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of wavelets for Navier-Stokes equations.
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for their warm hospitality and David Jerison for his patience and
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1 Introduction

The relevance of wavelet analysis in Navier-Stokes equations is a serious
issue. Big claims were not followed by any serious progress. The first goal
of these notes is to clarify these matters.

The second goal is to pave the way to some striking results obtained by
P.G. Lemarié-Rieusset and his group. On the way the fundamental achieve-
ments by T. Kato will be revisited.

All these results are concerning the same problem, namely, the existence
and uniqueness of solutions of Navier-Stokes equations when the initial con-
dition ug(z) belongs to a given functional space E. We then want to compute
the velocity field u(z,t) for ¢ > 0 and to prove estimates of the form

(1.1) sup [u,t)lle < Clluolle -

This problem was treated by Jean Leray when E = L?(IR3). Indeed Leray
proved the existence of weak solutions to Navier-Stokes equations (section 4).
The uniqueness of such solutions for a given wug(z) is still an open problem.
The same problem was treated by T. Kato in 1984 when E = L3(IR3). The
existence of a global mild solution was obtained by a beautiful argument
which will be unveiled in section 19. However the uniqueness problem was
open until now and recently solved by P.G. Lemarié-Rieusset. This issue
concerns solutions to Navier-Stokes equations u(z,t), z € R3, ¢ > 0, which
are continuous in the time variable with values in L3(IR?) as functions of z.

On the way the relevance of wavelet analysis for Navier-Stokes equations
will be carefully studied and the results are more subtle than expected.

2 Notations

Navier-Stokes equations describe the motion of incompressible and homoge-
neous fluids. It is natural to assume that this fluid is contained in a bounded
domain Q. However we will restrict our attention to the opposite situation
where there is no boundary. In other words the fluid is filling the space IR3.

The velocity at a given point z € IR? and at a given time ¢ > 0 of the
fluid is denoted by u(z,t) = (u1(m,t),uz(a:,t),u;;(:n,t)) where u1, us and ug
are real valued.

Similarly the pressure is denoted by p(z,t) and is a real valued function.
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In the absence of external forces, the Navier-Stokes equations read

% = vAu — (u181 +U282+’U«383)u - Vp

O1u1 + Goug + O3uz = 0
u(z,0) = up(z).

Here and in what follows, 8; = 8/8z;, A = 8? + 02 + 62, Vp is the gradient
of the pressure and ug(z) = (uo,1(z), uo,2(z), uo,3(x)) is the initial condition.

(2.1)

The viscosity v is a positive parameter which can be eliminated by a
convenient rescaling (section 5).

The system (2.1) contains four unknown functions u;, ug,u3 and p but
consists of four equations. The balance is correct.

The pressure does not show up in the initial data. It will soon be ex-
plained how the pressure can be eliminated from (2.1). Therefore (2.1) will
reduce into a system of three equations governing the evolution of the velo-
city field.

We say that u(-,t) is a classical solution of (2.1) if the regularity of u
with respect to z and ¢ and the decay at infinity permit all the calculations
which will now be performed.

We say that a solution u(-,t) of (2.1) is global in time if it is defined for
t € [0,00) with some other required properties. These properties concern
smoothness and decay at infinity. A solution u(-,t) of (2.1) is local in time
if it is defined for 0 < ¢t < T for some positive T'.

In these notes u(z,t) will be studied as a vector-valued function of the
time variable. More precisely we will start with a functional Banach space
E C S'(R®). This Banach space is used for describing size or regularity
properties of functions f(z) of the z variable. Then u(z,t) will always be
viewed as an F-valued function of the time variable.

Indeed we will be looking for solutions u(z,t) belonging to C([0,00); E
Here and in what follows we incorrectly write u(:,t) € E instead of u(:,t)
E3.

A solution u in C([0, 00); E) is certainly not a classical solution. Smooth-
ness in ¢ or z is missing. This issue will be addressed in section 9 where the
concept of a mild solution will be defined.

)-
€

Before defining these mild solutions, let us start with Leray’s weak solu-
tions which correspond to the Banach space E = L?(IR3).
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The following two sections do not contain original results. Their goal is
to pave the way to Federbush’s program. This program is a wavelet-based
approach to Navier-Stokes equations.

3 Weak solutions of Navier Stokes equations

The definition of a weak solution relies on a conservation law which is
satisfied by the solutions of Navier-Stokes equations : some energy is non
increasing.

We start with an elementary remark

Lemma 1. Let a; = a1(z), az and a3 be three real-valued functions belong-

ing to Ll (IR®). Let us assume

(3.1) 01a1 + Oqag + 03a3 = 0

in the distributional sense and consider the differential operator

(3.2) X = a10) + a0 + a30; .
Then
(3.3) X* = —X

where X* is defined by <X*f,g>=<f,Xg> and < f,g>= [ps f(z) g(z) dz.

This follows from a trivial integration by parts.

Let us now assume that u(z,t) is a classical solution of Navier-Stokes
equations. We furthermore assume that u(z,t) satisfies together with its
derivatives in z or ¢ an estimate of the form 0(|z|~2) as || — +o0o0. A
similar assumption is made on the pressure p(z,t) and its gradient Vp. We
then have

Lemma 2. For any such classical solution of the Navier-Stokes equations
and for every t > 0, we have

(3.4) |Iu(-,t)||§+2/0 IVu(, $)l3 ds = [lu(-,0)]3 -
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Here and in what follows we are assuming that the viscosity v equals 1.
We will return to this issue when the scaling properties of the Navier-Stokes
equations will be described. It will be shown that an obvious rescaling
permits to reduce the general case to this special situation. Let us prove
lemma 2.

One writes X = u10; +u902 +u3d3 and the Navier-Stokes equations read

ou
5 = Au—Xu—Vp
divu =0

u(z,0) = up(z).

(3.5)

The next lemma to be used is the following remark.

Lemma 3. Ifu = u(z) = (u1(z),u2(z),us(z)) with u; € L2(R?) and
divu = 0 in the distributional sense, then for any real valued function p(z)
such that Vp € L*(IR3), we have

(3.6) <Vp,u>= 0.

It suffices to approximate p by a sequence p; of functions in the Schwartz
class such that
Ve~ Vpjlla =0 (j = +00).

Proving < Vpj,u>= 0 is a trivial check since [ 8, pju; dz = — [p; & u1 dz
and so on.

Returning to lemma 2, we compute the three integrals

/ u-Audz = L(t) , / Xu-udz = I(t)
R?3 R3

and
/ Vp-udz = I3(t).
IR3

We then obtain I3 (t) = — [zs |Vu|? dz. The integrations by parts are justi-
fied by the decay properties we imposed on u and its derivatives. Lemma 1
yields I5(t) = 0 and lemma 3 implies I3(t) = 0. Moreover

ou

<P us= 2 g
ot " T 2at "

These computations yield

1d 2 __ 2 — 2
(37) 5 ol = = [19uP dz = —|vul}
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which immediately implies (3.6).

As usual in mathematical physics, this conservation law leads to a natural
functional space F. The solutions to Navier-Stokes equations should belong
to this functional space and the problem of existence and uniqueness should
be solved inside this framework. A solution belonging to this functional
space F' will be named a weak solution.

From (3.9), we shall demand the following two properties to a weak

solution

(3.8) sup ||u(-,t)|l2 s finite
£>0
(3.9) / IVu(,t)|2dt s finite
0

and we immediately warn the reader that a third condition should be im-
posed since (3.10) and (3.11) do not permit to define u(-,0).

Let us remind the reader with the definition of the homogeneous Sobolev
space H!(IR3).

Definition 4. A function f(z) belongs to H'(IR®) if and only if f(x) be-
longs to L8(IR®) and Vf belongs to L2(IR3).
The norm of f in H'(IR3) is |V f||2.

This definition looks surprising since the L5-norm does not enter into
the definition of the H!(IR?) norm. Indeed the assumption f € L® can be
replaced by a much weaker one as

(3.10) /||<R If(2)|dz = o(R®), R - +oo

which prevents constant functions to belong to H!(IR3).

The ordinary Sobolev space H!(IR®) is defined by the two conditions
f € L2(IR3) and Vf e L2(IR®%).

Using these notations, we observe that a weak solution should belong to
L([0, 00); L2(IR?)) and to L2([0, 00); ' (R?)).

As it was said before, a third condition is needed for defining weak
solutions. For unveiling this third condition Sobolev spaces with negative
indices are needed.
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Definition 5. The Sobolev space H“l(!Rs) s the space of tempered dis-
tributions f whose Fourier transforms f(€) locally belong to L2(IR3) and
satisfy

(3.1) L @R 0+ < oo.

From this definition, it is trivially checked that H~!(IR®) is the dual space
of H'(IR®). More precisely H'(IR3) is a substitute for the space of testing
functions. When S(IR®) is replaced by H!(IR?), then S'(IR3) is replaced by
H~(R3).

We now arrive to the definition of a weak solution.

Definition 6. IfT > 0, a weak solution u(z,t) of the Navier-Stokes equa-
tions is defined by the following three properties

(3.12) u(z,t) € L=([0,T); L*(IR?))
(3.13) u(z,t) € L*([0,T); H(R%))
and

(3.14) %% e L'([o,T); H 1 (R?)) .

Similarly the pressure should belong to L([0,T]; L?(R®)) and the Navier-
Stokes equations should read

ou

(3.15) =

= Au — 0;(uiu) — 92(ugu) — d3(ugu) — Vp.
The meaning of (3.15) needs to be clarified as well as the meaning of the
initial condition u(z,0) = up(z).

We now want to motivate the definition of such weak solutions by proving
some a priori estimates.

Lemma 4. Ifu(z,t) is a classical solution of the Navier-Stokes equations,
we have

(3.16) sup [[u(-,?)ll2 < |luoll2
0<t<T
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T
(317) [t O gyt < (74 5) ol
T
(3.18) [ 1ot 0t < @) ol
and finally
T\ 8u ,
(319) L 15 60] s 2 < €D ol

Let us first show that the pressure can be easily computed from the
velocity field u(z,t) whenever both p and u are smooth and tend to 0 in a
suitable way.

In order to make life easier, we introduce the Riesz transformations
R1, Ry, R3. They are defined by

(3.20) Rj = —1 aj(—-A)_l/z where 8J~ = -—-a— .
B:L'j

If f(€) denotes the Fourier transform of f, we have

(3.21) (Rif)(€) = l%f(f).

Finally R; is a Calderén-Zygmund operator and we have

(3.22) Rif(z) = ¢ po. ‘—f—j—_‘—y%f(y)dy

where ¢ is a constant.

The Riesz transformations continuously map LP(IR®) into itself when
1 < p < oo and, when properly defined, continuously map L>°(IR®) into
BMO(IR3) [32].

Lemma 5. If (u,p) is a classical solution of the Navier-Stokes equations,
we have

(3.23) P = Rij(ujuk).
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Here and in what follows, a;3; means Z? a;B;. For proving this lemma,
we compute the divergence of all terms in (2.1). Since divu = 0, we also
have div % = 0 and div Au = 0. We then obtain

(3.24) Ap+6j8k(ujuk) =0.

Since we assumed that both p and u; tend to zero at infinity, this implies
(3.23).

Let us stress that R; is not a local operator. This means that the cal-
culation of the pressure at a given point z needs a global knowledge of the
velocity field.

If u(z,t) is a classical solution of Navier-Stokes equations (3.16) follows

from (3.4). Similarly Ilu(-,t)llill(m;;) = |lu(-t)|I3 + |[Vu(-,t)||3 and (3.17)

also follows from (3.4).

The pressure estimate is slightly deeper. Indeed one uses || f|ls < C||V f]l2
for f € H'(IR®). Therefore fOT ||u(-,t)||3 dt < C||luol|3 for 2 < ¢ < 6. Hlder’s
inequality yields

T
(3.25) AW%ﬁwwmﬁsﬂmM

for 1 <r < 3. Here u = (u1, uz,us3).
Finally the pressure can be computed by (3.23). Since the Riesz trans-
formations are bounded on L"(IR?) for 1 < r < 0o, we obtain

T
(3.26) Anmwmwswwﬁ

We finally turn to the proof of (3.19). Returning to the Navier-Stokes equa-
tions, we scan Au, Vp and u101u + ug8ou + uzdsu = 0y (uru) + 01 (ugu) +
83 (u;:,u).

Since A : HY(IR®) - H~1(IR?) is a contraction, we have

T oanl gt < Ttz g < luolB
; IAulg-1mey 3t < | lullg dt < ===

Concerning the pressure, (3.26) is used with r = 2 and yields the required
estimate.

Finally 8, (uiu) + 8a(ugu) + 83(usu) is estimated in L!([0, T]; H~(IR3))
using (3.25) with r = 2. Lemma 4 is now proved.
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We return to definition and specify the meaning of (3.17).

Both sides of (3.17) belong to L([0, T]; H~!(IR3)). Indeed the left-hand
side does belong by (3.16). Concerning the right-hand side, it suffices to
repeat the above discussion and to use (3.14) or (3.15).

Finally u(-,t) belongs to C([0,T]; H~'(IR%)) (indeed u(-,t) is absolutely
continuous with respect to the time variable). Therefore u(-,0) can be given
a meaning in the distributional sense.

Let us insist on the fact that the right-hand side of (3.17) cannot be
written w101y + -+ + uzdzu. Indeed one cannot multiply a function in
H-1(IR?) by a function in L2(IR®). This type of problems will be answered
by the paraproduct algorithm of section 14.

The existence of weak solutions will be proved in the next section in
relation with the variational formulation of the Navier-Stokes equations.

4 A variational formulation of the Navier-Stokes
equations

Following notations which were introduced by J.L. Lions, V will denote
the closed subspace of (H(IR3))? consisting of all vector fields v(z) =
(v1(z),v2(z),v3(x)) such that

(4.1) divv = 01v; + Govg + O3v3 = 0.

The variational formulation of the Navier-Stokes equations consists in
making (3.17) more explicit by writing all scalar products with all testing
functions. These testing functions are functions of the z variable since we
always single out the dependance in the time variable and consider u(z,t)
as a vector valued function of ¢ (and not a vector valued distribution with
respect to t).

But instead of using all testing functions in S(IR%) we want instead to use
testing functions in H!(IR3). In other words we replace the duality between
S(IR?) and S'(IR?) by the duality between H!(IR®) and H~!(IR%).

Moreover we indeed use v € V as testing functions. The variational
formulation of the Navier-Stokes equations relies on the following lemma.

Lemma 6. If p(z,t) € L'([0,T); L2(IR®)) and v € V, we then have

(4.2) <Vp,v>=10 on [0,T].
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Let us ﬁrst observe that < Vp,v >€ L'[0,T]. Indeed Vp belongs to
L([0,T); H~(IR3)) while v belongs to H'(IR3). Since H™! is the dual
space of H(IR?), we can conclude.

For proving (4.2) it then suffices to use an approximation p;(z,t) to
p(z,t). We can assume pj, p;(z,t) is a continuous function of the time
variable with values in S(IR3) together with

T
(4.3) /0 Ip(+8) = pi (- Dll2dt = 0 (5 = +00).

Then
<Vpj,v>= — <pj,divv>= 0.

It suffices to pass to the limit as j tends to infinity to obtain (4.2).

Definition 7. Let u = u(z,t), z € R3, 0 < t < T, be a weak solution of
Navier-Stokes equations. Then the variational formulation of (3.15) reads

d
7 <u,v>=<u,Av> + <u, Xv>

divu =0
u(z,0) = up(z).

(4.4)

Here and in what follows <u,v>= 21 [ uj(z) vj(z) dr and X = u; 0:::1 +

Ug 31—2 + usg 6 e
Let us be more specific. All terms in the first equation belong to L[0, T).
Indeed % belongs to L!([0,T]; H~'(IR®)) while v belongs to H'(IR?).
Then < & 3t v>€ L'[0,T] and a simple limiting argument yields

ou d
(45) <'a—t',’l)>— a‘t' <u,v> .
Concerning < u, Av >, we observe that u € L?([0,T]; H'(IR?)) while Av €

H~(IR3). Therefore <u, Av>€ L?[0,T).

Finally u € L?([0,T]; L*(IR3)) which implies Xv € L?([0, T]; L*/3(IR3)).
Since u € L?([0, T]; L*) we obtain <u, Xv>€ L([0,T]).

Let us conversely assume (3.12), (3.13), (3.14) and (4.4). We would like
to obtain (3.15). Indeed R(z,t) = g—’t‘ — Au + Xu satisfies < R,v >= 0 for
each v € V. This implies R = Vp for some scalar valued function p and
Navier-Stokes equations are recovered.
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For us be more explicit and consider a distribution S = (51,52, S3),
S; € S'(IR®), such that for any v = (vy,vq,v3) withv; € S(IR®) and dive = 0
we have < S,v >= 0. Then S = Vp. Indeed we check < S,v >= 0 on
v = ~82f, Vg = 31f, v3 = 0, f € S(]R3) and obtain 3152 - 6251 = 0 in the
distributional sense. Similarly 8,53 — 8352 = 0 and 3357 — 8,53 = 0. This
implies S = Vp as announced.

Once the variational formulation of the Navier-Stokes equations is writ-
ten, one would like to move one step further.

Instead of writing (4.32) for every v € V, one is using a sequence

V0, V1y.-- s Um,... Of vectors of V with the following two properties

(4.6) U0, V1, ,Um,... are linearly independant

(4.7) the linear span of vg,v1,... ,Um,... is dense in V.

We then denote by V,, the linear span of vy, v1,... ,¥m—1. We then have

Vin C Ving1 and |50 Vim is dense in V.
We now arrive to the definition of a Galerkin scheme.

We want to approximate the weak solution u(z,t) by a function uy(z,t)
which is no longer a solution but belongs to C*°([0,T], Vn).

Moreover this approximation uy(z,t) is not the orthogonal projection
of u(z,t) onto V. This implies that the convergence of uy to u will be a
delicate issue.

Instead we define ug y(z) € Vi as the orthogonal projection of ug onto
V. This refers to the standard inner product in L?(IR?).

We now define uy(z,t) by

(4.8) % <UN,Vm > = <UN, AU, > + <up, (uy - Vv, >
where 0 <m < N -1 and

(4.9) un(z,0) = ugn(z).

Let us simplify the discussion by assuming the following. If Hy denotes the
closed subspace of (L2(IR%))? defined by 8 fi(z) + dafa(z) + B3 f3(x) = 0,

then v, m > 0, is a Hilbert space basis of Hy. We then write

(4.10) un(z,t) = oo n(t)vo(z) + -+ + an_1,n(t) vn-1(z)
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and (4.8) reads

d
(4.11) 5 on(t) = Alay]+ Blay, an]
where ay (t) = (ao,n(f),... ,an-1,§(t)), A being an ordinary N x N matrix

and B[X, X] and ordinary quadratic form. Obviously A and B depend on
N.

This ordinary differential equation should be completed with ax(0) =
N where Yn = (Y0,... ,Yn—1) when ug(z) = Y 5° Ymvm ().

Since (4.11) is non linear, the only issue concerns a possible blow up in
finite time.

However the proof of the energy estimate can be rewritten inside the
approximation space Vi and yields

(4.12) lun (5 Bll2 < lluovllz < fluoll2-

It implies that (4.8) has a unique global solution and uy(z,t) belongs to
C*°([0,T]; Vy) for all positive T’s.

This being achieved, one would like to build a true solution from this
sequence uy(z,t), N > 1. Since uy uniformly satisfies the estimates listed in
lemma 4, one is tempted to use a compactness argument. From uy(z,t) one
is extracting a subsequence uy; (z,t) which weakly converges to u(z,t). For
proving that u(z,t) is a solution, one should intertwin weak limits and non
linear mappings. We all know that it is impossible and our naive approach
fails. We then follow J.L. Lions and construct a subsequence un;(z,t) such
that

T
(4.13) lim / / luw, (2,t) — u(z, t)Pdz dt = 0
0 Jiz|<R

J—+o0
for every positive R.
For proving this strong convergence, a new estimate is needed.

J.L. Lions proves the existence of a positive exponent v and of a constant
C(v) such that, for any ug(z) in L2(IR®) and N > 1, one has

(4.14) /oo I an (-, 1)l dr < C() lluoll3 -

— o0

> e " uy(z,t)dt and the L? norm is computed with
respect to the x variable. This new estimate, once combined with

Here dy(z,7) = [

T
Sggllw(-,t)lb < Gy and / lun ()3 dt < C
t2 0
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is used for showing that the weak convergence in L?([0, T]; H'(IR?)) of u N;
implies (4.41).

The reader is referred to [65] and J. Leray’s theorem will be stated.

