory school
begun to work with hypotheses, internally motivated, that left nearly all
the significant model theoretic algebra outside the door. (The only known
theories of algebraic interest satisfying the stability hypotheses are theories
of modules over a fixed ring, the theory of separably closed fields, and the
theory of differentially closed fields.) This isolation made possible, in labo-
ratory conditions as it were, the discovery of concepts proper to the model
theoretic view. A rapprochement began in the mid-80’s, partly because of
the discovery within stability theory that certain classical structures play
a key role in general model theoretic phenomena, and must be explicitly
studied even if one is not interested in them for their own sake. A synthesis
is now in its initial stages; one hopes the power of stability-theoretic anal-
ysis will eventually become available for all of the structures surrounding
number theory.

The application to Mordell-Lang reported on below uses differential al-
gebra, in any characteristic, where stability was already applicable; and dif-
ference algebra, where the appropriate theory was developed more recently,
see [22],[9].
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2.1 Categoricity and dimension

The motivating problem for the development of much of stability was the
“spectrum problem”, the question of the number of isomorphism types of
models of a given theory in a given cardinality. This takes place in the
category of elementary embeddings, but the question is preserved under
bi-interpretations, and encourages the discovery of invariants for the latter
category.

The beginning of the subject was Morley’s analysis of categoricity. In an
old use of the term, a theory is called categorical if it has only one model,
up to isomorphism. However, an early result (Lowenheim-Skolem, cf. [4])
states that a theory with one infinite model has models of any infinite size.
Thus one says that a theory is k- categorical if all its models of size k are
isomorphic. Morley showed that this notion does not depend on the cardinal
K, if K > Np. This is a typical statement of the essentially non-set-theoretic
nature of model theory. (Categoricity in the cardinality of the integers is
an interesting but quite different model theoretic story, which we will leave
aside.)

Note that the theory of algebraically closed fields of a given characteristic
is k - categorical, for uncountable x: an algebraically closed field is charac-
terized by its transcendence degree over the prime field. This transcendence
degree is another face of dimension theory for varieties.

Morley started with the assumption of categoricity, and recovered an
analog of transcendence degree and dimension, the Morley-rank. This is
only the first of a host of dimension theories occurring in model theory,
usually ordinal-valued, applying in more general situations. We will however
only discuss Morley rank, and only in cases where it is finite; in this case
we will refer to it as (Morley) dimension. The following definition refers to
definable sets in the universal domain, possibly using parameters from the
universal domain.

Definition 2.1

e A definable set X in the universal domain has Morley rank > 0 iff it
is nonempty.

e X has Morley rank > n + 1 if for each m, it contains m disjoint
definable subsets of Morley rank > n.

e If X has Morley rank > n, but not > n + 1, we say it has Morley
rank n. In this case there exists a maximal m, called the multiplicity,
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such that X is the disjoint union of m definable sets of Morley rank
n.

Note that X has Morley rank 0 iff it is finite. This dimension theory can
be shown in general to have some of the basic properties of dimension theory
for algebraic varieties; in particular, the dimension of a Cartesian product
is the sum of the dimensions of the factors. (These functorial properties are
as important in practice as the definition itself.)

The dimension theory serves both to begin an analysis of arbitrary de-
finable sets, and to point out ones of particular importance.

Definition 2.2 An infinite structure U is called minimal if for every defin-
able R C U x U™, for some integers n,n/, for any b € U™:

Either R(a,b) holds for at most n values of a, or else it holds for all but
n' values of a.

If U = U is a universal domain, then U is minimal iff every definable
subset of U is finite or cofinite. This includes definable subsets allowing
parameters from U.

A minimal structure has Morley dimension 1 and multiplicity 1. Con-
versely, every definable subset of U of Morley dimension and multiplicity 1
can be viewed as a minimal structure (with the induced structure.) In seek-
ing to identify the “fundamental structures” involved in a given one, we will
begin by agreeing that a “fundamental structure” should be minimal. Later
we will define a notion of equivalence (non-orthogonality) to decide when
two minimal definable sets correspond to the same fundamental structure.
The minimal structures interpretable within a given structure M of finite
Morley dimension, throw a great deal of light about M (both in abstract
categoricity theory, and in the analysis and applications to be described
here.)

Examples

1. Algebraically closed fields are minimal structures.

If V is any variety over an algebraically closed field K, say for simplicity
without nontrivial automorphisms (as a K-variety), one can view V as a
structure by taking the basic relations on V™ to be the Zariski closed subsets.
Then V interprets K (hence V' is bi-interpretable with the field K. )

2. Let G be a finite group, and consider the complex representations of G.
The relations are the graph of addition, of the complex scalar multipliers,
and of the operations of “multiplication” by any g € G. There exists a
universal domain for such representations (a direct sum of infinitely many
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copies of the regular representation.) The Morley dimension equals the order
of the group. The minimal definable sets (up to an equivalence relation to
be defined below) correspond to the irreducible representations.

Within a minimal structure D, algebraic closure induces a matroid, or
combinatorial pregeometry (cf. [34].) In other words, the exchange law
holds: if a € acl(BU {c}) \ acl(B), then c € acl(BUa). Thus one can define
a “transcendence degree” as follows: the Morley transcendence degree of a
set X is the cardinality of any maximal subset Y of X, whose elements are
algebraically independent.

In example (1) above, this is the usual transcendence degree. In example
(2), each minimal definable set determines a different dimension theory; the
transcendence degree of a representation with respect to a given minimal
set, is the number of components of the associated irreducible representation
that it contains.

Digression: The Baldwin-Lachlan theorem. The Baldwin-Lachlan
theorem characterizes categoricity in terms of minimal structures. One says
that a model M is prime over a subset Y if any elementary embedding of Y
into U extends to an embedding of M into U. In many situations, such as
when M is countable, or has Morley rank, the prime model is determined
up to a (non-unique) isomorphism.

Theorem 2.3 Let T be a complete theory in a countable language. T is
N1 -categorical iff for any model M of T,

1. M has a definable subset D that is minimal, with the induced structure.
2. M 1s the prime model of T over D.

Note that in (1), D is a definable subset of M, but is considered as a
structure in its own right, with the structure induced from M.

The model M is thus determined by the minimal structure D. This
could happen because D interprets M; an example we say earlier is that
where M is a variety over an algebraically closed field F' (with the “Zariski”
structure). However, the situation could be considerably more complicated;
a great deal of model theoretic analysis revolves around this issue. We will
not directly require this analysis, though we will use some of the theory of
groups in the definable category, that was developed with these issues in



FEhud Hrushovski 77

mind. It turns out that M can be constructed as a series of “fiber bundles”,
not locally trivial however, with structure groups interpretable in D.

Returning to the statement of the theorem, one sees that the minimal
structure D controls in some way the behavior of the high-dimensional struc-
ture M. This fits with our theme of searching, when one is not initially
known, for a fundamental structure responsible for a given geometry. Note
the analogy to the Ax-Kochen-Ershov principle, stating that the simple ob-
jects - residue field, value group - in some sense control the more complex
valued field.

