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1. Introduction

The basic equations for the microscopic classical and quantum physics are the
Newtonian or Schrodinger equations. The Newtonian equations are valid from the
macroscopic scales (a few meters or much larger) to the microscopic molecular
scales. Here the molecules are treated as structureless particles and the typical
inter-molecule distances are large. Below the molecular scales, quantum physics
dominates and we will need the Schrodinger equations. These equations are typ-
ically characterized by a Hamiltonian (energy) consisting of a kinetic energy and
a potential energy of two-body interactions among particles. They govern the dy-
namics of particles in the microscopic scales and are considered as first principle

equations.

The macroscopic physics are on the other hand governed mostly by phenomeno-
logical equations such as the Euler equations or the Navier-Stokes equations. These
equations involve basic physical quantities such as density, momentum (or velocity)
and energy in macroscopic scales. They are in principle consequences of the basic

microscopic equations and should be viewed as secondary equations.

Therefore, the fundamental question in dynamics is to understand the gen-
eral many-body microscopic Newtonian or Schrodinger equations. Closed solutions
to these equations for large interacting systems are unfortunately impossible. A
more moderate goal is thus to solve these equations well enough so that conclusions
about some basic quantities can be made. The fundamental observation of Boltz-
mann states that the typical behavior for classical Newtonian systems in equilibrium
is governed by ensemble (statistical) averages, the Gibbs states (to be reviewed in
Section 3) in today’s language. This avoids the difficulties of solving directly the
Newton equations by postulating statistical averages, though the hypothesis remains
to be proved. Boltzmann’s formulation (or the Boltzmann-Gibbs formulation) con-
cerns systems in equilibrium, or in other words, behavior of systems as the time
approaches infinity. At the other end is the kinetic theory for short time behavior
when the systems are near free dynamics (i.e., typical particles undergo at most
a few collisions). The fundamental observation of kinetic theory, the idealization

of the collision processes, is again due to Boltzmann in his celebrated work on the
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Boltzmann equation. For systems neither in equilibrium nor near free dynamics,
that is, for time scale short for using equilibrium theory but longer than the scale
for kinetic theory, the most useful descriptions are still the classical macroscopic
equations such as the Euler equations or the Navier-Stokes equations. They are
continuum formulations of conservation of mass and momentum and contain some
phenomenological concepts such as viscosity. The Euler and Navier-Stokes equa-
tions are equations of density, velocity (momentum) and energy; the Boltzmann
equation the probability density of finding a particle at a fixed position with a
given velocity. The classical Hamiltonian plays no active role in either formulation.
Microscopic effects are summarized by the viscosity in the Navier-Stokes equations

and the collision (or scattering) kernel in the Boltzmann equation.

In this lecture, we review recent progress on the foundation of these asser-
tions: the Boltzmann-Gibbs formulation, the Boltzmann equation, and the contin-
uum formulation. There are intrinsic microscopic questions such as fluctuations,
time-dependent correlations and behavior of tagged particles which are naturally
formulated only on the microscopic level. Due to the length of this lecture, we shall
not go into these directions. We shall use the term classical (Hamiltonian) dynamics
for systems evolving according to the Newton equations; the quantum dynamics for
systems according to the Schrodinger equations.

The Boltzmann-Gibbs principle states that all stationary measures of the clas-
sical dynamics (i.e., measures invariant under the classical dynamics) are Gibbs
(see section 3 for a definition). It has lead to the development of modern ergodic
theory but its basic assertion on the stationary measures of the classical dynamics
remains a fundamental question to be addressed. Due to the existence of singular
stationary measures (see section 3) the Boltzmann-Gibbs principle is incorrect in
its full generality. These singular stationary measures are generally believed to have
no contribution to the statistical behavior of the systems. We believe that a regu-
larity condition, the finite specific entropy condition (to be defined in section 3), is
sufficient to eliminate these singular stationary measures [33]. Our claim is backed
by the theorem [33] stating that all stationary measures of classical dynamics with
finite specific entropy are Gibbs provided that there are no correlations in their

velocity distributions (correlations in the positions are allowed in this theorem).
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We call a stationary measure regular if it has finite specific entropy. Therefore, to
prove the Boltzmann-Gibbs principle it remains to prove that all regular stationary
measures have no correlations in the velocity distributions. We call the last prop-
erty the weak Boltzmann-Gibbs principle. Notice that there is no reference to Gibbs
measures in this formulation.

The Boltzmann equation is rather easy to derive if we assume the molecular
chaos assumption, i.e., the ‘incoming particles’ of a collision process have no cor-
relation. This assumption is very subtle since the ‘outgoing particles’ of a collision
remember the collision and thus possess correlations. Therefore, the molecular chaos
assumption in principle selects a direction of the time. This was a novel concept
and there were many debates on the validity of the Boltzmann equation and its
conclusion, the Boltzmann H-theorem. It was not until H. Grad in the fifties that
a mathematical meaning to the Boltzmann equation from classical dynamics was
clearly given. Grad observed that in a suitable space-time rescaling, the Boltzmann-
Grad limit (or simply the Grad limit, to be explained in section 1b), the probability
density of finding a particle at a fixed position with a given velocity satisfies the
Boltzmann equation. In other words, while the Newtonian mechanics govern the
dynamics of the particles and are universal, the Boltzmann equation is valid only on
the macroscopic scales. The Grad limit prescribes the precise relation between the
microscopic and the macroscopic scales and is characterized by the typical number
of collisions per particle being finite. It is thus restricted to relatively short time and
the low density gas. Grad’s claim on the classical dynamics was proved rigorously
in the seventies by O. Lanford [27, 28] for the hard core billiards in short time.

A mathematical formulation of the classical continuum equations from the
classical dynamics poses many conceptual questions which should be properly ad-
dressed. The Euler equations or the Navier-Stokes equations are equations for the
density, velocity and energy. Though these quantities have phenomenological mean-
ings, they have to be defined rigorously from microscopic quantities. The obvious
definition for, say, velocity at a macroscopic location, is simply the average of the ve-
locities of the particles in a ‘small neighborhood’ of the given location. Similarly we
can define density and energy. In order that these definitions are useful notions so

that they assume their macroscopic deterministic values, we need these definitions
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to be at least independent of the sizes (and shapes) of these small neighborhoods.
In a more mathematical formulation, we need these quantities to obey laws of of
large numbers at each location in space. We are, on the other hand, given a deter-
ministic dynamical system of many particles and there is no indication that these
laws of large numbers hold in any way. It was first observed by C. Morrey [32] in
the fifties that the Euler equations become ‘exact’ in the Euler limit, a space-time
scaling limit to be defined in section 1b, provided that the solution to the classical
dynamics are ‘locally’ in equilibrium. The last property, namely, the local equilib-
rium property of the systems, is sometimes called the propagation of chaos. Since it
can be confused with the ‘molecular chaos’ assumption for the Boltzmann equation,
we shall not use it in this lecture. Notice that mathematical formulations of Gibbs
states were only developed in the sixties and thus Gibbs states were not precisely
defined at that time. Morrey’s work was thus vague and there was also no mention
of a law of large numbers. In today language, the meaning of the Euler equations
is as follows:

(1) The microscopic Newtonian dynamics are ‘locally’ in equilibrium.

(2) The local equilibria are parameterized by density, velocity (momentum) and en-
ergy, the Boltzmann-Gibbs principle.

(3) The parameters of the local equilibria evolve according to the macroscopic hy-
drodynamical equations, the Euler equations.

We have not stated precisely a meaning of ‘locally’; this is crucial and will be given in
section 3. Notice that the Boltzmann equation involved only kinematics quantities
and no statistical concept.

It has been surprisingly difficult to carry out Morrey’s program even for highly
simplified systems. Both the local equilibrium property and the Boltzmann-Gibbs
principle are difficult to establish for many-body dynamics. We have discussed the
Boltzmann-Gibbs principle before and we now concentrate on the local equilibrium
property. For simplicity, we assume that the initial data satisfy the local equilib-
rium property. The main task is to show the local equilibrium property preserves
under the dynamics in the time scale of the problem. Since the relaxation time to
equilibrium depends on the size of the system, the space and time scales have to

be balanced carefully so as to observe the evolution of the local equilibria. (It is
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this balance that determines the scalings of the dynamics.) Rigorous justifications
of the classical equations are thus fine statements of relazation to equilibrium. As
most tools for relaxation to equilibrium are valid only for systems with dissipation,
the systems under discussion since C. Morrey have almost always been dissipative,
namely, stochastic dynamics. The stochastic dynamics was pioneered by M. Kac in
his work of the Boltzmann equation in the Grad limit. It was developed later on
by, among others, H. Mckean, R. Dobrushin, J. Lebowitz, F. Spitzer C. Kipnis, E.
Presutti, H. Spohn, and S. Varadhan, a subject generally known as scaling limits
of interacting particle systems.

To understand Morrey’s original problem for classical dynamics, C. Boldrighini,
R. Dobrushin and Y. Suhov [7] and Y. Sinai [36] constructed certain one dimen-
sional systems and considered their scaling limits. The Euler equations were proved
in the special case of one dimensional hard rods systems with elastic collisions [7].
This case is unusual because there are infinitely many conserved quantities and
the systems are integrable. The basic question to estimate the relaxation time
to equilibrium for the classical dynamics remained to be answered. It turns out
that if we assume the weak Boltzmann-Gibbs principle, a rigorous estimate [33] for
the relaxation time to equilibrium can be obtained. We remark that the (weak)
Boltzmann-Gibbs principle imposes no condition on the convergence rate to equilib-
rium; it is strictly a statement on the classification of the stationary measures to
the classical dynamics. The estimate obtained [33] is strong enough to prove the
convergence from the classical dynamics to the Euler equations. We also construct
from the (strong) solution to the Euler equations an approximate solution to the
Newton equations. It is a local Gibbs state (i.e., a local equilibrium measure) with
local density, velocity and energy given by the solution to the Euler equations. The
Euler equations can thus be interpreted as giving the leading asymptotics to the
Newton equations. This will be explained in section 3.

The derivation of the Navier-Stokes equations from classical dynamics presents
a deeper conceptual question relating to the origin of diffusivity in classical physics.
The diffusion equation, though well-accepted, is not a basic equation of classical
dynamics, which are time reversible and have no dissipation. Even for a classical

particle in an environment of random obstacles, the Lorentz gas, the diffusivity is
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a basic open problem. The viscosity in the Navier-Stokes equations is a measure
of collective diffusivity of many particles and is thus far more difficult to establish
than the diffusivity of a single classical particle. This was particularly emphasized
by, e.g., R. Dobrushin, J. Lebowitz and H. Spohn. On the physics side, there was a
lattice formulation of classical dynamics [17]. The viscosity was given in this work
by a Green-Kubo formula as a time integral of current-current correlation functions
(to be reviewed in section 4). Contrary to the common belief, the Green-Kubo
formula does not explain the origin of the viscosity; it is simply an expression for
the viscosity under the assumption that the system is diffusive and has Gaussian
fluctuations.

Thus we do not aim to derive the Navier-Stokes equations from the classical
dynamics rigorously. Our goal is rather to understand the viscosity from simpler
dynamics which capture the basics of the classical dynamics. These simpler models
will be stochastic lattice gases which are systems of random walks with collisions.
It was proved that these models give rise to the correct Navier-Stokes equations in
the incompressible limits (a type of scaling limit to be explained in section 4) {16,
34] for space dimension d > 3. Although our models contain random walks and
are thus dissipative apriori, we are able to show that the viscosity is strictly larger
than the viscosity of the symmetrized dynamics. The latter is interpreted as the
artificial viscosity (dissipation) we put into the dynamics as a regularization. The
difference of these two viscosities, which was proved to be positive, corresponds to
the true viscosity in the Newtonian dynamics.

We now comment on the origin of the viscosity. The viscosity is generated by
collisions of particles. On the time scale that the Boltzmann equation is valid, there
are only finite number of collisions. The viscosity is thus the ‘sum’ of effects of these
collisions. This is the classical point of view of Chapman, Enskog and Hilbert. The
viscosity in the Navier-Stokes equations, on the other hand, due to its natural time
scale is generated by infinite number of collisions. It is thus inconvenient to follow
the collisions of particles closely. One way to characterize this viscosity is through
the Green function of the dynamics. The Green function contains essentially all
information of the dynamics and is thus rather difficult to control for the many-

body dynamics. So a major part of the work [16, 26] is to estimate the Green
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function of the lattice gas dynamics [16, 34] reasonably precisely to establish a
diffusive behavior. This type of control on the Green function was first appeared
in the work of Varadhan [41] on a Ginzburg-Landau model (a system of interacting
Brownian motions). Notice that the Ginzburg-Landau dynamics considered in [41]
has no transport term; the main point of [16, 34] is to show diffusion arising from
transport dynamics.

We remark that in [16] we actually solved the microscopic dynamics to the
next order by constructing local Gibbs states based on the (strong) solution to the
incompressible Navier-Stokes equations. Therefore, the Navier-Stokes equations
govern the next order asymptotics to the microscopic dynamics. We have thus
proved not only that the Euler equations or the Navier-Stokes equations are correct
with respect to the microscopic dynamics (classical dynamics or the lattice gas
dynamics) in the sense of laws of large numbers, but they provide the leading and
the next order solutions to the microscopic dynamics.

One main drawback of this approach is the restriction to the smooth region
of the Navier-Stokes equations. The assumption that the Navier-Stokes equations
have a strong solution has a long history in their derivation from more basic models.
Derivations of the Navier-Stokes equations from the Boltzmann equation go back
already a century to Chapman, Enskog and Hilbert, and were made rigorous in
the seventies and eighties [8,10]. The removal of the smoothness assumption has
only very limited results. A program [5] of deriving the weak (Leray) solutions to
the incompressible Navier-Stokes equations from the DiPerna-Lions solutions of the
Boltzmann equation remains far from complete. Though it was believed that the
analysis of particle systems would be even more difficult because they are infinite
dimensional, we [34] have been able to remove this smoothness restriction on the
incompressible Navier-Stokes equations. This will be explained in section 4.

We now summarize our discussions concerning the derivations of the Boltz-
mann, Euler and the Navier-Stokes equations. The heuristic derivations of these
equations are mainly based on the following three observations:

(A1) The Boltzmann equation follows from the molecular chaos hypothesis.
(A2) The Euler equations follow from the local equilibrium assumption and the

Boltzmann-Gibbs principle.
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(A3) The Navier-Stokes equations follow from the assumption that the system is
diffusive and has Gaussian fluctuations.

While the molecular chaos hypothesis is simple to understand from today’s
point of view, the last assumption for the Navier-Stokes equations is rather vague
and essentially assumes the conclusion. This indicates the lack of understanding
for the origin of the Navier-Stokes equations. The molecular chaos hypothesis for
the Boltzmann equation was proved by Lanford in the Grad limit. The Boltzmann-
Gibbs principle is incorrect in its full generality. A weak formulation was provided
and that is sufficient for a derivation of the Euler equations [33]. This weak form of
the Boltzmann-Gibbs principle remains to be proved for general classical dynamics.
The derivation of the Navier-Stokes equations is based on the assumption (A3). It
is rigorously proved for lattice gas dynamics [16, 26] for dimension d > 3. The main
parts of all these works are mostly devoted to formulate precisely these assump-
tions and to rigorously justify them. Though these assumptions appear to be very
different, they are statements on the correlations of many-body systems. The main
analytic work is to obtain qualitative estimates on the correlations of particles in
large dynamical systems.

Notice that once these assumptions are accepted, the heuristic derivations are
straightforward. Therefore, it might appear that the justifications of these assump-
tions are rather academic. We first note that in general these assumptions are
misleading and, unless properly restricted, may be plainly wrong. For example, the
Boltzmann-Gibbs principle are incorrect as remarked before. The lack of precise un-
derstanding of the molecular chaos hypothesis was part of the sources of confusions
concerning the time reversibility and the Boltzmann H-Theorem. Are certain refor-
mulations of them bound to be correct? After all, these equations have been in use
for centuries. A notable exception is the assumption (A3). It is shown [26, 34] that
this assumption (i.e., the system is diffusive and has Gaussian fluctuations) for the
lattice gases is wrong in dimension d < 2. Since the lattice gas dynamics are believed
to be more ‘diffusive’ than the classical dynamics due to the presense of random
walks in the lattice gas models, this strongly indicates that the many-body classical
dynamics is not diffusive in dimension d < 2. Therefore, as the system becomes two

dimensional, the applicability of the incompressible Navier-Stokes equations cannot
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be taken for granted. (Strictly speaking, we showed that the incompressible scaling
limit of the lattice gas dynamics diverges for d < 2. Since the incompressible scaling
leaves the incompressible Navier-Stokes equations invariant, this proves that they
can not be derived from a scaling limit of the lattice gas dynamics. See [26, 34] for
rigorous statements.) Due to the length of the lecture, we can only explain some of

these ideas in a superficial way in section 4.