Theorem 4.1. Let us assume that up(z) € L*(R3) and divug(z) = 0.
Then for every T > 0, there ezists a weak solution u(z,t), 0 <t < T, of the
Navier-Stokes equations such that u(z,0) = ug(x).

The uniqueness of such a weak solution is still an open problem.

5 The affine group action

The Navier-Stokes equations are invariant under a group action. More pre-
cisely if (u(z,t),p(x,t)) is a solution defined on IR? x (0, c0), the same is
true for (uy,px) where 0 < A < oo and

(5.1) ux(z,t) = du(dz, A%t) , paz,t) = Np(hz, \%t).

If instead one would consider u(Az, At) and p(Az, At), there are a solution of
a distinct Navier-Stokes equation where v is being replaced by Av. We can
fix A > 0 such that Av = 1 and assume that the viscosity is 1.

Returning to the invariance of the Navier-Stokes equation, if (u(z,t),
p(z,t)) is a solution, the same is true for (u(z—o,t), p(z—xo,t)) for zo € R3.

Finally for any 7 > 0, (u(z,t+7),p(z,t+7)) is still a solution.

This affine group action should be incorporated into a Galerkin scheme.
Guy Battle and Paul Federbush achieved this program and their results will
now be described.

Let us denote by Hy the subspace of H = (L%(IR3))? which is defined
by d1ui + doug + d3ug = 0. Since this condition can be rewritten as Ryju; +
Roug + R3uz = 0 where R; are the Riesz transformations, Hy is a closed
subspace of H. G. Battle and P. Federbush succeeded in constructing a
basis for Hy of the form

(5.2) 2912 y(Vz—k), YeA,je€ZL, kel

where A is a finite collection of 14 mother wavelets belonging to the Schwartz
class.
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Before moving further, let us sketch the construction of Federbush’s ba-
sis. We closely follow the modification proposed by P.G. Lemarié-Rieusset
in [50] of Federbush’s original construction.

6 A divergence-free wavelet basis

The starting point is the orthonormal wavelet basis of L2(IR) which is pre-
sented in [55]. We begin with the so-called scaling function ¢(t) which
is a smooth version of the indicator function of [0,1]. Here ¢(t) belongs
to the Schwartz class, its Fourier transform $(§) satisfies $(§) = 1 on

[—27/3, 27/3], ¢(§) = 0 if [§] > 4n/3, &(§) € [0,1], $(—¢€) = B(£) and
finally

(6.1) le(r+s)? +le(r=s)> =1 , |[s| <7/3.
These assumptions imply % |¢(2km +€)|2 = 1 everywhere. Therefore
o(t—k), k€ Z, is an orthonormal sequence in L?(IR). We denote by V; the

closed linear span of this sequence ¢(t—k), k € Z. Next V; is defined by
(6.2) F(t) € Vo <= 2072 £(291) e V;
where f € L?(R) and j € Z.

A crucial observation is the inclusion V; C V41 which relies on the
specific properties of .

The next step consists in studying the orthogonal complement W; of V;
inside Vj41. Property (6.2) implies
(6.3) f(t) e Wy < 2072 f(27t) e W;.

There exists a function 1(¢) in the Schwartz class such that ¢(t — k), k € Z,
is an orthonormal basis of Wj.

The Fourier transform 9(¢) of ¥ is supported by <lg| <8 5 and
(6.4) 2029(29t—k), je€Z,kel
is an orthonormal basis for L2(IR). This function 1(t) is the mother wavelet.

Both the scaling function ¢(t) and the mother wavelet 1(¢) are needed
to construct an orthonormal wavelet basis for L2(IR?).

Indeed one writes @o(t) = p(t), p1(t) = ¥(t) and the three-dimensional
scaling function is

(6.5) @(z) = wo(z1) po(T2) po(z3)



Yves Meyer 123

while the 7 three-dimensional wavelets are given by

(6.6) Ve(T) = e, (1) e, (T2) Pes(x3) , €= (e1,€2,€3)
and € € {0,1}3, € # (0,0,0).

With these notations, we obtain the three-dimensional wavelet basis as

(6.7) 25912 (Pz—k), je€Z,keZ®,
e€{0,1}®* , €#(0,0,0).

We now denote by Hp the closed subspace of H = (L?(IR%))® defined by
Ryu; + Roug + Rzuz = 0 where R;, Ry, R3 are the three Riesz transfor-
mations. Each component ui,us or ug is then expanded into a wavelet
expansion using the orthonormal basis given by (6.51).

Roughly speaking, the full equation Rju; + Rpug + R3uz = 0 can be
decoupled into

(6.8) Ry ul + Ryul®) + Ryul® = 0

where ugj ) belongs to the closed linear span of 237/2 ¢ (272 — k), k € Z3.
Then if €; = 1, (6.52) permits to compute ug.’e) as a linear combination

of ugj’g) and ugj’s). Since one of the three indices €1, &9 or €3 is 1, (6.52) can

always be solved.

This construction yields a basis for Hy which is no longer an orthogonal
one. Let us clarify this point.

Definition 8. A Riesz basis (ex)aca in a Hilbert space H is a collection of
vectors of H for which there exists an orthonormal basis (fa)aea of H and
an isomorphism U : H — H such that

(6.9) U(fx) = ex.

It implies that each vector z € H can uniquely be written as

(6.10) z = Za,\e)\

AEA

where

(6.11) aillell < (Llaa2)” < Calal
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for two constants Cp > C; > 0.

If C; = C1 =1, (er)aea is an orthonormal basis. In general, one defines
the dual basis €y by

(6.12) UH™Hf) = ér.
This dual basis is still a Riesz basis and one has
(6.13) ay =<z,6)> .

With this definition in mind, the Lemarié-Rieusset’s version of the Battle-
Federbush theorem reads

Theor_gm 6.1. There exists a finite collection A of 14 divergence free vector
fields ¢(z) = (Y1(z), Ya(z),¥3(x)) with the following properties

(6.14) P € SR, 1<5<3

(6.15) HEO=0 if llo<T or [>T
where €] = sup(|€1], |€2], |€3])

(6.16) 292D —k), YeA,jeZ,keZ?,

1s a Riesz basis of Hy

(6.17) the dual basis is given by
2%9/2:(0z—k), JeA,jeZ,keZ®

where A is a second collection of 14 wavelets satisfying (6.14) and (6.15).

This remarkable theorem will be proved in the appendix and we are now
ready for describing P. Federbush’s program.

7 Federbush’s program

Federbush’s program is quite natural and extremely appealing. It consists
in using a Galerkin scheme for solving Navier-Stokes equations and in in-
corporating the affine group action into this Galerkin scheme. We then
respect the invariance of the Navier-Stokes equations with respect to this
affine group action. This approach is consistent with our scientific knowledge
about turbulence. We will return to this point.
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A Galerkin scheme where affine group action is incorporated is the
Battle-Federbush basis. This basis reads 2%9/24)(Vx — k), j € Z, k € Z3
¢ € A where A is a collection of 14 divergence free mother wavelets ) =
(11,19,13) for which 11,12 and 13 belong to the Schwartz class. Such an
approach is aimed to decouple the Navier-Stokes equation into a sequence
of equations of the general form

0
(71) EUJ F= u] +ZZB] U ’U,JI,UJ‘II),

Here u;(z,t) = 3, a(j, k, t) 2%/2 P(2z—k) (the sum over A will be omitted
for keeping the notations as short as possible).

Since the Fourier transform of 237/2 1/7(2j xz—k) is supported by the dyadic
annulus

27 8T
. i < |l < Xoi
12) 1Y < e <
the closed linear span of 239/2¢(2iz — k), ¥ € A, k € Z3, will be named a

frequency channel and denoted by Wj, j €Z.

Returning to Federbush’s program, the goal consists in decoupling the
Navier-Stokes equations into a sequence of equations. This decoupling only
applies to the linear term (Au) while the non-linear terms () (uyu) + -+« +
d3(ugu)) are coupled by non-linear interactions. These non-linear interac-
tions are described by the bilinear operators B; j jn (ujr, ujn).

The success of this approach depends on the following property which
is expected from B; j ;». These interactions should become negligible when
l7" =31+ 15" — 4l tends to infinity.

In other words, what is happening inside a frequency channel should
only affect the neighboring frequency channels.

Before entering into a more precise criticism of this program, let us
observe that it is backed on some previous work by P. Frick and V. Zimin.

In a superb paper entitled Hierarchical models of turbulence [33] they
write

“Ideas, like the ones used to create wavelet analysis were pro-
posed by Zimin (1981) for construction of a hierarchical model
of turbulence...

In a paper by Zimin (1981) a special functional basis has been
presented. Functions of this basis are related to a hierarchical
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system of vortices of different sizes. The number of vortices in a
unit volume increases with decreasing size and each function is
well localized both in Fourier and physical spaces. The product
of the characteristic scales of localization in Fourier and coordi-
nate spaces satisfies the uncertainty relation...

The cascade equations, written for the quantities A;, each
define the velocity oscillations in some interval of wave numbers
and describe the principal characteristics of energy redistribution
processes between different scales. The cascade equations mini-
mize the dimensionality of systems which describe the turbulent
flows in wide range of wave numbers, and have a form

d
(7.3) %Aiz'Y;lAi’*‘ZZXijkAjAk---
5k

The hierarchical model of turbulence is based on the natural
assumption that turbulence is an ensemble of vortices of pro-
gressively diminishing scales. The hierarchical basis for two-
dimensional turbulence describes the ensemble of the vortices,
in which any vortex of the given size consists of four vortices of
half size and so on. The ensemble of vortices of the same size
forms a “level”. The functions of the hierarchical basis are con-
structed in such a way that Fourier-images of vortices of single
level occupy only single octave in the wave-number space and
regions of localization of different levels in the Fourier space do
not overlap.

The wave-number space is divided at ring zones such that
2N < |k| < m2N+1, 7

This quotation from Frick and Zimin implies that these authors are using
the Shannon wavelet basis. This remark is made explicit in their paper. The
scaling function of the one-dimensional Shannon basis is the standard sinc

function ¢(t) = ﬂ%tﬁ while the corresponding mother wavelet is given by

(7.4) P(t) = 20(2t) — o(t).

However these functions have a poor localization in the coordinate space.
They do have an ideal localization in the frequency domain. Shannon
wavelets correspond to ideal filters in signal processing and these ideal filters
are unrealistic ones since their numerical support is infinite. For the same
reason, Shannon wavelets cannot be used in numerical analysis.
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We now want to use “modern technology” and further analyze Feder-
bush’s program.

Let us try to decouple Navier-Stokes equations. We denote by ¥ (z),
A € A, the divergence-free wavelet basis which is described in theorem 6.1.
We have A = A x Z x Z® and ) (z) = 2%/2¢(27z — k), ¢ € A, j € Z,
keZ3 \=(v,j5,k) €A.

Using the variational formulation we are led to writing

(7.5) u(z,t) = Y ax(t) da(@).

A€A

The corresponding Galerkin scheme reads

(7.6)
% aa(t) = Y wXN)an(®) + )Y BN, X) ax () axn(t)
Py PUS L
where
w\MN) = (Ay, )
ﬂ(/\7 Ala ’\”) = b(db\H ¢«\”a "Z;A)
and

3 3
b(u,v,w) = ZZ/uk(x)(Bkw)(x) We(z) dz .
11

Concerning w(\, \'), we first observe that w(\, \') = 0 whenever |5’ — j| > 2.
Since the mother wavelets belong to the Schwartz class, we also obtain a
rapid decay when |7’ — j| < 1 and when the distance between )\’ and A tends
to infinity. This distance is defined as (27 +27)|k2~7 —k'277'| if k277 # k'2~7
and 27l if k27 = k'279 o #£ .

It should be stressed that one cannot obtain a rapid decay at infinity
if Shannon’s wavelets are being used. Returning to the one-dimensional
case, it is not true that [ ¢”(z)¢(z — k) dz has a rapid decay at infinity as
|k| = 4+00. Indeed this integral is 0(k~2) and this estimate is sharp.

This means that the Frick-Zimin program cannot be completed the way
it is stated.

Let us forget this remark and return to Federbush’s version of the Frick-
Zimin approach. There is unexpected bad news given by the following claim.
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Claim. There ezists a vector £ € Z3 with the following property : if
7' =3", K — k" = £ and if j tends to —oo, then the trilinear coefficients
BA N, N are large.

More precisely, these coefficients are large whenever the dyadic cube
Q(X) contains Q(A') U Q()\"). Here Q()\) denotes the dyadic cube defined
by 27z — k € [0,1)% when oy (z) = 239/24)(20x — k).

This unpleasant fact contradicts big claims made by some scientists ([28],
page 664).

Let us now prove our claim. We are assuming j' = j” and first want to
prove that the function

(x - V)oar = 014 + 9D Byt + ) Bt

has a non vanishing integral. Indeed

TN = [ (- 9w do = 29K =K,

Let us show that v does not vanish identically. Otherwise one would have

(7.7) /(z/)-V)zp(cc—k) dc =0, keZd.
But (7.7) is equivalent to
(7.8) > o(¢—2km) =0
keZ3
where
(7.9) 0(€) = [6191(6) + Exha(€) + Exs(E)] B(E) -

Here we need to compute ¢(¢), o(€) and to check that (7.9) does not hold.
These computations are based on the explicit calculations made in the ap-
pendix and will be omitted. Therefore the product (i - V)i is given
by

(7.10) (’(/),\I : V)’(/))‘H = 24jl w(2jl.’12 - k’)
where w € S(R?), w = wy and [ w(z)dz # 0. Then

BN N = 2V / w(2 z—k') a(z) de
27" Py (k'277) - (v(K'—E") + 0(2277"))
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as j — 7' tends to —oo. This proves our claim.

This discussion will be elaborated in section 14 where the paraproduct
algorithm will be studied. Indeed the paraproduct algorithm consists in
writing the ordinary product f(z) g(z) between two arbitrary functions as a
sum of three series. Two of them only contain oscillatory terms. The third
one is the most difficult. It reads > A;(f) A;(g) and these products do
not have any cancellation. They are similar to (¢ - V)1 when j' = j".

Let us now return to P. Federbush’s program.

In a paper entitled Navier and Stokes meet the wavelet, P. Federbush was
much hoping that our understanding of the Navier-Stokes equations could
benefit from wavelet bases.

Let me first stress that I fully believe that P. Federbush’s claim is correct.
However Federbush’s paper is disappointing.

First of all, Federbush is not proposing a new numerical scheme for
solving Navier-Stokes equations. Instead he is using his wavelet basis for
proving new estimates. These estimates are defined by functional norms.
The corresponding functional spaces which are used in Federbush’s paper
are the Morrey-Campanato spaces.

Definition 9. If s € (0,3), the Banach space M?* is defined by the fol-
lowing property. A function f(x) belongs to M?* if and only if f is locally
square integrable and if there exists a constant C such that

1/2
(7.11) sup  sup (R‘S / |f(z)|2da:) <c.
zo€R3 0<R<oo |le—zo|<R

If s = 0, this would define L? and ifs=3, (7.72) would define L°.
P. Federbush restricted his attention to the case 1 < s < 3 and proved

the following statement. If ug(z) belongs to M?* and divug(z) = 0, then
there exists a positive T' and a solution

(7.12) u(z,t) € C([O’T]’MZS)

of the Navier-Stokes equations such that u(z,0) = ug(z).

These solutions u(z,t) € C([0,T], M?*) are no longer classical solutions
of Navier-Stokes equations. They are not weak solutions in Leray’s sense.
The solutions constructed by P. Federbush in his paper are the so-called
“mild solutions” of Navier-Stokes equations. This concept will be defined in
section 12.
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With my student Marco Cannone, we wanted to better understand
Federbush’s paper and the role played by the hierarchical wavelet basis in
the proof. We soon observed that Federbush’s theorem is becoming a trivial
statement if a Littlewood-Paley analysis will be defined in section 14 and
wavelet analysis can be defined as an improved version of Littlewood-Paley
analysis.

The second piece of bad news is the following. The case s = 1 in the
definition of the Morrey-Campanato spaces M2* cannot be treated by Feder-
bush’s approach. This exponent plays a crucial role since homogeneous func-
tions of degree -1 belong to M. If the initial condition ug(z) exhibits this
homogeneity, then the corresponding solution of the Navier-Stokes equation
will be self-similar. This means that

(7.13) du(\z, \%t) = u(z,t), 0<A<oo.

In other words solving Navier-Stokes equations when uy € M?%! paves the
way to the construction of self-similar solutions to the Navier-Stokes equa-
tions. In the next section, the special role played by this Morrey-Campanato
space M?! will be clarified. Here we want to stress that Tosio Kato found
an algorithm for solving Navier-Stokes equations when ug € M?!. This
remarkable algorithm is not based on Fourier analysis or wavelet analysis.
Kato’s approach will be presented in section 21.

. These remarks may lead to the conclusion that wavelet analysis is the
worst tool for studying Navier-Stokes equations. If Federbush’s paper were
the test for ranking all available tools, the conclusion would be obvious.
Wavelet analysis is the worst tool, Littlewood-Paley analysis and paraprod-
uct algorithms are doing a much better job and T. Kato’s algorithm is
number one.

This bad news does not end the discussion. Indeed Littlewood-Paley
analysis or wavelet analysis were used in the first proof of the uniqueness
of mild solutions u € C[0,00), of Navier-Stokes equations. The existence of
such solutions was proved by T. Kato but Kato’s algorithm left the unique-
ness problem open. Unfortunately a much simpler proof was soon obtained.
This simpler proof does not use any spectral method and the usefulness of
Littlewood-Paley methods cannot be proved in this uniqueness issue.
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8 Banach spaces adapted to Navier-Stokes equa-
tions

Our goal is to describe an improved version of Kato’s program. T. Kato
treated an important example. He proved the existence of a positive constant
a such that the following implication holds : if ug(x) belongs to L3(IR?), if
luolls < @ and divup(z) = 0, then there exists a solution

(8.1) u(z,t) € C([0,00); L3(IR?))
of the Navier-Stokes equations such that
(8.2) u(z,0) = up(z).

The uniqueness of such a solution will be proved in section 20 and a second
proof can be found in section 26. Let us observe that ug(z) and Aug(z)(Az),
A > 0, are sharing the same L3 norm. In other words the exponent 3 cannot
be replaced by an other one in Kato’s theorem. Indeed if the initial condition
up(z) does not satisfy ||up|lq < @, then Aug(Az) will certainly do it for some
value of A. This means that either the condition ||ugllq < a is not needed
and can be replaced by ug € LI(IR®) or it is needed and ¢ = 3. The first
option applies to the case ¢ = 2 and nobody knows what is happening for
other values of gq.

In our attempt to generalize Kato’s program, L3(IR3) will be replaced
by other Banach spaces satisfying some properties which are given in defi-
nition 10 and 11.

Definition 10. A Banach space E is a functional Banach space if

(8.3) S(R™) C E C S'(R™)
(8.4) these two canonical embeddings are continuous ones

(8.5) either these two embeddings have a dense range
or E 1is the dual space F* of a functional Banach space F

for which these two embeddings have a dense range.

For example LP(IR"), 1 < p < oo is fulfilling these requirements while
L>®(IR™) is the dual space of L!(IR™). It is clear that S(IR") C L*(IR"™) but
S(IR™) is not dense inside L*°(IR").

Definition 10 paves the way to the following one.
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Definition 11. A functional Banach space E is adapted to the Navier-
Stokes equations if

(8.6) If @)l = M Qz)lle, 0<A<oo
(8.7) If(z=zo)lz = |f(z)le
(8.8) there is a constant C such that

1/2
(/ If(w)l2dw> < Clifls-
|z|<1

If E is adapted to the Navier-Stokes equations, our program consists
in generalizing Kato’s theorem. More precisely we would like to prove the
following conjecture :

Conjecture. Let us assume that a functional Banach space E is adapted
to the Navier-Stokes equations. Then there ezists a positive number n such
that

(8.9) luwlle <n and divug(z) =0

implies that a solution to the Navier-Stokes equations u(x,t) exists with the
following properties

(8.10) u(z,t) € C([0,00); E)
(8.11) u(z,0) = up(z).

Some results in this direction will be given in section 19 and 22.

When S(IR™) is dense in E, C([0,00); E) will denote the Banach space
consisting of all continuous and bounded functions f : [0,00) — E. This
continuity refers to the norm topology on E. The norm of f in C([0,00); E)
is defined as

(8.12) sup [|f(,?)le .
>0

When S(IR"™) is not dense in E but instead E is the dual space F* of a
functional Banach space F in which S(IR™) is dense, it would be natural to
define C([0,00); E') as being the Banach space of continuous and bounded
functions from [0, 00) into E when FE is given the o(E, F') topology.