2.2 Superstability and regular types

An extensive deepening and generalization of the Morley- Baldwin-Lachlan
theory was achieved by Shelah ([36]). His main goal, irrelevant for our
present purposes, was replacing the categoricity condition by any nontrivial
constraint on the number of isomorphism types of models. One of the out-
comes was a technology that applies to theories with ordinal Morley rank,
and in particular to differential fields. The key notion is that of a regular
type, generalizing the minimal structures occurring in the previous theory.
These are orbits of the automorphism group of the universal domain (over
some base structure), forming a pregeometry under a natural dependence
relation. Thus there is an integer-valued dimension theory associated with
every regular type. Shelah’s theory shows that there are enough regular
types to control the entire structure.

Much of the power of Shelah’s theory resides in its ability to treat the
regular types at higher tiers with nearly the same facility as the minimal
ones; it is likely that future applications will utilize that power. For a start,
one would like to see a classification of the regular types associated with
PDE’s (differential fields with several derivations). However, the present
applications use only the finite rank theory (together with the ability to
recognize it within an infinite rank ambient structure); we will limit out
discussion to this case.

We will mention just one statement of Shelah’s theory, simplified by be-
ing specialized to the finite Morley rank context. (Thus avoiding the prob-
lematics associated with one regular type embedded in another.) We first
define the equivalence relation on minimal sets that we alluded to earlier.

Definition 2.4 Let Dy,D5 be two minimal definable sets within a structure
M. D,, Dy are equivalent if there exists a minimal D and definable, finite-
to-one maps fi : D — Dy, fo : D — Dy, with cofinite ranges.
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This notion of equivalence is very coarse from the point of view of al-
gebraic geometry; with the structure of Zariski closed subsets, a variety is
minimal iff it is a curve; and all curves are equivalent to each other! But
indeed all curves are bi-interpretable; what they interpret, in effect, is alge-
braic geometry. In general the equivalence relation is slightly stronger than
bi-interpretability, but is reasonable for this category. It can be useful if we
are interested in determining whether a given structure belongs to algebraic
geometry, or to some other domain.

We wish to point out the phenomenon of “orthogonality” of distinct
dimension theories within stability theory. For minimal sets, it expresses
itself as follows: if two (or more) minimal sets are inequivalent, they do not
interact at all.

Lemma 2.5 (Orthogonality) Let D,,... , Dy be pairwise inequivalent min-
imal definable sets in a universal domain U. Then the following statements
hold:

e Fvery definable R C D™ X ... x D™ 1is a finite union of “rectan-
gular” sets of the form Ry X ... X Ry, R; a definable subset of D;™.

o If the D; are defined over some algebraically closed set B, Aut(D; U
U Dk/B) =1II; Aut(Di/B).

Both conclusions assert that the definable sets D; are “unrelated”. the
2nd statement brings out the strength of the first; it is equivalent to it,
because of the homogeneity of the universal domain.

Let us note how the case £k = 2, m; = mg = 1 of the first conclusion
follows from the definitions. Remove from R the horizontal or vertical lines
a X Dy, Dy x b that it may contain (or even contain up to a finite set.) Let
m; : R — D; be the projections. For a € Dy, ma~!(a) is either finite, or a
cofinite subset of Dj, by the minimality of D;. Since we removed the lines,
it must be finite. But then the maps m; : R — D; are finite, and D,,D5 are
equivalent.

Finally, let us mention in passing how regular types enter when the object
of study is the category of models and elementary embeddings. There is a
notion of a finitely generated extension of a model M (prime model over M
+ a finite set.) There is also a notion of “tensor product” of two extensions
of M. (Prime model over their independent join, see below.) This operation
yields a semi-group. Shelah’s theory (in the finite Morley rank context)
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shows that it is a free Abelian semi-group. The generators are in one-one
correspondence with equivalence classes of minimal definable sets. Two such
minimal sets D,D’ are equivalent iff M(a), M(a’) are isomorphic over M
when a € D,a’ € D'. If they are inequivalent, then the two extensions are
“free” over M, i.e. the tensor product is their only possible relation inside
a larger common extension.

2.3 Stability

The notion that lends its name to the subject turns out to be a simple combi-
natorial condition on bipartite graphs. It is valid in all graphs interpretable
in structures with ordinal Morley rank, in particular in those occurring in
algebraic or differential algebra. It has consequences of surprising elegance
and force: it brings the critical notion of a “generic” element into the sub-
ject; and permits the development of a smooth and very powerful calculus
of dependence and independence.

We will consider bi-partite graphs (P, @; R) , or more generally pairs of
sets P,Q together with relations R;,... ,Rx C P x Q.

A key example is L,, the bipartite graph consisting of two copies P,Q of
{1,...,n}, and R is the graph of the order relation i < j. (P, Q@; R) embeds
L, iff there exist a; € P,b; € Q ( = 1,... ,n) such that (a;,b;) € Riff i < j.

Definition 2.6 (P,Q;Ry,... ,Ry) is combinatorially stable if for each i, for
some n, (P, Q; R;) does not embed L,.

Given R C (P x Q), we denote
R(b) = {a € P: (a,b) € R}

for b € Q; we then think of the graph as a family of subsets of P, indexed
by Q. Dually, R'(a) = {b € Q: (a,b) € R}.

A type of example that will concern us later is called a pseudo-plane.
One should think of P as a rough kind of ”plane”, with the R(b) analogous
to lines on the plane.

Definition 2.7 (P,Q;R) is a pseudo-plane if each R(b) is infinite, each
R'(a) is infinite, but there exists m such that for distinct b, # by € Q,
|R(b1) N R(b2)| < m.

Sometimes one adds the dual condition that “through two distinct points
there pass at most finitely many lines”.
Note that all pseudo-planes are combinatorially stable.
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We will make a homogeneity assumption that will make the statement
of the theory easier. It is not essential; in particular if the weak primi-
tivity condition below is omitted, one shows that there exists a definable
equivalence relation with finitely many classes, such that it holds on each
class.

Assumption 2.8 ' = (P,Q; Ry, ... , Rx) is combinatorially stable. A group
G acts on T’ by automorphisms. G is transitive on P. Moreover, there is no
definable, G-invariant equivalence relation on P with finitely many classes.

Theorem 2.9 There ezists a unique definable relation Fr C (P x Q) such
that:

e For b e Q, Fr(b) is a intersection of sets of the form R;(b) and their
complements.

e For any by,... by € Q, Fr(by)N...NFp(bg) #0

Note that Fr is G-invariant (by the uniqueness). The relation Fr is
called the combinatorial non-forking, or freeness relation. For instance, if
P = Q and R is the graph of equality, then Fr is the complement of R. If
R is the graph of inequality, then Fr = R. If R is a pseudo-plane, again Fr
is the complement of R. More generally, when k& = 1 say , Fp(b) is either
R(b) or P\ R(b), whichever is “larger” or “more general”; Fr is the relation
one expects between two random points. In the presence of an ordering, one
expects £ < y or y < = with equal probability, but in the stable regime the
measure is 2-valued.