Our next topic is the quantum dynamics. The most basic objects here are the
electrons and the radiation or phonon fields. The full electron-field dynamics are
governed by suitable Schrodinger equations which are systems of infinitely coupled
equations. Our main objective is to solve these systems reasonably precisely so that
meaningful conclusions can be made on the dynamics of the electrons. The precise
form of the external fields, though crucial for many purposes, are not very important
for a few basic questions. So we shall take for example the phonon field. A natural
model is thus the dynamics of electrons in disordered media. The disordered media
are described by a random potential modeling obstacles (doping) and a phonon
field modeling lattice vibrations. Thus the full dynamics contain electron-electron,
electron-obstacle and electron-phonon interactions. Even for this much simplified
model, we do not know very much about its dynamics. We shall first restrict
ourselves to the kinetic region where the dynamics are near the free dynamics. Our
initial goal is to prove the Boltzmann equation from the quantum dynamics (12,
13]. Due to the particle-wave duality of the Schrodinger equation and internal
structures such as statistics or spins of quantum particles, the Boltzmann equation
will take different forms in quantum dynamics. A quantum system is described by a
complex-valued wave function, or more general, a quantum state. The fundamental
mechanism for quantum dynamics is through ‘interferences’ of waves determined by
the complex phases of the wave function, a mechanism completely different from
the classical or the stochastic ones. We shall review the basic set up of the problem

and some recent progress in section 6.
la. Remarks on History and Methods

The scaling limits of stochastic particle systems were initiated by H. Grad, M.
Kac and C. Morrey. They were developed later on by H. McKean, R. Dobrushin,
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J. Lebowitz, and F. Spitzer. The main difficulty here is a lack of analytic tools
to control correlations of particles. While there are sophisticated tools on function
spaces of finite degree of freedoms, the basic analytic objects such as L? norms
typically diverge as eV where N is the number of particles. Thus the only tools
available in the early stage of the development were essentially perturbative analyses
and exactly solvable models. The perturbative analyses were developed systemati-
cally in the eighties in the work of J. Lebowitz, C. Kipnis, E. Presutti, H. Spohn,
among others. Lanford’s proof of the Boltzmann equation was also perturbative.
See the book of Spohn [38] for a review. In the late eighties, M. Guo, G. Pa-
panicolau, and S. Varadhan [21] introduced a method based on entropy and large
deviations (the GPV method) into this field and made possible elliptic analysis in
infinite dimensions. The GPV method, roughly speaking, is an ‘energy method’ in
infinite dimensions. It consists of differentiating the entropy of the initial data and
expressing the entropy dissipation (here we take the convention that the entropy is
positive) as certain Dirichlet forms. Thus the time integral of the Dirichlet form is
bounded by the initial entropy and provides the basic estimate in the GPV method.
Notice the similarity to the energy method for partial differential equations. In the
typical energy method, once we have the energy estimates, the next step is to apply
some Sobolev inequalities. In the GPV approach the basic quantities are now the
Dirichlet form and the entropy. The basic relation between them is the logarith-
mic Sobolev inequality (LSI) introduced by P. Federbush and L. Gross (see [9] for
a review) in the seventies. This inequality is difficult to obtain unless there are
no interactions among particles; it also depends on various details of the dynam-
ics such as phase transitions of the equilibrium measures. Once it is proved, the
GPV method and the logarithmic Sobolev inequality provide a very strong elliptic
method in this subject. We have proved [43] the logarithmic Sobolev inequality
for particle systems under quite general conditions. The details and the relation to

other work [40, 31] will be discussed in section 5e.

There is a different view to the entropy. Recall that entropy is also a well-
known notion of distance between two probability measures (see (3.20)). If we use
this notion to measure the distance between the true evolution of the system and

carefully chosen (time-dependent) local equilibrium states then the scaling limits of
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a large class of systems can be obtained essentially by knowing only the ergodicity
of the dynamics [42]. The argument, though restrictive in some ways, is surprising
simple and is based just on the standard thermodynamical formalism of equilibrium
physics, or large deviations. This bypasses the elliptic analysis of GPV or the
logarithmic Sobolev inequality and leads to a proof of the Euler equations [33] from

the classical dynamics under rather mild assumptions.

On a technical level, the main task in proving the scaling limits is to elimi-
nate irrelevant (fast decay) modes from the dynamics. It is a well-known belief in
quantum field theory that these fast decay modes can be eliminated by a renor-
malization group argument. We could in principle set up a renormalization group
scheme to eliminate fast decay modes so that the hydrodynamical equation become
the ‘fixed point’ of the renormalization group transform (called the RG transform).
The difficulties of this approach are probably enormous as the RG transform maps
the original dynamics into non-Markovian dynamics. There is also no explanation
of how a concept such as viscosity arises from RG transform. It would be an in-
teresting problem to set up a renormalization group transform in a simple model
and derive the hydrodynamical equations as the ‘fized point’ of the renormalization
group transform. The observation that there is a multiscale structure in the prob-
lem is however extremely important. Recall that the best elliptic method we had
was the GPV method and the logarithmic Sobolev inequality. A direct application
of this method however can not control the incompressible limit of the lattice gas
dynamics. In fact, it appears that the incompressible limit of lattice gas dynam-
ics diverges in such a direct approach. It was not until the multiscale idea was
incorporated [15, 16, 34] in the GPV method that this limit can be controlled.
Furthermore, the restriction on the dimension d > 3 also appeared naturally in the
multiscale analysis. In this multiscale-GPV approach, the logarithmic Sobolev in-
equality was used to control the convergence of perturbation theory at each scale.
This approach avoids many basic difficulties (such as the large field problem, which
is now controlled by the logarithmic Sobolev inequality) associated with setting up
a renormalization group transform. It provides to our knowledge the most powerful

tool in this subject.
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1b. Basic Scalings

We now explain the scalings used in this review. Denote coordinates by lower
case letters (z,t) in the microscopic (molecular) scale; by capital letters (X,T) in
the macroscopic scale. We put the system in a cube of size L in d-dimensional space
with periodic boundary condition and we will usually assume d = 3. Denote the
particles by w = (z1,- -, ZN,v1,- -+, un) with the density (in the microscopic unit,
i.e., number of particles per microscopic unit volume) p = N/L3. Let ¢ be the ratio
between the microscopic unit and the macroscopic unit (say, € ~ 10~¢ depending

on models). There are typically three choices of scalings:

Grad p=¢, (X,T):= (ze,te) number of finite
Euler p=1, (X,T):=(z¢,te) p = { collisions : ¢} (1.1)
Diffusive p = 1, (X, T) := (ze, te?) per particle &2

This means that we keep the macroscopic variables (X, T) fixed and take the limit
€ — 0. The Euler and diffusive limits will be referred to as hydrodynamic limits.
The typical number of collisions for an average particle is of order pt for a dynamical
system. Hence it is finite for the Grad limit; infinite in the hydrodynamic limits.
The Grad limit is the closest to free motion (no collisions) and is the relevant limit
for the Boltzmann equations. Essentially due to this feature, O. Lanford [27, 28]
proved the convergence of the hard core billiards to the Boltzmann equation in the
Grad limit in short (macroscopic) time. We shall first review Lanford’s derivation
of the Boltzmann equation from the classical dynamics in section 2.

This note is prepared with very much help from L. Erdos and J. Quastel. It isa
great pleasure to thank them for critical readings and comments on the manuscript.

2. The Boltzmann Equation

Denote the configurations of particles in a cube of size L, Ay, in R? by w =
(x,v) = (%1, ", 2N, V1, -, UN) € AY x R3N with the density (in the microscopic
unit, i.e., number of particles per microscopic unit volume) p = N/L®. Denote v?

or z? the standard vector norm in R3. The classical dynamics are characterized by
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the Hamiltonian

N

1

Hy(x,v) =5 v+ Y, V(zi-3) (2.1)
i=1 1<i<j<N

with V a two-body potential and the Liouville equation

doi _OH _
dt ~ ov; 22)
d'Ui _ 8H _ :
_Jt_ - —6Ii - _sziv(zl - z])
J#i
Define the Liouville operator
N19H 8 06H @
£=3 [Goan 52,50 @3)

1=

Alternatively, if we denote fy ¢ the density (with respect to the standard Lebesgue

measure) of the system at time ¢ then it satisfies the dual equation
Ocfne(x,¥) =L fn e (24)

where —£* = L is the adjoint taken with respect to the standard Lebesgue measure.
The two descriptions are equivalent and we shall follow the convention from Markov
processes to call (2.2) the backward equation and (2.4) the forward equation. The
potential V is assumed to be radial, smooth with compact support and superstable
in the sense of statistical mechanics. The last requirement will not be explicitly
used in this lecture and we shall not explain it here.

Denote by X, V, T the macroscopic coordinate, velocity and time variables. The

Boltzmann equation is given by

OrFr(X,V)+V -VxFr(X,V)
= / dudu'dv'e(U,V; U, V") | Fr(X,U")Fr(X,V") = Fr(X,U)Fr(X,V) ]
(2.5)
where o is the collision (scattering) kernel with incoming particles of velocities U,V
and the outgoing particles of velocities U’, V'. The first term is the gain term from

the collision; the second one the loss term.
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Let ¢ be the ratio between the microscopic unit and the macroscopic unit (say,
€ ~107%). Recall fn,; the density (with respect to the standard Lebesgue measure)

of the system at time ¢. Define the one-particle marginal density by

P} (z,v) IZ/dzl /dv1 - dup,

INe(@1, T, 2, B0, Ty VI, 0, V521, U, Ui, Un)
It is much simpler to characterize the one-particle marginal density via one-body

observable:

O(x, -1 Z J(z,v;) (2.6)

Clearly,

(O(x,v), fae(x,v)) = / dx dv fn(x,¥v)0(x,v) = / dx dv p; (z,v)J (z,v)

H. Grad observed that the Boltzmann equation becomes exact in the limit € — 0 if
we choose

(z,t) := (X/e, T/e), p=c¢. (2.7)

This means that we keep the macroscopic variables (X,T') fixed and take the limit

€ — 0. In other words, define

Then F4(X,V) converges to a solution to the Boltzmann equation. Notice the
.typical number of collisions per particle in a system is roughly pt (imagine that a
particle has a cross section of order one. So the volume a particle travels through
in a time interval ¢ is of order ¢. The number of other particles in this volume is
of order pt and this gives the typical number of collisions for an average particle.)
Hence it is of order one in the Grad limit and Grad limit is a region near the free
motions.

It is thus tempting to solve the Liouville equation (2.4) by perturbation of free
motions. We now comment on this approach. Let £o denote the Liouville operator

with respect to the free Hamiltonian

Ho n(x Z v? (2.8)
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namely,
N
0
Lo=) vig—
0 Z i ail?z‘
=1
and let £; denote the Liouville operator with respect to the interaction H;y =

H — Hy. We can write the Liouville equation as
Oifne(x,¥) = Lofne+ L1fne (2.9)
In integral form:
Fne=eFofno+ /Ot e(t=9E" L% 358 f o ds

We would like to iterate this equation to solve the Liouville equation. This proce-
dure however can hardly work because H; involves two-body interactions and the
operator £} has N? ~ e¢~* terms! The mistake we made is that we are dealing
with the forward equation (2.4), involving the information of all particles and thus
impossible to keep track of. A better idea is to look at observables instead of the
density of the system.

Recall the one body observables defined in (2.6). If we define O(x,v) by the

backward equation:
0:01(x,v) = L O¢(x,¥) , (2.10)

then we have

(O(x,¥), fre(x,¥)) = (O:(x,¥), fn(x,v))

Notice that O; is no longer an one-body observable. The main advantage of con-
sidering the observable is that the integral equation for O;(x,v) representing the

perturbation of free dynamics now has better convergence properties:
t
Oi(x,v) = etf° 0o (x, v) +/ e(t=9)L L1 e*f0 Op(x,v) ds (2.11)
0
The effect of the free evolution e*° can be easily removed by a shift of positions:

e*£0 Op(x,¥) = Oo(x + sv, V) := Op(X,V; 5)

Due to the form of the observables, the interaction part, £y, becomes

C On(xvis) = N1S | 8@+ svs0)
10o(x,¥8) =N D | VV(ai — 1) o (2.12)
J=1 | i#j 7
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Notice that the last expression is of the form of two-body observables.

The last expression is now at worst of order IV, which occurs if all the particles
come close together. This is surely a very rare situation, but we have no way to
exclude it from the equation of observables alone. To eliminate it, we need to
assume that the initial data is sufficiently uncorrelated, say, a product density, and

take expected value of (2.11) with respect to the initial density fno:

t
{fN0,0t) = (fno , €0 Oo) +/ (fno, €79 L1 e Op) ds (2.13)
0

Suppose fwn,o is a product density. The probability of finding a particle near any
z; is p with respect to fyo. This property is clearly preserved under the free
dynamics. Now if we replace the full Liouville operator in the last equation by the

free evolution, we clearly have, for fy o a product density, that
(fn0, ™50 L1 e*£00p) ~ p
The time integration gives a factor ¢t and we thus have

t
/ (fno, €950 L e£000) ds ~tp~ 1
0

in the Grad limit. This suggests that we can iterate (2.13) to obtain the solution
in case of small pt. This is indeed true and was proved by O. Lanford [27, 28].
The conclusion is that the one particle density p! converges to the solution of the
Boltzmann equation.

The equation (2.13) is not closed in the class of one-body observables, i.e., O;
can not be of the form (2.6). We only have to note that the last term of (2.13),
explicitly written in (2.12), involves observables of correlations. In general, if the
initial Og is an observable of k-correlations then its equation will involve (k + 1)-
correlations. It is thus natural to pull these equations together and view them as a
hierarchy of equations. This is the famous BBGKY hierarchy (see [38] for a review),
which traditionally are formulated in terms of a hierarchy of k-correlation functions.
In essence, Lanford’s work is a proof of the convergence of the BBGKY hierarchy
when pt is small.

The most striking point of Lanford’s theorem is that it proves the decrease
of the entropy in the Boltzmann equation, the famous Boltzmann H-theorem, rig-

orously from the Newton equations which are time reversible with the entropy a
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constant of motion. More precisely, recall that for any two probability densities

(with respect to a fixed probability measure w) the relative entropy is defined by

S(flg) = / flog(f /g)dw (2.14)

Notice the sign convention of the entropy is opposite to the one used in physics. We
shall denote S(f|1) = S(f). Suppose f; is a solution of the Liouville equation (2.4)

and w is the standard Lebesgue measure. Then by direct computation
01S(ft) =0 (2.15)

On the other hand, for any solution Fr to the Boltzmann equation, the entropy,
S(Fr) (called the Boltzmann entropy. It was denoted as H(Fr) by Boltzmann.
Hence the name Boltzmann H-Theorem), decreases due to the collision term. One
may explain that this change of behavior in the entropy is due to the limit € — 0.
In fact, the Boltzmann entropy S(Fr) is the entropy of the one particle marginal
density of the original many-body system, while the conservation of entropy in the
classical dynamics refers to the entropy of the full system S(f;). Though there are
some inequalities relating these two entropies, S(Fr) is certainly not a function of
S(f:). To see this, take a symmetric probability density f(z,y) of two particles
and define fi(z) = [ f(z,y)dy its marginal. We can convince ourselves fairly easily
that there is a contribution of entropy due to the correlation of the two particles
in S(f) which is absent in S(f;). Since the correlation can be arbitrary, the best
one can expect between S(f) and S(f1) are certain inequalities. In other words,
although the rigorous meaning of the Boltzmann is given via the Grad limit, the
key reason that the Boltzmann entropy dissipates while the entropy of the full
classical dynamics is conserved is not due to the limiting procedure. It is because
that the Boltzmann entropy does not take into account of correlations of particles.
This in our opinion is perhaps a more natural explanation to resolve the seeming
contradiction of Boltzmann H-theorem than attributing it to the limiting procedure.

The previous perturbation argument, however, is restricted to a small time.
The typical number of collisions per particle covered in the Lanford’s theorem is

about 1/4. Clearly it is a basic problem in this subject to improve the time scale
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of Lanford’s theorem. There are many other open problems; we mention only the
following two:

1. Prove that the one particle density converges to weak solutions of the Boltzmann
equation for all time.

2. Alternatively, assume that the Boltzmann equation has a strong solution up to

time T and prove Lanford’s Theorem up to this time.