However we will not adopt this definition. Indeed some non-linear op-
erations will be performed on such functions f and the o(E, F) topology is
not consistent with such nonlinearities.
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The definition of u € C([0,00); E) is motivated by the simple example
of the heat equation

b3}
(8.13) —(% =Au , u=uz,t) , u(z,0)=uy(z)
where ug € E and sup {||u(:,t)||g; t > 0} is finite. Then we have
(8.14) u(z,t) = S(t)hug , S(t)=exp(td) , t>0.

At to = 0, we have lim, o u(z,t) = up(z) when E is given its o(E, F') topol-
ogy and this result is optimal when E is not a separable Banach space.
However when tg > 0, limyy, ||u(z,t) — u(z,to)||g = 0. This leads to the
following definition :

Definition 12. When the functional Banach space E is not separable but
instead 1s the dual F* of a separable Banach space F, we will write

(8.15) u(z,t) € C([0,00); E)
if and only if

(8.16) lgfglu(x,t) = u(z,0) when E is equipped

with its o(E, F) topology and

(8.17) lim Jju(z,t) — u(z,to)||[p = 0 for tr>0.
t—to

This definition will receive an a posteriori vindication in section 23. In-
deed for a large family of adapted Banach spaces E, (8.91) will be improved
into

! 1/2
__1‘

(8.18) lue,#) - u(a, s < €|

for 0 <t <t <2t with C = C(up).

Let us end this section with a simple but striking fact. There exist
two adapted functional Banach spaces Fy and E; such that any adapted
functional space necessarily satisfies

(8.19) Ey C ECE;.

In other words, among adapted functional Banach spaces, there exists a
maximal space F; and a minimal space Ej.
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Let us stress that the other adapted Banach spaces are not ordered by
inclusion. Simple examples will be given in section 24.

Let us first concentrate on the maximal space E;. Let us consider the
Morrey-Campanato space M2 = M?%!. We then have

Lemma 7. The Morrey-Campanato space M? is adapted to the Navier-
Stokes equations. Conversely if E is adapated to the Navier-Stokes equa-
tions, then E is continuously embedded into M?.

The second assertion is almost obvious. If f € E and ||f||g < 1 then
azo (@) = Af(A(z — z0)) also belongs to the unit ball of E. We then apply
(8.8) to fi, and immediately obtain f € M?2.

The proof of the first assertion is straightforward. However the Morrey-
Campanato space M? is not separable : S(IR?®) is not dense in M?2.

Instead M? is the dual space of a separable Banach space F. This
Banach space F' admits an atomic decomposition and we first descrribe the
corresponding atoms. These atoms ap(z) are labelled by balls B C IR3.
More precisely B is an arbitrary ball in IR3 and ag(z) should satisfy the
following two properties

(8.20) lag|ls < R™Y/2 when B = {z;|z—zo| < R}
(8.21) ag(z) =0 if z¢B.

Then a function f(z) belongs to F if and only if f(x) = > 3° Mjap,; (z) where
ap; satisfies (8.17) and (8.18) and

(8.22) > Al < 0.
0

The norm of f in F is the infimum of Y §°|A;| computed over all atomic
decompositions of f(x). We obviously have S(IR?) C F and this continuous
embedding is dense. moreover the dual space F™* coincides with the Morrey-
Campanato space M.

In the opposite direction there exists a smallest Banach space which is
adapted to the Navier-Stokes equations. This example will be revisited in
section 24 and we now announce the following statement.

Lemma 8. If E is adapted to the Navier-Stokes equations, then the homoge-
neous Besov space Bf’l(]R3) 1s contained in E, this embedding is continuous
and Bf’l(IR“Q‘) is also adapted to the Navier-Stokes equations.
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The simplest description of Bf’l is the following one. If the orthonormal
wavelet basis of section 6 is being used, then f € Bf 1 if and only if

f@) = >3 a(G k) Py z—k)
ik

with

Y "> lai k)l < oo.
j k

For the sake of simplicity, the sum over ¢ € A (with § A = 7) is ommited.

Before ending this section, let us state and prove an important lemma.

Lemma 9. If E is adapted to the Navier-Stokes equations, for every ¢ in
the Schwartz class S(IR3), there exists a constant C(p) such that

(8.23) If *eillo < Cl@)tHIflE, t>0,f€E,

with @i(z) = t73 p(z/t).

Indeed (f * ¢¢)(z) = [ f(z + ty) ¢(—y)dy. We define a new function
ftz(y) by ftz(y) =t f(ty + z) and observe that ||f:z||g = ||f||g. Moreover
each function ¢ belonging to the Schwartz class yields a continuous linear
form on E since E is continuously embedded in S’(IR®). Therefore

(8.24) | <ftayo>| < CP) fealle = Clo) | flle-

Now the scalar product < f;z, > is precisely the integral we want to
estimate, up to some trivial modifications.

The next section is a first step towards defining the concept of a mild
solution of the Navier-Stokes equations. We begin with a simplified model
which is the heat equation.

9 Mild solutions to the heat equation

We consider the heat equation with a forcing term g = g(z,t). It reads

of
(9.1) ot - At

f(2,0) = fo(z).
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We are looking for a solution f of (9.1) as being continuous in the time
variable with values in a functional Banach space E. For the time being, F
is assumed to be separable and f € C([0,0); E) has the usual meaning.

Let us now consider a second functional Banach space E’ with the fol-
lowing two properties

(9.2) A:E — E' is continuous

(9.3) if ¢ belongs to the Schwartz class S(IR®)
then the convolution operator f — f % ¢
continuously maps F’' into F

Definition 13. With the preceding notations, a mild solution f to the heat
equation (9.1) is a solution belonging to C([0,00),E) when g belongs to
C([0,00), E').

Let us denote by S(t) = exp (tA), t > 0, the heat semi-group. We then
have

Theorem 9.1. If such a mild solution exists, it is uniquely given by

(9.4) flz,1) = S(t)fo+ /0 S(t—s) g(s) ds.

This statement is trivial if ¢ = 0 and S(¢) fo obviously satisfies the re-
quired continuity with respect to the time variable if fo € E. We can turn to
the case where fo = 0. We then observe that the integral fot S(t—s)g(s)ds
belongs to C([0,00), E'). This integral does not belong to C([0,c0), E) in
general and a counter-example is given at the end of this section. In other
words, mild solutions do not exist in general when g belongs to C([0, c0), E').

It is interesting to have a sharper look at the integrand. A partial answer
is given by the following lemma

Lemma 10. If A : E — E' is an isomorphism between the Banach spaces
E and E', there exists a constant C such that

(9.5) IS®flle < CtHflle -
For proving (9.5), one writes f = Au, u € E with |lul|lg < Colf|lE-

Then tAS(t) = Q; is a convolution operator with 1¢(z) = t~3¢(z/t) where
7 is the celebrated D. Marr’s wavelet. Therefore Q; : E — E is continuous

and the operator norm does not depend on t.
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Once (9.103) is obtained, we have ||S(t — s) g(s)||g < C'(t — s)~! which
diverges when s approaches t.

We now return to the proof of (9.102). We denote by ¢ a function in the
Schwartz class whose Fourier transform ¢(¢) satisfies

(9.6) @) =1 onlf|<1 , @) =0 onlf=>2.

For £ > 0, we write ¢ (z) = 73 p(z/e) and denote by G the convolution
operator with ¢.. We then obviously have

(9'7) GeGae = G2 G = Goe .
Now %{ = Af + g implies

0
99 U = Afeta

where f. = Go(f), g¢ = G2:(9) and A = AG.. This operator A, acts
boundedly on F and (9.106) together with f.(z,0) = 0 obviously implies

t
(9.9) fe(t) = /0 exp ((t—s)Ac) ge(s) ds.
The Fourier transform of the integrand reads

(9.10) exp(—(t—s) [¢° p(€)) p(26€) §(s,€) .-

Since $(£) = 1 on the support of ¢(2¢), this can be simplified into
(9-11) exp(—(t—s) [¢]*) $(2¢€) (s, €)
and (9.107) can be rewritten as
t
(9.12) olt) = [ st=s)gu(o)ds.
0

Finally g. — gin £’ and ||g¢||gr < C||g]|g'- Lebesgue dominated convergence
theorem implies the convergence in E' of f, to fot S(t—s)g(s)ds. But f.
converges to f in E. It implies

(9.13) () = /0 S(t—s) g(s) ds.
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Indeed if a sequence u; belongs to EN E’ and converges to v in E and to v
in E', then for any function ¢ in the Schwartz class, u; * ¢ tends to u * ¢ in
E and also to v x ¢ in E. It yields u x ¢ = v x ¢ for every ¢ and u = v.

The unpleasant fact that mild solutions do not always exist in the frame-
work of theorem is one of the main difficulties we will have to face for solving
Navier-Stokes equations.

In the simplest case when E' = L?(IR%) and E is the Sobolev space
H?(IR®), it is not true that g € C([0,00); L?(IR®)) implies f € C([0,0);
H?(IR®)) as the most trivial counter-examples show.

There is however a simple and interesting situation where everything
smoothly works.

Let us assume that E = E,, a > —3, is defined by the following pointwise
condition on the Fourier transform f (&) of f

(9.14) 1f(&)l < Clel*.

We then define E' = E,45 and it is now a trivial check that g € C([0, 00); E')
implies f € C([0,00); E).

10 Mild solutions to Navier-Stokes equations : the
L3-case

Let us start with the simplest example which is provided by the adapted
space E = L3(IR3). We will then move to more involved cases which will
culminate with the Morrey-Campanato space M2(IR3).

Definition 14. A mild solution of Navier-Stokes equations is a velocity
field u(z,t) € C([0,00), L3(IR?)) together with a pressure p(z,t) € C([0, ),
L3?(R3)) such that

Z—Q: = Au — 9;(uju) — Vp
(10.1) divu =0

u(z,0) = uo(z).

This equation needs to be given a meaning. First of all the Laplace
operator A is an isomorphism from E = L3(R3) onto E' = {Af; f €
L3(IR®)}. Such a statement is a tautology. But it is more interesting to
observe that 0;(uju) € C([0,00); E') and so does Vp.
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Indeed u € C([0, 00), L?) implies u;u € C([0,00); L3/?) and each function
f in L3/2(IR3) can uniquely be written as Ag where A = (—A)Y/2 is the
Calderén operator and g € L3(IR%). Applying this remark to uju and p
yields the required remark. Therefore %% belongs to C([0,00); E').

Everything is now prepared to apply theorem 9.1. We write w(z,t) =
0j(uju) + Vp and obtain

(10.2) u(z,t) = S(t)uo+/0t S(t—s)w(-,s)ds.

This equation will be solved using Picard’s fixed point theorem. However
the main difficulty is the one we already mentioned in the linear case. Indeed
the bilinear mapping which shows up in fot S(t—s)w(-,s)ds is not bounded
for the natural norm we are using which is sup{||u(-,t)||3; 0 < t < oo}.

This first example can be generalized. We begin with a definition

Definition 15. Let E be a functional Banach space. We say that E 1is
fully adapted to the Navier-Stokes equations if the following two properties
are satisfied

(10.3) the Riesz transformations Ry, Ry and R3 act boundedly on E

(10.4) there exists a constant C such that for any two functions f and g

belonging to E there exists a unique function h in E such that

(10.4.a) Ah = fg
and
(10.4.b) Ihlle < Clifllellgle -

The bilinear operator defined by (10.4.a) is in some sense induced by
the fundamental bilinear operator that governs the Navier-Stokes equations.
This bilinear operator will be presented in Definition 18. A simpler scalar
version is defined as

(10.5) B(f.g) = /0 AS(t—s) £(s) g(s) ds

where f(s) = f(-,5), g(s) = g(-,s) and A = V-A.
We want to know whether B boundedly maps C([0, 00); E) x C([0,00); E)
into C([0,00); E) when the norm in C([0,0); E) is defined as

(10.6) sup [|f(-t)lE-
t>0

We then have
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Lemma 11. If B boundedly maps C([0,00); E) x C([0,00); E) into
C([0,00); E), then (10.4.2) and (10.4.b) are satisfied.

This is trivially checked. Indeed let f(z,s) = f(z), g(z,s) = g(ac )s
s > 0, and let us compute B(f,g). We obtain B(f,g) = [I — S(t)]A~(fg)

and || B(f,9)lle < Clflle llglle implies (10.4).

The converse statement is not true and the Lebesgue space L3(IR3) is a
counter-example. However the corresponding Lorentz space L% (IR?) is an
interesting example where B is bounded (theorem 18.2 of section 18).

The Besov spaces B -(1-3/ q)’°°(IR3) are fully adapted to the Navier-

Stokes equations as it w1ll be proved in section 24. An other example is
given by

(10.7) E={feS'(R%;|f(&) < Clel7?}.

If f and g both belong to E, then (f,9) (é) = f  § satisfies |(fg)"(¢)| <
C|¢|™! as a trivial computation shows. Then h is defined by A(¢) = |¢]1(fg)"(€)
and we then have |h(£)| < CJ€|7L.

An important observation is the following

Theorem 10.1. The Morrey-Campanato space M? is not fully adapted to
the Navier-Stokes equations.

We begin with an obvious remark :

Lemma 12. A function f of the two variables zo and x3 belongs to M?(IR3)
if and only if f(zo,z3) € L2(IR?).

Indeed one writes
(10.) | 1@z iz < CR
|z|<R
and it suffices to let R tend to infinity to obtain the required equivalence.

If both f and g belong to M2, then their pointwise product f(z) g(z) =
u(zx) satisfies

(10.9) / lu(z)|dz < CR
B(:Eo, )

where C does not depend on z( or R.
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If both f and g only depend on x5 and z3, so does u and u(z2, z3) belongs
to L1(IR?).
If u = Ah in S'(IR%), the same relation holds in S'(IR?).

Finally u is an arbitrary function in L (IR?) and if [[ u(z2,z3) dzo dz3 #
0, then h cannot belong to L?(IR?) since [[(£3 + €2)7! |0 (&2, &3)|? déa dés =
+00.

We now return to the definition of mild solutions u € C([0,00); E) to
the Navier-Stokes equations when E is a functional Banach space which is
fully adapted to the Navier-Stokes equations.

This definition relies on the Leray pfojector we now want to define.

11 The Leray projection

The Leray projector is aimed to get rid of the pressure in the Navier-Stokes
equations.

Keeping the same notations as above, let us denote by H the Hilbert
space (L?(IR3))3 and by Hy C H the closed linear subspace defined by
O1u1 + Ogug + 03ug = 0. This condition will be rewritten as

(11.1) Riui + Roug + R3ug = 0

where R;, Ry and R3 are the Riesz transformations.

The Leray projector IP is defined as the orthogonal projection from H
onto Hy.

The computation of IP is straightforward and one obtains

ui uy — R1 (0)
(11.2) P Uug = ug — RQ(O')
u3 u3 — R3(0)
where
(11.3) 0 = Rijuj + Raug + R3ugs.

The Leray projector IP is acting on (L2(IR3))3 but this action can be ex-
tended to every functional Banach space on which the Riesz transformations
act boundedly.
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12 Mild solutions of Navier-Stokes equations : the
general case

We now consider a Banach space E which is fully adapted to Navier-Stokes
equations and define the two functional spaces E’ and II by the following
conditions :

(12.1) A:E—FE is an isometrical isomorphism

(12.2) A:E—-1 is an isometrical isomorphism .

It will be proved (lemma 13) that the kernel of A is reduced to {0} and that
the same property holds for A.

Definition 16. Let the functional Banach space E be fully adapted to the
Navier-Stokes equations. Let E' = AE and Il = AE as above.

A mild solution solution (u(z,t),p(z,t)) to the Navier-Stokes equations
1s defined by the following conditions

(12.3) u(z,t) € C([0,00); E)
(12.4) %—?(x,t) € C([0,00); E")
(12.5) p(z,t) € C([0,00);II)
(12.6) %{— = Au — 0j(uju) — Vp
(12.7) divu =0

(12.8) u(z,0) = uo(z).

Let us make a few remarks about this definition.

If F is a separable functional Banach space, then C([0,00); E) has the
usual meaning. Otherwise F is assumed to be the dual space F* of a sepa-
rable Banach space F and u € C([0,00); E) always means

(12.9) wu € C((0,00); E) when E is given its norm topology
(12.10) w € C([0,00); E) when E is given its weak-star topology.

Concerning the non-linearity in the Navier-Stokes equations, we have
wjug = 33 9p(vjke) by (10.4). Then vjx . belong to E and 3 9;(ujux) =
5353 8,0¢(v; k) belongs to E'. Similarly Au and Vp belong to E'.

These remarks lead to the following



Yves Meyer 143

Lemma 13. If the functional Banach space E 1is fully adapted to the Navier-
Stokes equations, then each of the terms which appear in the left-hand side
or in the right-hand side of (12.130) belongs to C([0,00); E').

We now reach our main goal

Theorem 12.1. If (u(z,t),p(z,t)) is a mild solution of the Navier-Stokes
equations, we then have

(12.11) % = Au - P(8;(uju))

while the pressure p(x,t) is given by
(12.12) p = R; Ri(ujug).

If conversely u € C([0,00); E), % € C([0,00); E') and divug(z) = 0,
then (12.135) and (12.136) imply that (u(z,t),p(z,t)) is a mild solution to
the Navier-Stokes equations.

This fundamental theorem is an easy consequence of the following re-
mark.

Lemma 14. If v belongs to F and satisfies IP(v) = 0, then v = Vp where
p is a scalar function and p belongs to II. Moreover p is uniquely defined by
this equation.

For proving this remark, we return to the definition of IP. Then IP(v) = 0
reads v; = Ri(0), v2 = Ry(0), v3 = R3(o) where 0 = Rjv; + Ravy + R3vs.
We have o € E’ since the Riesz transformations act boundedly on E’. Since
A : 11 - E' is onto, o can be written ¢ = Ap and this is the required
conclusion.

For proving that A : Il — E’ is 1 —1, we assume Ap = 0. Since p belongs
to the range of A, we write p = Af and obtain Af = 0. Therefore f is a har-
monic function. Since E is contained in S'(IR%), f is a harmonic polynomial.
Let o be a function in the Schwartz class and () = t=3 ¢(z/t).

Then || f*@iflo < Ct™! (lemma 10). But (f*¢:)(z) = [ f(z—yt) (y) dy
is a polynomial in t. Therefore this polynomial identically vanishes and

f=0.

We now return to theorem 12.1. If (u,p) is a mild solution, we have
P(u) = u, IP(Au) = Au, P(%) = 2 and finally IP(Vp) = 0. These iden-
tities yield (12.135). Moreover applying the divergence operator to (12.130)



144 Wavelets, paraproducts, and Navier-Stokes equations

identities yield (12.11). Moreover applying the divergence operator to (12.6)
we obtain Ap 4 0;0k(ujux) = 0. But the functional space II cannot contain
polynomials.

If p is such a polynomial, we have p = Af where f € E. Returning to
the Fourier transforms, we obtain |¢] /(€) = 0 on IR%\ {0}. Therefore f is a
polynomial. Since f € E, we have f = 0. We then obtain p = R; Ry (u;uk)
as announced. '

Let us once more stress that ujux = E‘;’ 0p(vj k,e) where v; ¢ € E which
yields p € II.

We now prove the converse statement in theorem 12.1. We begin with a
simple observation.

Lemma 15. If u(z,t) € C([0,00); E), divug = 0 and (12.11) is satisfied,
then divu(-,t) =0 fort > 0.

For proving lemma 15, we apply the divergence operator to (12.11) and
obtain %’{- = Aw where w = divu. We have w € C([0, 00),II) and w(-,0) =
divyg = 0.

Theorem 9.1 applies and yields w = 0. Next we consider the difference
ou _
ot
Then (12.11) and divu = 0 imply P[e(-,t)] = 0 in C([0,00); E'). This
yields €(-,t) = —Vp and p € C([0,00),II). Our goal is now achieved and
(u(z,t),p(z,t)) is the mild solution we looking for.

(12.13) g(z,t) = Au + 05(uju) .

This proof paves the way to our second definition of a mild solution. In
this definition, the pressure has disappeared.

Definition 17. Let E be a Banach space which is fully adapted to the
Navier-Stokes equations. Let us assume as we did above that A : E — E'
is an isometrical isomorphism. Then a mild solution to the Navier-Stokes
equations s defined by the following three conditions

(12.14) u € C([0,00); E)
(12.15) %;i € C([0,00); E")
(12.16) % = Au-—1P(8;(uju)).
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13 More about mild solutions

A fundamental observation concerning definition 17 is the following : if
u(z,t) is a mild solution to the Navier-Stokes equations, the same is true
for u(z,t+71), 7 > 0.