One has a symmetry phenomenon: if P,Q both satisfy 2.8, and R C
(Q x P) denotes the transposed graph, I'* = (Q, P, R!), then I'! is stable,
and Fpe = Frt.

Definition 2.10 We say that a € P is generic over a set A, with respect
to I, if a € Fr(b) for any b€ Q N A.

In a saturated model, in particular in the universal domain, the finite
intersection property in the definition of Fr together with the compactness
theorem ensure that over any countable set A, generic elements exist. These
are elements of P “in general position”.
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Stable structures.

Definition 2.11 A theory (or structure) is stable if every graph interpreted
in it is combinatorially stable.

One uses this as follows. Let P and Q as two parts of a given structure,
say with @ definable over a countable set A, and P forming an orbit of
Aut(U/A). The assumption 2.8 will hold if A4 is algebraically closed. (For
this one needs to take into account “imaginary elements”, i.e. elements
of structures interpretable in the original structure, and we will do this.)
Let R; index all the definable relations on P x Q (over A). One obtains a
single “freeness” relation F; it is the intersection of the freeness relation F;
corresponding to R;. One can still use the terminology of genericity.

Definition 2.12 Let P be an orbit of Aut(U/A), a € P, and let B be a
algebraically closed substructure, A C B. Then a is generic over B if for
any definable Q,R a is generic over B with respect to (P, Q; R)

It is a characteristic of stability that any two elements of P generic over
B are conjugate, not only under Aut(U/A), but also under Aut(U/B). Thus
given b € Q, a relation R(a,b) holds either for all or for no generic elements
a€P.

The uniqueness of the non-forking relation leads to compatibilities be-
tween the Fr of the various definable relations. One consequence that should
be stressed in this context is Shelah’s definability lemma. It has the effect
that the class of definable sets is closed also under constructions using ex-
pressions such as “for a generic element a € P, ... ”. We will see an example
in 2.16 below.

Lemma 2.13 Let R be a definable relation on P x Q. Then
{be Q: for some generic a € P, R(a,b)}
s a definable subset of Q.

Proof. Indeed, it is just {b € Q : Fr(b) = R(b)}, where I = (P, Q; R).
Independence An equivalent language, exhibiting better the symmetry,
is the language of independence.

Definition 2.14 Let A be a countable subset of U, a,b € U, and let P,Q
denote the orbits of a,b under Aut(U/A). For any definable relation R, let
F'r=(P,Q,RN(P xQ)). We say that a,b are independent over A if for
any such R, (a,b) € Frp.
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Then a,b are independent over A if a is a generic element of P, not only
over A but also over AU {b}.

Two of the formal properties of independence are symmetry and transi-
tivity: a,b are independent over A iff b, a are; if a,b are independent over
AU {c}, and a,c are independent over A, then a,(b,c) are are independent
over A.

Every structure of (finite) Morley rank is stable. Examples (2.1), (3.1),
(3.2), (4.1) are stable, hence so are all structures interpretable therein; in
particular, (4.2). In the case of subfields of C, a,b are free over a subfield A
iff the fields A(a),A(b) are free over A in the sense of field theory. (One can
refine to a notion generalizing linear disjointness.)

The structures of finite rank that we will consider within difference fields
(analogously to 4.2) are not stable; but enough of the bipartite graphs inter-
pretable there are stable to explain the interactions between different part of
the structure, and create a good theory of independence. The 2-valuedness
referred to above no longer holds however.

Stable groups and Internality. = We would like to use the above notions
to say something about the possible interaction between a definable group
G, and another definable set P. Generally one can show that a certain
quotient of G is “internal” to P, isomorphic to a group interpretable over
P; whereas the quotient is “orthogonal” to P, cannot interact with P at the
level of generic elements. We will prove a special case of this here.

A definable group is a group object in the category of definable sets; i.e.
a group whose underlying set and operations are all definable. We say that
G is connected if it has no definable subgroups of finite index. The group G
acts on itself by left translation; if G is connected, the hypothesis 2.8 at the
beginning of this subsection holds for P = G, eliminating the need to work
over an algebraically closed substructure.

Let P be another definable set; view it as a structure in its own right,
with the induced structure.

Definition 2.15 G is P-internal if there exists a definable isomorphism in
U between G and a group interpretable in P.

This stands at the opposite extreme of orthogonality between G and P.
We will need the following lemma, to recognize when a definable group
in some part of a large structure U, actually belongs to P.
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Lemma 2.16 Suppose G is a definable group, P a definable set, and every
element of G is in the algebraic closure of some elements of P. Then there
exists a finite normal subgroup K of G such that G/K s P-internal.

Proof. We consider the Abelian case for convenience. The assumption
implies the existence of a definable relation R C P™ x G, such that R(b)
is finite for b € P", and UyR(b) = G. Let R'(a) = {b: a € R(b)}, K =
{b € G: for generic a € G,R'(a) = R'(ab)}. Then K is definable, by
lemma 2.13. It is easy to check that K forms a subgroup. For a fixed a,
{b: R'(a) = R'(ab)} is finite. Fix a generic element (ay,... ,ax) of G¥. One
can show that if k£ is chosen large enough, then for any b € K, some 7 is
“sufficiently generic over b”, so that R'(a;) = R'(a;b). Hence K is finite.
Moreover, mapping an element b € G to the k-tuple R'(a1b),...,R'(axb)
is an injective map on G/K. The range of this map consists of definable
subsets of P rather than elements; however these are uniformly definable
subsets, and can be parameterized by a (definable) “moduli variety”, so
that we get elements. We can then construct a group H in P such that the
map becomes an isomorphism. a

The definition and theory of stability are due to Shelah. In the setting
of groups, it is Poizat’s, [33]. For a treatment along the lines described here,
see [22].

2.4 Local modularity

All the structures we have considered so far possess considerable geometric
complexity. We need to consider now another, much simpler class of struc-
tures, where the definable sets behave as if they were defined by linear equa-
tions. This class forced itself on the attention of model theorists in many
different ways; this is reflected in its many synonymous names: 1-based,
weakly normal, locally modular, linear type, (disintegrated or) module-like.
There is a sharp divide between linear and nonlinear phenomena in model
theory, in this sense. Moreover, certain problematics exist exclusively in the
geometrically simpler “linear” case. See the survey [14] for evidence of this.

Lemma 2.17 The following conditions on a stable structure are equivalent.

1. The lattice of algebraically closed subsets of U satisfies the modular
law.

2. Any two algebraically closed subsets are independent over their inter-
section. (For this, all interpretable sorts must be taken into account.)
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3. There is no psuedo-plane (P,Q; R) with P an orbit of Aut(U/B) for
some finite or countable B, and Q,R B-definable.