3. The Euler Equations

The Euler limit has the same space-time scaling as the Grad limit (the macro-
scopic parameters and microscopic parameters are given by (X, T) := (z¢, te)) but
the density is now increased from order ¢ to order one. We shall take the size of the
system L to be order ¢! (in microscopic unit) which is the smallest scale compati-
ble with the scaling z = ¢! X. Thus the number of particle N = ¢~3. The typical
number of collisions per particle, tp, is now of order ¢! and thus tends to infinity as
€ -+ 0. We might expect that the infinite number of collisions per particle will take
the system to equilibrium. But this contradicts our goal of showing that the local
conserved quantities are governed by the Euler equations and thus their values vary
with the space and time. The subtle point is that the relazation time depends on
the size of the system and only local equilibrium is achieved in the hydrodynamical
limit.

We first need to understand the ergodic properties of classical dynamics. Though
our systems are finite, they become infinite in the limit ¢ — 0. Therefore, all er-
godic statements in this lecture refer to measures in infinite volume. The classical
dynamics leave the standard Lebesgue measures and Gibbs measures invariant. The
Gibbs measures are characterized formally by a density (with respect to the stan-
dard Lebesgue measures) proportional to e™#¥ | where (3 is the inverse temperature
and H is the Hamiltonian (2.1). This is purely formal because a pointwise density
with respect to the standard Lebesgue measure in infinite dimension is certainly
meaningless. A precise meaning is given by standard equilibrium statistical physics

which we now sketch briefly.
Digression on Gibbs States

Let Ay, denote a cube of size L in R® and w 1,~n denote the standard Lebesgue
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measure on A3Y x R3V. Denote by uj% the probability measure on AZY x RV

with density with respect to wr n given by

du‘Z’f}v = (Zﬂ’”)—lexp _ﬂHN“F'U'i’U' ; (3.1)
dwp N LN = i )

where Hy is the Hamiltonian defined in (2.1) and Zf”N is the normalization so
that l‘]‘j}’v is a probability measure. The Gibbs measures with inverse temperature
B, velocity v and density (of the particles) p are defined as the weak limits of
the sequence of the probability measures pfg}’v as L — oo such that the density
N/L?® = p in the limit L — oo . Formally, they are measures on the configuration

space of infinite particles in R3:
COO = {(1‘11'”71‘”7"';”17'” 7UTH”') S T4, V5 € R3}

We sometimes use the terminology Gibbs states to refer to the infinite volume Gibbs
measures. Notice that the limiting points may not be unique. We say a system has
a phase transition if the limit is not unique, otherwise no phase transition.

The (average) energy of the Gibbs state, e, is defined as the expected value of
the energy per particle. It can be computed as the limit of the expected value of
the Hamiltonian Hy divided by N with respect to ug’j\, as L — oo, namely

e:= lim N7! / Hy dul’y

L—oco

A definition without reference to a limit can be given but requires more notations
and we shall not mention it here. Similarly we can define the (average) velocity, U,

to be
N
5.— 1 -1 B,
7= LliiréON /z; v dpp'y
]:
From the special form of the kinetic energy in the Hamiltonian (2.1), the velocity

distribution is an independent Gaussian (or Maxwellian) with density

8 3N/2 N
(-ﬂ-) exp |- (v; —v)?/2 (3.2)

Thus the Gibbs measures we have defined have the average velocity ¥ = v. This

justifies the usage of v as the velocity of the system.
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A Gibbs state is thus characterized by the inverse temperature 3, the velocity
v and the density p. Therefore, the energy e is a function of 3,v, p. It is a general
fact that the correspondence between the temperature and the energy is one to one
in the absence of phase transition. Thus instead of fixing the inverse temperature
B, we can use the energy e as the parameter. We shall denote the Gibbs state with
the density p, velocity v and energy e by p,,, . Formally the Gibbs state is simply
the uniform measure on the configuration space C* with fixed density, velocity and
energy.

The density (the number of particles), velocity and energy are conserved quan-
tities of the classical dynamics. So the Gibbs measures (3.1) are of the form of
exponential of conservative quantities of the classical dynamics. Alternatively, we
can consider it to be the uniform distribution on the subset of the configuration
space C* with fixed conserved quantities. Though this point of view is formal, it
is very intuitive. It can be also made rigorous by the well-known equivalence of

ensembles theorem which we shall not go into.
End Digression

The famous Boltzmann Hypothesis (or Boltzmann-Gibbs principle) claims that
all translationally invariant stationary measures are Gibbs. Formally, a measure p

is stationary with respect to the classical dynamics if and only if
L'u=0 (3.3)

where £ is the Liouville operator (2.3). We follow the convention to call invariant
measures of the classical dynamics stationary and reserve the word invariant for the
usage in ‘translationally invariant’.
Boltzmann Hypothesis : The translationally invariant stationary measures of
many body classical dynamics with Hamiltonian H are Gibbs with Hamiltonian H.
Recall the Gibbs measures are the uniform distribution on the subset of con-
figurations with fixed conserved quantities. The Boltzmann Hypothesis then states
that for any given initial configuration, after a very long time, it will visit all config-
urations with the same density, velocity and energy equally likely. In particular, the
energy, velocity and density are the only conserved quantities for a large transla-

tionally invariant classical dynamical system. The last statement cannot be correct
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without proper modification and there are singular stationary non-Gibbs measures
such as all particles travelling in the same direction. Thus the Boltzmann Hy-
pothesis is strictly speaking incorrect as it is but we expect it to be still correct if
we restrict to ‘regular’ translationally invariant stationary measures. A regularity
condition which we believe will be sufficient is the finite specific entropy condition,
i.e., entropy per microscopic unit volume with respect to the standard Lebesgue
measure is finite. Define a measure regular if its specific entropy with respect to the
standard Lebesgue measure is finite.

Definition of specific entropy: Suppose fn(Z1,--*,ZN;v1, " -,UnN) is a probability
density with respect to the standard Lebesgue measure wy,z on AY x R3V. The
entropy S(fn) is defined in (2.14). The specific entropy per unit volume is defined
by

s(fn) = L735(fn)

We can take I — oo (keeping N/L® fixed) to have a definition of the specific
entropy in infinite volume. There are intrinsic definitions of the specific entropy
without reference to a limit. But we shall not need it here.

Boltzmann Hypothesis for regular stationary measures: The translation-
ally invariant regular stationary measures of many body classical dynamics with
Hamiltonian H are Gibbs with Hamiltonian H.

It is a formidable task to prove this statement. To appreciate some of the diffi-
culty, consider the following problem which admittedly does not take into account
of translational invariance. Take the space of fixed density, velocity and energy and
fix an initial configuration. In order that the uniform measure on the subset of fixed
density, velocity and energy is the only invariant measure, we have to at least prove
that any configuration with the same density, velocity and energy can be connected
to the initial configuration via free motions and collisions. Notice that we have to
rule out all hidden discrete symmetries.

The key point of the Boltzmann Hypothesis is that the invariant measures are
Gibbs, not to fix the Hamiltonian H. It is not difficulty to prove that if a Gibbs
measure ~ e~AH' is invariant under the dynamics with the Hamiltonian H then H'

must be H. Indeed, we can assume even less. A theorem of S. Olla and S. Varadhan
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and myself [33] states that, if a regular stationary measure of the dynamics with
Hamiltonian H has the property that the typical velocity distributions of different
particles are uncorrelated, then it is a Gibbs measure with the Hamiltonian H.
Therefore, we can state the following weak form the Boltzmann Hypothesis:
Weak Boltzmann Hypothesis for regular stationary measures : The ve-
locity distributions in any translationally invariant regular stationary measures of
many body classical dynamics are uncorrelated.
Thus our theorem states that the weak Boltzmann Hypothesis implies the Boltz-
mann Hypothesis. Notice that in this statement there is no reference to the Hamil-
tonian nor the concept of Gibbs states.

We now return to the Euler scaling limit. The main result is the following joint

work with S. Olla and S. Varadhan [33].

Theorem 3.1. Assume that the weak Boltzmann Hypothesis for regular stationary
measures. Suppose the Euler equation has a smooth solution in [0,T). Then the
density, velocity and energy of the classical dynamics converge to the solution of

the Euler equations in [0,T] in probability.

If we are allowed to add a small stochastic perturbation to the classical dynam-
ics then the weak Boltzmann Hypothesis can be proved. The stochastic perturba-
tion is very weak and the hydrodynamical limit is still the Euler equations of the
classical dynamics. Theorem 3.1 also need some assumptions concerning the phase
transitions of the systems, but those conditions can be ensured by high temperature
or low density expansions. Finally we need an assumption on the initial state of the
classical dynamics which will become clear once we describe the relative entropy
method.

Sketch of proof of Theorem 3.1: Recall the Liouville equation (2.2) and (2.4). It is
convenient to put the time scaling into the Liouville equation directly so that we

have

dz; H
u —s‘la =g ly;

dT 6v,; -

dvi  _,0H (3.4)
a7 = —€ 8_151 = —¢€ ;vzgv(zl - ﬂi‘])
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Oring(x,v) = 'L fnr (3.5)

where the Liouville operator stays the same (2.3).
For a given configuration w = (x,v) = (z1, - -,ZN,v1, -+, Un) the density

(which rigorously speaking is a measure) is defined by

Pew(X)=N"1 25 —ex;)

where ¢ is the standard delta function on the Euclidean space. This definition is
just a formal expression of the intuitive notion that we pick up a delta function
whenever there is a particle at X/e. Similarly we can define the velocity v, and

energy €. ,. For example:

Pew(X)=N"1 Za(x ~€Z)v; . (3.6)

Sometimes it is convenient to put all these conservative quantities into a vector

= (Cei",w)tzo :
-~ 1 ) ~ ™ ~
Eg,u = p€,w’ (Ce,w’ Cs,w? ZE,w) = 'Us,wa C:,w = _eﬁ‘w (37)

From the definition, p, ., is a measure on the Euclidean space for each w fixed.
Suppose the configuration w distributes according to a probability density fn. Let

J be a test function. Then the integration of J with respect to the measure p; .,
/J X)pew(X)dX = N~ ZJ(Ez,
=1

is a random variable with induced distribution from w. We shall say that p. . has

a density p(X) with respect to the density fy if

N
N7y J(exs) » / J(X)p(X)dX
=1

as € = 0 (with respect to fn). In our setting, w is distributed according to the
solution fy,r to the Liouville equation (3.5). Similarly for the velocity and the

energy.
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To obtain the Euler equation, we differentiate, e.g., the velocity

4 / J(X)p(X, T)o(X, T)dX = L N1 f: Jez(T)u(T)  (3.8)
dT P : 7~ R '

We now use the rescaled Liouville equation (3.4) to compute the time derivative.

After some simple computations, the final result is
7 [ IR TE DX = [ XTI UpicroX,0). (39)

where the microscopic current Q0o (actually only a main term of the full micro-

scopic current) is given by

N
micro current := Qupicro(X,w) 1= (2N)! Zé(X—e:c,-) Z (zi — zj) Vg,V (zi — z;)
i=1

J#i
(3.10)
The equation (3.9) is just an explicit computation of the weak form of the general
relation
d - . . .
5T conserved quantities = div ( microscopic current) (3.11)

in a fixed model. Notice that the microscopic current is not a function of the
conserved quantities and (3.9) (or (3.11)) is simply a relation. In order to obtain
a closed equation, we need to replace the microscopic current by the macroscopic
current appearing in the hydrodynamical equation.

Recall the Euler equations:

dp _
ﬁ-l-V(p'v)—-O

) Viwev+P=0 (3.12)

%Q+V[pev—vP]=0

Here the pressure P is not an unknown in the Euler equations but a function of
density, velocity and energy and determined by the equation of state from the
equilibrium Gibbs measure.

In order to obtain the Euler equations we need to show that

micro current — macro current (3.13)
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in the limit ¢ — 0. Here the macroscopic current can be identified from the Euler
equation as the pressure (again, only a main term). This is a general step in
the hydrodynamical limit: replacing the microscopic current by the macroscopic
current. This equality is understood in the sense of law of large numbers with

respect to the density of the systems fy r at time ¢, i.e.,
N1 / fN,T(w)t / dX J(X) [Qm,-c,,,(x,w) - Qmm(x,w)] ’dw ~0  (3.14)

where dw = dz1dv; - - -dzydun, J is a test function and Qpmecro(X) = P(Z’;,uJ (X))
is the macroscopic current.

The density fy,r satisfies the Liouville equation (3.5). At the present time
we have essentially no estimate on this equation and the required identity has not
been proved. To appreciate the difficulties, we list a few comments on the Liouville
equation:

o It conserves L? norm of fy r and positivity (thus fy,7 can be considered as a
probability density) but LP norm is not useful since || fn,7 ||~ eV, which is a
huge number.

e There is no elliptic operator in the Liouville operator.

e The BBGKY method works only for perturbation of free dynamics and thus is not
useful for the hydrodynamical limit where the typical number of collision is infinite.

Instead of an approach via elliptic estimates or LP theory, a useful way to
establish (3.14) is to consider the ergodic property of the Hamiltonian systems.
The key is the following observation of Morrey:

Morrey [32]: (3.14) holds if fn 7 is replaced by a Gibbs measure with Hamiltonian
H (2.1). More generally, if “locally” fn,r is a Gibbs measure of the Hamiltonian
H.

Thus if we can prove that “locally” fn,r is a stationary measure with finite
specific entropy, the Boltzmann Hypothesis then implies that locally “locally” fn T
is a Gibbs state (the translational invariance is rather easy to obtain and we shall
neglect it from now on). This will then imply the Euler equation. The substitution
of the Boltzmann Hypothesis by the weak Boltzmann Hypothesis can be achieved

by the theorem of [33] mentioned previously.
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3a. Two Key Scales of the Hydrodynamical Limits

Before we proceed to showing that fy 7 is “locally” a stationary measure, we
should note a seemingly technical but actually very important point which clarifies
the meaning of ‘locally’. The pressure is a function of its variables but we have
substituted the variables of the pressure P in (3.14) with measures Es,w (X). As the
pressure is a nonlinear function, this clearly has no meaning unless we mollify the

measures. Let ¢(X) be a mollifier and rescale it to
¢a(X) = a7%¢(X/a).
Define the mollified measure:
GDX) = Cow * e
Then we should replace (3.14) by
N [ )] [ dX I00 [ Bmiero(X,) = Uehere(Ko)] [ 50 (315)
in the limit € — 0 and then a — 0, where

Q) o(X,w) = P(C2 (X, w)) (3.16)

Notice the order of the limits is important: first € = 0 and then a — 0.

We now explain that “locally” fn,r is an equilibrium measure. Recall the
particles at time T are distributed according to the density fn . Suppose we have
a cube of ‘microscopic’ size £ around a macroscopi¢ site X (or equivalently at the
microscopic site X/e). We now observe the particles in this cube to obtain the

marginal distribution of fy,r in this cube, denoted by p% , . Let

T
e = T‘1/0 B 2,548

be its average over time. Since the typical number of collisions per particle over
the time interval in the Euler scale is ¢! and typically the number of particles in
this cube depends only on £ but not € (£ is viewed as some large but fixed number
while ¢ = o0), we expect that Lg(—’e will converge to a stationary (with respect to

the Liouville operator) measure in the limit € — 0 due to the infinite number of
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collisions. This is indeed rigorous if we take £ — oo to eliminate the boundary

effects. More precisely, it can be proved rigorously that

lim lim p5§
£—00 -0 Hx i

is a stationary measure (up to subsequences). It is very important that we take the
order ¢ — 0 and then £ = co. We have now two scales in the problems:

1. The scale for which local measures become stationary : in microscopic unit it is £
with £ large but independent of €. We refer this scale as the first microscopically
large scale.

2. The scale we need to close the equation: in macroscopic unit it is a and in
microscopic unit ae~! with a small independent of €. We refer this scale as the
first macroscopically small scale.

In the real world, if we plan to use the Euler equation for a gas over a few
meters in size, then the first macroscopically small scale may be something like a
few centimeters while the first microscopically large scale may be several hundred
typical molecular distance.