This remark will be used in section 20.

We now want to drop the condition (12.139) in the definition of a mild
solution to the Navier-Stokes equations.

Following T. Kato, we apply theorem 9.1 to (12.140) and reach the third
definition of a mild solution

Definition 18. With the same notations as above, a mild solution of the
Navier-Stokes equations is defined by the following two conditions

(13.1) u(,t) € C([0,00); E)
(13.2) u(-t) = S(t)uO—IP/O S(t—s)[0j(uju)(s)]ds.

As was already mentioned when theorem 9.1 was proved, the status of
this integral is far from being obvious. Indeed 9;(u;u) belongs to C([0, 00); E')
and our integral is an E’ valued Bochner integral. However it is not true
that this integral should belong to E. If u(-,t) is a mild solution to the
Navier-Stokes equations, it is the case and our integral belongs to E. What
we want to stress is the following fact. There is no hope to solve (13.142)
by a genuine application of Picard’s fixed point theorem.

This issue will be fixed by a remarkable approach dued to T. Kato and
his collaborators. This approach will be presented in section 19. For the
time being, we will impose a digression to the reader. This digression is
aimed to study the paraproduct algorithm. This algorithm is needed to

proving that B; (1=3/a),00 4 fully adapted to the Navier-Stokes equations.

As was already stated, the Morrey-Campanato space M? is not fully
adapted to the Navier-Stokes equations. Indeed (10.116) is not satisfied
while the Riesz transformations are bounded on M?2.

For defining the concept of a mild solution to the Navier-Stokes equations
when E = M?, we return to theorem 9.1 and define a suitable functional
Banach space E’. This Banach space should contain all functions or distri-
butions of the form Af where f € M?2. Then the mapping A : E — E' will
be continuous.
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This Banach space should also contains all functions of the form du; +
Oyuz + O3usz when u,us and uj satisfy the estimate sup,, suppcp<co 1% .
flz —zol< rlf(z)ldz < oco. Finally E' should be invariant under the Riesz
transformation.

The explicit construction of E’ is not trivial but will not be needed in
what follows.

Right now a digression is needed. Apart from two trivial examples of
fully adapted Banach spaces, all the interesting examples are based upon
the paraproduct algorithm. This algorithm is also playing a crucial role in
the proof of uniqueness when E = L3(IR3). The next section contains a
review on the paraproduct algorithms.

14 The paraproduct algorithm

There are two versions of the paraproduct algorithm. The first one is implicit
in [20] and was given its full strength and flexibility by J.M. Bony. The
second one is a wavelet based algorithm and is related to P. Federbush’s
program.

The Bony’s paraproduct is using the Littlewood-Paley analysis.

For defining a Littlewood-Paley analysis we fix a function ¢(z) in t
Schwartz class S(IR3) such that ¢(£) = 1 on the ball |¢| < 1/2 while ¢(¢) =
outside the ball |{| < 1.

We also may assume 0 < ¢(§) < 1 everywhere and that ¢ (or @) is a
radial function. But these two properties are not needed in what follows.

For j € Z, we write ¢;j(z) = 237 ¢(2z) and we denote by S; the convo-
lution operator defined by S;(f) = f * ;.

If E is a functional Banach space, we have lim;_, 1 ||S;(f) — flle =0
when S(IR?) is dense in E. If E = F* where F is such a functional Banach
space, we have S;(f) = f (j = +o00) where here the limit exists for the
o(E, F) topology.

A functional Banach space F is adapted to the Littlewood-Paley decom-
position if

(14.1) lim_[15,(H)le = 0

for every f € E. This condition concerns the case where S(IR%) is dense in
E. If E = F*, we instead impose S;(f) = 0in o(E, F) as j = —o0.
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We next write A; = S;41 — S;. If E is adapted to the Littlewood-Paley
decomposition, we have

(14.2) , f=>Y"45f)

where this series converges to f in E when S(IR?) is dense in E and converges
to f in o(E, F) when E = F*.

Among adapted Banach spaces, one lists the Lebesgue spaces L?(IR3)
when 1 < p < oo. However L! is not adapted. Indeed if f € L! and
[ fdz = 1, then the right-hand side of (14.144) cannot converge to f for
this L'-norm since [ A;(f)dz = 0.

Similarly L* is not adapted to the Littlewood-Paley decomposition. An
obvious counter-example is given by f =1 where A;(f) = 0 for all j’s.

We have A;(f) = f *; where ¢;(z) = 2% ¢(27z) and ¢(z) = 8p(2z) —
¢(z). The Fourier transform 1&(5 ) of ¢ is compactly supported and vanishes
on |¢] < 1/2 and outside the ball |¢| < 2. Therefore 1 is similar to a mother
wavelet and a Littlewood-Paley analysis is similar to a wavelet analysis [55].

The paraproduct algorithm was first designed for studying some involved
bi-linear operators B(f, g) which appear in Calderén’s program [56]. Later
on J.M. Bony observed that this algorithm was also relevant for studying the
ordinary product f(z)g(z) whenever this product cannot be given an ordi-
nary meaning. This situation occurs when f and g are both badly behaved
(e.g. f =g = dp where §p is the Dirac mass at 0). In this situation the para-
product algorithm yields an “additive renormalization” or “regularization”
of a divergent expansion.

Nowadays para-product algorithms are expected to play a role in numer-
ical analysis [54].

It is now time to unveil the paraproduct algorithm which reads
oo o0 oo
(14.3) f@)g(@) = 3 A=) + 3 Bia) + 3 ()
—00 —00 —00

where

(14.4)
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while

(14.5) Cj(z) = (Aj—2(f) + -+ + Ajr2(f)) A5(g) .

The relevance of this splitting of the product f(z) g(z) will be clarified by
the following remark.

Lemma 16. Let A and B be two compact sets in IR® and A + B denote
the compact set of all sums € +1n, £ € A, n € B.

If f(z) and g(z) are two functions such that the Fourier transform f of
f is supported by A and the Fourier transform § of g is supported by B,
then the Fourier transform of the pointwise product f(z)g(z) is supported
by A+ B.

If this obvious remark is applied to Sj_2(f) Aj(g9) = Aj, we find that
/lj(f) is supported by the dyadic annulus %Zj < Kl < %2j . Therefore
the series Y > Aj(z) is behaving like a Littlewood-Paley series. The same
applies to 3. _B;(z). If, for instance, both f and g belong to L!(IR?),
then 3" A;(z) and Y. _ Bj(z) are convergent in the Besov space By >*.
We will return to this point.

The devil is hidden in the third series Y > Cj(z). Indeed Cj(z) con-
tains the square terms A;(f) A;(g) and a few other terms. If, for example,
g = f and if ¢ is real valued, then A;(f)Aj(g) = |A;(f)|? and there are
no cancellations. If both f and g belong to L!(IR®) the series 3% Cj(z)
diverges. Indeed one cannot multiply two L! functions. Using the para-
product algorithm, we isolate the few terms which are responsible for this
issue.

Using a metaphore, the paraproduct algorithm can be compared to the
celebrated Richardson’s cascade. Indeed high frequencies cascade to low
frequencies in each product A;(f) Aj(g).

There is a second version of the paraproduct algorithm which is based
on a wavelet series expansion.

Let 1), A € A, be the orthonormal wavelet basis which is constructed
in section 6. We have A = Z x Z3 x E where F is the finite set of ¢ =
(e1,€2,€3) € {0,1}3 with € # (0,0,0). if A\(j,k,e), j €Z, k€ Z®, e € E, we
then have v (z) = 2%/24.(2/z — k). Finally v, (z) belongs to the Schwartz
class S(IR®) and )¢ (€) = 0 if either |¢| < 27/3 or |¢] > 87/3. Here |¢| =

Sup(|§1|, |€2|7 |£3|)
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We consider two functions f and g in L2(IR®). Then f(z) = 3 ax ¥ (z)
and g(z) = > B ¥a(z). This leads to

(14.6)  f(@)g(z) = > arByi(@) + DY arBuha(z)n ()

AEA AEN
= U(z)+V(z).

If for simplifying the discussion, ¥g, € € E, are real valued, the square
terms 1% (z) satisfy [ 4%(z)dz = 1. In contrast the rectangle terms satisfy
Ja(z) Yn (z)dz = 0. Therefore the series U(z) is likely to diverge while
the series V(z) is like to converge. This convergence is provided by the
cancellations which are given by the orthogonality.

In order to extend the definition of the product f(z) g(z) to some func-
tional settings where this product has no meaning, it suffices to eliminate
the divergent series Y- ay B ¥%(z).

However there are many examples where the cancellation provided by
J ¥a(z) ¥ (z) dz = 0 is not sufficient. In order to prove the convergence of
V(z) we often need a stronger cancellation such as [ z® ) (z) ¢¥x(z)dz =0
for |a| < N where the integer N is related to the functional setting. But
orthonormal wavelet bases do not have this strong orthogonality. That is
why the wavelet based paraproduct was given up [54].

15 Examples of Banach spaces which are fully adapted
to the Navier-Stokes equations

We first list two trivial examples for which the paraproduct algorithm is not
needed.

The first one is the Lebesgue space L3(IR3). Its role was discovered by
T. Kato [43] and we will return to the uniqueness issue in Kato’s theorem
in section 20.

For proving that L3(IR3) is fully adapted we concentrate on (10.116).
Indeed singular integral operators are bounded on L3(IR3).

If both f(z) and g(z) belong to L3(IR3), then f(z)g(z) belongs to
L32(R3) and h = A~1(fg) is back in L*(IR®) as Sobolev embedding theorem
tells us.

The same approach is valid for the Lorentz space L**°(IR3). Instead
of writing the proof, let us concentrate on an interesting example. The
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function f(z) = |z|~! obviously belongs to L¥»*(IR3) and the special case
f(z) = g(z) = |z|7! yields h(z) = c|z|~! where c is a constant.

This example will introduce the third example where E is defined by a
pointwise estimate on the Fourier transform f(¢) of f. This estimate reads

(15.1) 1O < clel?.
If both f and g belong to E, then

(F9)(©) < IfI*13l < Clel™
which obviously implies fg = A(h) with h € E.

The next examples we want to treat are the Besov spaces B, = B; s
a = 3/q — 1. The paraproduct algorithm will be used to show that By is
fully adapted to the Navier-Stokes equations when 1 < ¢ < 3.

The discussion will be clarified if the general definition of homogeneous

Besov spaces is presented.

Definition 19. If1 <p < o0, 1 < ¢ < 00 and if s is a real number, the
homogeneous Besov space Bp''(R™) is defined by

(15.2) 18;(Nlly < 277 jeZ
where

© 1/q
(15.3) (Z s?) < 00.

This definition should be completed with
(15.4) 1S5(Flloo < &5 2777
if s <n/p. We also impose

°° 1/q
(15.5) <Z€J‘.’) < 0.
—o0

Let us explain why (15.4) is a natural a priori assumption on a function f
in Bp.

For this purpose, the celebrated Bernstein’s inequalities will be used.
They are given in a slightly more general context.



Yves Meyer 151

Lemma 17. There exists a constant C such that, for 1 < p < q < oo, one
has

(15.6) Iflly < CRMV/P-Ya) 5|,

whenever f belongs to LP(IR) and its Fourier transform f(£) is supported by
€l < R.

Returning to (15.152) we have
(15.7) 18;(Nlleo < Cej2dlemn/e).

If the Littlewood-Paley expansion of f converges to f in the distributional
sense, we can write

(15.8) Si(f) = D Ap(f)
J'<3
and (15.155) clearly implies (15.152) and g; € £9(Z).

If conversely (15.152) holds, then ||S;(f)llc = 0 (j = —o0) and the
Littlewood-Paley expansion of f converges to f. This means that (15.152)
can be replaced by the seemingly weaker condition

(15.9) S;(f) =0 in o(S,S).

We now concentrate on the specific homogeneous Besov space B.}’"“’ where
a =3/q— 1. It is defined by

(15.10) 14;(Nllg £ €277, j€Z,a=3/g-1
together with
(15.11) 1Al < CF.

We then have

Theorem 15.1. The Banach space By is fully adapted to the Navier-Stokes
equations if 1 < g < 3.

Let us begin with the dilation invariance of the norm. The norm of f in
B, is defined as

(15.12) £l = sup27®/2=1) [|A;(£)ll,
JEZ
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which obviously implies
(15.13) 127 f(2™z)|| = ||f]| if meZ.
On the other hand there exist two constants Cy > C; > 0 such that

(15.14) Glfll < If Q)] < Gl £
ifl1<a<2

We then introduce a new norm which is defined by
(15.15) sup {Allf(Az)]l; 0 <X < oo} = [If]ll-
This new norm satisfies
(15.16) GlIfIl < AN < Cellfll,  fEB
and we have
(15.17) W@ = [IIAfQ2)lll,  0<A<oo.

This being checked, we turn to the difficult statement in theorem 15.1. It is
based on the following lemma

Lemma 18. Let f;, j € Z, be a sequence of functions in LP(IR™). Let us
assume the following two conditions

(15.18) the Fourier transform fj(f) of f; is supported
by the ball €| < 27
o0
(15.19) I£llp < €;277% where s>0 and ng < 00.
— 00

Then Y > f; belongs to B;’q.
Similarly if the Fourier transform f;(€) of f; vanishes on the ball |¢| < 27
and if (15.19) holds with s < 0 and 3% €] < oo, then 357 f; belongs to

25,4
By".

Let us prove this statement when s > 0. We have A,, (Z‘fw fj) =
Am (X5 fj) = wm by (15.18). Then

lwmlly <C D Nflly C D €279 =np2™™  where n, € 69(Z).

m—2 m—2
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It should be observed that (15.18) can be replaced by a much weaker state-
ment. If indeed 0 < s < m, m € IN, it suffices to assume the following

(15.20) 18°fll, < ;2209 ol =m
with

o0
(15.21) > ol < oo,

Then 3. _ f; belongs to By

We now return to B? = Bq_(l—:;/q)’oo when 1 < ¢ < 3. Writing f =
So(f)+Ag(f)+-+Ay(f)++-- we have Sp(f) € L®(IR®) while [ A;(f)], <
g;200=3/9)  If 1 < ¢ < 2, this implies [|A;j(f)l2 < €;279/% by
Bernstein’s inequalities and 3 ¢° A;(f) € L2. If 2 < ¢ < 3, we obviously
have 3°5° Aj(f) € L9. Finally f always belongs to LZ .

For proving (10.4) the paraproduct algorithm will be used. Then f(z) g(z)
= A(z) + B(z) + C(z) where

(15.22) Al@) = ) 5i2(f)As0)

(15.23) B(z) = Y Sj-2(9)A(f)

and

(15.24) Clz) = D > Ailg) Ay(f).
li'—4l<2

Both A and B are Littlewood-Paley expansions. We observe that ||S;_2(f)-
Aj(g)lly < €272-%/9) and therefore obtain A € B?* where 8 = a — 1.
Therefore A = Aa with a € Bg"™ = B,. The same remark applies to B.

As always in the paraproduct algorithm, the devil is hidden inside the
third series C(z).

Indeed we have ||A;(g) Aji(f)|ly < C27(2=3/9) which only permits to
apply lemma 18 if 1 < ¢ < 3/2. If 3/2 < g < 3, the idea consists in fixing
r such that sup(2,q) < r < 3 and in applying Bernstein’s inequalities. We
obtain

; 1 1
12;(Dll- < C27%7 where —=2+e, >0,
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which yields [|A;(f) Ay (9)llr/2 < €27,

Now lemma 18 can be applied and we obtain C' € Bf%‘”. Therefore
14;(C)lr/2 < C 27%7 which implies by Bernstein’s inequalities ||A;(C)|lq <
C 27(2-3/9) and the proof ends as before.

When ¢ =1, By = Bf ">, The proof we just gave works as well for the
space Bf ! we want to study now.

This Banach space has a fascinating property. Among all the functional
Banach spaces E which are adapted to the Navier-Stokes equations, Bf 1
is the smallest one. This minimality property is easily explained. Let us
consider the orthonormal wavelet basis 2%7/2(2/z — k), j € Z, k € Z3,
Y€ A (withf A=7, AcC S(R?)).

We then have [|274(2/z — k)||g = ||¢||g. Since E is a Banach space, this
implies ; S~ a(j, k) 294 (2'x — k) € E whenever 3.3 |a(j, k)| < 1. But any
f e Bf’ is given by a wavelet expansion 33" a(j, k) 2/4(2/z — k) where
> la(j, k)| < co. This implies the minimality of Bf’l.

There is a second approach to Bf ! which relates this Banach space to
the bump algebra.

The bump algebra is defined by the following properties : if g, 4)(z) =
exp (—ajz — a|?), @ > 0, a € R?, then a function in the bump algebra can
be written as a series

(15.25) F@) =YX gay,0p) (@)
0

where a; > 0, aj € R? and 35°|);] < co.

Such an expansion is not unique and the norm of f(z) in the bump
algebra is defined as the infimum of 3 |);| over all expansions of f(z).
Finally the bump algebra is closed under pointwise multiplication. This
is obvious since g(a,a) 9(8,6) = AJ(y,c) Where 0 < A < 1, v = a + (8 and
c=(aa+ pb)/a+p.

The bump algebra is identical to the Besov space Bf ! and each fe Bf’l
can be written as f = Af where g € Bf’l.

Before ending this section, a variant on the preceding proof will be given.
The following result will be needed in the proof of theorem 26.1.

Theorem 15.2. If3/2 < ¢ < 6, f € LIY(IR%) and g € By>™, then
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the pointwise product f(x)g(z) belongs to the homogeneous Besov space
Bl/2—$/q,oo
2

For proving this fact, the paraproduct algorithm is again used.

The first series is A(z) = Y > Aj(x) where A; = S;_»(f) Aj(g). Since
f belongs to LI(IR?), we have

(15.26) 18j=2(F)llec < C2%9/9 £l

by Bernstein’s inequalities. This yields

(15.27) 4;lla < C279/2=3/9 | £l 1gllB

where ||g||p denotes the norm of g in the homogeneous Besov space Bl/ 200

This estimates implies Y > A; € Bl/ 2-3/2%° and the hypothesis ¢ €
(3/2,6) is not needed.

We now turn to the second series B(z) = Y > Bj(z). Here ¢ < 6
is needed. This implies that two exponents s > 3 and r > ¢ exist with
% + % = %— We then have

(15.28) 14;(9)lls < C270=3/9) |jg|5

which implies

(15.29) I1S;()lls < €203 |g||p.
Bernstein’s inequalities yield

(15.30) 125l < C29W £l

All together these estimates give

(15.31) 1S5-2(9) 85 ()], < C2E23 ||| gl

as expected.

The last series in the paraproduct algorithm are y o A;(f)Aj(f)
where [j' — j| < 2. We consider > A;(f) Aj(g) since the four other series
can receive a similar treatment. Slnce we cannot expect any cancellation in
Aj(f)Aj(g), lemma 18 should be used with s > 0.

We separately treat the two cases 3/2 < ¢ <2and 2 < g <6.
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In the first case, the L' norm of C; = A;(f)A;(g) is estimated by
Hlder’s inequality and one obtains ||C;||; < € 27(%/9=2), Then % _Cj(z)
belongs to 321/2_3/q’°°. Since Bf_s/q’w is contained in 321/2_3/'1"”, this ends
the proof.

When 2 < ¢ < 6, an exponent r is defined by % + % = % and Hlder’s
inequality yields

(15.32) 128;(f) 25(g)ll- < €272 | fllq llgllm

which implies }-° _ C; € B3 Here again BL/%* s contained in Bé/ 2-3/g,00
and the proof is completed.

It should be observed that theorem 15.2 fails if ¢ = 3/2 or ¢ = 6.

In both cases, we start a simple observation. The function g(z) = ]—}c-[

belongs to le/ 22 Indeed this function belongs to Bq_ (1=1/3)0 gor qg>1
We then study the linear operator defined by the pointwise multiplication

by ]%[
For studying this operator, the following lemma will be used.

Lemma 19. There exists a constant Cy such that
(1533) il < Co sup {Jle™ ()l ger s w € 7}

for f € L*(R®).

The proof of (15.33) is almost obvious. If f is compactly supported and
vanishes when || > R, then we have

(15.34) allflle < ||ei“""”f(x)HBg,oo < coll fll2

whenever 2R = |w|. Here c; and c; are two positive constants. Then (15.34)
implies (15.33). When f is no longer compactly supported, it suffices to
approach f by such functions.