(3) asserts the non-interpretability of an even rudimentary analog of
point-line geometry. (1) suggests a relation with modules; indeed there is a
very close relation. Any module is stable and locally modular, if one takes
the basic definable relations to be the ones defined by R-linear equations.
Conversely, under certain non-degeneracy assumptions, one can show that
a locally modular theory interprets an Abelian group, and behaves like a
module within that group.

In the finite Morley rank context, the local modularity condition can also
be stated as follows: on a definable set of Morley dimension n, there is no
l-dimensional family of k - dimensional subsets, with k+! > n ([6],[10]). One
needs of course to define precisely the notions of a family and its dimension.
Contrast this however with the case of the projective plane in algebraic
geometry, of dimension 2, where the hypersurfaces of degree d form a family
of 1-dimensional subsets, of dimension (d? 4+ 3d)/2. It can be shown thatin
any non-locally-modular minimal set, the plane (of dimension 2) will contain
arbitrarily large familes of 1-dimensional subsets.

We note a local-global principle ([6]), demonstrating the qualitative con-
trol of minimal types over a finite-dimensional structure.

Theorem 2.18 A structure of finite Morley rank s locally modular iff every
rank-one structure interpretable therein is locally modular.

It can be shown ([5])that the “nondegenerate” parts of a locally modular
structure are controlled by definable Abelian groups. Inside these groups,
the name “module-like” is justified by the following (due to Zilber in low
rank and to Pillay in the N;-categorical context, where we will use it.)

Theorem 2.19 [21] Let G be an Abelian group interpretable in a locally
modular stable theory, and let X be a definable subset. Then X is a finite
Boolean combination of cosets of definable subgroups.

The conclusion of this theorem is in clear analogy with that of the
Mordell-Lang conjecture (see §3). Indeed this conjecture can be viewed,
model theoretically, as stating that certain diophantine-geometric structures
are locally modular. The robustness of the model theoretic notion of local
modularity will allow us to transfer the question from a high-dimensional
Abelian variety, where the geometry is hard, to a one-dimensional object,
where we can sometimes solve it.
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2.5 Zilber’s Trichotomy

Let us consider three types of minimal structures D.

(1) D is called disintegrated if the corresponding combinatorial geome-
try is trivial: acl(XUY) = acl(X)Uacl(Y) for X,Y C D. Equivalently, every
family of definable subsets of D? is a combination of degenerate ones, in one
of the following senses: it is constant (consists of a single definable subset
of D?); it is a family of points; or it is one of the familes (D x {b} : b € D)
or ({a} x D : a € D). There is no moving geometry of interest on D", for
such a D.

There are many very interesting disintegrated minimal structures, though
evidently their interest does not derive from their dimension theory or al-
gebraic closure relation. Any infinite, locally finite simplicial complex, with
transitive automorphism group on vertices, forms such a structure. The
basic (n-place) relations are given by the n — 1-dimensional simplices; the
other definable relations are all Boolean combinations of local ones, i.e. re-
lations R such that for any z, there are only finitely many y;,... ,yx with
R(z,y1,...yx). The transcendence degree of such an object is just the number
of components.

It is not known if any such (infinite, connected) disintegrated structure
can be interpreted using algebraic differential equations. At all events, we
will see that they cannot exist inside a finite dimensional group; therefore
they will play no part in the results on Abelian varieties.

(2) D non-disintegrated, but locally modular. An example of this is a
vector space V' over a field or division ring F', with the definable subsets of
V™ being (finite Boolean combinations of) solution sets to F-linear equations
Y i, oiz; = 0. Note that there are now somewhat more moving families of
“lines” in D2, but not many; every such family is one-dimensional.

Using results mentioned in 2.4, it can be shown that up to equivalence, D
can be taken to carry an Abelian group structure; and then the possibilities
can be completely classified, [20]. A vector space modulo a finite subgroup
is a quite typical example.

(3) An algebraically closed field, or a curve over such a field; the basic
closed sets are the Zariski closed ones.

Zilber [40] conjectured that these three types are the only ones, in the



86 Stability and its uses

sense of non-orthogonality. This can be viewed as a foundational statement,
stating that algebraic geometry is sui generis; Every “geometry” with the
same general dimension- theoretic properties is thus conjectured to be either
at most of linear complexity, or to include algebraic geometry. A number
of results in this direction exist. The conjecture itself is not true with the
original set of assumptions. ([16]). It seems that the counterexamples,
though not disintegrated as in type (1), have a tree-like or hyperbolic flavor.
It turns out also to be possible to combine different minimal structures (of
different types), without any known mechanism for taking them apart. At
the moment a satisfactory substitute conjecture is missing. Nor do we know
whether any counterexamples occur “in nature”. The conjecture becomes
true, however, under certain stronger assumptions on the dimension theory.
These stronger assumptions hold in all examples mentioned in this paper.
The number theoretic application we report on in §3 is based on this result.

For real algebraic geometry, incidentally, an analog of the conjecture was
recently proved , [32].

2.6 Zariski Geometries

In the survey paper [25], Zariski geometries are motivated ab initio. Here we
will view them as a topological setting for the study of minimal structures.

Definition 2.20 A Zariski geometry is a minimal structure D, together
with a distinguished subcollection C C D (called “closed sets”), and satisfy-
ing:

1. C contains the diagonals, and is closed under intersections, finite unions,
and inverse images of projections.

2. D is generated by C as a Boolean algebra (on each D").
3. Every closed set is the union of finitely many closed, irreducible sets.

4. If X is a proper subset of Y, both closed subsets of D", and Y is
irreducible, then dim(X) < dim(Y)

5. If X is a closed, irreducible subset of D", dim(X) = m, and A is a
diagonal z; = z;, then X N A is the union of closed irreducible sets of
dimension at least m — 1.

Here “dimension” refers to the Morley rank. The first four items assert
a compatibility between the topology and the definable sets, similar to the
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relation between closed and constructible sets in algebraic geometry. The
fifth item is the new structural hypothesis. It holds in smooth algebraic
varieties (and normal l.c.i varieties.) In [24], we make an effort to classify
Zariski geometries as such (see the introduction there.) Here we are content
with understanding them in the coarser category of minimal structures.

Theorem 2.21 Zilber’s conjecture holds for minimal structures admitting
a Zariski geometry.

In fact we will only use part of this theorem: a Zariski geometry is either
locally modular, or interprets a field of Morley dimension 1.