Therefore, we should divide (3.15) into two steps:
N7 [ fwa@) [ dX I00 [ Qmiero3,0) = Aru(Xo0)] |0 50 317
and
N7 [ i) [ 4X 730 [ 08800, 0) = Ofthro(X,)] a0 (318)

in the limit ¢ — 0 and then a — 0, where the macroscopic current is the pressure
given in (3.16). Notice that in order to have the microscopic scale ¢, we need to
change the scale of the mollifier from a to ef. We can put these two equations

roughly in the following forms:

micro current => macro current in the first microscopically large scale

macro current in the first microscopically large scale

== macro current in the first macroscopically small scale
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The last equation governed the meso-scale fluctuations.
We actually only need the time averaged version of these two relations. ;From

the definition of the local measures K ¢» the time average of (3.17) is simply

/ dX J(X) / [nmm(x,w) = Q8. (X,0)] W) =0 (3.19)

provided we neglect the absolute value. Though it looks very serious to neglect the
absolute value, it is in fact rather standard to handle the absolute value here, either
by large deviation theory or the relative entropy method. As remarked earlier, E
becomes stationary in the limit. Furthermore, (3.19) holds if E is replaced by a
Gibbs state with the Hamiltonian H. (This is precisely the Morrey’s observation).
Hence (3.19) holds if we can show that all stationary measures are Gibbs with the
Hamiltonian H. This is the first step of all work in the hydrodynamical limits:
classify all stationary measures. In the present case, the best we can do for the
classical dynamics is to classify all stationary measures for which the velocities
are uncorrelated. The assumption of uncorrelated velocities is stated as the weak
Boltzmann hypothesis. As remarked before, the weak Boltzmann hypothesis can
be proved if we are allowed to add a small stochastic perturbation to the classical
dynamics.

The second step, (3.18), is actually much harder. It means that there is no
meso-scale fluctuation between the scale £ and ae~! (All in microscopic unit unless
otherwise noted). The physical reason behind this is the following observation about
the relaxation time: The time it takes for the classical dynamics in a cube of size k to
reach equilibrium is effectively of order k, a linear law. Granting this, we have that

1

the relaxation time for a cube of size ac~! is thus ac~!. Therefore, in the time scale

€~1, a cube of size ag~!

is in equilibrium if we take limit € — 0 and then a — 0. To
determine the relaxation time is a much harder problem than the ergodic theorem
because precise quantitative statements are needed. The linear law of relazation
time, contrary to its appearance, is ertremely unusual, at least from the point of
view of elliptic analysis. Notice that the relaxation of the usual Laplacian is given
by a quadratic law, namely, the time it takes for a Brownian motion in a cube of size
k to reach equilibrium is of order k? (A related fact is that the spectral gap of —A

in a cube of size k is of the order k~2). The linear relaxation law holds for 8/8z on
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the real line but there is no general understanding in higher dimensions. Since we
don’t even know the classification of the stationary measures of classical dynamics,
any statements of relaxation law of classical dynamics are purely speculative. But
even on a speculative basis, we don’t know if the relaxation time of the classical
dynamics is of any power law or the relaxation time simply depends heavily on the
subspace of observables interested. Let us however summarize the two basic steps
in establishing the hydrodynamical limits:

Step 1. Classify all stationary measures.

Step 2. Relaxation time estimate.

This general observation on the hydrodynamical limits is due mainly to the
work of [21] where a Ginzburg-Landau model was considered and both steps can
be achieved via some clever arguments on the Dirichlet form. In our case, we
have zero Dirichlet form and we don’t even know how to carry out the step 1
completely rigorously, let alone the Step 2. What makes theorem 3.1 possible is
the observation that even though we cannot estimate the relaxation time for the
Hamiltonian dynamics, it is possible to prove that if a system has no meso-scale
fluctuations, then it will not develop one during the hydrodynamical time scale.

The key idea is the following relative entropy method.

3b. Relative Entropy Method

Recall that for any two probability densities the relative entropy is defined by

S(fle) = [ F1og(/g)d

It is well-known that for any probability densities f and g,

S(f19) 2 If = gliZ1aw) (3.20)

Therefore, we can view the relative entropy as a measure of distance between two
probability densities. More relevant to this lecture is a fact that NV “158(flg) = 0
implies that f and g have the same density, velocity and energy for a large class of
functions g and for all f. All the densities g in this lecture will be in this class.
Let ¢r be any density with N~1S(folspo) — 0. If we can prove that
N-1S(frl¥r) = 0 and the density, velocity and energy of yr satisfy the Euler

equations, then from the previous comment we prove Theorem 3.1.
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We first differentiate the entropy. Recall 8rS(fr) = 0, namely, the entropy

with respect to the Lebesgue measure is a constant of the Liouville equation. Hence
0rS(frivr) = [ [ (€7£" 1) og bz — Or log r] dw
Since —e~1L* = e~1L, we can integrate the last equation by parts to have

or8(srlvr) = [ fr (v 7" - or) ¥ b, (3.21)

This identity also has a version for Markov processes:

8rS(frlvr) = ~D(frlvr) + / fr{ust [ —or]ur Yo (322)

where D(f|4) is the entropy dissipation of f with respect to ¢ and is nonnegative
[42, 33]. It is interesting to note that while (3.21) is just a simple computation for
the classical dynamics, it is observed only after the proof of (3.22).

Now recall the entropy inequality (or the Jensen inequality) which states that

for any function W,
/dew < S(flv) +log/¢exp (W) dw. (3.23)
Thus from (3.21),

drS(frivr) < S(frlvr) +log / rexp{ Y7l [e71L" — 8r] r } dw.

If we have
N7'log / yrexp{ vz' [e71L* = 7] Y7 }dw — 0 (3.24)

then the relative entropy can be controlled on the relevant time scale. Note that
(3.24) is independent of fr so we only have to check (3.24).

The key equation (3.24) should be correct only if we choose ¥ carefully. It
certainly holds trivially if 17 = fr, but this choice provides no information at all for
fr. Recall the Gibbs measure with fixed density, velocity and energy is denoted by
Uy, Denote by € the vector with density, velocity and energy as its components.
We thus denote p, e by pe. Notice that Gibbs states are translationally invariant
and the parameter £ is a constant. We can generalize the concept of Gibbs states

to local Gibbs states if we allow £ to be a function of the macroscopic position X.
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Digression on Local Gibbs States

Recall the definition of the empirical conserved quantities (= (Ej)g»‘:o in (3.7).

Define a local Gibbs state with the parameter A(X) = (A;(X))j=o by

va(w) = exp [ / dX\(X) -Z(X,w)] /Z (3.25)
where \
e > e
=0

and Z, is the normalization such that v, is a probability density. The local con-

served quantities with respect to v are given by
B(\(X)) = B [0(0)]

Notice that since we have chosen A to be a function of the location X, there is a
dependence on the position variable X. We first assume that A are simply constants.
As we vary A, so is ®()). The important point is whether this function has an
inverse. In other words, can we tune the parameter A so that the expected value of
Eis the desired value €7 The answer is yes if we restrict to the one phase region of
the Gibbs state. This is a crucial point. Roughly speaking, the one phase region is
defined as the region (in the parameter space of density, velocity and energy, in our
case a subset of R® ) in which ® is invertible. Assuming that there is no problem
to invert ® whenever we need to do it, we define the local Gibbs states u¢(x) with

conservative quantities £(X) at the position X by
pe=1r, BN =6 (3.26)
End Digression
We now set the test function ¢ in (3.21) to be
VT = pe(x,T)) (3.27)

the local Gibbs state with local conservative quantities £(X, 7). Then we hope to
prove (3.24) if the local Gibbs state is chosen in such a way that {(X,T) is the
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solution to the Euler equations. Unfortunately, as it is, (3.24) never holds for any
local Gibbs states. The reason is that we have exponentiated a random variable

with fluctuation. Roughly speaking, for any random variable U,
EeY =14+ EU+EU? +--.

The usually normalization put U to have mean zero, i.e., EU = 0. Then the leading
term (except the constant 1) is a variance term EZ? which is always positive. In

our case (3.24),
U=9y5' [e71L" - 8r) yr = [e71L* — 87 logvor. (3.28)

We can now compute U from the definition of the local Gibbs states and the Liouville
operator. The computation is rather simple and similar to (3.8)-(3.9); the final result
is
U~ / dXVAX,T) Qnicro(X,w) (3.29)
where Q¢ is the microscopic current and A is parameter. For the purpose of this
lecture, we only have to know that X is a function of space time depending on the
local conservative quantities £(X,T) in (3.27). A precise definition was given in the
digression on local Gibbs states.
To remove the fluctuations, we first need to apply the step 1 (3.17) before expo-
nentiating. Assuming (3.17) holds, we can then replace U in (3.29) by a functional

of local conserved quantities:

/ dX T(C(X,w),T).

Since we only use the local ergodicity (3.17), the scale of the mollifier is £/ (in the
microscopic scale it will become £). Thus Zis really Z:Sif) As these parameters are
fixed for the rest of this section, we omit them. If we make this substitution, we
claim that

N~'log / ¥r(w) exp [ / dXT(C(X, cu),T)] dw =0 (3.30)
if (X, T) solves the Euler equations (recall the definition of ¥ in (3.27)). The last

equation is of the form:
N~1llog / dw Yr(w)exp

{functionals of conservative quantities in the first microscopically large scale} =
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Notice we have avoided the conservative quantities in the first macroscopically small
scale, a much lager scale.
We now give an example to understand this claim. Suppose we have an array

of independent random variables:
X("')J)a i=i-M, j=1,---k

Define the partial average
k
X@) =k X(0,9)
j=1

Suppose that we have a function Z kG(X(i)) and we have to compute

=1

M

(Mk) ' log E exp { > G(‘X‘(i))} (3.31)
=1

Assume that X (i,7) has mean zero. We can expand G(X) in the Taylor expansion:

M
Z G(X@) = Z aX (i

=1

X)) +

MI‘Q

where a = G’(0) and 8 = G"(0). The random variables X (i), being an average of k
random variables, is practically a Gaussian. Suppose the variance of X (¢, j) is one.

Then from the central limit theorem X (i) is distributed like

k ~kX2%/2
27re '

Notice that X (i) are independent. If we keep the leading term in G and use the

independence, we have

M o
(Mk) 'logE e[kZG(Y(i))] =k~ llog [/ vi(dX) e"‘kX“’sz/z] ,

=1

vi(dX) =/ 5’% ek X*/2gx.

k—-llog [/w i (dX) eakx+ﬁkx2/2]

—00

where

The key point is that
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=0(a®) + k™ log

\/11——'5 =0(®) +k718/2+ 0(8% k) (3.32)
provided that 8 < 1. This equation (3.82) is actually the key idea for the rela-
tive entropy method and the whole subject of multiscale analysis in hydrodynamical
limits. We have kept the two leading terms for application later on. Thus (3.31)

approaches zero if

a=0, and (<1. (3.33)

In other words, the condition that (3.31) vanishes is G'(0) = 0. Since the mean of
Z:E(Ef) (X) with respect to ¥r = pe(x,1) is £(X,T), the condition on the derivative
should be taken at £(X,T') instead of 0. So (3.30) vanishes if and only if

0G(X) lexmy 7

and the second derivatives of I" are bounded (the constant 1 in (3.33) is due to some
normalization in our explanation and it is just some constant). The surprise is that
after some pretty long computation (3.34) (as equations for &) are exactly the Euler
equations. Indeed, (3.34) always give the correct hydrodynamical equation for all
known models.

The condition that the second derivatives of I are bounded is exactly that the
sup norm of derivatives of the solution to the Euler equations is bounded, or in
other words, the Euler equations have smooth solutions. This is not a technical
point because solutions to the Euler equations may develop singularities. On the
other hand, if we prove (3.24) for a choice of £ then we have proved that the density,
velocity and energy of the classical dynamics converge to € and thus £ is the natural
(unique) solution to the Euler equation. So a proof of (3.24) in the non-smooth
region requires understanding of the uniqueness to the Euler equations. Though
it is expected that the Euler equations have a unique solution if the Lax entropy
condition is supplemented, the current understanding is mostly restricted to scalar
equations or systems in one dimension. We are very far from understanding the
uniqueness of the Euler equations.

The heuristic argument we just mentioned is in fact rigorous if we use some large
deviation theory or thermodynamical formalism of Gibbs states. This concludes the

outline of the proof of Theorem 3.1. This proof is essentially a dynamical variational
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approach because we solve the problem by guessing a good trial function which in
this case is the local Gibbs state.

A basic problem is thus to extend the relative entropy method to the case when
the solutions to the hydrodynamical equations are singular. In particular, this re-
quires an understanding of the underlying mechanism of the Lax entropy condition
from the microscopic dynamics. Though in the special case of scalar equations the
Lax entropy condition can indeed be proved [35] via a very clever ‘coupling argu-
ment’, the proof is restricted to some special models and the ‘coupling argument’
does not seem to provide useful clues to the underlying physics of the Lax entropy
condition.

4. The Incompressible Navier-Stokes equations

The Navier-Stokes equations are of the form that the right hand side of the
Euler equations (3.12) are replaced by second order differential operators. These
second order terms are small and treated as corrections to the Euler equations
in various physical situations such as certain gases or low viscosity fluid. The
Euler equations are derived by replacing the microscopic current by the macroscopic
current as explained in last section. In order to derive the correction terms of the

form of second order operators we need to show that
micro current — macro current + cvVi, , + o(€) (4.1)

where the currents are given by (3.9) and (3.13), ., the empirical velocity (3.6)
and v is the viscosity. We have singled out only the correction term involving
the velocity; in principle, the right hand side of (4.1) has terms of the form of
derivatives of density and energy as well. Notice that there is only one derivative
on the velocity because the currents appear in the equation of conservation law and
there is automatically one derivative in this equation (cf (3.11)). In the derivation
of the Euler equation, the replacement of the microscopic current by macroscopic
current involves two basic steps: a classification of the stationary measures of the
Hamiltonian dynamics and estimates on the relaxation time to equilibrium. The
second step is bypassed by the relative entropy method; the first is reduced to the
celebrated Boltzmann hypothesis. Now since there is an € appearing in the viscosity

term, (4.1) is in a sense the next order correction to the Boltzmann hypothesis! From
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the expression of the microscopic current in (3.9), it is hard even to imagine how
the viscosity correction arises. In principle the correction can be nonlocal and need
not be a function of the velocity at all. There is also no indication that there is a
hidden extra derivative in the expression of the current (3.9). This difficulty was
recognized decades ago by Dobrushin, Lebowitz, and Spohn, among others. Recent
work [41, 14, 16, 26, 34] has given us a good understanding of the nature of (4.1),
though a rigorous proof from the Hamiltonian dynamics is still very far off.

To understand why (4.1) arises, we return back to the basic problem of the
classical dynamics: solving the Liouville equation. We have shown that the Liouville
equation can be solved to the leading order by local Gibbs states if we assume the
Boltzmann hypothesis. The most pressing question is whether we can find the next
order correction to this statement. We now set up a formal expansion {14] to solve
the Liouville equation.

The local Gibbs state is given in (3.25) and (3.26). Suppose we correct the
local Gibbs state in (3.27) by the next correction wg} ),

Yr = ¢g(x,T)¢r(p1) (4.2)
with the correction of the form
log ) = & / dXJ(X, T)g(X,w) (4.3)

where g(X,w) is some local function of the configuration around X and J will be

chosen later on. Then the Liouville equation (3.5) takes the form (after taking log):
0= [0r —e L] logyr = [0 — e L*] log $e(x,1)+ [0 — 1L ] logplr). (4.4)

Here the e~! appears because we used the macroscopic time 7' and the time rescaling
T = et. The time derivative term is rather straightforward and we shall neglect it

in the last term. From the definition (4.3)
e 1L log ) = / dXJ(X,T)L*g(X,w).
Recall —e~1L* log ¢¢(x, 1) (3.28), (3.29) is of the form

_Enlﬁ* 10g¢§(x,T) ~ /dX VX)‘(XyT) Qmicro(Xaw) (45)
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where Q,nicro is the microscopic current given in (3.9). So if we set J(X,T) =
VxA(X,T) and solve
E*Q(Xaw) = Qmicro(Xaw) ,

we have solved (4.4) to the next order correction. To solve this equation, we first
need Qmicro to be orthogonal to the kernel of £*. The kernel of £* is simply the

space of stationary measures and this condition means that
E“Qmicro(qu) =0

for all stationary measures u. This is false but if we subtract the macroscopic

current Qqcr0 then it is true, namely,
E* [Qmicro(Xaw) - Qmacro(X;w)] =0 (4-6)

In fact, the macroscopic current Qqcr0 is defined exactly for this purpose and we
can even take (4.6) as the defining equation for the macroscopic current. The key
point, however, is that Qmecro can be chosen as function of conserved quantities
alone. Continue the formal expansion to solve the Liouville equations. Our task

then reduces to solving the equation
‘C*g(Xv w) = Qmicro(Xy w) - Qmacro(Xaw) (47)

The fundamental question is if there is any obstruction to solve this equation? The
main claim is that it can be solved provided that suitable subtractions of the vis-

cosity terms are included:
Qicro(X,w) = Qumaz (X,w) = evVx0. o (X) + L*g + o(e). (4.8)

Therefore, (4.1) is correct only up to a quotient of the image of the Liouville oper-
ator:

micro current — macro current + vV, , + L™ g + o(€)

To obtain the term evVx, ,(X) in (4.8) from the expression —e~'L*log ¢¢(x,1)
in (4.5), we modify the equation satisfied by £(X,T) from the Euler equations to

the Navier-Stokes equations. If we do this then

—e71L* log de(x.m) ~ / dX VX, T) {Qmic,a(x,w) +ev vxas,w(X)]. (4.9)
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In other words, in order to solve the Liouville equation to the next order we need to
modify the hydrodynamical equations from the Euler equations to the Navier-Stokes
equations and to include the correction term 1/)5,} ) with g solving the equation (4.8).