Let us assume for a while that the pointwise product between a function
g in LS(IR?) with ]%[ belongs to Bg’°°. Since g(z) and e** g(z) have the
same L® norms, this would imply the following

(15.35) 1£ (@) 1z, < ClIflle-

This is obviously wrong since |z|~! does not belong to L3(IR?).
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The other limiting case is ¢ = 3/2.

Let us denote by 6(z) a cut-off function such that (z) =1 on |z]| < 1/4
and 0(z) = 0 if |z| > 1/2. We then consider f(z) = |z|72|log |z||~! 8(z)
which belongs to L%2. The pointwise product between f(z) and ]%[ is
|z| =% |log |z||~' 6(x). This product is a pointwise function which is not
locally integrable at 0. Therefore it cannot belong to B; 3/2:00
a tempered distribution.

and it is not

16 T. Kato’s algorithm : an abstract lemma

The goal of this algorithm is to construct mild solutions u € C([0, 00); E) to
the Navier-Stokes equations when the functional Banach space F is adapted
to the Navier-Stokes equations.

More precisely we would like to prove the following conjecture :

(16.1) there exists a positive number « and a constant C
such that for ug € E satisfying ||uo||g < « and divug =0,
there exists a mild solution u € C([0, ); E)
to the Navier-Stokes equations such that u(-,0) = up and
(16.2) sup [u,O)lle < Clluwlle -

As it was earlier mentioned, the condition ||up||g < a cannot be given
a meaning if the functional space E is not adapted to the Navier-Stokes
equations. Indeed the Navier-Stokes equations are invariant under a certain
action of the affine group and the sufficient condition ||ug||g < a should
reflect this invariance.

T. Kato’s algorithm relies on the following abstract lemma.

Lemma 20. LetY be a Banach space and let B:Y XY — Y be a conti-
nuous bilinear operator : there exists a constant Cy such that

(16.3) 1By, 2)l < Collyll Il

fory,z €Y, | | denoting the norm in Y.

Then for a € Y such that ||a| < ﬁ, there exists at least a solution
z €Y to the equation

(16.4) z = a+ B(z,z).
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For proving this lemma we inductively define a sequence z, k£ € IN (and
k =0) by o = 0 and zx+1 = a + B(zk,zx). We then obtain

(16.5)
Tkt1 — Tk = B(zk—zk-1, zk) + B(Tk—1, Tk —Tk-1)

which implies
(16.6) l|lze+1—=zk|| < Col|lze—zr—1| (lzr—1ll + llz&ll) -

For estimating ||zx+1 — Zk||, we construct an increasing sequence ry of real
numbers by ro = 0, 71 = ||a|| and rx41 = ||a|| + rZ. We then have

(16.7) re+1 — Tk = Cp (rk - rk_l) (Tk + rk_l)

and 7 is actually increasing. This sequence 7, converges to r if and only
if 4Cy||a|| < 1. This limit r is the smallest solution of the scalar equation
t = |la|| + Cot?. This equation is a special case of (16.4) where Y = R
and B(t,t) = Cot?. An obvious induction yields ||zx+1 — k|| < Tha1 — Tk
Therefore ) 0° ||zx+1 — zx|| < r and xx, k € IN is a Cauchy sequence which

tends to a limit z. We have ||z|| < r = = 12—(;(1)||allco < 2f[a.

This well-known proof is interesting since it is sharp. Indeed ||a| < 4%.—0
cannot be replaced by ||a|| < i%j where ¢ is positive. A counter-example is

precisely given by the scalar equation ¢t = ||a|| + Cot?.
Returning to lemma 20, it is completed by the following remark.

Lemma 21. We keep the same assumptions and notations as in lemma 20.
Then the equation (16.4) has a unique solution xz such that ||z|| < 2%‘3'

We first observe that the solution given by the iterative scheme satisfies
lell < 2lall < z-

If y is another such solution and y = z + 2z, we then have z = B(z, 2) +
B(z,y) which implies ||z|| < Collz|| ||2]] + Colly|| l|z]|. If z # O, this reads
1< Co(llzll +llyll) < 1.

17 Kato’s algorithm applied to Navier-Stokes equa-
tions : a straightforward example

We want to apply lemma 20 to Navier-Stokes equations. More precisely
we want Y to be the Banach space C([0,00); E) where E is a functional
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space which is adapted to the Navier-Stokes equations. We want a to be
S(t)ug € C([0,00); E). Finally the Navier-Stokes equations read

(17.1) u = u(-,t) = S(t)up + B(u,u) = a+ B(u,u)
where
(17.2) B(u,v) = PP / " S(t—s) 8;(uy0)(s) ds.

0

Some explanations may be useful. Here and in what follows, a;b; means
a1by + azby + azbs. We will write u € C([0,00); E) instead of the unpleasant
u € C([0,00); E®). The Banach space Y = C([0,00); E) will be given the
norm

(17.3) sup [[u(-,t)||E -
>0

More important are the following remarks about the bilinear operator
B. The Banach spaces E which will be used are invariant under the Riesz
transformations. We can therefore forget the Leray projector IP which acts
boundedly on E.

In a more sophisticated version of Kato’s algorithm (section 19) an L*®
estimate will also be needed. Since the Leray projector IP is not bounded
on L*(IR™), it should be incorporated inside the integral sign and the three
operators IP, S(t—s) and 8; should be glued together. The resulting operator
T;(t—s),j = 1,2 or 3, is a convolution with (t—s) "2 w; (x(t——s)‘l/z),j =1,2
or 3. Elementary calculations show that w; € C*®(IR3) with wj(z) = 0(|z|™*)
at infinity. Therefore w; belongs to L' (IR?) and the operator norm of

(17.4) P S(t—s)9; : L®(R3) — L=(R?)
is C(t — s)~1/2 where C is an absolute constant. This remark applies as

well if L>°(IR®) is replaced by any functional Banach space X whose norm
is translation invariant.

In (17.192) u and v are vector fields satisfying
O1uy + Ooug + O3uz = O1v1 + Oovg + O3v3 = 0.

However it can be proved that for most of the estimates we have in mind,.
this fact is useless [57]. That is why at the proof level the true bilinear
operator B(u,v) will be replaced by their scalar counterparts defined as

(17.5)
B;(f,g) = /0 S(t-5)0;(fg) (s)ds, 1<j<3,
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where f = f(z,t) and g = g(z,t) both belong to C([0,0); F).

We can even move further and consider

(17.6) B(f,g) = /0 S(t—5) A(fg) (s) ds

where A = v/—A is the celebrated Calderén’s operator. Then B; = —iR;B
where R; denotes the Riesz transformation. Since E is assumed to be in-
variant under the action of R;, any estimate for B(f, g) will imply the cor-
responding estimate for B;(f, g).

In our first example of Kato’s algorithm, the functional Banach space E
is defined by a pointwise estimate on the Fourier transform f of f. It reads

(17.7) 1)) < cle2.

In other words Af € PM(IR®) where following Kahane’s notations, a distri-

bution S is a pseudo-measure if and only if its Fourier transform S belongs
to L*®(IR3).

Therefore E is not a separable Banach space. Instead it is a dual space
F* where g € F if and only if g = Ah and h belongs to the Wiener algebra
[41]. Therefore u € C([0,00); E) means the following two properties

(17.8) u is continuous from (0,00) to E when E

is given its norm topology

(17.9) u(-,t) = u(-,0) with respect to o(E,F)
as t tends to 0.

We then write Y = C([0,00); E) and have

Lemma 22. The bilinear operator B defined by (17.6) is continuous from
YXxY intoY.

We will only prove the bilinear estimate

(17.10) IB(f,9lly < Cliflly llglly

when

(17.11) I flly = sup [|f(-,t)l|E-
>0
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The proof of the required continuity with respect to the time variable is
identical to the one which will be given when E = L**. For that reason,
this part will be omitted.

Returning to (17.200), we observe that |f(£)] < C|¢]~2 and |§(¢)| <
C|€|~2 imply |(fg)"(€)| < CJ¢|~L. On the Fourier transform side,

t 2
[mmma=AmﬁHWuw@@

which implies

¢
(BU.oN©)] < © [ leleIle ds < clel?.
We have proved the following result

Theorem 17.1. If the adapted Banach space E is defined by (17.197), there
exists a positive number 1 such that for every initial condition satisfying
luwolle < m, there exists a mild solution

u € C([0,00); E)
to the Navier-Stokes equations such that u(z,0) = ug(z) and

(17.12) Sup u(z,)lle < 2lluolle-
t—

Moreover this solution is uniquely defined by the weaker condition

(17.13) sup [lu(z,t)||le < 27.
t>0

18 Kato’s algorithm applied to the Navier-Stokes
equations : the Lorentz space L>*(IR%)

Let us remind the reader with the general definition of the Lorentz spaces
LP4(IR™). If f is a measurable function defined on IR", we let Ej, j € Z, be
the set of points z € R™ for which 2/ < |f(z)| < 2/*1. If |E;| denotes the
Lebesgue measure of Ej, then f € LP9(IR™) means

(18.1) |E;|MP 2 € 09(Z).
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Let us observe some formal similarities between this definition and the defi-
nition of the Besov spaces. Writing f; = 1g; f where 1g is the indicator
function of E, (18.1) reads

(18.2) I55lle € €1(Z)

and we have f =3 % f;.

But in contrast with what is happening in the Besov space case, the
mapping f — (f;);ez is not a linear one.

We now assume 1 < p < oo and ¢ = co. Then (18.1) can be rewritten as
(18.3) {25 1£(@)| > A} < AP

If E is any measurable set with a finite measure, (18.3) implies

(18.4) [ir@lds < ce

where 11—1 + ;% =1
This fails when p = 1. Obviously (18.4) implies f € LP»*°(IR").

Then (18.4) can easily be used for defining a norm on LP*°. It suffices
to write

185)  fllpe = sup {17 [ @) dz; B e 8]

where B is the collection of all Borel sets with a finite and positive measure.

An other access to the norm is given by the following observation. A
function a(z) is an atom if a(z) = |E|"Y/? 1g(z) for some E in B. We then
consider the Banach space consisting of all f(z) € L (IR™) which admit a
decomposition

(18.6) fl@) = Xa;(z)
0

where a;(z) is a sequence of atoms and where Y 3° |A;| < oo.

The norm of f being the obvious quotient norm given by the infimum of
35" |Aj| computed over all possible expansions of f.
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It is not difficult to check that this Banach space is identical to L?"+1(IR").
Then LP*® = E is the dual space of LP"! = F. This Banach space F is
separable while E is not.

We now return to L3> (IR?). If f € L3*(IR3), we have
(18.7) / |f(z)|*dz < C|E|}3, Ee€B
E

and it is interesting to compare this property to the definition of the Morrey-
Campanato space where E is a ball.

As it was stated many times, u(z,t) € C([0,00); E), E = L>*(IR3)
means u(z,t) — u(z,0) in o(E, F) as t tends to 0 together with

(18.8) lm |Ju(-,t) —u(:, )|z = 0, tp > 0.

t—to

We then have

Lemma 23. If E = L¥°(R3) and Y = C([0,00); E) then the bilinear
operator B is continuous from'Y XY into Y.

Let us begin with a general fact.

We start with a kernel K;(z,y), t > 0, z € R3, y € R3, fulfilling the
following estimate

(18.9) |Ki(z,y)| < Ct3(1+ |z—y|/t) ™"

and denote by P, : LP(IR3) — LP(IR3), 1 < p < oo, the operator defined by

(18.10) Pf@) = [ Ko 1) dy.
We then have a pointwise inequality |

(18.11) IPfI(z) < Cloex If]) @)
where ¢(z) = (1 + |z[)~*. Therefore

(18.12) IP:flle < Cliflle

whenever the functional Banach space E is translation invariant and is a
lattice. That means that fo € E and |fi(z)| < |f2(z)| implies f; € E. This
remark and (18.215) apply to LP*°(IR®) when 1 < p < oco.
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Next we consider a real number a € (0,3) and an exponent p belonging
to (1,3/a). We then study a linear operator T' which maps continuous
functions f € C([0,00); E), E = LP®, into functions of € IR? by

(18.13) o(z) = /Ow P f(,t)t= 1 dt.
Keeping these notations we have

Theorem 18.1. Ifa € (0,3) and p € (1,3/a), then

(18.14) Igll(g,00) < C sup 1 ¢ Ml proo)

3

where ¢ = Top

and || - ||(p,c0) 18 the weak-LP norm.

The proof is trivial but will be given for the reader’s convenience. Let
A € (0,00) be a threshold. We consider the set E of points z for which
lg(z)] > X\ and we want to estimate the Lebesgue measure |E| of E. We
then split [;° P.f(-,t)t* 1 dt into [J + [7° = u(z) + v(z). The relation
between 7 and A will soon be clarified.

We first estimate ||v||co. Indeed as a function of y, K;(z,-) belongs to
LP! where 1/p'+1/p = 1. Moreover ||K¢(z,-)||,».1 < Ct~3/P and this implies

(18.15) IPf ()l < Ct3/P sup [11(, )l p,c0)

Therefore [[v]c < C [Ct*~3/P~1dt = C'723/P. We now define 7 by
C't®=3P = )\/2. If |g(z)| > A, that forces |u(z)| > A/2. But

[l < € [ 16y 7t = €7

(here p > 1 is crucially needed). Finally
A

[z lu(@) > A2} < ¢"(5) " = Cox~s

where ¢ = 3—_3-%7 as announced.

We now treat a very specific example. We consider

g(z,t) = /0 S(t—s) A f(-s) ds
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where sup,> || f (-, 8)|l(3/2,00) £ 1 and want to prove that a constant C' exists
for which

sup [|lg(,)ll3,00) < C.
>0

For reducing this example to the framework given in theorem 18.1, we first
change s into t — s and write

gz, t) = /Ooo S(s)AF(-,s)ds

with F(-,8) = f(-,t—s)if0<s<tand F(-,s) =0if s > t.

Finally A S(s) is a convolution operator. The corresponding kernel
K (z,y) is s‘Qw(f\f—f) where |w(z)| < C(1 + |z])~*. This leads to a final
change of variables s = 72 and theorem 18.1 applies with a = 1.

We now investigate continuity with respect to the ¢-variable.

Lemma 24. Let us assume that f(-,s) € C([0,00); E), E = L3%* where
this continuity with respect to the t wvariable is defined by (17.198) and
(17.199).

Then g(-,t) € C([0,00); F) where F = L>* and the continuity is simi-
larly defined.

We begin with the required weak continuity at to = 0. Our first obser-
vation is a trivial one. Indeed

t
lgC+ )32 < C /0 (6= )72 £ ()3 /2.00)

< 2082 sup [I£(9)lis/2,00) -
0<s<t

Therefore limy o [|g(+,t)||3/2,00 = O which suffices to imply the required weak
continuity.

For proving the required continuity at ¢, > 0, we compute ||g(-,¢') —
g9(-,t)||e when 0 < a < t <t < 2a. This positive a exists if |t — tg| < to/3
and |t, — t0| < t0/3. .

For symplifying the notations, we assume
IfC0lle <1 for ¢2>0.

We then split f(-,t) into the sum fi(-,t) + f2(-,t) where f(-,t) = 0 for
t > a/2, fa(-,t) = 0 for t < a/4, fa(-,t) is continuous from [0,00) into
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E when FE is given its strong norm topology and finally ||fi(-,t)||z < 1,
lIf2(, )|l < 1 for ¢ > 0. Then

o0 = [ St-0)a5Cs)ds
= /t S(t—s)A fi(-,s)ds + /t S(t—s) A fa(-,8) ds
0 0

= u’('7t) +U('at) .
We first treat u(- fo (t—s)Afi(-,s) ds. We then have
9 A2 -1
Hg;uo,t)H(&w) < [T1a%6-9 A A e

a/2
< C/ (t—s)‘zds.
0

This last estimate is coming from the boundedness of A~1 : [3/2:%0 _ [3:%
Concerning v, we write

tl

v(,t) —v(,t) = S(T)Afz(-,t'—‘r)d'r—/ S(r)Afa(st—T)dr
0 0

= [ S()Afalt—7)dr +
t

+/0t S(T)A[f2(, ' =7) = fo(-,t=T)]dT = U+ V.

Concerning U, we once move factor out the Calderén operator which reads

t’

U= t [S(T)A]A™Y fo(-,t' —7) dT

and implies

t 1 , dr
1Vllsee < | 1Q(T) A ot =7) |5 00 —

The operator Q(7) = 7 A exp (TA), 7 > 0, is uniformly bounded on L3°°.
We finally obtain

/

t
[Ullsco < Clog .

Concerning V/, it suffices to use theorem 18.1 together with the continuity
with respect to the ¢ variable of f;. We then have || fo(ot' = 1) = fa(-,t —
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'r)”s/2 oo Jeif[t —t|<nand 0 <7 <t <t < 2a. It implies |[V]|3,00 < Ce
as expected.

We proved the following statement.
Theorem 18.2. There ezists a positive number n such that for every ug(x)
in L3 (IR3) fulfilling
(18.16) lluolls,co <m and divup(z) =0

there is a solution u(z,t) of the Navier-Stokes equations with the following
properties

(18.17) u € C([0,00); L¥*(IR?))
(18.18) u(z,0) = uo(z)
(18.19) sup lu(@, )ll3,00) < 2lluoll(3,00) -

Moreover this solution is uniquely defined by (18.220), (18.221) and
(18.20) sup ||u(z,t)||(3,oo) < 2n.
>0

19 Kato’s algorithm : the Lebesgue space L3(IR%)

Theorem 18.2 is surprising since the continuity of B: Y x Y — Y is failing
in a more natural setting given by Y = C([0, 00); L3(IR3)).

For treating this example, T. Kato made the following crucial observa-
tions. First the linear evolution S(¢)ug belongs to a much narrower space
Z C Y and secondly the iterative scheme which is being used for solving
(17.191) is indeed confined inside Z.

The definition of Z heavily depends on the adapted functional space F
we are working with.

When E = L3(IR?) or the Morrey-Campanato space M2, the definition
of Z relies on the L*-norm of u(-,t). In other cases, this definition is much
more involved and will be unveiled in section 22.

We begin with a simple observation which was proved in section 8
(lemma 9).

Lemma 25. If the functional Banach space E is adapted to the Navier-
Stokes equations, there exists a constant C such that for f € E and t > 0,
we have

(19.1) IS®) fllo < CtY2|fllE-
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This estimate leads to the following definition of Z as proposed by T.
Kato : Z is the subspace of Y = C([0,00); F) consisting of all u(z,t) € Y
such that

(19.2) sup /2 ||u(,t)]leo = 7 < 00
t>0

and ||lul|z =y + sup;>g [|u(:,t)||g- Lemma 25 implies the following
(19.3) [S@uollz < Cilluolle
and Kato’s program will depend on the following crucial estimate

(19.4) 1B(u,v)llz < Collullz llvllz -

We illustrate this approach when E = L3(IR?®) and prove (19.4). We
begin with the first half of the Z-norm and prove

(19.5) sup || B(u,v)|ls < Cllullz ||v]z.
>0

Indeed B(u,v) = w(-,t) = fot]P S(t—s) 0;(ujv) ds and IP S(t—s)9; is a con-
volution operator with a (matrix valued) function (¢t — s) "2 w((t — s)~1/2z).
As it was observed, the L'-norm of this function is (£ — s)~1/2 ||w||;. There-
fore

wmwgswmluﬂrwmww&

We then observe that ||uv||s < [|ulleo|[vlls < s™Y/2 ||ulz ||[v]|z and the com-
putation ends with the following trivial remark

t
(19.6) / (t—s)"Y2572(s = 7.
0

This simple approach fails if one tries to estimate the L* norm. Indeed
ulloo < 872 ||ullz, [[v]leo < 5720z lead to a divergent integral.

But this problem can be easily fixed. Indeed one uses the duality between
L* and L*/3 which yields

wumwsclaﬂrmmst

since the L*/3 norm of (t—s) "2 w((z(t—s)~1/2) is C(t—s)~7/8. Next |juvl|s <
llulls llvlls and these L® norms are trivialy estimated. Indeed |julls < ||ullz
while |[ulleo < s7/2||ul|z which yields ||ulls < s75/16 ||u] 2.
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We now need to show that B(u,v) belongs to C([0,00);L%) if u and
v belong to Z. The main issue is the continuity at 0. For proving the
fundamental property

(197) ltli%l “B(U,’U)”3 =0, ueZ,veEZ

we need to start with a simple observation. If ug € L3(IR3), we have

L 41/2 -0,
(19.8) lim ¢S (t)uofleo = 0

This allows us to modify and sharpen the definition of Z. We impose for
ue’Z

: im /2 |[u(-,t)]le = 0.
(19.9) Lirn ¢ lu(s oo

The continuity of the bilinear operator B : Z x Z — Z is proved with the
same argument we previously used and (19.230) follows from the definition

of Z.
We can state

Theorem 19.1. There ezists a positive constant n such that for any initial
condition ug(z) € L3(IR®) such that

(19.10) luolls < n and divug(z) =0
there exists a mild solution
(19.11) u(z,t) € C([0,00); L3(R?))

to the Navier-Stokes equations such that u(z,0) = ug(z).