To give a brief idea of the proof, recall a well known linear analog, the
fundamental theorem of projective geometry. This theorem recognizes a di-
vision ring (and a finite dimensional linear geometry over it,say) in terms of
intersection properties of points, lines and planes of that geometry. Of course
these properties are much more complicated in the nonlinear case, when we
are trying to recover a field from the intersection structure of Zariski closed
sets. The solution is to linearize; in the tangent bundle we ought to find
something like projective geometry. From non-local modularity, one can
show the existence of families of “plane curves” (one dimensional subsets
of D?) of arbitrarily high dimension. We consider the sub-family of curves
passing through a point p € D?, and wish to see its trace in an “infinitesimal
neighborhood” of this point. The problem is to define the tangent space,
or the equivalence relation of tangency, using synthetic geometry. Equiva-
lently, one wants to define a limit of a family of definable sets Cp, 5, as the
two points “approach each other”. This can be done by considering the to-
tal family in an appropriate space, intersecting with the diagonal, removing
uninteresting components, and recognizing the component corresponding to
pairs of tangent curves. This uses the “dimension theorem” (property 5).
In practice, however, it is difficult to define tangency well directly in high
dimensions, and the proof stays close to dimension one, defining first the
multiplicative and then the additive group by successive “synthetic differ-
entiation”.

2.7 Abelian groups of finite Morley dimension

Having gathered information about the minimal geometries involved in a
given structure, one would like to globalize it to the full structure. A very
large chapter of stability theory is devoted to this effort. One finds a se-
quence of fibrations of the given structure, with fibers either interpretable
in minimal geometries, or else transitively acted on by groups interpreted
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over these geometries. Because of the possible occurence of finite groups,
the situation is nontrivial even when the only minimal geometriy involved
is the completely degenerate one consisting of a pure set (with no relations
but equality.)

When the entire structure is contained in a finite-dimensional Abelian
group, however, none of this happens, and we will be able to give a complete
account of the transfer of information from the minimal geometries upward.

The first lemma is an easy generalization of facts from algebraic groups.
Fix a definable Abelian group A, of finite Morley dimension. We will take
the minimal subsets to be indecomposable (as we may), meaning they cannot
be cut into finitely many pieces by the cosets of a definable subgroup of A .

Lemma 2.22 Let X be a one-dimensional indecomposable definable subset
of a finite - dimensional definable group A, 0 € X. Then X generates a
subgroup B of A, in finitely many steps; for some n, B = {3_* ,(—1)'z; :
z; € X}. Moreover, if dim(B) = d, a generic element of B can be expressed
in finitely many ways (at least one) as a sum of d elements of X

Proof. The first statement, due to Zilber, generalizes the “indecompos-
ability” theorem of algebraic groups. The proof is the same, once one has
learned to replace the set - theoretic stabilizer:

Stabset(X) ={a€ A:a+ X =X}
By the more robust dimension-theoretic stabilizer:
Stab(X) ={a€ A:dim((a+ X\ X)U (X \ (e + X))) < dim(X)}

They coincide for closed irreducible sets, but here we do not have this notion.
The second statement comes from easy dimension counting. O

The concern of the remaining lemmas is the possible mixture of orthog-
onal geometries. It thus has no analog in algebraic geometry proper (or
in any single geometry, in the sense of non-orthogonality equivalence). Ex-
ample (4.1) serves better. Suppose X is a complex torus; the structure is
generated by the closed analytic subvarieties. If X is an Abelian variety,
this is by-interpretable with the field C; there is plenty of structure. If X is
chosen generically, dim(X) > 1, then X™ has no closed analytic subvarieties,
except for translates of group subvarieties; X is then a minimal structure
of locally modular type. (cf. [25]). (Away from the tori, we can also find
disintegrated geometries in 4.1. ) The next corollary implies (in the general
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context) that X admits a composition series into the two types. One clearly
cannot expect to improve this to a direct sum decomposition. But we will
do almost as well, and obtain decisive information from the “bottom layer”
alone, where a direct sum decomposition does occur (2.25)

Corollary 2.23
o A minimal subset of a group A cannot be disintegrated.

e Suppose A is generated by finitely many minimal subsets X;, with each
X; equivalent to a minimal set k. Then there exists a k-internal group
A’ and a definable map A — A’ with finite kernel.

Proof. By 2.22, a minimal subset X of A may be taken to generate a
definable subgroup B. Let (b1, bs) be a generic element of B2, b3 = by + bs.
By the lemma, each b; has the same algebraic closure as a d-tuple from X.
Putting together the three d-tuples contradicts the triviality of algebraic
dependence on X.

Similarly, if A is generated by the minimal sets X;, then any point of A
is algebraic over some points of k. The conclusion in this case follows by
2.16. O

Definition 2.24 The socle of A is the sum of all connected definable sub-
groups, generated by minimal subsets of A.

By the orthogonality lemma, the socle is a direct sum of subgroups, each
generated by a finite union of minimal sets in the same non-orthogonality
class. Using the known structure of locally modular groups and Corollary
2.23 above, we obtain a complete analysis of the socle.

For instance suppose A is interpretable in Up or U,. The constant field
k has precisely the structure of an (algebraically closed field) - there is no
further induced structure. It follows from this that every definable group
over k is definably isomorphic to a group G(k), where G is an algebraic group
over k. Thus the socle of A is isogenous to a direct sum of an algebraic group
over k, with a locally modular group. (In the case of U,, k is a pseudo-finite
field, and the group may be a twisted algebraic group, e.g. a unitary group;
this interesting variation is of no importance in the proof however.)

Call a definable group B rigid if every connected definable subgroup of
B is defined over acl(B). This sometimes follows by consideration of torsion
points; it is automatically true for locally modular groups.
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Proposition 2.25 (Reduction to the socle) Let G be an Abelian group
of finite Morley dimension, X an definable subset of G. Assume :

i) The socle A of G 1s rigid.

it) Stab(X) is finite.

Then X s contained in a the union of finitely many cosets of A, and a
definable set of smaller dimension.

3 Applications

3.1 Geometric translation

We return to examples (3) of §1.1, to discover the meaning in these concrete
cases of the above concepts. Let U = U p,Up,or U, be the universal domain of
differential fields of characteristic zero, separably closed fields of imperfection
index 1, and difference fields of characteristic zero (3.1-3.3, respectively.)

None of the three structures has finite Morley rank. Up falls just short,
with Morley rank wj; the solution set within it to any nontrivial differential
polynomial does have finite Morley rank. U, is stable, but has no Mor-
ley rank; nonetheless minimal types and types of finite rank exist. These
“types” are countable intersections of definable sets, rather than definable
sets proper; this makes little difference in the stable context, and we will
ignore the distinction. U, is not stable at all. We will ignore this too; an-
other dimension theory can be developed for U,, with the same effect for
our purposes ([9]).

In all three cases we are interested in the finite dimensional structures
interpretable in U. One can show (“elimination of imaginaries”) that in
these structures, any structure interpretable in U is definably isomorphic to
a structure definable in U, i.e. to a definable subset D of U™; the definable
subsets of D™ are then among the definable subsets of (U™)™. We will be
interested in the maximal case, “the induced structure”, where one takes
the definable relations on D™ to be all subsets of D™ that are definable as
subsets of U™ (cf. §1.1).