The difficulties in carrying out this approach rigorously are obvious as we are
going beyond the Boltzmann hypothesis to solve the Liouville equation to the next
order. It is also awkward to work on “next order correction” and thus we turn to

the incompressible Navier-Stokes (INS) equations

%Tti +u-Vu=-Vp+ VvVu, V-u=0. (4.10)

The INS equations are invariant under the incompressible scaling,
T ez, t—e’t, u—-elu, p—e’p, (4.11)
Under this scaling, the Liouville equation rescales to
drfr =€ 2L* fr (4.12)
and (4.8) becomes
Qmicro(X,w) = Qmacro(X,w) = vV, , + L*g.

It is convenient to work on the equation with £ instead of its dual. In the case of
the Liouville operator it amounts to a change of sign of g. Define the current after

subtraction of macroscopic currents by
X, w) = Qmicro(X, w) = Qmacro(X, w). (4.13)
So we shall focus on the equation
QX,w) =vVi., + Lg , (4.14)

namely,

micro current — macro current + vV, , + L*g

The macroscopic currents will be treated as constant in this section and we shall
refer to {) (4.13) as the current. Notice that both the viscosity and the function ¢

are unknown and (4.14) determines both.
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The viscosity terms in (4.14) represent the dissipation. The image of the Li-
ouville operator is understood as fluctuation, negligible in the relevant scale after

time average: for any bounded function g

T
/0 ds / £2(w) (L) (@) dw = €? / fr ~ fol(@) g(w) dw ~ &2

is of order £2 smaller than it looks ( The factor €2 appears due to the diffusive time
rescaling (4.12)). Therefore, we shall refer to (4.8) as the fluctuation-dissipation
equation.

The first example that an equation of the type (4.14) was solved in infinite
dimensions is contained in Varadhan’s work [41] on the Ginzburg-Landau models
with symmetric generator £. To gain some feeling for this work, let us assume that

the operator is just the usual Laplacian of infinite particles, formally,

c=§jAz,.

i=1
Define £}, to be the restriction of £ with the Neumann boundary condition in the
cube of size L centered at the origin (notice that the Neumann boundary condition

is imposed on every A,,). Then we can invert the operator £y and
L7'G(x) (4.15)

is well-defined as long as

dxG(x) = 0.
AL

The last condition is exactly the corresponding condition of (4.6). In order to find
L£7'G(x), we can just take the limit as L — oco. For the standard Laplacian in
R", the Green function decays like |z|~"*2 and, unless n = 1, the limit exists and
decays to 0 as |z| = oo (as G has mean zero, the limit exists even in dimension
two). Varadhan proved (roughly speaking) that if £ is the generator of a Ginzburg-
Landau model (at infinite temperature), a limit exists (up to subsequence) if we
subtract an appropriate viscosity term. Notice that there is no longer an explicit
formula for the Green function of this model. The analytic input was an estimate
on the spectral gap of £, a more manageable problem which we shall discuss in next

section.
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Varadhan’s idea can be restated in a more abstract way [15, 26]. In this work,
a natural Hilbert space for microscopic currents is identified. The fluctuation-
dissipation equation (4.14) was interpreted as a decomposition of this space into
a direct sum of the gradient of the velocity and the image of the Liouville operator.
In other words, the quotient of the space of microscopic currents by the image of the
Liouville operator is the space of the gradient of the velocities. Notice the similarity

to the usual Hodge theory if £ is a symmetric operator.

We now return to the INS equations and classical dynamics. As we have re-
marked earlier, (4.14) is far beyond the reach of current mathematics and we should
look for easier models which capture essential features of the classical dynamics. A
class of models, lattice gas models, were studied in the eighties by physicists, see [17]
and references quoted therein for a comprehensive review. The aim of these works
was to construct simple models for hydrodynamical equations which could be sim-
ulated quickly on the computer. The numerical results provided a remarkably good
agreement with hydrodynamical equations. The theoretical understanding of these
models are however very limited. In fact the lattice model of [17], though simple
to simulate on computers, could be even more difficult to analyze than the original
Hamiltonian systems. One particular complicated feature of these models is that
they are based on rather complicated nonsquare lattice. This introduces complica-
tions but the most serious problem lies in the lack of classifications of stationary
measures. This makes serious mathematical study extremely difficult to perform on
these models. A class of mathematically more manageable models on the standard
square lattice with stochastic dynamics were introduced in a joint work with R.
Esposito and R. Marra [16]. Since any dynamics describing transport phenomena,
cannot be symmetric, our first task now is to solve ({.14) for non-symmetric oper-
ators. Furthermore, due to the diffusive scaling, the currents in (4.14) is e 71 with
Q0 defined in (4.13) and Qpicro the microscopic current in the Euler scaling (3.10).
The new current e~ is infinite (even after subtraction of the macroscopic current)
unless properly renormalized. For this purpose, multiscale analysis were developed
in [15, 16, 34]. This will be explained in section 5. The solution to (4.14) were in [26]
and [16]. Here we have to invert a non-symmetric operator in infinite dimensions

with very complicated interactions among particles. In both works, the dimension
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of the underlying space are critical: it was found that the current €710 diverges
(even after proper renormalization) and (4.14) has no solution for dimension d < 2
(26, 34]. Due to the length of the lecture, we shall not be able to explain the idea
involved in solving (4.14) for the non-symmetric case except for a few remarks. Our

operator is of the form

L=S+A4

with S and A the symmetric and asymmetric part respectively. We can pretend
that the symmetric part is a second order differential operator; the asymmetric part
a first order differential operator. In the regularity theory for partial differential
operators, one treats the asymmetric part as a lower order perturbation to the
symmetric part. This is fine in the regularity theory since we concern only the
local property of the equation. In hydrodynamical limits we are on the other hand
interested in the global behavior. Therefore, the physics is primary determined by
the asymmetric part and any argument based on the splitting of the operator into
the symmetric and asymmetric part is doomed to failure. The idea used in [26] is
to explore a duality property of the models and certain non-perturbative estimates.

Details are in [26, 16).

We now sketch the model constructed in [16]. In these models particles have
velocities in a chosen finite set and at each site of the lattice at most one particle
of each velocity is allowed. The dynamics consists of two parts: Random walks
and binary collisions between particles. The random walk part of the dynamics
requires only that particles with velocity v should have the mean drift v. The binary
collisions conserve velocity. Note that conservation of energy is not important here
because the INS equations are equations of velocity alone. The combined dynamics
should have good ergodic properties and also restore rotational symmetry in the
limit. The restoration of the rotational symmetry is not trivial because the lattice
structure breaks the symmetry. Sets of velocities and dynamics satisfying all the

requirements can be found in [16].

The main result in [16] states that (4.14) has a solution (in a suitable sense)

for d > 3 and if the INS equations have a strong solution up to a fixed time T then
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the rescaled empirical velocity densities (measures)
Vew(X) =D 6(X —ex) Y vn(z,v) (4.16)
T v

converges to that solution. Here n(z, v) € {0,1} is the number of particles of velocity

v at site z. Notice the blowup of the velocity by £~!

(4.11).

in accordance with the scaling

The assumption that the INS equations have a strong solutions has a long
history in their derivation from more basic models. Derivations of the INS equations
from the Boltzmann equation go back already a century to Chapman, Enskog and
Hilbert, and were made rigorous in the seventies [8,10]. However the removal of
the smoothness assumption has not been so easy. A program [5] of deriving the
weak (Leray) solutions from the DiPerna-Lions solutions of the Boltzmann equation
remains far from complete, due to a lack of good estimates. Though it was believed
that the analysis of particle systems would be even more difficult because they are
infinite dimensional, in a joint work with J. Quastel [34] we have been able to remove

this obstacle.

Theorem 4.1. Let P, be the distributions of the empirical velocity densities (4.16).
Then P, are precompact (as a set of probability measures with respect to a suitable
topology) and any weak limit is supported entirely on weak solutions of the INS

equations satisfying the energy inequality.

Theorem 4.1 is proven only for d = 3. A large deviation principle was also
given in [34]. The restriction d < 3 is for technical reasons; the restriction d > 3,
however, is intrinsic. Since the macroscopic velocity is defined through the law of
large numbers in statistical physics, it inherits a small fluctuation from the central
limit theorem, which is of order ¢%/2. When we blow up the velocity by ¢~! in the
incompressible limit (4.16), this term becomes of order one or larger for dimensions
d < 2 and thus the macroscopic velocity is not well defined in this limit. Note that
this argument applies to any dynamics including the Hamiltonian dynamics.

Though (4.14) determines the viscosity, it is important to have an indepen-

dent characterization, traditionally expressed as a time integral of current-current
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correlation functions, which up to constants is given by:
o0
v= / ( micro current (¢ = 0); micro current (¢t = s) ) ds (4.17)
0

where (f;9) = (fg) — (f){g) is the correlation function and the expectation is
with respect to lattice gas dynamics starting from equilibrium. This is called the
Green-Kubo formula and is proved rigorously in [26, 16] for d > 3. For dimension
d < 2, the Green-Kubo formula (4.17) diverges, (4.14) has no solution, and the
time scaling is faster than diffusive. We are thus forced to conclude that the two
dimensional INS equations cannot be obtained as the incompressible limit of any
microscopic dynamics.

Although we have motivated the derivation of the INS equations from the
asymptotic expansion of the Liouville equation, the proof of Theorem 4.1 actually
bypassed this question. This is true in many cases in the hydrodynamical limits,
namely, the hydrodynamical equations were obtained without knowing precisely the
structure of the microscopic density. We have however solved the Liouville equation
to the first order in the entropy sense in last section (with some assumptions). But
if a similar theorem holds here, i.e., if the Liouville equation can be solved to the
next order in the entropy sense? Here we refer certainly to the lattice models. This
is indeed true [16] provided that the INS equations have strong solutions. As in the
Euler equations, the extension to the non-smooth regions of the solutions to the
INS equations requires understanding the uniqueness to the INS equations.

Another interesting direction is the compressible Navier-Stokes equations. It
is possible to rigorously identify the next order correction to the hydrodynamical
equations of some simpler models [25], but there is no result concerning the general
cases. The incompressible Navier-Stokes equations are very special equations since
they carry information of the underlying models only in the viscosity term. The
pressure becomes an unknown and has to be solved from the equation. The viscosity
is simply a constant (matrix) and its role is rather mild. For the compressible
case, the pressure and many other terms depend on the models. So although we
believe that the analysis associated with the compressible Navier-Stokes equations
in the smooth regions are perhaps within the reach of current methods [25, 16],

the current models are rather special and in particular do not recover fully the
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rotational symmetry needed for the true compressible Navier-Stokes equations.

5. Introduction to Multiscale Analysis.

5a. General Remarks on the Relaxation to Equilibrium

We now back to the question of estimating the relaxation time, (3.18), step 2
in hydrodynamical limits. This can be done quantitatively only if the systems have
dissipation. We shall consider only some simple models to illustrate the basic ideas.
Denote the particles by x = (z1,---,Zn) in a cube of size L = ™! and the density
N/L3 is fixed to be of order one, say, N/L3 = 1. Denote by us, v the normalized
Lebesgue measure at the cube Ap:

N

pagn(dx) =[] [/ (%J] :

i=1
Sometimes we denote pa, n by pr,~ or pr. The expectation w.r.t this measure

is denoted by E#AcN or (- ) = (-),- The number of particles N is often

BAL N
omitted.

Define the Dirichlet form
Dy (f) = — / (0 (x) £ 1) = Y / (V;£(2)? du(x)

where V; = V. Here
L= A, (5.1)
=1
is the standard Laplacian with the Neumann boundary condition. Let f;(x) be the

solution to the equation
O fe(x) = Lf(x)

This describes the motion of independent standard Brownian motions in the cube
Ar.

The simplest statement of the relaxation time to the equilibrium is the spec-
tral gap. The principle eigenvalue of A is 0 and the eigenfunction is the constant
function. So we can define the spectral gap by

— inf P ()
L= r}f <f;f>ut, (5.2)
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where

(£ £) = () - ()
is the variance. The spectral gap is a rather weak statement of the relaxation time
to the equilibrium in high dimensions. The reason is that the ergodicity concerns
convergence of L' functions and the difference between L! and L? are significant in

high dimensions:

113 ~ e

for typical L! function in R". Therefore, we need stronger measures of relaxation
to equilibrium. A useful tool is the logarithmic Sobolev inequality where we study

the asymptotic behavior of

, D5
) in 5.3
L =1 120 S(f) (53)
where || - ||; is the L! norm. dr, is called the logarithmic Sobolev constant (some

conventions call the inverse of §;, the logarithmic Sobolev constant). It is well-known

that v > 81,/2 so that §r, is a lower bound of 2v,. By simple computation,

8:S(f:) = =D/,

If we have (5.3) then
S(f:) = -D(\/f,) < —6L5(f)

Integrating this inequality, we have
S(fe) < €™ S(fo)

and we have the entropy decay exponentially with rate 6;1. Entropy is a norm

stronger than the total variational norm between fu and g, i.e.,
S 2 [ 1f = tldu = Var(fu,p)

This shows that we have convergence in total variational norm for initial data with
finite entropy. Entropy is an extensive quantities and a typical function in RY has

entropy of order N. For example, if f(x) = g1(z1) - - gn(zn) then

N
=Y S(@)~N
j=1



202 H.-T. Yau

But if we take f to be a delta function, then the entropy is infinite. Some elliptic
analysis can remove this problem and it is a fact that under very general condition
we have

S(ft=1) <CN ~CL?

Thus we can assume that the initial data satisfy the last bound. If we define the
convergence rate as

-t
limsup suyp —————
t—oo |fli=1 log Var(fu,p)

then the convergence rate for free Brownian motions is of order 6;1 log L. Notice
the appearance of the log L. This is not an artifact of the argument, in general, the
factor log L does persist [29].

So far we have only discussed the finite volume case with the Gibbs measures
degenerate to the Lebesgue measure. The infinite volume case or positive tempera-
ture case is rather subtle. We shall only comment on the positive temperature case
in finite volume at the end of this section. For infinite volume case, see [23] for a

discussion.

5b. Reduction to Eigenvalue Problems

We have seen that the LSI is an useful tool to determine the rate of conver-
gence to equilibrium in finite volume. Qur goal is to estimate (3.18), the step 2
in hydrodynamical limits, which is of the form of a time integral of functionals of
stochastic processes. If we are only interested in the hydrodynamical limit of inde-
pendent Brownian motions, then there is no estimates needed since the problem is
exactly computable. But the question of estimating a time integral of functionals
of independent Brownian motions is still highly nontrivial and it illustrates the key
ideas we are after. We first review the standard idea to convert it to an eigenvalue
problem. The basic setup is as follows.

Let £ be the generator of a Markov process z(t) with invariant measure p.

Suppose we have the Fokker-Plank equation

3tf(tvz) ‘_"c‘f(t’x)v f(O,IU) = fO(z)

where f(t,z) is the density of the system with respect to p. We are interested in
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estimating ,
/O / £(5,2)F()u(dz)ds.

We can also rewrite it as

E [/t F(z(s))ds] (5.4)

0
where Efo means the stochastic process starting with initial data fo and z(s) denotes

the position of = at time s. Recall the entropy inequality:
E'W < q7'S(f) + g " log E* exp (¢W) (5.5)

where S(f) = [ flog fdu and ¢ is any positive number. This is similar to (3.23)
except for the constant ¢. To obtain (5.5) from (3.23), we simply apply (3.23) with
W replaced by ¢W. Applying (5.5) we have

t ¢
Efo / F(z(s))ds < ¢7*S(fo) + ¢~ ' log E* exp <q/ F(a:(s))ds) (5.6)
0 0
The last term, an equilibrium exponential estimate, can be transformed into an
eigenvalue problem by the next Lemma.

Lemma 5.1 . Let £ be the generator of a Markov process z(t) with invariant

measure pu. Then

T 1log E* [e I V(I(s))‘“} <2  sup {/ V fdu — D(\/f)} : (5.7)

J rau=1, 520
Here D(f) = — [ fL fdu is the Dirichlet form.