This solution satisfies
(19.12) Stl;g(llu(-,t)lls + 72 [lu(, )lloo) < Clluolls

where C 1s an absolute constant.

Finally there exists a second positive constant 8 < 2n such that this
solution is uniquely defined by

(19.13) sup (-, )lls + /2 [[u(, ) loo < 8.
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Let us observe that Kato’s algorithm is here applied to the Z-norm and
that g is no longer 27 since we need to take in account (19.3).

Before leaving this example, let us make a last remark. We already know
that our solution u(z,t) satisfies

(19.14) lim ¢Y/2 ||lu(, t)]leo = O.
t—0

Indeed uniqueness can be proved with (19.14) instead of (19.13). Let us
sketch the proof of this observation.

Instead of studying solutions u in C([0, 00); E') we could as well consider
solutions in C([0,T]; E) where T is a positive constant. All the estimates
we proved in the first setting can be proved in this second framework and
the constants remain unchanged : they do not depend on T'.

If (19.14) is satisfied, we can chose T small enough in such a way that

sup_(Jlu(, t)lls + 72 [lu(-, t)lloo) < B.
0<t<T

This implies uniqueness on [0, T'.
There is a much deeper statement which will be unveiled in the next
sectiomn.

20 Uniqueness of L3 valued mild solutions

In this section a simplified proof of Lemarié-Rieusset’s theorem will be given.
The original and more involved proof will be described in section 26.

Theorem 20.1. Letu(z,t) € C([0,T]; L}(IR?)) and v(z, t) € C([0, T]; L}(R3))
be two mild solutions of Navier-Stokes equations such that u(z,0) = v(z,0) =
Uug (:L‘)

Then u =v on [0,T].

Let us denote by 7 the supremum of the set of o € [0,T] such that u = v
on [0,0]. By continuity, v = v on [0,7]. If 7 < T we will prove that u = v
on [0, 7 + €] for some positive €. This forces 7 = T as announced.

We now consider %(-,t) = u(-, t+ 7) and (-, t) = v(-, t + 7). These
two functions are defined on [0, T — 7]. Both are mild solutions to the
Navier-Stokes equations (13.2) and they coincide when ¢ = 0.
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Changing the notations, we conclude that theorem 20.1 will be proved
as soons as we can prove the following statement

(20.1) u=v on [0,¢]

for some positive e.

For proving (20.238) one writes

(20.2) u = S(t)ug + B(u,u) , v = S(t)up + B(v,v)
and v = u + w. Then
w = B(ut+w,u+w) — B(u,u) = B(v,w) + B(w,u).

Our goal is to estimate

(20.3) n(t) = sup |lw(:,s)ll3,00)
0<s<t

and prove
1

(20.4) n) < gn) i 0St<e

which obviously implies n(t) = 0 if 0 < t < €. For estimating n(t), we write
(20.5) w = B(S(t)up,w) + B(v—S(t)uo,w) +
+B(w,u—S(t)uo) + B(w, S(t)up)
= A+B+C+D.

For estimating || D(t)||3,0 We return to the definition of the bilinear
operator and bound ||S(t—s) Oj[wj(s) ‘S’(s)uo]]l3 o Py C(t— s)~1/2 llw;ll3,00 -
l|s1/28(s)uol|oo s~1/2. This yields the trivial estimate
(20.6)

| B(w, S(t)uo)ll(3,00) £ Cmn(t) Sup 152 S(s)uolloo -

A similar estimate holds for [|A(t)[|(3,00)- Concerning ||B(#)[|(3,00) and
IC(t)ll(3,00)> We apply lemma 23 and observe that

lu—S(t)uoll(3,00) < llu—S(t)uolls = a(t)
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where a(t) tends to 0 with ¢.

All together we obtain

(20.7) o5 Dligee) < () sup (- 5)ll(3,00)

where v(t) tends to 0 with ¢. This immediately implies (20.1) and theo-
rem 20.1 follows.

21 Kato’s program : the Morrey-Campanato spaces

We now turn to another application of T. Kato’s program : the Morrey-
Campanato space E = M?(IR?) which is defined by

(21.1) sup sup R—l/ |f(z)]?dz < 0.
moEIR3 R>0 |x—:to|SR

Keeping the same notations and definitions as above, we observe that
E = F* where F is a separable Banach space. Then Y = C([0,0), E) is
given the same meaning as in section 12 and Z C Y is the subspace of Y
consisting of all functions u(-,t) for which

(21.2) sup {2 lu(, )lloo + a1z} = llullz

is finite.

We already know from theorem that the expected estimate

(21.3) IB(f,9)lly < Cliflly llglly

cannot hold. Indeed E is not fully adapted to Navier-Stokes equations.

However, as it was the case when E = L3(IR?), it is not difficult to obtain

(21.4) IB(f,9)llz < Cllfllzllgllz -

Once more the easy part in proving (21.4) concerns the E component of the
Z-norm. Indeed we have

(21.5) Ifglle < flleollgle < s7721Ifllz llgllz
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if f=f(.,s), g=g(-,s). Then (19.224) implies
(21.6)
t
1B(u,v)lls < uwm( /0 (t—s5)"1/2 5112 ds)uuuznvnz

where the notations are the sames as in section 19.
We need to treat the L*°-component of w = B(u,v). Let us denote by
W (s, t,z) the integrand S(¢ — s) 9;(u;(s)v(s)). We then have
W (s, t,2)l|lo < C(t=5)""2s7" |lullz ||v]2

since ||u(s)||oo < 571/2 ||lu||z and the same for v. On the other hand |luv|/g <
lu|loo [|v]|g- Finally lemma 9 is again used and yields

W (s,t,2)lle0 < Clt=5)"" 72 Jullz [[vllz -

We have obtained two extimates on |W (s,t,z)||cc and their geometrical
mean yields

(21.7) W (s,t,2)lle0 < C(t=8)"** 5™ |lullz |lvllz -

This can be integrated over [0,¢] and we therefore obtain ||w(-,t)|lcc <
Ct=12|ul|z [|v]l 2.

The continuity of B(u,v) with respect to the time variable is treated as
in section 18 and we obtain

Theorem 21.1. If E = M?*(IR3), there exists a positive number n such
that for every ug € E with ||ug||g < n, there exists a solution

(21.8) u(z,t) € C([0,00); E)
of Navier-Stokes equations which satisfies

(21.9) u(z,0) = ug(x)

(21.10) Stgg(HU(-,t)lleLt”z lu(-, t)llo) < Clluolls-

Moreover there exists a second positive constant 3 > 2n such that this solu-
tion is uniquely defined by :

sup (Jlu(, t)lle + /2 |Ju( t)lleo) < B-
>0



174 Wavelets, paraproducts, and Navier-Stokes equations

This section will be concluded with a remark concerning the preceding
examples. For defining mild solutions, we needed to give a specific meaning

to the pointwise product u;(s) u(s) between two components of the velocity
field.

Either we were assuming that the Banach space E was fully adapted
to Navier-Stokes equations. Then we could write fg = Ah for any two
functions f,g in E and we knew that h belongs to E. This was the basic
property on which the continuity of the bilinear operator B was grounded.

Or we were assuming that F was defined by size conditions on f. This im-
plied ||fglle < |Ifll£ |lglloo and this observation was used when E = L3(IR3)
or E = M%(RR3).

We now consider a third option and this leads us to the next section.

22 Kato’s algorithm revisited

In a joint work with M.A. Muschietti, we planned to apply T. Kato’s algo-
rithm to Banach spaces which are defined by regularity conditions instead of
size conditions. In such contexts it is no longer possible to multiply a func-
tion in F with a function in L*°. In other words, L* should be replaced by
a Banach algebra A of pointwise multipliers of functions of E.

This Banach algebra is given the operator norm of the corresponding
multiplier. In other words

(22.1) Imlla = sup {|lm(z) f(2)lle; I fle <1}.

The relation between A and FE is specified by the following assumption.

Definition 20. Let E be a functional Banach space. Let us assume that
E is adapted to the Navier-Stokes equations. Let us assume that for f € E
and g € E we have

(22.2) If9lle < C(Iflleo + IAfIE) lgllE -

We finally assume that the Riesz transformations are bounded on E. We
then say that E s adapted to Kato’s algorithm.

Property (22.2) can be rephrased into
(22.3) I7la < C(Iflleo + IAfllE)

where || f||4 is the pointwise multiplier norm. We then have
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Theorem 22.1. Let us assume that the Banach space E is adapted to
Kato’s algorithm.
Then there exists a positive number n such that for every ug € E with

(22.4) luollg <m , divug=0

there ezists a mild solution u € C([0,00); E) to the Navier-Stokes equations
such that u(z,0) = up(z).
This solution satisfies

(22.5) igg(“ﬂ(wt)llE + 2 |lu(, 8)]l4) < Clluolle

where C = C(E) is a constant.
Finally there exists a second positive number 3 > 2n such that this solu-
tion is uniquely defined by

Stgg(HU(',t)llE + 12 |u(-, 0)]l4) < 8.

The proof of theorem 22.1 is similar in spirit to Kato’s approach.
Let us define the Z-norm of u(-,t) as

(22.6) lullz = igg{IIU(-,t)IIE + 112 |ju(-,t)l]a }

and show the following properties

(22.7) |B(u,v)llz < Cllullzlvlz
(22.8) IS(t)uollz < Cllille.
Then lemma 20 will be applied and theorem 22.1 will follow.
The proof of (22.261) mimics the one we gave when E = L3(IR3). Indeed

IBuv)z < C /0 IS(t—s5) 8 (uj)||  ds

t
< c(/o (t_s>-1/2s‘1/2d8> lullz lvllz = C'nllullzllvlz .-

On the other hand ||S(t — s) 8;(u;v)||a < C(t = s)"Y2 571 ||lul|z ||v]|z since
A is a Banach algebra.

For obtaining an other estimate, we apply (22.257). We have ||S(t—s)
9 (uju)|leo € C(t—38) " luju|le < C(t—5)"1 s~ 2 ||ul|z ||v]|lz. We obtained



176 Wavelets, paraproducts, and Navier-Stokes equations

the first estimate by lemma 9 and the second by |ujv||g < |lulla||v|E-

On the other hand |[AS(t — s) 9;(uju)||g < C(t—s)~! ||lujvllg < C(t—s)~?
572 lul 2 |lv|z-

Then (22.3) yields ||S(t — s) 9;(ujv)|la < C(t — 8)"Ls™/2||ul|z ||v]| 2.
This, together with the first estimate, implies
(229)  [IS(t—5)9;(usv)lla < C(t—s)"/ 574 ullz o]z

which yields || B(u,v)||4 < Ct~Y2|u||z ||v]|z.

Everything runs smoothly and it suffices to study the linear evolution
S (t)’u,o.

We apply (22.3) to bound |S(¢t)uglla. We need to bound ||S(¢)uo|co
together with ||AS(t)ug||g. Everything works as above and we obtain the
required estimate.

For later use we state the following remark.

Lemma 26. If m(z) belongs to the multiplier algebra A, so does m(\z) for
A > 0 and we have

(22.10) Im(Az)lla = [m(z)lla-

Indeed [|m(Az)||4 = sup {||m(Az) f(z)||&; | fllz < 1}. We write f(z) =
Ag(Az) and ||f||g <1 is equivalent to ||g||g < 1. Then

m(Az) f(z) = dm(Az) g(Az)

implies |m(Az)f(z)||g = ||m(z) g(z)||g. This immediately implies (22.10).

23 Improved regularity of solutions of Navier-Stokes
equations

We now answer the problem of obtaining an improved regularity for mild so-
lutions to Navier-Stokes equations. This improved regularity only concerns
the behavior of u(z,t) for ¢ > 0. We return to the definition of the Banach
space Z which is used to prove the convergence of the iterative scheme. We
now modify the definition of the Z-norm and write

(23.1)
I, )z = sup { lu, Ol + 872 A, Dll + 672 [, )4}
>0
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We already proved that the bilinear operator B is continuous for
this modified Z-norm. Indeed t!/?||Au(-,t)|z was used for controlling
t1/2 |lu(-,t)|| 4. Then the proof of theorem 22.1 tells us the following : the so-
lution which is built through the iterative scheme satisfies t'/2 || Au(-,t)||g <
C < o0.

We now check that this improved regularity in the x variable implies an

improved regularity in the ¢ variable. Indeed we have

Lemma 27. For0<a <1 andt >0 we have
(23.2) I(S@)-D)flle < Ct*||A*f|g

for every f in E.

- 2
On the Fourier transform side, it amounts to checking that eiﬁ"‘t—'rf‘lfz—l is

the Fourier transform of -z ga (\/LZ) with g, € L'(IR?). This is trivial when
0 < a <1 and lemma is trivial if & = 0.

Let us study the regularity in ¢ of the bilinear operator. If t' > ¢, we
need to estimate the difference
t,

S(t' —s) 5 (usu) ds — / S(t—s) 3 (uju) ds
0 0

- /t S(t —5) 0; (uyu) ds + /0 (S(t'—s) = S(t—s)} 3 (uju) ds
—U+V.

We obviously have |Ul|g < C [ (' — s)™Y/2 |ujullgds < C' ([ (¢ —s)~2/2-
5712 ds) |u|%. Finally we obtain

IUlle < C'(' =)/ 72 |lulZ
For controlling ||V||g, we write
(23.3) S(t'—s)—S(t—s) = [S(t'—t) —I]S(t—s).

We want to apply lemma 27 with a = 1/2. We are led to estimating

(23.4) /0 *AS(t—s) 8 (ugu) ds

E
A key observation is the following estimate

C

(23.5) 18;(ujw)lle < < luly-
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Indeed Leibniz’ rule is applied and ||u;0;u|| g is estimated by ||u;|| 4 ||0juk| &
We then apply our new definition of the Z-norm and we use the identity
—i0; = R;A where R; is the Riesz transformation. All together we obtain
(23.5).

Returning to ||[AS(t — s)0;(uju)||g we either use (23.5) and obtain
C(t — s)"2s7 1 ||u||% or group together AS(t — 5)d;. This second option
yields C(t — s)7! |lujullg < C'(t — s)~'s™/2||u||%. Altogether these two
estimates yield [|AS(t — s) 8;(uju)||g < C(t — s)~3/% s73/4||u||% and

/ " AS(t—s) ;(usu) ds
0 E

We have proved the following theorem

(23.6) < V2 ).

Theorem 23.1. Let us assume that the functional Banach space E 1is
adapted to Kato’s algorithm. Then the solution u(z,t) to the Navier-Stokes
equations which is constructed in theorem 22.1 satisfies

(23.7) lu(z, t') —u(z, )l < Clug)(t'—t)/2¢71/2
it >t
This estimate is only interesting if t < ¢/ < 2t.
We now combine theorem 23.1 to theorem 20.1. They imply the following

Theorem 23.2. There ezists a positive number n with the following prop-
erty. For every uo(z) in L3(IR®) with ||uglls < 7, there exists a unique
mild solution u(z,t) € C([0,00); L3(IR)) of Navier-Stokes equations such
that u(z,0) = ug(z). Moreover this solution satisfies the improved reqularity
property

/
Lo

1/2
(23.8) lue,#) - u@,Blls < C |7 -1

if0o<t<t <2t

The constant C which appears in (23.8) only depends on ||ug]3.

24 Examples of Banach spaces which are adapted
to Kato’s algorithm
The first group of examples is trivial. If E is a functional Banach space and

if any function m(x) which belongs to L®(IR3) is a pointwise multiplier of
E, then E is adapted to Kato’s algorithm.
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This remark applies to L3(IR%), L3*°(IR®) and more generally to the
Lorentz spaces L39(IR3) for 1 < ¢ < co. Another example is the Morrey-
Campanato space M2,

The second group consists of the Besov spaces B, = Bg'™ where a =
3/q — 1. But here we will not demand the condition 1 < ¢ < 3. Indeed we
have

Theorem 24.1. If1 < q < 6, the homogeneous Besov space By is
adapted to Kato’s algorithm.

We need to show that m(z) € L®(IR%) and Am € B, imply that m(z)
is a pointwise multiplier for B;. The paraproduct algorithm is used and we

obtain
m(z) f(z) = A(z) + B(z) + C(z)

where
Az) = Y Sja(m)Ai(f)
B(z) = }:Sj—2(f)Aj(m)
and

C) = T3 a5(m) 25(5).
l5'=3j1<2
Concerning A(z) everything is trivial since ||Sj(m)||c < C||m|loo. The series

is a Littlewood-Paley expansion and A belongs to B,.

The second series is similar. We have ||S;(f)|lcc < 02j||f“Bq while
|A;(m)|lg < C 273%/4 follows from Am € By.

As always the devil is hidden in the third series. We first begin with the
trivial case when 1 < ¢ < 3. Then ||A;(m) A/ (f)llq £ Cllm|loo |4 (F)llg £
C|lm|oo 271=3/9) since |5’ — j| < 2. Finally lemma 18 applies and yields
C € B,.

When 3 < ¢ < 6, this approach fails and Am € By is needed. Indeed we
have [|Aj(m)|lq < C27%/7 which implies [|Aj(m) Aj (f)|lq/2 < C270=8/9).

Since ¢ < 6, lemma 18 can be used and yields C(z) € Bsg_l’w. Now

it is trivial to check that BY/d ™"

The same proof works as well if Blz’°° is replaced by the minimal space Bf 1

is contained in Bf}/‘"l"” for 1 < q < oo.
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Let us now observe that theorem 23.2 is sharp. Indeed B6_ 1/2,00

adapted to Kato’s algorithm.

IS not

Here is a simple counter-example. We define m(z) = (}°5°277 ei4j““) o(x)
where the Fourier transform of ¢ is supported by |¢| < 1/2. We then have
m(z) € L®(IR3) and Am € Bq_l/2’°° for 1 < ¢ < 0o. On the other hand
f(z) = (5027 e7*21) p(z) belongs to 36_1/2"’0 (indeed to Bq—lﬂ’w for
1 < ¢ < o0) while m(z) f(z) does not belong to S’(IR3). In fact the para-
product algorithm applies to m(z) f(x). The series which were denoted by

A(z) and B(z) trivially belong to 36—1/2,00 while C(z) = Y_¢° ¢*(z) does
not converge in the distributional sense.

Does it mean that Navier-Stokes equations cannot be solved through

Kato’s algorithm when E = Bﬁ_ 1/22° 9 M. Cannone addressed this issue
[12] and proposed the following solution.

The Banach space Z is now defined by the following two conditions

(24.1) sup Jlu(,t)||g < oo
>0

together with

(24.2) sup t1/4 |Ju(-,t)|ls < oo.
>0

It is then an easy exercise to check the following two estimates on the
bilinear term. We do have

(24.3) |1 B(u,0)lz < Cllullz ]z
and
(24.4) Y4 B(u,v)|ls < Cllullz |lv]|z -

We then observe that L3(IR%) is continuously embedded in B /2% and
lemma 20 can be applied.

Returning to theorem 22.1, an interesting application is given by the
homogeneous Sobolev space H/2 which coincides with the homogeneous
Besov space B;/Q’Z.

If m(z) belongs to L>(IR3), the series of the series A(z) = 3°°°_ S;j_2(m)-
A;(f) belongs to H*(IR®) whenever f does. The value of s is irrelevant.
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On the other hand if Am belongs to H'/2, then m belongs to H*2(IR?)
and

B(z) = /_oo S;_2(f) Aj(m)  belongs to HY2.

Indeed we have ||S;(f)]lco < C 27 and ||Aj(m)||2 < €;27%/% with 5% €2 <
0.

The third series is C(z) = 323 j_jj<2 A5 (f) Aj/(m). We have ||A;(f)-
Aj(m)|li < nj27% where n; € £*(Z). Lemma 18 can therefore be applied
and yields C(z) € Bf’l which is the minimal Banach space described in
section 8.

Since H'/? is embedded into L? (IR3) the proof we gave for the uniqueness
of mild solutions applies as well. We therefore obtain the following

Theorem 24.2. There exists a positive number n with the following prop-
erty:

for each ug(z) in the homogeneous Sobolev space H'/?(IR®)
fulfilling ||lugll 12 < m there exists a unique global solution
u(z,t) € C([0, oo);H1/2(]R3)) of Navier-Stokes equations such
that u(z,0) = ug(x).