We begin with a geometric description of the definable sets, and criteria
for their finite dimensionality. Actually we will only describe a family of
“basic” definable sets; but an arbitrary definable set is a finite union of
differences of such basic sets. In each of the three cases, a basic definable set
corresponds to an algebraic variety, together with some additional geometric
data.
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Basic definable sets.

Up We begin by describing certain jet bundles of a variety X. We can
restrict attention here to smooth affine varieties. (See [7] for a different and
more detailed description. of these bundles. Note in particular that when
X is not defined over the constant field k = {u € U: Du = 0}, for m =1,
the bundle we define is not the tangent bundle but a certain torsor thereof,
determined by the structural derivation D and the Kodaira - Spencer class
of X. But for our needs a more naive description suffices. )

Let X C A" be a smooth affine variety; we will identify X with the set
of points of X with coordinates in U. When z = (z1,... ,zm) € X, write
Dz for (Day,...,Dz,). Write Dynz for (z,Dz,DDz,... ,D(™z). Let
B,,X be the Zariski closure of {D[m]x :z € X}. Then B, X is an algebraic
variety; we have obvious algebraic projection maps mm m—1 : Bm — Bm_1.
It can (easily) be shown that B,, X does not depend on the derivation D,
and that B,, glues to a functor on algebraic varieties. When X is defined
over the constant field, and m = 1, B1 X is just the tangent bundle.

A basic definable set H corresponds to an affine variety X together with
a subvariety V of some B,, X, projecting dominantly to X. The set is defined
by:

HX,V = D[_ml](v)

U, In the case of char. p, one can use divided powers to give a descrip-
tion of the definable sets strictly analogous to the char. 0 differential case.
But there is no advantage in this uniformity (for our purposes), and we will
give another description.

As a field, U is separably closed, but has a unique purely inseparable
extension Uy, of degree ¢ = p™. The map ¢ = ¢, : x — 7 is an isomorphism
of of Uy, with U. For any variety X over U, let X’ be the variety obtained
by “pulling back the coefficients using ¢”. Then ¢, induces a bijection
¢q, : X' (Upm) = X(U).

On the other hand, via an inseparable analog of restriction of scalars, one
can interpret the field extension U,, over U. More generally, for any variety
X over U, one has a variety X,,, and an isomorphism p : X'(U,,) ~ X,,(U).

Composing, we obtain a bijection

"/’q = ¢q * op_l : Xm(U) - X(U)

A basic definable set (of level m) is determined by a smooth affine variety
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X, and a subvariety V C X[m]. We let
Hx,v =1(V(U)) C X(U)

Here it is natural to consider also co-definable sets. They are determined
by a compatible collection V' = (V,)m, Vim C X[m] (for each m); then
Hx v = NymHxv,,. The saturation of U implies that this is nonempty, and
Zariski dense if each Hy y;, is.

The combination of compactness and stability make such oo-definable
sets no harder to handle than definable sets, and we will ignore the slight
technical differences in the sequel. By a definable subset of B = Hx y we
will mean the intersection of B with a definable set.

U, Here a basic definable subset of X arises from a subvariety V C
Y xY?x...x Y”l), where Y is a finite cover of X via a rational map
g:Y = X. Welet oy(x) = (z,0(z),...,0'(z)) (in coordinates), and
HY;V = Gl_l(V)v HX,V;g = Q(HY;V)-

Criteria for finite dimension.

Up If mpmm-1 has finite fibers on V, then Hx v has finite Morley di-
mension, indeed dimension at most m dim(V"). To see this consider the case:
m =1, and V is the graph of a section of B;X. (Actually the general case
can be reduced to this one by the standard trick, absorbing the higher jets
into X.) In this case every basic subset of Hx y has the form Hx v, V' a
subvariety of V; and V' must be of the form V N B;Y, Y being a subvari-
ety of X. Thus Zariski closure gives an injective map from Kolchin closed
subsets of X to Zariski closed ones. The finiteness of the Morley dimension
now follows from the finiteness of the usual (Zariski) dimension.

Note that not every Zariski closed subset Y of X must occur in this
correspondence; e.g. when X is defined over k, only integral varieties of the
vector field V' do. Thus it is quite possible, indeed common, for Hxy to
have Morley rank 1, though X has higher dimension.

U, LetV = (V;n)m be data for a basic (co-) definable set, V,, C X[m].
Then dim(V;) < dim(V;) < ... as algebraic varieties. If the sequence of
dimensions stabilizes, then Hx v has finite dimension. Again this dimension
is induced from algebraic dimension theory on the V,,.

We will use this in the context of an algebraic Abelian group A. In
this case A,, has the structure of an algebraic group, for each m. Let
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L be an algebraic closure of U; then Ap,(L) ~, A'(Ly) where Ly, is the
commutative ring obtained from L by adding a p’th root to an element,
equivalently L' = L[¢]/(£P). The map L' — L, £ — 0 yields an algebraic
group homomorphism A,, — A, and it is easy to see that the kernel is a
unipotent group, hence of exponent p" for some N. Let V;, be the algebraic
subgroup of pVA,, of A,,. Then the homomorphism A,, — A has finite
kernel when restricted to V,,,. Thus dim(V},) = dim(A), and by our criterion,
H 4 v has finite Morley dimension.

Under p, V;,, corresponds to the group of elements of A(U,,) divisible by
pN. Thus Ha v, = ¥4(Vin) is the group of elements of A(U) divisible by !,
and H, v is the group of infinitely p-divisible points. We obtain therefore:

The group of infinitely p-divisible elements of A(U) has finite Morley
dimension

1

U, The dimension is finite if the projection (Y x ... x Y% ) = (Y x
... x Y'Y is finite on V.

Remarks

a) Suppose X = Hyxy and dim(X) = 1. It can be shown then that there is
a fixed integer m such that for any definable Y C X", Y = Hx 1; for some
Vy with dimgzariski (V') = m dimyeriey (Y). V' can be taken to be the Zariski
closure of DY, or \;}Y, or 0;Y in the appropriate jet or product space. This
integer need not equal 1.

b) The above remark is one reason it is helpful to use the Morley di-
mension theory directly, rather than (as one presumably could) translate
to Zariski dimension theory in the corresponding jet or product space and
do the work there. Inside a finite Morley rank X, one can pick a one-
dimensional Y and work with it, as a structure. The corresponding jet
space situation, is an m-dimensional object, with the curious property that
the dimensions of all varieties constructed from it are divisible by m. It
could be difficult to tell in advance that Y has this property, or to argue
that it holds at each stage. (This is reminiscent of the situation, with m = 2,
between real and complex geometry.)