Proof. Let
T
w(z,T) = E, [e Je V(z<’))d3] , (5.8)

where E, [] denotes the expectation with respect to the process starting at z. By

definition, the left hand side of (5.7) is equal to
T_llog/u(x,T) du(z).

By the Feynman-Kac formula, u solves the equation %}‘ = Lu + Vu. Multiplying

by u and integrating by parts we obtain

8, / w?(t)dp =2 [ / Vud(t) du — D(u(t))] . (5.9)
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If we denote the right hand side of (5.7) by C, then the right hand side of (5.9) is
bounded by C [u?(t) dp. Noting u(0) = 1 and integrating the resulting inequality,
we have

/uz(t) dp < et

We obtain the lemma by Jensen’s inequality log [ udy < 1log [ u® dp.

We now return to the estimate (5.6). ;jFrom the previous Lemma, the idea is
to choose ¢ large enough so that ¢71S(fo) — 0 and then reduce the problem to
an eigenvalue problem. The choice of ¢ depends on the initial data. In general the
initial data has the property that the average entropy per particle is finite. Hence
we choose ¢ such that % — 0 and only the eigenvalue problem part is left. The
computation is straightforward but requires carefully keeping track of constants.

We now state the final eigenvalue problem.

5c. Two Scale Models

Recall our goal is to replace the microscopic current Qmicro (3.10) by the macro-
scopic current Qumqcro at the scale M = ae~! (in microscopic unit we are using now),
i.e., to prove (3.15). If we apply the idea in the previous section, it becomes an

1

eigenvalue problem. We first divide the cube of size L = ¢™* into non-overlapping

subcubes of size M and index these subcubes by A. For the moment we only assume
that M divide ¢! exactly but otherwise it is arbitrary. We shall choose M = ae™!
later on, with some small constant a. The microscopic current (3.10) is of the form
of two body interactions. So we consider the general problem by associating to each

cube a potential

0a(x) := M~ xa(zi)xalz)W (2 - z;) (5.10)
i#j

where x4 denote the characteristic function of the cube A and W is a smooth
function with compact support generating the two-body interaction W(z; — z;).

The factor M3 is simply to normalize 8,4 to order one.
Our goal is to replace the microscopic current by the macroscopic current which
is the expectation of the microscopic current with respect to the stationary mea-
sures. The stationary measures here are just the uniform measures. Denote the

total number of particles in the cube A by N4 and the density by psa = NaM 3.
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Denote by 4, the uniform probability measure in the cube A given that the total

number of particles in this cube is n:

L
pan(dx) =1 15
i=1
So we define the macroscopic current
Oa(pa) := E*ANa [04] (5.11)

the expectation of 4 with respect to pg, n,(dx). Explicitly,

Ns(N4—-1)

56 ®+0M™Y) =p4®/2+0M™) (5.12)

©4(pa) =

where
d= /dyW(m - y) (5.13)

The error comes from the fact that for two particles in the neighborhood of the
boundary, we cannot extend the integration of y in (5.13) to infinity.

The eigenvalue problem we need to estimate is given by the operator
Epte =N 2L+ Avg [ 04— OA(pA)] (5.14)

on the usual L?(ua, n) with the total number of particles N = e 3and L=¢"1.

Here we have used

Avy = (EM)S Z

A
to denote the average of the non-overlapping cubes A in Ar. Our goal is to prove

that
lim lim sup spec Epte <0, M =aeh. (5.15)

a—0e—>
Instead of thinking in terms of the sup of the spectrum, we can equivalently bound
the operator and thus the symbol sup spec can be dropped. The operator N~"1e~2L

2 is from

means that the average ‘energy’ per particle is e "2A; where the factor e~
time rescaling. Notice the convention that £ is a negative operator and & M.c is the
negative of the energy. We use this convention because it is the one traditionally
used in the hydrodynamical limit. For readers who prefer the correct physical

convention of energy, an overall minus sign in the definition in (5.14) (and related
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changes) is needed. We shall still follow the convention in the spectral theory of
Schrodinger operators to call N e ~2L the kinetic energy part and the rest potential
energy part.

Recall that the (minus) Laplacian has the property that adding Neumann

boundary condition will decrease the operator, i.e.,
—AA —AB < __AAUB

for any domain A and B, where —A“ denote the Neumann Laplacian in the domain

A. Let
La=)_ Af (5.16)

be the restriction of £ on A with the Neumann boundary condition. Hence
LD La
A

Therefore, we can replace the operator £ in the definition of £ ,{‘,25 by the operator
>~ 4 L4 to have a new operator as an upper bound to the original one. Notice that
any two subcubes of size M becomes completely independent with respect to this
new operator. Previously the dependence comes only form the operator £, which
is now replaced by Y_ 4 £4. Therefore, we can bound this new operator, and thus
£ AA,;’E, from above by first conditioning on the number of particles at every cubes of

size M and then taking sup on the number of particles:

SAA,;)E < sup Avg Eilv“ (5.17)

where A index cubes of size M and
3 =M% Lo+ 04— OA(pA)] (5.18)

on the subspace L2(ua ). Notice that the coefficient in front of the operator L4 is
different from the one in front of the operator £ in £ AA,},E (5.14). The computation
of the constants are rather straightforward and we omit it. The rule is that the
constant N~! = €% in (5.14) is interpreted as (length scale)® and the length scale

now is M and thus M 3.
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The main drawback of the bound (5.17) is that there is not much control on the
number N4. So we have to bound £7% for arbitrary n. This is in general a headache
and we can get a completely wrong answer because of the large n behavior. In many

cases, it is not hard to have an a priori stability bound:
pa=Na/M3<C< oo (5.19)

uniformly on all cubes. This is automatically satisfied in most lattice models or if W
prevents too many particles to come close together (called the stability condition in
statistical mechanics). Sometime we obtain it from the relative entropy argument.

We shall from now on assume it. Thus our problem is to prove that

lim sup E5<0, M=ae! (5.20)
n/M3<C<oo

where the limit taken is limg_0 lims— o0 lim._,o. Here we can take A = A centered
at the origin.

Suppose we estimate £7% by a perturbative analysis by considering M 3e72L4
as the main term and the rest as the perturbative term. For application of pertur-
bation theory, we generally require that the perturbative term is smaller that the
gap of the main term. The operator £4 has a gap M —2, Hence the first part has a
gap

M=3(Me)™2. (5.21)
The size of the perturbative term can not be better than order 1. So the requirement

is at least
Mg e 5, (5.22)

But this condition is violated for the interesting case M = ae~!. This makes

application of perturbative analysis not feasible here. But if we can use the LSI,

we have much better result. Recall the LSI constant for the Laplacian in a cube of

1

size M is also of order M ~2. Recall the convention M = ae~'. Hence we have

M2 Da(VF) 2 M~2a™2Sa(f)

for any L' normalized (with respect to L'(ua,,)) function. We now apply the

entropy inequality (5.5) to have

~M=a5a(0)+ [ £[6a=Oaloa)|nantd).
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<M3a? log/exp {a2M3 [0,4 - @A(pA)] } pAn(dx) (5.23)
This is explicitly computable. Recall the model computation in (3.32) which we

repeat here:
oo
kL log [/ l/k(dX) eakX+6kX2/2

-

=0(a?)+ k™' log =0(®) +k718/2+ 0(8?/k) (5.24)

1
vi-8

vp(dX) = \/ —2% e kX /2gx.

Applying this formula with ¥ = M? and @ = a?, we can bound (5.23) by O(a?).

where

Thus it vanishes as a — 0. This proves the hydrodynamical limit.

In the original argument of GPV, there is no LSI available. The idea was to
separate the problem into two scales and decompose £% into two parts. This requires
an introduction of another scale £. We divide once more the cube of size M into
non-overlapping subcubes of size £ (assuming that £ divide M exactly) and index

1 into subcubes

these subcubes by . Notice that we have divided the cube of size e~
of size M and then into subcubes of size £. The two divisions are compatible in the
sense that each subcube A consisting of non-overlapping cubes of size £ (we assume
also ¢ divide M exactly). We can extend the definitions associated with A to the
smaller cubes a. For example, the microscopic current in the cube «a is now
ba(x) = £7° ) xa(2i)Xa(2)W (i - z5) (5.25)
i#]

and the macroscopic current is the expectation of 6, with respect to pq n, (dx):

O4(ps) = EFeNa [6,4] (5.26)
Explicitly,
Na Na -1 — -
Oalpa) = % d+0(Y) = p28/2+0(¢7Y) (5.27)

where the error is again from some boundary effects.
With these notations, we can now bound £} by the sum of a local part SZ ;gl)
and the rest 52;,§2):

n 1., _
e = SM™L, + Avaca [oa - @a(pa)] (5.28)
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er® _ Ly -op AvaeOa(pa) — © 2
tLA T3 € A+ VaeAOa(pa) alpa)| - (5.29)

Here we have decomposed the kinetic energy, M ~3¢72L 4, into two pieces equally.
Other decompositions are usefully in different contexts. The constant 1/2 is not
relevant and will be dropped from now on.

We have cheated a little bit here. The summation of the potential parts in
the last two equation is not the same as 64 — © 4. This is because we have used
Avge 484, namely, we first collect all two-body interactions in o and then average
over . This neglects the interactions for two particles in different cubes of size £.
The error is in general of order £ smaller and is not important here, but it has
to be taken care of in other contexts such as in the multiscale models discussed in
section 5d. There are various ways to include these terms and one popular way is
to include it in the next scale. Some discussions will be included in section 5e.

We first consider the local part (5.28). This is the step 1 of the hydrodynam-
ical limit. Recall our original goal is to estimate a time integral of the stochastic

processes. So we need to estimate

/0 as / (%) Avaea| B — O 4(p0)]ildx) = 0 (5.30)

This can be achieved if we can classify the stationary measures, which in this case
is the Lebesgue measure and a rigorous proof is very simple. We shall give a direct
proof in the context of eigenvalue problem and provide precise estimate. This will
have applications in next sections and to other problems.

As before, we can impose the Neumann boundary conditions over cubes of size
¢. Assume the stability bound (5.19) holds also for cube of size £. By a similar
argument we can bound Sz;gl) from above by

eV < sup  ER (5.31)
’ m;m/£3<C<oo

where

EM =03¢"2L,+ R, Ry =0, — 04(pa) (5.32)

on L?(pta,m). Here L, is the restriction of £ on o with the Neumann boundary

condition, c.f. (5.16). The constants in this formula are the same as (5.20) if we
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replace M by £. Denote the spectral gap of £, is denoted by 7,. Then the spectral
gap of the first term in the definition of £7* is

yel 372, (5.33)

If v¢ # O then it approaches to oo as € — 0 for ¢ fixed. We can thus apply the
standard first and second order perturbation theory. The details are standard; the
conclusion is

5‘-7‘:1 S (Ra>ua m + e362<Ra, (-‘ca)—lRa> + .. (534)

Ba,m

and the error terms vanish as ¢ — 0 for any ¢ fixed. By definitions of 8, and @,,
the first term on the right hand side <R°‘>ua,m = 0. This also implies that R, is
orthogonal to the principle eigenfunction of (—£,), the constant function. Hence
we can bound

(—La)t 2t (5.35)

in the second term on the right hand side. This implies that

£ (Ra, (—La) ' Ra), < Eey7 [B#=m RZ] -0 (5.36)

Mo,

as € = 0. This proves £F* — 0 and thus EZ;gl) — 0 by (5.31). Notice that we have
explicit control of the errors which will be important later on.

Remark. There is no need to estimate the gap 7 other than v, > 0 in this part of
the argument.

We now turn to the second part (5.29). The argument of GPV was somehow
indirect here and depended to some extent on special features of the models. For
quite some time, the focus in the hydrodynamical limits was to control (5.29) for
different types of models. We shall not sketch this approach here. Notice this step
is not needed in the relative entropy argument sketched in section 3b. Our goal
is rather to use LSI to estimate (5.29) and show that the error estimate can be
improved from (5.23). This will be crucial for the multiscale models in section 5d.

With the arguments of LSI leading to (5.23) applied to £ Z f), we can estimate

82;52) < M 3a72 Iog/exp {azMs[ Avae4O04(pa) — @A(pA)] } pan(dx). (5.37)
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We are in the same form as (3.30) except that now we are taking expectation with
respect to a uniform measure with a fixed total number of particles in the cube A.
The model computation we should keep in mind is (3.32), repeated also in (5.24).

We again linearize ©4(po) around pa,

AvaEA Oa(pa) - eA(pA) = [@a(pA) - 04 (pA)]

1 [z
+ Avaca O4(p4) (P = p4) + 504(p4) (Pa = pa)+--
(5.38)

The constant term O4(pa) — ©(pa) vanishes in the limit from the formula (5.27)
and (5.12). The function ©, depends on « only through the size of a, which is now

£. So we can rewrite ©, = ;. Thus the linear term is now

O (pa) [{A'UGEA Poz} - PA] =0.

So we automatically satisfy the condition that the coefficient of the linear term is

zero. The size of O, is thus determined by the quadratic term of the form

const.(pa — pa)?.

We can rewrite the exponent in (5.37) in the form

const. Z 2 (po — pa)?. (5.39)
a€A

Suppose that p, are independent variables, then the expectation in (5.37) can be
computed as a product of contributions form each cube. The computation of con-
stants is a bit long to present it precisely here. If we denote the marginal distribution

of po in pan by pea, the final result is
5"‘(2)<a2Av 4 Q,n
LA = ag (¢,n) (5.40)

where
Q,n)=1¢3 log/ exp {C1a263(pa — pa)?} taldpa)- (5.41)

The constant C; is of order one and is basically just 0, (pa). The measure pq (dpa)
is basically just a Gaussian. We are now in a position to apply the model compu-
tation (5.24) to bound

Q(,n) < const.a’¢7®
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and thus
52;52) < const.L™3, (5.42)

Hence SZ f) approaches zero if £ — co. The condition 8 < 1 in (3.33) becomes
a < 1 and is automatically satisfied. Notice that (5.42) vanishes as £3. This
improves the O(a?) bound of (5.23) for large £ and will become crucial for treating

the multiscale models in section 5d.

5d. Multiscale Models

We now consider the case when the Hamiltonian in (5.14) is replaced by
EMe = ANTIeT2L + Mua [ 04— ©a(pa) (5.43)

where X = e~2. This problem is encountered in the work on the INS equations in
[26, 15, 16]. Again, we divide the problem as before into a local part 52;&1) and the
rest £, 1) (5.28), (5.29) and follow the same argument. We first bound 52;?). Here
we only have to carry the coefficients carefully and the final result is that (5.37)
should be modified by a multiplication of A = €72 on the right hand side. The
conclusion (5.42) becomes

Ep? < const. A (5.44)

and it vanishes only if

A3 0. (5.45)

The exponent 3 is the dimension of the space. The length scale £ can be at most
€1, so (5.45) requires that the space dimension is bigger than two , d > 2. On the
other hand, in our setting £ is independent of € and (5.45) cannot be satisfied. So
it looks as if there is no way out of the dilemma.

The key observation is that the previous estimate (5.40) is not optimal because
we neglect the constant term O,(pa) — ©4(pa) in (5.38) and various boundary
terms due to our decomposition into a local part and the rest in (5.28) and (5.29).
Recall that by definitions the expectation of 84 —© 4(p4) with respect to equilibrium

measures p4 v, vanishes. This is, in fact, the definition of @, , i.e.,

[ aa(@x) 164 = ©4(pa) = 0.
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This property has to be preserved. Had we kept track of all error terms carefully,

the expression in (5.41) should be replaced by

Q(6, M,n) = £ log / exp { C1a*6® [(pa = p4)* = ((pa = P4)"),.. | } Haldpe):

(5.46)
where i is the marginal distribution of p, with respect to pa,n» defined after (5.41).
In other words, the property that the potential part and thus the exponent has zero
expectation with respect to the equilibrium should be preserved. That is why we
added the constant term in {(pa — p A)2>“a. This requires careful bookkeeping and
is somewhat complicated. But once we realize the goal is (5.46), it is not hard to
achieve.