We obtain a similar statement if H'/2(IR3) is replaced by the minimal
Banach space Bf’l.

This minimal space is interesting since it answers a natural question
concerning regularity. The largest amount of regularity which can be dis-
cussed inside the framework of adapted Banach spaces is precisely defined
by the B% ! norm. We cannot go further and deal with three derivatives.
The corresponding Banach space would not be adapted to Navier-Stokes
equations.

On the other hand it is fortunate that our modification of Kato’s algo-
rithm applies to this minimal space Bl2’1.

It is also clear that a wavelet analysis yields the best understanding of
this minimal space Bf’l. Indeed wavelets provide us with the canonical
isomorphism between B> and £!.

From these remarks one can argue that wavelets still have some links
with Navier-Stokes equations.
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25 Self-similar solutions of Navier-Stokes equations

The existence of self-similar solutions of the Navier-Stokes equations is a
remarkable application of the results which were presented in the preceding
section.

A Banach space F is assumed to be adapted to Kato’s algorithm and is
also assumed to contain non-trivial homogeneous functions of degree —1. An
example is given by E = L3® or E = Bf°° or by the Morrey-Campanato
space M?2.

A self-similar solution of Navier-Stokes equations is a solution u €
C([0, 00); E) which is invariant under the canonical rescaling. In other words

(25.1) u(z,t) = du(dz, A1), 0<A< .
It implies

1 T
(25.2) u(z,t) = %U(—\/—Z) , Ulz) = ulz,1).

We then necessarily have

(25.3) Mug(Az) = % Az, A2t) = ug(x).

Let us conversely assume ug € F, Aug(Az) = up(z), 0 < A < oo and
lluolle < m where 7 is a positive constant whose value will be given in the
proof.

We want to show that the corresponding solution of Navier-Stokes equa-
tions which is given by theorem 22.1 is indeed a self-similar solution.

Let us denote by uyx(z,t) the function Au(Az,A\%t). We already know
that uy(z,t) is a solution of the Navier-Stokes equations. Next we observe
that uy(z,0) = u(z,0) = ue(z).

Finally we need to show that u, satisfies (22.5) when u does. Indeed
supe>o lua(-tllE = supsso |lu(-;t)||g while, for every m € A

(25.4) [m(Az)lla = llm(z)lla-
This immediately yields

sup t1/2 Jlux( t)|la = sup At'/2 u(Az, A?t)|| 4
t>0 >0

= sup /2 |lu(Az,t)|a = sup t'/* |u(z,t)]la .
t>0 >0
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Our claim is now proved and the uniqueness of the solution constructed in
theorem 22.1 yields uy = u. We just proved the following result.

Theorem 25.1. Let us assume that a functional Banach space E is adapted
to Kato’s algorithm as indicated in definition 20.

If an initial condition ug(x) belongs to E with ||lug||g < 1 and satisfies
the homogeneity condition

(25.5) Aug(Az) = wo(z) 0<A< o0,

then the corresponding solution u(z,t) of Navier-Stokes equations is a self-
similar solution.

As it was specified, n > 0 is the constant that appears in theorem 22.1
and the solution which is here refered to is the unique solution of Navier-
Stokes equation described in theorem 22.1.

This general theorem covers and extends some of the ad-hoc results which
were obtained in [12] or [13].

Let us be more specific about a special case. If E is the Lorentz space
L¥*(IR3), then the sophistication of Kato’s algorithm which is given in
section 22 is not needed. Theorem 18.2 implies the existence of self-similar
solutions f in L3*°(IR?).

Moreover the subspace of L¥*(IR®) which is defined by f(Az) = A71-
f(Az), 0 < X < 00, is extremely simple. Indeed f(z) belongs to this subspace
if and only if the restriction of f(z) to the unit sphere S belongs to L3(S?).

This means that the search for self-similar solutions belonging to C([0, 00);
L3°(IR%)) is a simple and natural problem which can be treated in a self-
consistent approach.

There is however an interesting construction of self-similar solutions
which is not covered by our general approach.

Indeed in [13] we fix a large integer m and consider the homogeneous
space E,, defined by |8%f(z)| < C|z|~'71°, |a] < m. This Banach space
is not translation invariant and cannot be incorporated inside our general
approach. However if ug(z) satisfies Aug(Az) = ug(z), 0 < A < oo, and if
the norm of ug(z) in Ep, is small, then the corresponding solution u(z,t) of
Navier-Stokes equations belongs to C([0,00); Ep,).

This theorem which is proved in [13] cannot be covered by our general
theory. Indeed inside this general theory, the regularity cannot exceed 2
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since Bf’l(lR?’) is the minimal adapted space.

26 Uniqueness of mild solutions to Navier-Stokes
equations

We return to the remarkable theorem by G. Furioli, P.G. Lemarié-Rieusset
and E. Terraneo.

In section 20 was given a simple proof of this discovery (theorem 20.1).

Here we would like to present the original proof which is based on
paraproduct estimates or spectral methods. In contrast our new proof de-
pends on real variable estimates and we cannot state as we did before that
Littlewood-Paley analysis is actually needed for proving uniqueness.

In this section, all the results of section 20 are forgotten and the proof
of uniqueness starts from scratch.

Therefore section 20 does not exist and this section is viewed as a contin-
uation of section 19. We begin with recalling what was proved in section 19.

We return to the case where the adapted Banach space E is L3(IR?)
and study mild solutions u(z,t) € C([0,00); E) to Navier-Stokes equations.
Existence of such solutions was proved under the condition |luglls < 1 and
uniqueness under the condition

(26.1) sup { [u(:, )lls + /2 lu(, )loo } < B
t>0

where § > 7 is a small constant.

We still do not know if the assumption |lup|l3 < 7 is actually needed.
But P.G. Lemarié-Rieusset proved uniqueness without assuming (26.1). We
present here this remarkable theorem [35].

Theorem 26.1. For T > 0, let u(z,t) and v(z,t) belong to C([0,T); L),
L3 = L3(IR3).

If u and v are two mild solutions of Navier-Stokes equations such that
u(+,0) = v(-,0) = up(z), then u(-,t) =v(-,t) for0 <t <T.

The proof relies on some new estimates on the bilinear operator B(f, g).

Let E be the homogeneous Besov space 321/ 2’°°(IR3). Then FE is not
embedded in L3(IR3) and conversely L3(IR3) is not embedded in E.
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As it was stated before, the bilinear operator

B(f,g) = /0 S(t—5) A[f(~5)g(5)] ds

is not bounded from Y x Y into Y when Y = C([0, 00); L3(IR3)).

However we have

Proposition 1. There ezists a constant C such that for any f(z,t), any
g(z,t) andt >0

(26.2) IB(f,9)lle(t) < C sup [If(;,s)lls sup llg(:,s)lls-
0<s<t 0<s<t
This result will be completed with the following ones

Proposition 2. With the same notations, we have

(26.3)
IB(f,9)llet) < C sup |If(-,s)lls sup [lg(;,s)le-
0<s<t 0<s<t

Proposition 3. If3 < ¢ <6, there exists a constant Cy such that

(264)  IB(,9lls(®) < Cp sup {s23)5(,s),}-
0<s<t
sup llg(:,s)lls -
0<s<t

Let us begin with proposition 1.
We first sketch the proof and then give a complete proof.

The main observation about the bilinear operator B(f,g) concerns the
nature of the divergence. As it was already checked many times, the in-
tegrand blows up as s reaches t. To get a better understanding of this
divergence, one splits this integral into a series

S Bi(fg) where Bi(fg) = |  S(t—s)A(fg) ds.
{4-7-1<t-s<4-7}

We now mimic AS(t — s) by 27A;, we pretend that f(-,s) and g(-,s) are
constant functions as 47771 <t —s < 477 and finally replace ds by the step
size 477.

With such claims, the bilinear operator is modelled by >-° 277 A;(f;g;)
where sup; || fjlls < oo, sup; ||lgjlls < co and A; is defined in the section
devoted to the Littlewood-Paley analysis. We then have
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Lemma 28. If| f;|l3 < Co and ||gj1||3 < Cy, then 3277 Aj(f;g;) belongs
,O0
3/2

to the homogeneous Besov space B
The proof is trivial by lemma 18, section 15. Finally B;/°2° is contained
in B;/ 200,
The actual proof is following the same strategy. The integral which is
defining B(f, g) is split into a series of terms where s € [t — 477, t —47771]
which yields w = B(f,g) = 3 wj. It is now easy to control the L3/2

norm of w; as well as the L3/2-norm of the second derivatives 8%wj, |a| = 2.
Then one applies lemma 18 or one of its variants.

We would like to give an other proof which was found by M. Cannone.
We start with the following observation.

Lemma 29. On the homogeneous Besov space Bs_l’l, the norm 3> 277.
18;(f)lls and the continuous counterpart [;°||AS(t)f||lsdt are equivalent
ones.

Indeed one writes f = Ag where g € Bg’l and A = (—A)Y2. Then
AS()f = —tA exp(tA) } and [ IAS(Hfllsdt = [ [Q(D)glls & where
Q(t) = —tA exp (tA). We therefore obtain a classical definition of the norm
of g in the homogeneous Besov space Bg’l.

For computing the norm of B(f, g) in B;’/‘?, it suffices to estimate
sup { < B(f, ), h>; |hll g0 <1}
One writes h(z,t) = A S(t)h and obtains
<B(f,9),h>= /Ot /]R“ h(z,t-s) f(z,s) g(z,s) dz ds.
One is then using lemma 29 for obtaining

|<B(f,9),h>] < sup If(~s)lls sup llgC-ss)lls / (- 8) ds
0<s<t 0<s<t 0

sup [|f(-,s)lls sup [lg(- )3
0<s<t 0<s<t

IN

as announced.

The proof of proposition 2 is slightly more involved. Let us observe
that proposition 2 is a special case of proposition 3 when ¢ = 3. We now
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concentrate on proposition 3. We begin with rephrasing theorem 15.2 as a
lemma.

Lemma 30. If f and g are two functions defined on IR®, we then have
when 3/2 < g<6

18;(f9)llz < CZ® 1D | £ gl gr/2.00 -

For proving (26.4) we write I'(t) = A S(t) with A = /—A and we want
to estimate

. t
sup {2728, [ T(e=9) 1(6) gt as]
jEZ 0 2
where f(s) = f(-,s), g(s) = g(-, ).

We begin with a trivial observation. One trivially checks that A; =
Aj(Aj_l +4; + AJ’.H).

We concentrate on A;‘-’ since the two other terms are similar to this one.

This leads to writing A;T'(¢) = T'j(t)A; where I';(t) = I'(t)A;. We need
a trivial remark.

Lemma 31. The operator norm of I';(t) : L*(R®) — L%(IR3) does not
exceed C 29 (1 + 49t)~2, j € Z, t > 0 where C is a constant.

This remark is trivial if we move to the Fourier transform side. The
operator norm of I';(t) is the L norm of the corresponding multiplier which
reads

(26.5) €| exp (—t[¢]?) $(277€).

This L™ norm is better computed after performing a dilation ¢ — 27¢ and
the computation is trivial.

Returning to (26.4) we assume

(26.6) sup /2039 ||f(,5)[lg < 1
0<s<t

together with
sup |lg(s)lle < 1.
0<s<t
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Then lemma 31 and proposition 3 yield

(26.7) } A, /0 L'(t—s)[f(s) g(s)]ds

2

t
< ©,290/2+3/) / (1 + 47 (t—5)] "2 s~1/20-3/9) g
0
Since a = %(1 - %) € [0,1), we have

T
sup/ 1+ (T-71r%dr = C, < .
750 Jo

This estimate is applied to (26.7) with T' = 49t and 7 = 4/s. Then (26.4) is
proved.

We now return to theorem 26.1.

The initial condition ug(z) belongs to L3(IR?) but we do not assume
lug|ls < n where n > 0 is the small positive number which played a crucial
role in theorem 19.1 or in theorem 22.1.

We denote by u(-,t) and v(-,t) two mild solutions of Navier-Stokes equa-
tions. Both u and v belong to C([0, T); L3(IR3)) and u(-,0) = v(-,0) = ug(x).

We want to show that u(-,t) = v(-,t) if 0 < ¢t < T. For proving this fact
it suffices to show that there exists a positive 7 such that u(-,t) = v(-,t) if
0<t<r.

Indeed let Ty be the upper bound of the set of 7 > 0 for which © = v on
[0,7]. Since u and v belong to C([0,T]; L3(IR3)) we have u = v on [0, Tp).

We then consider @(z,t) = u(z, To+t) and 9(z,t) = v(z, To+t). These
new functions are still mild solutions of Navier-Stokes equations (13.2) if
To < T. We have 9(z,0) = i(z,0). Therefore there exists a positive T
such that @(z,t) = 9(z,t) if 0 < t < 7 which contradicts the definition of
To. Therefore Ty = T. For proving that such a positive 7 exists, we write
v = u + w which yields

(26.8)
w = B(ut+w, ut+w) — B(u,u) = B(v,w) + B(w,u).

First we observe that w(-,t) belongs to C([0,T]; B) where B = le/z’m.
This follows from proposition 2. Let us warm the reader that u(-,t) does not
belong to C([0,T]; B). Indeed the linear evolution S(t)up cannot have this
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property since L3(IR®) is not contained in B. This is a striking difference
with our new proof where L3 is used instead of B.

We then write a(t) = ||w(-,t)||p and want to prove a(t) =0 on [0, 7].
Returning to (26.8), we further split the right-hand side into
(26.9) w(t) = B(v—S(t)vo,w) + B(s(t)vo, w) +
+B(w,u—S(t)uo) + B(w, S(t)uo)

with ug = vg.
We then define

(26.10) e(t) = llu—S(t)uolls + llv—S(t)volls

and we know that lim,o €(t) = 0 since u and v both belong to C([0, T]; L3(IR?)).
We similarly define

(26.11) n(t) = /21 (tuolla
and we know that n(t) < C||lug||s together with

(26.12) ltlf(l)ln(t) = 0.

Writing in a systematic way f(t) = sup {f(s); 0 < s < t} when f is a non
negative function, we want to prove

(26.13) a(t) < Ca(t) [e(t) +7(t)] .

This obviously implies

(26.14) a(t) =0 on [0,7]

since a(t) is bounded and limo(2(t) + 7(t)) = 0. Returning to (26.9) it

suffices to apply proposition 3 to each one of the four terms in (26.9).

27 Appendix : construction of a divergence-free
wavelet basis

As it was explicitely stated in section 6, the first construction of a divergence-
free orthonormal wavelet basis was achieved by G. Battle and P. Federbush.
Then P.G. Lemarié-Rieusset built a new basis with better spectral proper-
ties. We closely follow Lemarié-Rieusset’s paper [50] in this appendix.
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_ We s.tart with the classical construction of the wavelet basis of the form
21/24p(2t —k),j € Z, k€ Z,y € S(R).

For building this basis, one begins with a scaling function ¢ € S(IR)
such that

. 2 2w

(27.1) ¢€) =1 on [—?, ?]
4

(27.2) pE&) =0 if g2
(27.3) 0<@(9) <1 , &(8) =p(=¢)
(27.4) el +n) +|p(r—m =1,  Inl< 3.
These properties obviously imply
(27.5) > lpE+2km))* =1

and ¢(t — k), k € Z, is an orthonormal sequence.

Moreover if Vj denotes the closed linear span of this sequence (t — k),
k € Z, and if V; is defined by

(27.6) f(t) €Vo <= f(2t) €V

we have Vp C V; as (27.1) and (27.2) show.

Then N, V; = {0}, U, V; is dense in L?(IR) and one can define W;
as being the orthogonal complement of V; inside V;1. We then have

(27.7) feWy, < f(27t) e W;

and there exists an orthonormal basis of Wy of the form (¢t — k), k € Z.
Here 1 belongs to the Schwartz class. Moreover ¥(§) = 0 if |¢| < 27/3 or
€| > 8/3.

These properties immediately imply the following
(27.8) 202y(2t—k), jeZ, kel

is an orthonormal basis of L?(IR).

The first step in the construction is the following lemma



Yves Meyer 191

Lemma 32. There ezists an increasing sequence f/J of closed subspaces of
L?(R) such that

(27.9) n v, ={0} , U V; is dense in L?(R)
—oo —00

(27.10) f(z) € V; <= f(22) € Vi

(27.11) there exists ¢ € S(IR) such that p(z—k), k € Z,
18 a Riesz basis of Va

(27.12) —(—id; : f/J — V; is continuous with a dense range.

This lemma will be completed with the following information.

Lemma 33. There ezists a closed subspace Wj of 17j+1 such that f/] +Wj =
Vi+1 and

(27.13) - Wj - W]‘

s an isomorphism.

This construction is indeed simpler than expected. We firt define ¢(z) =
/. ot ¢(t) dt and lemma 32 is obviously checked.

T
Similarly 9(z) is defined by [ %(t) dt and lemma 33 follows.

For analyzing L?(IR®) we have three options at our disposal. Option 1 is
given by the multiresolution analysis V ®V;®Vj, j € Z. Option 2 is given
by V; ®V ®Vj, 7 € Z. Similarly option 3 is prov1ded by V;®V; ®V j € Z.

When a vector field u(z) = (u1(z),u2(z),us(z)) will be analyzed, op-
tion 1 will be used for u;, option 2 for uy and option 3 for us.

. . 1
The frequency channels corresponding to option 1 are denoted bu Wj(, 03 .

)

Similarly W](2a) corresponds to option 2 and W(3 to option 3.

We need to explain the meaning of this index . Here o € A where A is
the set {0,1}*\ {(0,0,0)}. In ather words o = (al,az,ag) where o € {0,1}
and where a = (0,0, 0) is omitted.

Finally @; = 0 means that W](L) = VJ ® - ® - while ¢y = 1 means
wd = W ® - ® - and similarly for a2 and a3. For instance, if @ = (0,1, 1),

]a
then W(l) V ®W; @ Wj.
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The same notations are used for Wj(i) and Wj(i).

Once these notations are being fixed, we return to a vector field u(z) =
(u1(x),u2(z),us(z)) and decompose each component into the corresponding
wavelet expansion. The first component is treated with the first option and
so on. We then have

- S Sule  oflew
a g
=3 > wia@)  wihewS)
a
3
SR Tl uflewd.
a J
We now reach the crucial lemma.

Lemma 34. If 01u; + Gous + d3us = 0 in the distributional sense, then
(27.14)
Bw()+82w()+6w(i:0, jE€EZL,acA.
In other words divu = 0 is fully decoupled into frequency channels.

Let us prove this striking property. We denote by W;, the standard
multiresolution frequency channels where the standard multiresolution is
V;eV;®V;.

Then f € WY implies & f € Wjq by (27.12) or (27.13). Similarly

f e Wﬁt) implies 02 f € W; o and the same for the third option. If d0ju; +
Osug + J3uz = 0 we therefore obtain

(27.15) Z Z alw(l + 8211)( )+ 83'(1)(3)) 0.

We then observe that L?(IR3) = @D, o« Wi, where this sum is orthogonal.
Therefore (27.15) is decoupled into (27.14).

The second remark we need is the following.
Lemma 35. If a; =1, then
(27.16) =W = W

18 an isomorphism.
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This obviously follows from (27.13).

We now construct a basis for the closed vector space H; o) C WJ(]a) X

WJ(?I) X WJ(?X) defined by

(27.17) Ay + 8wl + dwl) = 0.

7 ,Q
Indeed a # (0,0,0). Therefore one of the three indices a;, ap or as is 1. We

only treat the case a; = 1 since the other two are fully similar ones.

In the first case (27.17) can be written
(27.18) wl) = T (9w + a3w§.i3).
The basis we are looking for is given by the following obvious lemma.

Lemma 36. Let H, and Hy be two Hilbert spaces and T : Hy — Hy be a
continuous linear mapping.

Let V C Hy x Hy be the graph of this mapping T.

Then for each Riesz basis ej, j € J, of Hy, the collection (ej,T(Cj))
1s a Riesz basis of V.

JjeJ

Coming back to (27.18) it suffices to treat the case j = 0 since everything
is dilation invariant. If j = 0, everything is invariant under the Z3 group
action. We are therefore led to constructing the “mother divergence-free
wavelets”. If, for instance, a = (1,0,0), we then either obtain

(=0 [p(e+1) - el@2)]o(as) , w(o1) B(z2) o(s) , 0)

and
(—0(e1) w(@2) [p(zs +1) = w(z)] , 0, Blo1) pl22) H(as))

Let us explain why. Since oy =1, 0 : Wj(;) — W o is an isomorphism.
This means that we can choose a basis for the second component us(z)
together with a basis for the third component u3(z) and then compute u; ().
The basis which is chosen for the second component is ¥(z; — k1) @(zo —
ko) o(z3 —k3), k1 € Z, ko € Z, ks € Z. This agrees with lemma 32 and with
the conventions we made about V; vs ‘73 Similarly for the third one.