Proposition 3.1 Zilber’s conjecture holds for U: every minimal subset of
U s locally modular, or interprets a one-dimensional field

Proof. In the case of Up and Uy, call the basic sets defined above closed.
After possibly removing a singular locus, the jet-space varieties they cor-
respond to can be taken to be non-singular. The dimension theorem of
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algebraic geometry, for these jet-space varieties, can be shown to yield the
dimension theorem for the minimal set. ([23] for U p, [19] for minimal sets in
U, satisfying the above finite dimensionality criterion; [11] for other minimal
sets.) One then uses the theorem on Zariski geometries.

In the case of Uy, it is first necessary to show that a non-locally modular
is stable. ([9]). At this point it may be possible to prove the dimension
theorem for an appropriate Zariski geometry. In fact this course is not
taken; instead a version of the following principle is used ([17]): if certain
automorphisms groups of a minimal structure are unimodular as locally
compact groups (equal left and right Haar measure), the structure must be
locally modular. (See [17] and [9] for details.) a

Let k be the constant field of Up, or the fixed field of Uy, or k = N, UP"
in the case of U,. In all cases, k can easily be shown to be minimal; it is
certainly not locally modular, since it carries a field structure.

Theorem 3.2 Every non-locally modular minimal set D in U 1is equivalent
to k (in the sense of non-orthogonality).

Proof. By the above proposition, D is equivalent to some one-dimensional
field &’. It is a matter of showing that all interpretable one-dimensional
fields are isomorphic. This can be viewed as a special case, or at least an
allied problem, to that of classifying the interpretable simple groups. Model
theoretic methods are quite useful here, and for instance show effortlessly
that definable groups embed in algebraic groups, with information on the
embedding. One must then rely on the theory of algebraic groups. The
results are due to P. Cassidy (by other methods) for Up, and to Ph.D.
theses by Sokolovic [38] and Mesmer [29] in the cases of Up and U,,.

In the case of U,, the definable groups and simple groups can also be
classified. Twisted groups do occur; in fact the list of definable simple groups
is the same as that of non-sporadic finite simple groups, and thus includes
for instance the unitary groups, and in characteristic 2 analogs of the Suzuki
groups. In characteristic p > 0, twisted fields occur too - such as the fixed
field of zP¢. But in characteristic 0, it can be shown that the only definable
field is the fixed field k of o, and the finite extensions thereof. d

Interesting algebraic information is obtained upon translating the above
back to language of differential equations, or difference equations. We con-
sider equations of the form

f(X,DX,D?X,... ,D"X)=0 or f(X,0X,...,0"X)=0,
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where D and o are symbols for a derivation, or automorphism. Let us call
a differential equation geometrically degenerate if the set of solutions, in the
universal domain, forms a minimal set of disintegrated type (in the Zil’ber
classification.)

Theorem 3.3 Any algebraic differential equation can be reduced, by a diffe-
rential-algebraic change of variable, to one of the following form:

1. A geometrically degenerate differential equation.

2. An equation defining a minimal subgroup of a simple, non-isotrivial
Abelian variety. (Manin’s equation).

3. The equation Dz = 0 defining the field of constants.

Remarks

1. The change-of-variable is to be performed by a differential-algebraic
polynomial , that may itself involve non-constant coefficients. Thus the
theorem says nothing about linear equations; there is always a differential
rational function (involving a basis of solutions as coefficients) reducing an
arbitrary solution to a constant. There does exist a coefficient-free theory;
in this case it amounts to a slight generalization of the Lie-Kolchin Galois
theory of differential equations. (Poizat, Pillay).

2. In degree one (n=1), the description of geometrically degenerate
equations can be sharpened. It can be shown, using methods of Jouanolou,
that such an equation is equivalent to one with no structure at all; no two
solutions are algebraically dependent, and only finitely many are algebraic
over any given function field of finite transcendence degree. It is possible
that the same holds in higher degrees; this may have applications to rational
points over function fields, of varieties of arbitrary dimension. The proof
presumably requires geometric methods; but the model theory expressed in
the following theorem should give a guide, if only to suggest the correct
statement of the theorem in higher dimensions.

3. Any non-isotrivial Abelian variety has a unique minimal infinite
subgroup definable by an algebraic differential equation. It is minimal not
only as a definable subgroup, but also as a definable set. Two such groups are
equivalent iff their abelian varieties are isogenous; otherwise orthogonality
holds. These facts can be proved purely model-theoretically (and indeed to
my knowledge no other proof exists.) The equations were found by Manin;
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see Manin’s paper as well as [8] for a description. The theorem shows that
they have a priori significance among all algebraic differential equations, and
must be taken into account in a general theory.

4. An analogous theorem is available for difference equations. Alterna-
tive (1) looks the same; (3) refers to the fixed field; (2) is similar but here
Abelian varieties over number fields show up in place of non-isotrivial ones.
See [9], [17].

3.2 Points on subvarieties of Abelian varieties

The Mordell-Lang conjecture grew from Mordell’s 1922 hypothesis on the
finiteness of the number of rational points on a curve of high genus (Falting’s
theorem, 1983.) It has had a complicated history, well told in a number of
sources; see for instance [12], [26]. Briefly, according to the Mordell-Weil
theorem, the group of rational points of an Abelian variety is finitely gener-
ated. Since a curve may be embedded in its Jacobian, Mordell’s conjecture
becomes equivalent to the following statement: a curve of genus > 2 over
a number field intersects a finitely generated subgroup of its Jacobian in a
finite set.

Mordell’s conjecture was transposed to function fields by Lang in 1960,
and in this version was proved by Manin (in characteristic 0) in 1963 (fol-
lowed by proofs by Grauert, and in positive characteristic by Samuel.) A
related conjecture arose, by Manin and Mumford: a curve of genus > 2
intersects the set of torsion points of its Jacobian in a finite set. (Proved by
Raynaud, 1982).

This led Lang (1965) to a more general conjecture, replacing the Jaco-
bian by an Abelian variety, the curve by an arbitrary subvariety, and the
finitely generated, or torsion, group by the group of division points of a
finitely generated I'; i.e. the points a such that ma € T" for some positive
integer m. This group will be denoted by I. In positive characteristic p,
however, following [2], we let T' = {g : mz € Ty, some m prime to p}.
(The conjecture remains open for other m.)

Allowing a higher dimensional variety X in the hypothesis forces a mod-
ification in the conclusion: the intersection can no longer expected to be
finite, but is rather conjectured to be contained in a finite union of group
subvarieties, contained in X.

A further generalization was made to semi-Abelian varieties. See [26],
6.3. Our methods prove immediately the strongest “relative” version of the
conjecture, for semi-Abelian varieties. For simplicity we will state only a
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weaker version and only for Abelian varieties.

Theorem 3.4 (Geometric Mordell-Lang) Let A be a Abelian variety
over an algebraically closed field K. Suppose A has no nontrivial homo-
morphic images defined over a finite field, or a number field. Let T" be a
finitely generated subgroup of A(K), and let X be a subvariety of A. Then
the Zariski closure of X NT is a finite union of cosets of group subvarieties

of A.