Recall the model computation (3.32) or (5.24)

oo
klog [ | wiax) eakX+ﬂkX2/2]

—00

= 0(c®) + k™' log =0(a®) + k718/2 + O(B*/k) (5.47)

1
vi-8

ve(dX) =4/ '2'k7? e kX 12gx

We have the next order form:

where

k!log [/ v (dX) eﬁk(xz'l)”] =k~ llog [

-0

] —k718/2 ~k716%
(5.48)
Here the constant —8k/2 is added to ensure that the expectation of the exponent

1
vi-8

with respect to the measure vy, is zero. This cancels the term linear in § in (5.47) and
improves the estimate to 32 (43 is small). This is a simple case of a general feature
of renormalization group arguments. Roughly speaking, the relevent direction here
is the direction of the term linear in the conserved quantity. If we subtract the
linear term, the estimate improves. In the model computation (5.47), it means
the estimate improves from a? to 3/k. We then identify the next slowest decay
mode, which is now the square of the conservative quantities. This term cannot be
subtracted. However, the mean zero property of the original quantity, if properly

recovered, improves the estimate. In the model computation, it means the estimate
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improves from B/k to 32 /k. The last step is a simple example of a general scheme
called the Ward identity.
If we use this observation, shen (5.42) becomes (a = Me),
£ < xa?073 = M2P.
Therefore, if the two scales M and £ are close, then SZ ;52) — 0. This suggests that

we should divide the scales from £ to M by a sequence of scales
b=ly<bli< -l =M=qe!

such that
T Zz 1
[-’E—;—] -0 (5.49)

in the limit ¢ —+ 0 and £ — oo. If we choose r of order loge™!, there are many
choices of the sequence £; such that (5.49) holds. We now divide the cube of size
M into non-overlapping subcubes of size ¢; (assuming that ¢; divide M exactly)
and index the subcubes by a;. The divisions are compatible in the sense that, for
every j and two scales £;_; and £;, each subcube «; consisting of non-overlapping
cubes of size £;_; (we assume also £;_, divide ¢; exactly). We can follow a similar

procedure as before except now we have to divide 82 ’,&2) into many scales. The final

;52) is smaller than the sum of the energy over all

answer is that the operator £;
levels and this leads to (5.49). A fine point is that we have to split the operator £ 4
into all levels. If we put a weight say, 72 on the level j, then the correct form of

the estimate is
n L
g0 <y [Jﬁ—l] : (5.50)
i=1 J

Here the factor j2 comes from decreasing the weight of the kinetic energy part £4.
Thus even for the choice X = £72 we have &, :,52) <0 in the limit ¢ -+ 0 and £ = o
provided that the right hand side of (5.50) vanishes in the limit.

Our next task is to estimate EZ ;§”. We follows the argument in (5.32)-(5.34)

to estimate it by the perturbation theory. The conclusion is

E7 < ECe?)(Ra,(~La)'Ra), <L)yt [BHm RY]. (5.51)
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Although the spectral gap is of order £72, in the sector R, it is really of order one.
Granting this, we can take v, ~ 1. The last expression then gives the correct order
and cannot be improved. The expectation E*=m R? is of order £~2 from the central
limit theorem. So the last expression is at best of order one and never vanishes in
the limit. This is not surprising if we accept the fluctuation-dissipation equation
(4.14) stating that the microscopic current should be replaced by the macroscopic
current plus two additional terms. Without this step, we can at most prove that the
microscopic current is of order one. Notice that we need all these arguments in the
multiscale analysis and that the dimension d > 2. An application of this argument
is a proof of the energy estimate for the INS equations given in [34]. Furthermore,
(5.51) tells us that the precise sense to solve the fluctuation-dissipation equation is
(=£)71, ie., in H_; norm w.r.t the operator. If (—£) is not symmetric, the H_;
norm is taken w.r.t the symmetric part of the operator. Unfortunately, the idea is

rather involved and we shall stop here.

5e The Finite Temperature Case

So far we have restricted ourselves to the infinite temperature case when the
Gibbs measures degenerate to Lebesgue measures. The simplest case of processes
with Gibbs measures as stationary measures is the symmetric case. The operator

is in this case determined by a Dirichlet form. Let u be a Gibbs state:

It = exp —,32 Vizi —zj)/2| /2
i#]

where 3 is the inverse of the temperature and Z is the normalization so that p is a

probability measure. Define
~ [ dutw) ) € gt / V() V9() du(x)

where V; = V... Explicitly,
N N
L= 8;-8)
=1 =1

Our goal is to investigate the dependence of previous results on the temperature 3

N
Z VkV(IL‘j - zk)jl V]' (5.52)

and the density. Technically, the Gibbs states produce boundary terms in almost
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every argument in these sections. We shall only comment on its effects on the

spectral gap or the LSI constants estimates.

The spectral gap or the LSI constants are simple to estimate for independent
particles since they can be more or less computed. For interacting systems no
explicit computations are possible and genuine understanding is needed. One major
source of difficulty is that the system may be in a metastable state for a long time.
Suppose for example that we are considering a fixed particle. The particle feels
the interactions of all other particles in the system. We can imagine that these
particles form a trap to force this particle in a small localized region. The system
is thus far from equilibrium. This trap is difficult to maintain as many particle
have to collaborate to form a trap. Thus eventually the trap will disappear and the
system reaches equilibrium. The question is how long does it take for the trap to
disappear? In the example we just described, the trap is highly unstable and it will
disappear immediately. The real trouble is the system collaborates in such a way
that a macroscopic part of the system is in a trap. This is the so-called metastable
state and it will take a long time to disappear. A proof that the spectral gap or
the LSI is of the same order as the non-interacting case means in particular that all
metastable states in a cube of size L disappear in time scale L?. This is possible
only if the system is away from the phase transition region.

For the operator defined in (5.52), there is no proof of its spectral gap as long
as # > 0 in any dimension! This may come as a surprise since we expect that
the very high temperature region is similar to the independent case. The catch is
that for any given temperature and density, a small part of the system may have
very high density and thus falls into phase transition regions. We are thus forced
to answer the relaxation time of this small system. This problem is somehow less
severe if we put the system on the lattice. The spectral gap (of order L~2) and LSI
can be proved assuming some high temperature conditions [30, 43]. As there is no
phase transition for one dimensional systems in continuum, we expect a spectral gap
proof is possible there. As of the writing of this paper, there is no proof. Notice the
spectral gap estimates mentioned in this lecture are very different from the uniform
spectral gaps or uniform LSI proved in [40, 31]. The dynamics in those works have

creation and annihilation of particles. They relax very fast and carry not much
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memory in the dynamics. It is in field theory language the positive mass case.

6. Quantum Mechanics, Boltzmann Equation and Renormalization

We start with a single electron in a cube of size L in R3 denoted by Az. Let
z denote the position of the electron. An electron (we neglect the spin variables) is -
described by a wave function %(z) in the state space H. = L?(AL), a Hilbert space
with the usual L? inner product. The dynamics of the free electron are characterized

by the Schrodinger equation

10y (x) = Hipe() (6.1)
and the Hamiltonian
H=H, = ’2Ax. (6.2)

Here v;(z) is the wave function at time ¢. The solution of (6.1) defines a unitary
group e~ *H and it conserves the L? norm. This holds for arbitrary Schrodinger
equation and is the quantum analogue of the Liouville operator preserving the !
norm.

The electron moves in a background described by a phonon field (modeling the
lattice vibrations), a random potential modeling obstacles (impurities) and radiation
fields (electromagnetic field). We first describe the random potential.

Let Vo(z) denote the potential between an electron and an obstacle. Denote
by wes = (Ya),@ = 1,---, Nop, the configuration of obstacles and let p, = Nop /L3
be the density of the obstacles. The potential due to the obstacles is given by

Nop
Voo (@) = Z Va, Valz) :=Vo(z — ¥a) (6.3)

a=1
We shall denote V,,,, by V,, in most cases in this lecture. The evolution of the
quantum particle in the random environment generated by these obstacles is given

by the Schrodinger equation (6.1) but the Hamiltonian is modified by
H=H,+He_op, Heop = V(). (6.4)

Here V,; is a multiplication operator. This is the quantum analogue of a classical

Lorentz gas.



218 H.-T. Yau

The obstacles are considered randomly placed in the space. Hence the natural
law is the Poisson distribution. Since we fix the number of obstacles, it is simply
the uniform distribution, namely, there are N,; obstacles with coordinates y,, a =
1,---, Ny such that each y, is distributed by the law L=3dz, in the cube of size
L. If we denote the expectation with respect to the obstacles by E,;, then

Noy
Eo = H (L_afdya)
a=1
Phonon problems

The dynamics of m free particles (phonons) with momentum ki, ---, k., are

governed by the Schrodinger equation
WOype(kr, -+ km) = Hppde(ky, -+ km) (6.5)

and the Hamiltonian (as a multiplication operator in momentum space)

m

kL k) = w(kD) (6.6)

j=1
where w(k) is the dispersion law and we shall not need its precise form in this lecture.
One can take for example w(k) = |k|. Since we are in a cube of size L, the momentum
k; is in the dual lattice of the cube, i.e., k; € A%l = 2x(ny/L,ny/L,n3/L) for
some integers nj,na,n3. We shall take the limit L — oo and thus k; eventually
can be any vector in R3. The state space of m-phonon wave functions, My, is the
subspace of symmetric functions in £2[(A¢“2!)™]. Again, it is a Hilbert space with
the usual #? inner product.

The combined dynamics of an electron and m phonons is thus given by
i0;¢e(z; k1, oo km) = [He ® 1+ 1®@ H | de(a5 k1, k) (6.7)

We shall abuse the notation to write H, for H, ® 1 and H:}l for 1 ® ;771' The
interactions between the electron and phonons are via emission and absorption of
phonons. So the number of phonons is not fixed and it is more convenient to consider
the space of phonons with indefinite numbers. The state space of phonons, called

the Fock space of phonons, is thus the direct sum of H}:

th = EB%:O %Z;‘
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The free phonon Hamiltonian Hpy, is the direct sum of Hamiltonian Hjj with the
obvious definition that the restriction of Hpy to the m phonon subspace My}, is Hpj.

The full wave function of the electron and phonons is given by ¥ = (¥™)%_, with
U™ =0 (z; k1, k)

The state space of the wave function ¥ is H, @ Hpp.

Define the phonon annihilation and creation operators c;c" and c¢; by

(ckO)™(zs k1, k) = VM + 19 (2 k k- k) (6.8)

1 & ~
(C:\I’)m(z; kl, tee ;km) = ﬁ Z ‘I’m_l(m; kla Ty kja e 1k1n)6(kj = k’) (69)
=1

where we set (c; ¥)™=C = 0 by definition. The interactions between the electron
and phonons are very complicated. They are usually modeled by the interaction
Hamiltonian

He_ph = iXe_ph / G(k) [e*®ck — e~*ocf] (6.10)

where G(k) models effective electron-phonon interactions and A._pp, is the electron-
phonon coupling constant. The dynamics of an electron coupled to phonons is thus
given by

10,V (kv k) = HU(zy k1, kmy oo o5) (6.11)

where

H=H,+ Hpp + He_pn (6.12)

is the full Hamiltonian. This is just a system of infinitely coupled equations. If
we set G(k) = |k|™! and w(k) to be a constant, we have the well-known Frohlich
Hamiltonian describing a polaron.

We can put these two settings together to have an electron in a random envi-
ronment and a phonon background. The equation is still (6.11) but the Hamiltonian
is now

H=H,+H. o+ th + He—ph- (6.13)

Here we have assumed that the impurities have no influence on the phonons.
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Suppose we are again in the one electron case without phonons. The physics
of quantum systems are given by expected value of observables with respect to the

wave function:

(¥, 09).

The observables O can be, say, some multiplication operators, or some differential
operators or more generally pseudo-differential operators. Notice that we have to
square the wave function and thus introduces some nonlinearity. This is one of the
main difference between the classical and quantum dynamics. Though both are
linear, the physics of quantum dynamics are governed by the square of the wave
function and thus nonlinear in a sense. We can remove this nonlinearity by going
into the density matrix formulation. Define for any wave function v the associated

density matrix by
Y = Ty,

the projection operator onto the wave function v in H.. With these notations, we

can represent the expected value of the observables by
<Q/), O’l/l) =Tr ’W,O

where Tr denotes the trace in .. Furthermore, the Schrodinger equation is equiv-

alent to

ey = 1, H] (6.14)

where vy = 7y, and [A, B] = AB — BA is the commutator. Notice the similarity
between this equation and the classical dynamics where the commutator is replaced
by the Poisson bracket. The density matrix formulation is linear in the sense that
both the expected value of the observables and the evolution are linear in the den-
sity matrix. The price to pay is now we have to solve an operator equation instead
of the usual partial differential equation. The two formulations, however, encounter
similar technical difficulties in most cases. The density matrix formulation is nec-
essary to study quantum systems at positive temperatures when the wave function
description is no longer valid. The generalization of this setup to include phonons

is straightforward and we shall not repeat it.
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Our goal is to study the average dynamics of the electron for a typical random
environment of obstacles when the phonons are in equilibrium. The equilibrium

states of the phonons at the time ¢ = 0 are simply the Gibbs states
Yoho = Z " exp [~ S Hpn] (6.15)

where Z is the normalization so that <pn,0 is a probability measure. The Gibbs
measure Yph0 is characterized by the following property: The events of finding n

phonons with momentum & are independent and the probabilities are given by

Z—le—ﬂw(k)n

The expected number of particles with momentum %k can be computed explicitly as
E"oho0 [Ny] = e = npn(k; B, ) (6.16)
[1 - e-Awlk)] P
We shall fix 8 and this index will be omitted.
Suppose the initial state of the electron-phonon system is the tensor product

of the electron density matrix 7. ¢ with the phonon density matrix:

Yo = Ye,0 @ Yph,0
The electron density matrix can be just

Ye,0 = Mo

for some initial wave function v of the electron. We use the Duhamel formula to
write the evolution of the electron-phonon system (6.11) as
¢
e—itH _ g=it(He+Hyn) —i/ e=i(t=) (et Hon) [, o=is(HeAHyn) g 4 ...
0
We now take the partial trace over the phonons, namely, we integrate out the
phonons. This can be performed easily since both the phonon Hamiltonian Hpp, (6.6)
and the electron-phonon interaction H._p, (6.10) are diagonalized in the momentum
space representation. The resulting effective (marginal) evolution of the electron in

the electron-phonon system is thus given by

10t = H oy, H = He+ Ae—p)'mvm',,pl (6'17)
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where the potential V,, , (z,t) is a centered Gaussian field. The subscript wpp de-
notes the random parameter of the Gaussian field and has no active meaning. Hence
in most cases we shall denote V,,,, by V,. The covariance of V;; can be computed

explicitly from the dynamics and the initial state of the phonons
Ep Vo (P, ) (4,5) = 6(p = @) [RE(p)e =940 4 R (p)ei=0)]  (6.18)
where w is the phonon dispersion law (6.6) and

R:p) = G@)P 1 +nm(®)],  R:(p) = |G®) [ npm(p) (6.19)

with np, (p) the expected number of phonons (6.16) given by the initial state (6.15).
The function G is the Fourier transform of G appeared in the Hamiltonian He_pp
(6.10). Notice that we use w to denote both random parameter and the dispersion
law of phonons.

Thus from now on we can assume that we have a one particle problem with
iaﬂ/;t =H+vy:, H=H,+H._ o+ )\e_pthh (620)

with H,_o described by (6.4) and Vpp, by (6.18). Recall that H._,, depends on the
location of the obstacles wy;. Denote by E,, the expectation w.r.t the Gaussian law
and by E,; with respect to the law of the obstacles. The quantity we are interested

in, the average dynamics of the electron, is characterized by
E Yt = EobEph'Yt

where ~; is the density matrix associated with the wave function ;. We shall
denote by w the collection of the random parameter s wpn and wep. The electron
wave function 1 thus depends on w and will be denoted by v¢,,. We can ask more
refined question with no expectations, but even with the expectation most basic
questions are still open.

We can write the density matrix as a kernel v(z,y) such that

(v9)(z) = / (@, ¥)g(y)dy
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The (inverse) Fourier transform of v(z,y) in its difference variable, y — z is called

the Wigner distribution. More precisely,
W,(z,v) = /ei“z ¥(z — %,z+ %) dz

If 7y is the projection operator of 1 then

Yo (@,y) = ¥(z)P(y)

and
Wy(z,v) = /ei“z 1,[1(1 - %)1/1(:1:—':— %) dz

The Wigner distribution W, (z, v) represents the ‘probability’ of finding an electron
at position z with velocity v. We have put the probability in quotation mark
because typically the Wigner distribution has no definite sign and thus cannot be a
probability density. But its proper mollification does. We shall prove that the weak
limit of the rescaled Wigner function is nonnegative and thus can be considered as
the phase space density.