We now need to solve 0ju; + O2ug + d3uz = 0. Let us begin with us(z) =
Y(z1) @(x2) p(z3) and uz(z) = 0. Then E% P(z2) = p(z2+1) — p(z2) while
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¥(z1) is precisely defined by -2 727 ¥(z1) = ¥(z1). That is explaining the first

row.

The explanation of the second row is fully similar. If o = (1,1,0), the
construction rules allow two prossibilities. We can either compute u;(z)
when uy and ug are given or compute ug(z) in terms of u; and us.

We stick to the first option. It yields

(= (z1) Y(@2) @(z3) , Y(z1) Y(22) ¥(23) , 0)

and
(=d(@1) $(@2) (plas+1) - (a)) , 0, Y(z1) Y(e2) Hlas))
If  =(1,1,1) we also compute u;(z). It yields
(=9(z1) Y (x2) ¥(23) , P(z1) P(z2) P(23) , 0)

and
(=9 (21) P(z2) Y(a3) , 0, p(z1) Y(@2) P(z3)) -

The other cases are fully similar to these ones. We then have two mother
wavelets inside each frequency channel. These frequency channels are in-
dexed by a € A. Since §A = 7, it yields 14 mother wavelets as announced.

28 Appendix 2. Wavelets and the div-curl lemma

P.L. Lions conjectured the following :
Let E(z) = (Ei(z), E2(z),... ,Ey(z)) and B(z) = (B1(z), B2(z),... ,

B, (z)) be two vector fields satisfying the following three conditions
(28.1) Eje *(R") , BjeL*R") , 1<j<n
(28.2) divE(z) =0 in the distributional sense
(28.3) curl B(z) = in the distributional sense.

Then (E - B)(z) = E1(z)Bi(z) + - - - + En(z)Bn(z) belongs to the Stein &
Weiss space ’Hl(]R")

My first reaction to P.L. Lions’ conjecture was : this cannot be true ! It
is so great that it should have been known if it were true.

But the following night I proved this conjecture and I acknowledged I
was too pessimistic.
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Here I want to provide the reader with a much better proof together
with a systematic treatment of bilinear operators generalizing this specific
example. This new approach is a joint work with Sylvia Dobyinsky [18].

We start with the heat semi-group P, = exp (tA), A = 5‘1—27 +- 5"’;22-.
1 n

We then write Q¢ = —t & P, = —tAP,. Then to any f € L*(R"), we
associate the function g(z) defined as

(284 o =2 [Tl )"

in full similarity with the celebrated Littlewood-Paley function.

A trivial calculation yields

(28.5) /m f(2)2dz = /m o*(z) dz .

We then consider the difference h(z) = |f(z)|?> — g?(x). We obviously have
[ h(z)dz = 0.

But much more is true. Indeed h(z) belongs to the Stein & Weiss space
#H!(IR™) whenever f € L?(IR™). We need the bilinear version of this fact.
The pseudo-product ufjv between u € L?(IR™) and v € L?(IR™) is defined as

(28.6) uio(z) = 4 /0 Quw) Q) &
We then have

Theorem 28.1. There exists a constant C(n) such that the difference be-
tween the product u(z)v(z) and the pseudo-product ufv between two func-
tions in L2(IR™) belongs to H!(IR™) and satisfies

(28.7) luv — utvllag < ) llullz 0]z -
The proof of this fact is straightforward. A simple calculation yields
(28.8) w(z) = wv—ufv
= 0 [ [ exp(ia- (¢+n)) wle,n) a(e) on) d
2

where 7(€,7) = (W) '

[nl
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This bi-linear symbol 7 belongs to C*°(IR™ x IR™\ {0,0}). Moreover 7 is
homogeneous of degree 0 and vanishes on £ + 7 = 0. These three properties
imply that the bilinear operator defined by (28.8) maps L?(IR™) x L?(IR")
into H!(IR™). A reference is [20] or [56].

We now return to the proof of P.L. Lions’ conjecture. We need to prove
the following

(28.9) E1(z)Bi(z) + -+ + En(z)Ba(z) € H'(R™)
whenever (28.1), (28.2) and (28.3) are satisfied.

We first replace each E;(x)B;(z) by E;#B;. The corresponding error
term belongs to H!(IR™). We then treat the main terms by the following
theorem.

Theorem 28.2. If (28.1), (28.2) and (28.3) are satisfied, then the sum

(28.10)
o(x) = E1B1 + -+ + EpfiB,  belongs to B?’l .

This homogeneous Besov space is defined by the following three equiva-
lent properties

(28.11) E:IIA Mo = lIFllgor < o0

where Aj(f), j € Z, are the dyadic blocks of a Littlewood-Paley decompo-
sition

(28.12) f@) =Y a(,k)2" ¢(2Pz—k)

where 3" 5" |a(j, k)| < oo, 27/24)(2/z — k) being an orthonormal wavelet
basis with enough smoothness and vanishing moments. Indeed 2" —1 mother
wavelets are needed and the sum over v is omitted.

The third definition of B? s given by

(28.13 [ 12 § < .

For simplifying the notations, the norm in B?’l will be denoted by || - ||. All
other norms will carry indices. We have

(28.14) ) =4[ BB T
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and by convexity of the ball of B(l) ’1, it suffices to show the following

(28.15) | 1e®)- e g < clBk i,

when (28.1), (28.2) and (28.3) are satisfied.
For estimating ||Q:(E) - Q¢(B)||, the following lemma will be used.

Lemma 37. Let f(z), z € R", be a function with the following two pro-
perties

(28.16) f=divF where F(z)= (F1 (2),...,Fa(z))
and [[Fjl1 <£1,1<j<n

(28.17) 9;f € L"(IR™) and |0;f|L<1,1<j<n.
Then || f|l < C(n).

The proof is straightforward. If }5% A;(f) is the Littlewood-Paley
expansion of f, we estimate ||A;(f)|[1 by 27||F||;. This first estimate is ob-
tained by the Bernstein’s inequality applied to A;(F'). Bernstein’s inequality
reads

(28.18) 10julli < Rlull1, 1<j<n

when the Fourier transform of v is carried by || < R.

The second estimate is
(28.19) 125 (Al < 277 (I18uf s + -+ + 118n 1) -
It is obtained by writing
(28.20) g = A7 (81(019) + - + 8n(0n9))
and observing that
(28.21) 1A= R < R7[|Ah

if the Fourier transform of h vanishes on || < R.
Then Bernstein’s inequality, (28.17) and (28.21) imply (28.19).

The conclusion of lemma can obviously be rewritten as

(28.22) £ < C(n) [IVFll + IFIIL] -
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We now apply (28.22) to fi(z) = t™ f(tz) and observe that || f¢|| = || f||. But
IVfellh = t||Vf]l1 while |Fi|ly = ¢t ||F||;. By optimizing on t > 0, we
obtain

(28.23) £l < Co)IVFll IF ).

We now return to (28.15). The first remark is the following. Since
curl B = 0, we obtain

(28.24) B(z) = VU(z)

where U is scalar valued. Moreover ||B;||2 + -+ + ||Bx||2 and

o0 dt\ '/
(28.25) ([ riaupd)

are equivalent norms. Finally

(28.26) Q:(E) - Q:(B) = divQ:(E) Q:(U).

After writing (28.26), we can drop out the fundamental assumptions
(28.2) and (28.3). Only (28.1) is retained.

Using the obvious inequality 2vab < t~12a + t1/2b, a,b > 0, together
with Cauchy-Schwarz, (28.23) implies

(28.27) IQe(E) - Qu(B)Il < A(t) + B(t) + C(2)
where

At) = CtV2QU)2 1Q:(E)]l2

B() = c#”‘;inaﬂtmuz||QtBku2

and c@it) = Ct'/? Z Z Q¢ Exll2 [0, Q¢ Bllz2 -
11

We want to prove that both A(t), B(t) and C(t) can be written as
p(t) q(t) where

(28.28) (/Ooo p’(t) %)1/2 < C|E|:2
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and

(28.29) ( / T ) %’5)1/2 < C||Ba.

This will suffice to end our proof.

Concerning A(t), we have p(t) = t=/2{|Q.(U)ll2, q(t) = Q:(E)ll2 and
we simply use (28.25). The treatment of B(t) is not deeper. We have
p(t) = t1/2||9;Q:Ex|l2 and ¢(t) = ||Q¢Bkll2. Indeed t/28; Q¢ f = Q¢f where

A2 & 2
(28.30) A 1Q¢ll2 7 S Clifllz

as Plancherel identity shows.
The treatment of C(t) is similar and left to the reader.

Conclusion.

We return to our fundamental issue. What would we benefit from using a
divergence-free wavelet basis 7

The proof would begin the same way. The vector field E(z) is expanded
into a divergence free wavelet basis

(28.31) E(z) = ZZZa(j, k)2m/2 (2 z—k)

where the first sum runs over the 14 divergence free mother wavelets, the
second over all scales and the third over k € Z3.

To expand the second vector field B(z) we need to use a dual wavelet
basis. This means that instead of V;, W; we need to use V]-u, W} where Wg
is defined by the condition

% : Wo = W
is an isomorphism.

Similarly ®(t — k), k € Z, is a Riesz basis of VO” where ®(t — 1) — ®(t) =
¢'(t).

With these notations, B(z) is expanded into the same type of basis that
was used for E(z). We then have

(28.32) B(z) =YY > B, k)22 2z —k)
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where here there are only 7 mother wavelets. Indeed B = VU where U(z)
is a scalar valued function. Then (28.31) and (28.32) will be simplified into

(28.33) E(z) = ) > Eju()
j «a

(28.34) B(z) = > > Bjalz)
] «a

and we write

(28.35) E(z) - B(z ZZEJQ ja(z) + ().

It can be proved that I'(z) belongs to H!(IR"). This is not related to
div E(z) = 0, curl B(z) = 0. We now turn to the main term

(28.36) o(z) = ZZE-,a(x)-Bj,a(x).

We know from Lemarié-Rieusset’s clever construction that
(28.37) divEjq(z) =0 , curlBj4(z)=0.

Then the proof we gave with a continuous formalism applies to this discrete
formalism.

The conclusion is clear. Divergence-free wavelet bases do not pay.

29 Conclusion

We wanted to address a fundamental issue concerning the role played by
wavelets or Littlewood-Paley analysis and paraproduct algorithms in solving
Navier-Stokes equations.

There are indeed several issues. The first one concerns the mathematical
theory of Navier-Stokes equations. The second issue which will be addressed
is the role played by wavelets in the numerical simulation of Navier-Stokes
equations.

The last problem addresses the role played by wavelets as a visualisation
tool when one is working on experimental turbulence.

Let us first consider existence theorems. To the best of our understand-
ing, the most powerful algorithm is the improvement on Kato’s algorithm
we developed with M.A. Muschietti.
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This algorithm does not rely on wavelets or on Littlewood-Paley analy-
sis. However if we want to apply this algorithm when the initial condition
uo(z) is smooth, we are immediately entering the wavelet world. Indeed the
largest amount of smoothness that can be imposed on ug(z) is defined by
the minimal adapted Banach space E. This minimal Banach space is the ho-
mogeneous Besov space Bf’l(IR3). This Banach space cannot be understood
unless wavelet analysis is being used.

To be even more precise, let us assume that the initial condition ug(z)
is a sum of a few normalized divergence-free wavelets. These wavelets are
204p(29x — k), j € Z, k € Z3, 1) € A. Here A is a finite set consisting
of 14 mother wavelets 1 = (91, 2,%3) where 11,19 and 13 belong to the
Schwartz class.

The coefficients of this expansion of ug(z) are denoted by «a(j, k), j € Z,
k € Z3, and are assumed to belong to ¢'(Z*). Then this property of uq is
preserved by the Navier-Stokes equations : uniformly in ¢t > 0, z — u(z,t)
is enjoying the same regularity whenever 3" |a(j, k)| < .

These remarks imply that P. Federbush was right. Indeed “Navier and
Stokes meet the wavelet” as it was announced by P. Federbush. But this
meeting did not take place in the room which was arranged by P. Federbush.
The Morrey-Campanato space M?(IR?) is the largest space which is adap-
ated to Navier-Stokes equations and P. Federbush failed in using a wavelet
based Galerkin algorithm to construct mild solutions when ug(z) € M?(IR3).
Such a construction was given in these notes using Kato’s approach to the
problem.

We should remark that functions in M?(IR3) admit a simple characteriza-
tion by size properties of wavelet coefficients. However this characterization
is not the best approach to M?(IR3) which is more naturally defined by plain
size estimates. This could be the reason why Kato’s algorithm is so efficient
in this situation while P. Federbush failed. It is possible that Federbush’s
approach would work in the context of the minimal space Bf’l(IR3) for which
a wavelet analysis is so natural.

Let us then turn to uniqueness of mild solutions. Here also we have to
face bad news. It is clear that the original proof by P.G. Lemarié-Rieusset
and his collaborators is based on Besov spaces and paraproduct algorithms.
But this proof nowadays appears as awkward as compared to the proof based
on the “real variable methods” developed by A. Calderén and A. Zygmund.

Does it mean that real variable methods are always winning against
spectral methods when applied to Navier-Stokes equations 7
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This is certainly not the case. Indeed mathematicians are incorpora-
ting wavelet analysis inside a broader context which is named “micro-local
analysis”.

A.P. Calderén announced in 1965 that a better understanding of alge-
bras of pseudo-differential coefficients with minimal smoothness assumptions
should have a tremendous impact on non-linear PDE’s.

Then Calderén proposed a collection of entirely new operators. It was
a challenging task to prove the boundedness of these operators. Today the
best proofs are based on a wavelet analysis.

This means that wavelet analysis is obviously playing an important role
in Calderén’s program.

J.M. Bony reshaped Calderén’s program and launched the celebrated
para-differential calculus. The goal is the same as in Calderén’s approach.
It consists in including in the calculus the pointwise multiplications by non-
smooth functions.

As indicated in [56], there exists a version of the paraproduct operator
7(a, f) which is diagonal in a wavelet basis.

This does not mean that wavelets are playing a key role in Bony’s pro-
gram. However Bony’s program is not antagonistic to wavelet analysis.

Bony’s para-differential operators have important applications to many
problems concerning Navier-Stokes equations. The best references are
J.Y. Chemin [16], T. Kato and G. Ponce and finally Michael Taylor [61],
[62].

The main ingredients in these approaches are non trivial commutator
estimates. These estimates are similar to the ones Calderén, Coifman and
myself were able to prove. Let us stress that the commutators which are
involved lie beyond pseudo-differential operators.

Returning to the main issue, should one bet on wavelets for a deeper
insight into Navier-Stokes equations ? Let us confess that we do not know.
In contrast we can already state that paradifferential operators or microlocal
analysis are already playing a key role. The first person who tried to con-
vince me that microlocal analysis and non-linear PDE’s had strong ties was
Luc Tartar. But at that time my knowledge and my interest in non-linear
PDE’s was too limited to understand his deep views.

We now turn to a distinct issue which is the role that wavelets might
play in numerical simulations of Navier-Stokes equations.
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Many scientists are hoping that wavelets will be a key ingredient in the
next century codes. A description of this research area is extracted from
a research program by Nicholas Kevlahan, LMD, ENS, 24 rue Lhomond,
75231 Paris Cedex 05.

“The wavelet transform was first introduced as an analy-
sis technique, but numerical methods have been developed re-
cently which use wavelet bases to actually solve partial differ-
ential equations (Frolich & Schneider 1996 ; Charton & Perrier
1996). These methods are particularly well-suited to equations,
such as the Navier-Stokes equations at high Reynolds number,
whose solutions contain isolated multiscale structures or quasi-
singularities. In collaboration with Kai Schneider (ICT, Uni-
versitdt Karlsruhe) I compared simulations using these wavelet
techniques with standard spectral simulations and nonlinearly
filtered spectral simulations (Schneider, Kevlahan & Farge 1997).
The results showed that the wavelet methods are very accurate,
and require fewer active modes than spectral methods. Further-
more, the number of active wavelet modes is approximately con-
stant in time, even during intense nonlinear interactions, whereas
the number of active spectral modes peaks when the interactions
are most intense...”

In his Ph. D. dissertation, Mats Holmstrom also advocates wavelets for
solving PDEs.

“In fluid dynamics we have shocks, boundary layers and tur-
bulence. For these examples the solution can be smooth in
most of the solution domain, with small areas where the so-
lution changes quickly. When solving such problems numerically
we would like to adjust the discretization to the solution. In
terms of finite difference methods, we want to have many points
in areas where the solution has strong variation, and few points
where the solution is smooth. If we use a Galerkin method this
corresponds to the representation of the solution having fewer
basis functions in the smooth areas. ... The most common way
of compressing such a representation is thresholding. We delete
all wavelet coefficients of magnitude less than some threshold €
... Note that by thresholding a wavelet representation we have
a way to automatically find a sparse representation, and we can
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also use this representation to compute function values at any
point...

The method can be viewed as an adaptive mesh method,
where the mesh is automatically refined around sharp variations
of the solution. An advantage of the method is that we never
have to care about where and how to refine the mesh. All this is
handled by thresholding the wavelet coeflicients. The method
is well suited for large problems with a solution that is well
compressed in a wavelet basis... The constants in the estimates
are large. They can be reduced by using other wavelets than
Daubechies wavelets but the problem size has to be large before
the wavelet method outperforms classical methods...”

We strongly believe in wavelet based algorithms for solving non linear
PDEs. When more powerful computers are available, wavelet based algo-
rithms might win. Indeed the issue will then be a sharper analysis of the
shocks or singularities that might develop in the non-linear evolution.

Let me however qualify this remark. In my opinion, wavelet analysis
belongs to the same group of tools as refinements of meshes or multipanel
processing do. We also would like to include the celebrated Oslo algorithm
(“knot removal”) in this group. All these algorithms are addressing the same
issue : one should adapt the grid to the solution which is being computed.
In the case of an evolution equation, the grid should also evolve in time.

The equivalence between wavelet analysis, refinements of meshes and
multipanel processing is grounded on the pioneering work on non-linear ap-
proximation which was achieved by De Vore and inspired by Peller and
Peetre.

Returning to Navier-Stokes equations, my belief concerns algorithms
that mimic wavelet methods. These algorithms automatically introduce
more segmentation or grid points when a singularity is developing.

A last issue concerns the role played by wavelets as a visualisation tool.

Let us return to N. Kevlahan. He is advocating a wavelet analysis as a
post-processing :

“The wavelet transform is a new harmonic analysis technique
developed in France during the 1980s (Grossmann & Morlet).
Marie Farge showed that this technique is appropriate for the
analysis of turbulence because it permits a localization that is
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both spatial and spectral ([27], [30]). This means that one can
link the physical characteristics of turbulence (e.g. the presence
of vortices) to its pectral or statistical properties (e.g. energy
spectrum slope) [28].”

This means that here wavelets are used as a visualisation tool.

Then N. Kevlahan confirms M. Farge’s hopes :

“A wavelet analysis permitted me to cleanly separate the
vorticity filaments from the coherent vortices...”

This was achieved on a numerical simulation of two-dimensional tur-
bulence. The simulation was obtained with a conventional algorithm, but
wavelets were used as a discrimination tool in a pattern analysis. The suc-
cess of the work of Farge and Kevlahan responds to a concern expressed by
R. Azencott that detecting and isolating coherent vortices is a highly non
trivial task and that wavelet people might be using the wrong tools.

While M. Farge and his group are using a wavelet analysis for detecting
and isolating vertices on numerical simulations of 2D turbulence, A. Arneodo
and his team used a wavelet analysis on the turbulence signal which was
measured by Y. Gagne inside the Modane wind tunnel.

A. Arneodo and his team made two important discoveries. He could
prove the multifractal structure of the velocity field as a function of the time
variable [3] and he was able to detect huge transients which were interpreted
by A. Arneodo as vorticity filaments crossing the hot wire. This hot wire is
used to measure the velocity inside the wind tunnel.

Arneodo’s hypothesis was eventually confirmed by Y. Couder and his
group [26].

It is time to conclude.

It is now obvious that (1) wavelet analysis is the best available tool for
scrutinizing the intricate behavior of experimental turbulence and (2) there
are some hopes that wavelet type algorithms will be increasingly used in
numerical simulations. I am including adaptive refinement of meshes and
multipanel processing inside this group of algorithms.
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