In characteristic p > 0, the restriction against homomorphic images de-
fined over finite extensions of the prime field is necessary. In characteristic
0, grace to Faltings and Vojta, it is not, and rather reflects a weakness of
our present tools. We are presently unable to deal with the rational field,
or with number fields of small degree. For function fields of characteris-
tic 0, a number of proofs are available, including one by Buium ([8]) using
differential algebra; Buium’s proof, while quite different from ours beyond
the first step, uses the Manin map in the same way, and it was seeing this
that inspired the model theoretic proof. In characteristic p > 0, the model
theoretic proof is the only one known in general; but many cases are proved
in [2].

While unable to handle the general case over number fields, we can
prove the Manin-Mumford conjecture; the proof has an explicit and uniform
character, and appears to be the only proof to give an effective bound.
(Though Hindry gives explicit bounds modulo one constant.) The proof
includes the semi-Abelian case, as in [28] (according to McQuillan, with
some improvements.)

For instance, we obtain:

Theorem 3.5 Let A be a commutative algebraic group, defined over some
number field, and fiz a very ample divisor H on A. Let X be a subvariety,
defined over K9. Then there exist a finite number M of subvarieties c; + A;
of X, all translates of group subvarieties A; of A , such that

T(A) nNX= UiT(Ai) + ¢;.
We have M < cdegy(X)¢, with ¢ and e depending on A but not on X.

c and e can also be written down explicitly; they are doubly exponential
in some natural parameters associated with A.

The method immediately yields a proof of the following theorem. It is a
restricted version of a conjecture due to Silverman, Tate and Voloch. Let C,
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be the completion of the algebraic closure of the p-adics Q. The conjecture
concerns Abelian and semi-Abelian varieties over C,, but we are only able
to handle finite extensions of Q, therein.

Theorem 3.6 Let A be a semi- Abelian variety defined over Qp, or a finite
extension of Q,, with good reduction. Let X be a subvariety of A, defined
over C,. Then there exists a bound A > 0 such that for any prime-to-p
torsion point a of A(Gp), either a € X(Cp), or the p-adic distance from a
to X is > .

Let us now discuss the proof of the above theorems. For definiteness we
will concentrate on 3.4 in characteristic p > 0, where a separably closed field
U, is used. The characteristic 0 case uses is so close that one could easily
formulate the two cases in a common language; it uses a differential field
Up. The proofs of 3.5 and 3.6 have a similar structure but use U, instead.

Recall that k is the derivation in characteristic 0; it is N, KP" in char-
acteristic p; and it is the fixed field of the automorphism, in the case of
Us.

In all cases, one replaces the finitely generated group I' (or the group of
torsion points, in 3.5) by a larger group B, defined using the derivation or
automorphism or inseparable structure. One shows that if the conclusion
fails, then B is internal to k.

In the case of 3.4, one chooses k in advance to be linearly disjoint from
the field of definition of A over the algebraic closure of the prime field. Then
the isotriviality of B yields isotriviality of A, i.e. A will have homomorphic
images defined over the algebraic closure of the prime field, contradicting
the assumption.

In the case of 3.5, we are already over a number field, and “isotriviality”
takes the following sense. There one uses an automorphism o, with A defined
over the fixed field k, and B = ker F'(o) for a certain polynomial F. The fact
that B is internal to k£ turns out to mean that F is cyclotomic. However,
one chooses o to be a lifting of Frobenius, and F' to be the characteristic
polynomial of Frobenius on A; and it follows that F has no cyclotomic
factors.

Having mentioned these differences, we restrict attention to characteris-
tic p > 0.

Proof of 3.4. We can put ourselves in the following situation: U is the
universal domain for separably closed fields of characteristic p, with [U :
UP] = p. k = N,KP" is the largest algebraically closed subfield. A is a
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semi-Abelian variety defined over K; for simplicity, suppose A is an Abelian
variety, with no nontrivial homomorphic factors defined over k. T is a finitely
generated subgroup of A(K), or the group of (prime-to-p)- division points of
such a group. X is a K-subvariety of A. We want to show that the Zariski
closure of I' N X is a finite union of cosets of group subvarieties of A.

Step 1. Let B = p®A(K) = N,p"A(K). Then B has finite Morley dimen-
sion. Moreover the minimal types within it satisfy Zilber’s conjecture.
Proof. This was proved in §3.1.

Step 2. The minimal definable sets within B are locally modular.

Proof. By 3.2, if a non-locally-modular minimal set C occurs in B, it must
be equivalent to k in the sense of non-orthogonality. Let C' be a group
generated by C, as in 2.22. By 2.16, there exists an isogeny from C’ to a
to a definable group H(k) over k. Taking essentially the Zariski closure of
the isogeny, we obtain an isogeny from the Zariski closure A’ of C' in A,
to H(K). Since H is defined over k, this contradicts our assumption on
isotrivial factors.

Step 3. X N socle(B) is a finite Boolean combination of cosets of definable
subgroups of B.

Proof. Each minimal type in the socle is locally modular, and hence the
socle is locally modular (2.18). Thus by 2.19, every definable subset of the
socle is a finite Boolean combination of cosets definable subgroups of B.

Step 4. XN B =Y N B, where Y is a finite union of group subvarieties
of A, contained in X. Proof. We can reduce to the case that the stabilizer
of X is finite. Then by 2.25, X is contained in finitely many cosets of the
socle of B. By Step (3), X N B is a finite Boolean combination of cosets of
(definable) subgroups of B. Let Y be the Zariski closure of X N B. One sees
easily that Y is a finite union of group subvarieties.

Step 5. For some r, X Np"A(K) =Y Np"A(K).

Proof. This follows by compactness from step (4): the intersection of all
the groups p" A and of the definable set X \ Y is empty, by (4); hence some
finite intersection is empty.

In the same way, for any translate X + b of X, there exists r such that
the Zariski closure of p” A(K)N (X +b) is a finite union of translates of group
subvarieties of A. Further, by compactness (1.2), one can choose the same
r to work for all translates.
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Now I'/p"T is a finite group; so I is a union of finitely many translates of
I'Np"A(K), and hence lies in a finite union of cosets of p" A(K'). The Zariski
closure of the intersection of X with each of these cosets is a finite union of
group subvarieties; hence so is the intersection of X with their union. Thus
X NT is contained in a finite union of group subvarieties contained in X, as
promised. a

1. For a fixed Abelian variety A, and X varying within a bounded
algebraic family of subvarieties of A, the bound is uniform. Further, since
I only enters the proof in the last step, via the number of cosets of p" A(K)
it meets, the bound on the number of cosets of group subvarieties required
has the form cp™”, where ¢ and r do not depend on I', and ~ is the “rank”
of I', i.e. the maximal integer such that I' contains a copy of Z".

2. In characteristic 0, (3.4 or 3.5), B is definable by a single formula
(rather than infinitely many), and so the use of compactness in Step (5)
above is not needed. As a consequence, one gets explicit (doubly exponen-
tial) bounds.
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