Let ¢ be the atomic scale parameter. Define the macroscopic coordinates (X, T')
by

(X,T) := (ze, te)

Note that v = V, namely, the velocity is not rescaled. In physical reality € ~ 106,
and in this model we take the idealized ¢ — 0 limit. Our goal is to study the time

evolution of the rescaled Wigner distribution:
X
WE(X,V) = e W, (’E’ V) (6.21)

in the limit ¢ — 0. We have chosen the time scale ¢t ~ e~1. So far we have not fixed
the density of the obstacles or the strength of the interaction between electrons and

phonons. The first region that we have nontrivial evolution of the electron is
Pob — ]Vob/L3 =£, )\e—ph = \/E (6.22)

i.e., the density of the obstacles is of order € and the coupling constant is of order

V€. The choice that the density of obstacles is proportional to € is to keep the



224 H.-T. Yau

typical number of scatterings between the electron and the obstacles, pop t, finite
in the limit. This is similar to the Grad limit for the Boltzmann equation and
we shall still call it Grad limit. The choice of the coupling constant is harder to
explain. Roughly speaking, it is because the effective scattering cross section of a
potential AV is actually proportional to A%, a standard fact from scattering theory
of quantum mechanics. It will be called the weak coupling limit. Our goal is to
show that, in this region as e — 0, the expected value of the Wigner distribution
of the electron satisfies a Boltzmann equation with the collision kernel described in
the following.

Recall the linear Boltzmann equation with collision kernel o(U, V) is given by
OrFr(X,V)+V -VxFr(X,V)

= / o (U, V)Fr(X,U)dU — o Fp(X, V) , (6.23)

where o(U, V) is the differential scattering cross section and o := [ o(V,U)dU the
total cross section. The differential scattering cross section has two contributions,

one from the obstacles and one from the field. The one due to the field is
opn(U, V) =47R3(U - V)6 [U2/2 -V%2—wU - V)]

(6.24)
+4rR3(U = V)6 [U%/2 - V224 w(U - V)]

where w is the dispersion law of the phonons (6.6) and Ry, R, are defined in (6.19).
The first term, 6 [U?/2— V2/2 — w(U — V)], describes the scattering that the in-
coming particle is the electron with momentum U and the outgoing particles are the
electron with momentum V' and the phonon with momentum U — V. The momen-
tum transfer between the electrons, U — V, becomes the phonon momentum due
to the conservation of momentum. The energy conservation then forces the delta
function 6 [U2/2 - V2/2 —w(U — V)]. In the second term the incoming particles
are the electron and the phonon and the outgoing particle is the electron. The
interpretation is similar. The differential scattering cross section from the obstacles
is described as follows.

We assume that the potential Vy between the electron and one obstacle is small
enough so that the one body Hamiltonian H; := —A/2+V, has no bound states and
both the incoming and outgoing Hilbert spaces are the full space L?(R3). Recall
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the wave operators Qz = lim,_,o, e HoeFisH1 where Ho := —A/2. Under certain
assumptions on the potential V; the kernel of the scattering operator § = Q* (14 in

the Fourier space can be written as
S(u,v) = 6(u — v) — 2mid(u? — v*)T(u,v). (6.25)

The first term, §(u—v), represents the event that the particle passes through without

scattering; the second term defines the differential scattering cross section
Oop(u,v) = 4m 8(u? — v2)|T(u,v)]*. (6.26)

The delta function §(u? — v?) represents the energy conservation of the scattering
process and is called the on-shell condition. The total differential scattering cross
section is the sum

0 = 0Oop + Oph (6.27)

To get some idea of the quantum dynamics, we first look into the classical
dynamics. The evolution of the phase space density of a classical Lorentz gas was
studied a long time ago and was proved to converge to a linear Boltzmann equation
by G. Gallavotti [20] and later on by H. Spohn [37] and Boldrighini, Bunimovich
and Sinai [6] with different methods and in stronger senses in probability. The pic-
ture changes in the weak coupling limit; the classical dynamics actually converges
to a Brownian motion in this case ( Kesten, Papanicolaou [24] for d > 3 and Durr,
Goldstein, Lebowitz [11] for d = 2 in appropriate scaling). The interesting point is,
in the quantum case, the dynamics still converge to a Boltzmann equation. This was
first proved by H. Spohn [39] two decades ago when the macroscopic time is small.
Spohn’s result was improved by Ho, Landau, Wilkins [22] but the essential assump-
tions stayed the same. The reason that the quantum dynamics gives a different
result from the classical dynamics is roughly speaking due to the following observa-
tion: In classical dynamics, a weak obstacle will deflect the electron slightly. Thus
the total effects after many collisions is the sum of these small deflections. Since
the obstacles are randomly distributed, these small deflections can be considered as
independent random variables assuming that the dynamics generate no correlations.

Thus their sum converges to a Brownian motion. In quantum dynamics, when the
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strength of the obstacle is small, it is the probability that the electron gets scattered
becomes small. Once it is scattered, the typical angle is large. Thus it gives the
Boltzmann equation. The quantum Lorentz gas in the Grad limit, though appeared
to be a complete analogue to the classical case, is actually much more difficult to
analyze mathematically than the weak coupling limit. The reason is mainly due
to the renormalization needed to obtain the quantum differential scattering kernel
appeared in the final Boltzmann equation. This means that the Grad limit is not a
semi-classical limit in the quantum case and we have obtained a particle picture of
quantum mechanics through a non-semiclassical limit. We now describe the result
of a joint work with L. Erdos [12, 13]. Our results cover both limits and are global
in time.
We shall choose the initial data as

Y5 (x) := e%/%h(ex) exp (LS%E—)) (6.28)

and h(X), S(Y) are in the Schwarz class such that S has only isolated nondegenerate
critical points. It is easy to check that the rescaled Wigner distribution (6.21)

converges to
Wie (X, V) = [h(X)?6(V — VS(X)) 1= Fo(X, V) (6.29)

weakly on R® as ¢ — 0 and thus Fy(X,V) is the initial data for the Boltzmann

equation.

Theorem 6.1 . Let p = ¢, Ae_pp = /€ and let Y, + solve the Schrédinger equa-
tion (6.20) with initial condition (6.28). Then for any T > 0 the rescaled Wigner
distribution

EWS.  (X,V) = Fr(X,V)

weakly as € — 0 and Fr satisfies the linear Boltzmann equation (6.23) with initial

condition Fy(X,V) and collision kernel (6.27).

Sketch of the Proof
We shall work in microscopic coordinates and the index € will be omitted.

We consider only the Grad limit and take A._pr = 0. Our proof is based on the

Duhamel formula. We expand e~ up to the n-th order term and choose n large
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enough (depending on €) so that the error term 2, becomes negligible in the limit
as € = 0. The main steps are given in the following.
1. Quantum Scattering Kernel and Renormalization.

To get some feeling, we first compare the classical dynamics and the quantum
dynamics. Suppose that the particle in a Lorentz gas has one collision with some
obstacle. Classically we simply choose a scatterer and the particle collides with it.

In quantum mechanics, we have from the Duhamel formula
y =e oy = e oy 4+ 9l (1) + Do,
t
’l/)l (t) - Z/ e—»i(t—s)Ho Vw e—isHowo ds
0

0, ;:/ el 7 e—isiHo v o—is2Ho oy g ds; ds,
0<s;<t;y . s5=t

where V,, = V,,, is the potential given in (6.3) and Ho = —A/2 (We replace the
notation of H, by Hy because it is traditionally used in the Duhamel formula). The
one collision term is the term denoted by 1*(t). By definition, the potential can be

written as a sum over obstacles,

Nop
Vo = Zl Va(iE)

where V,(z) = Vo(z—y.). Hence ¢! (t) can be written as a summation over obstacles

as
Noy

Y(t) : Z Ya(t)

where t
¢a(t) = —2./ ds e_i(t_“")H0 Vy e isHo Yo.
0

Notice that instead of a collision with a chosen scatterer like in classical dynamics,
it is now a sum of collisions with all scatterers! Recall that the physical quantities
are defined in terms of the square of the wave function. So we first try to get some

idea of the size of
Nobp Nop

Elp@®)?=>> E(va v5)

a=1p8=1
where the last expectation is with respect to L™3 [, dyaL™° [, dyg, with a slight
abuse of notation. We shall call the term a = 8 the direct term and a # 3 the

indirect term.
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Since the only dependence on the y, and yg is from the potential V, and V3,
E (Yo, Y5 ) ~E(Va, Vg ) = L"’/A dyo dys Vo(z—ya)Vo(z—yg) ~L™° #0
LJAL
even o # 3. Though they are small, the number of the off-diagonal terms is much
larger than that of diagonal terms. So we would like to have them equal to zero
unless o # 3. To achieve this, we simply replace the potential V; by V; — ¢ for some
constant so that
/ (Vo(z) —¢)dz =0, c=1L"3 Vo(z)dz ~ L3,
AL AL

Clearly we then have
E(Va Vg)=0 ifa#p.

This will force us to change Hg to Ho + c¢Nop (Nos is the number of the obstacles)
so as not to change the full Hamiltonian. After this procedure, we will have the

indirect terms equal to zero. The direct terms can be computed explicitly. Define
¢ 2 2
K(t;po,p1) == —i/ ds e~iP0/2 g=ilt=9)pi/2
0
Then rather simple computation using the Fourier transform gives

El[ O = pos / / dpo dpy K (£ po, 1) *7 (o — 1) B0 (p1)

where p,; is the density of the obstacle (6.22) and the hat denotes the Fourier
transform. Notice that there is a time integration in K, so K? appears to be of
order t2. A more careful computation for the integration in p however shows that

it is effectively of order ¢ and we thus have

E|[$' ())II* ~ pob t.

Therefore, we have shown that the one collision terms are at least of order similar
to the classical dynamics in case pyp ¢ is small.

The next question is where we get the collision kernel. This in the field theory
language is from the resummation of loop diagrams for the propagator. Roughly

speaking, we have denoted by ), the collision with the obstacle a. But the physical
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collision to this obstacle is not just this term. Suppose we only have one obstacle

a. We can also expand the wave function by the Duhamel formula to have
t
e—it(Ho+Va)¢0 =e—itHo,¢0 _ 'L/ dse—-i(t-—s)Ho V. e—isHo o+
0
+ (__i)n / e—z’soHo Voo Vy e-—ia,.Ho ¢,0 dsodsy - dsn + -
0<s; St;z 8;=t

The physical scattering with one obstacle is the infinite sum of all these terms in
the Duhamel formula. Suppose we can also do this in the many obstacles context

and we denote

ren
o

the true physical collision with the obstacle a. This step is by no means simple as it
assumes that the interferences due to other particles are negligible. Assuming this,

we can now write the wave function as
Noy
Yremi(e) = 3 ()
a=1
We want to have as before that

E (95" 95" ) =0 (6.30)

for o # B. Now it becomes clear that a subtraction of a constant from V; is in
fact meaningless. In order to assure that the indirect terms vanish for one collision
processes, we have to subtract, roughly speaking, L3T(p,p) from V. Here T is
defined through the wave operator S in (6.25). Notice the subtraction is momen-
tum dependent. This subtraction has to be rebalanced by adding it to the free
Hamiltonian Hy. This changes the dispersion law of the free evolution and is the

price to pay in order to have (6.30).

2. Permutation Incoherence and Combinatorics. We can generalize the

previous concept of collision with a obstacle to collision with a sequence of obstacles
A:=(aj, a0, ,an), o Ewforallj, a;#ajqr.

We denote the term associated with this collision sequence by %7¢™ and we hope

that up to small error

Y~ UE (6.31)
A
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We again try to bound the norm of the right hand side. Since we have performed

the renormalization, we have

E(,d)zen, rBen > =0

unless {A} = {B} as sets. Hence we can assume here that B is a permutation of A.
The case A = B, as sequences, is called the main terms; the rest are the cross terms.
We have to show that the cross terms are of lower order due to phase incoherence
and only the main terms contribute. The number of permutation of n obstacles is
n!. This factor needs to be removed if we wish to use the right hand side of (6.31).
Notice that the n! again comes from squaring the wave function.

There is no easy way to remove this factor. One way to overcome this is to use
the 1/n! coming from the time integrations. Notice that n collisions corresponds to
n time integrations. The time integration is ordered, namely, t; < ty < --- < t,,.
Therefore, there is a factor 1/n! from the time integration. We can use this factor to
cancel the n! from the combinatorics of the permutations. On the other hand, since
1/n! is needed for convergence globally in time, this approach will be restricted to
the convergence in short time [39, 22]. In fact, apart from the short time restriction
this idea has other problems with renormalization as well and it can be carried out
only in the weak coupling limit with Gaussian laws.

Our approach [12, 13] is based on a scheme combining partial integration in
time and a cutoff estimate of the Duhamel formula. The cutoff uses the unitarity
—itH

of the evolution operator e and the triangle inequality. For any function h, we

have

t . 2 t . 2 t
” / e =) Hp ds H < t/ “ e it=a)Hp H ds < t/ lhs]|?ds .
0 0 0

Notice that the extra factor ¢ which is a price we pay from using the unitarity.
Thus once we know an error is small enough by a factor ¢!, it can be removed by
unitarity of the Schrodinger operator. This allows us to perform some cutoff. A
straightforward implementation of this idea will still have difficulties in the combi-
natorics, but it is too technical to describe it here. This is the place that we have

to use a partial time integration scheme [12, 13].
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3. Computation of Wigner Distribution of the Main Terms. Finally we
have to compute the Wigner distribution of the main terms. The computation is
somewhat tricky as we have twice as many time integrations in the Wigner distri-
bution (which involves the square of the wave function) as in the classical case. We
have to show that half of these time integrations produce the quantum scattering
kernel and the other half corresponds to the time integration of classical dynamics.

This concludes the sketch of the proof.

Open Problems and Concluding Remarks.

We have so far restricted ourselves to the Grad limit or weak coupling limit.
The most significant question in this direction is the behavior in longer time scales.
To fix the discussion, we consider only the random obstacle case. An electron in a
random environment is localized [3] if the density of the random obstacles is large;
diffusive if it is sufficiently small. If we keep the convention to denote the density
of the obstacles by ¢, the time scale now is ¢t — oo with ¢ fixed. This is much
longer than the time scale e~ considered in this lecture. The localization region
was established rigorously in, e.g., [18, 19, 2, 1]; the diffusion region is completely
open if the time scale is longer than e~!. Notice that the diffusivity of the classical
Lorentz gas is also open in the same region. The significance of these problems
comes from the derivation of diffusion from the first-principle classical or quantum
dynamics.

Another interesting direction is the many-electron systems. The dynamics of
N electrons with the two-body interaction W among electrons is characterized by

the Schrodinger equation

0t (T1,- -+ TN) = Hyy(@1, -, TN) (6.32)
and the Hamiltonian
N AL
H=H +He_o:= ), 5 Lt dee Y, W(zi—zy) (6.33)
j=1 1<i<j<N
Here 9¢(z1,- -+, zn) is the wave function of N-electrons at time t and A._. is the

strength of the electron-electron coupling constant. The state space of wave func-
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tions (21, -+, 2n) is the subspace of antisymmetric functions in LZ(R3%), i.e.,

'(p(xtny' ot 7xd1v) = (—l)afl)(h, e ,JTN)

for any permutation o in {1,---, N}. We have neglected the spin variables and thus
the Pauli-exclusion principle is simply the antisymmetry of the wave function.

We can couple the electrons to the random potentials and the phonon fields to
have a reasonable model of quantum transport in disordered medium. This amounts

to replace the Hamiltonian H by
H= He + He—e + th + He-ob + He—ph

This includes the random obstacles, the phonons and the electron-electron interac-
tions but not the electromagnetic field. The main point in mathematical analysis
here is to control the two-body interactions among electrons. So we shall focus on
the Hamiltonian (6.33).

The one-particle density matrix of the wave function is defined by
Oz, z') = /1,/)(1:,12, e TN)Y(T, T2, ... zN)dT2 .. . dTN.

Its Wigner distribution

= [ givna)(p_ 1 n
W, (z,v) : /e 5y (z 2,z+2)dn

is interpreted as the ”probability” of finding an electron at position z with velocity
v.

The goal is to prove that when A._. = /€, the (rescaled) Wigner distribution
converges to a solution to the Boltzmann equation (2.5). From the Pauli exclusion

principle, the collision term in the Boltzmann equation has to be modified to
/ audu'dv’ oU,V;U'V")
«{ FOIFO) - FON - FV)) - FO)PO) 1 - PO - FOV) )

here o(U,V;U’'V') is the (semi-classical) collision kernel of the scattering with in-

coming momenta U,V and outgoing momenta U’,V’. Heuristically, an average
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electron feels the background potential created by the remaining N — 1 electrons.
Hence it is in a sense similar to the problem of one electron in random obstacles, the
Lorentz gas. Unfortunately we have to follow the evolution of these ‘background’
N —1 electrons, or at least those colliding with the selected one. This was possible
in the classical dynamics in Lanford’s work described in section 2. In the quantum
case, as we have just shown for the Lorentz gas, the estimates depend on cancel-
lation from phase incoherence and there are many non-classical terms with huge
combinatorial factors to control. We do not know if our analysis can be carried

through in this case. It represents an interesting direction to pursue.
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